An Efficient Anonymous Credentials System

Jan Camenisch
IBM Research
joint work w/ Anna Lysyanskaya, Ivan Damgård, Victor Shoup

May 30th, 2005
Outline

I. Requirements of Anonymous Credential System

II. Abstract Solution

III. The Technical Bit
 Signature Scheme
 Commitments and Proof Protocols
 Encryption Scheme
The Problem: Pseudonym System

[Chaum85]
The Problem, Even Larger: Extended Pseudonym System

Driver's License

Insurance

Dangerous Cars

Judge

Cryptography for Privacy -- Credential\(^+\) Systems
Basic Requirements of Pseudonym System

- Protection of user's privacy
 - anonymity
 - unlinkeability (multi-use)

- Unforgeability of credentials

- Consistency of credentials (no pooling)
Extra Requirements of Pseudonym System

- Sharing of credentials
- Anonymity revocation
 - local
 - global
- Revocation of credentials
- Encoding of attributes
- One-show credential (e-cash)
 - off-line & on-line
- k-spendable credentials
-
Some History

- Chaum ’85: introduced scenario
- Chaum & Evertse ’87: solution based on a semi-trusted party
- Damgård ’90: theoretical solution
- Brands ’95–’99: one-show credentials with different attributes
- LRSW ’99: practical solution for one-show credentials
- Camenisch-Lysyanskaya ’00: efficient multi-show w/ attributes
- Verheul ’01: bi-linear map multi-show
- Camenisch-Lysyanskaya ’04: Discrete log based.

Special cases: e-cash, group signatures, identity escrow
Proving Ownership Solution
Proving Ownership Vs. Using Blind Signatures

Certificates can be used *multiple* times!

Certificates can be used only *once*!
Required Technologies

Signature Schemes

Encryption Schemes

Commitment Schemes

Zero-Knowledge Proofs

..... challenge is to do all this efficiently!
Zero-Knowledge Proofs of Knowledge of Discrete Logarithms

Given group \(\langle g \rangle \) and element \(y \in \langle g \rangle \).

Prove knowledge of \(x = \log g y \) such that verifier only learns \(y \) and \(g \).

Prover:

\[t := g^r \]

Verifier:

\[t = g^s y^c \]

PK\{(\alpha): y = g^\alpha\}
Zero Knowledge Proofs II

Non-interactive (Fiat-Shamir heuristic):

$$\text{PK}\{(\alpha): \ y = g^\alpha \}(m)$$

Logical combinations:

$$\text{PK}\{(\alpha,\beta): \ y = g^\alpha \land z = g^\beta \land u = g^\beta h^\alpha \}$$
$$\text{PK}\{(\alpha,\beta): \ y = g^\alpha \lor z = g^\beta \}$$

Intervals and groups of different order (under SRSA):

$$\text{PK}\{(\alpha): \ y = g^\alpha \land \alpha \in [A,B] \}$$
$$\text{PK}\{(\alpha): \ y = g^\alpha \land z = g^\alpha \land \alpha \in [0,\min\{\text{ord}(g),\text{ord}(g)\}] \}$$
Commitment Schemes

Group \(G = \langle g \rangle = \langle h \rangle \) of order \(q \)

To commit to element \(x \in \mathbb{Z}_q \):

- perfectly hiding, computationally binding (Pedersen):

 choose \(r \in \mathbb{Z}_q \) and compute \(c = g^x h^r \)

- computationally hiding, perfectly binding:

 choose \(r \in \mathbb{Z}_q \) and compute \(c = (g^x h^r, g^r) \)

To commit to integer \(x \in \mathbb{Z} \) (Damgård, Fujisaki):

- similarly, if order of \(G \) is not known, e.g., \(G = QR_n \)
The Strong RSA Assumption

Flexible RSA Problem: Given RSA modulus n and $z \in QR_n$ find integers e and u such that

$$u^e = z \mod n$$

- Introduced by Barić & Pfitzmann '97 and Fujisaki & Okamoto '97
- Hard in generic algorithm model [Damgård & Koprowski '01]
Signature Scheme based on the SRSA Assumption I

Public key of signer: RSA modulus n and $a_i, b, d \in QR_n$.

Secret key: factors of n.

To sign k messages $m_1, ..., m_k \in \{0,1\}^\ell$:

- choose random prime $e > 2^\ell$ and integer $s \approx n$
- compute c such that

$$d = a_1^{m_1} \cdot ... \cdot a_k^{m_k} \cdot b^s \cdot c^e \mod n$$

- signature is (c,e,s)
Signature Scheme based on the SRSA Assumption II

A signature \((c,e,s)\) on messages \(m_1, \ldots, m_k\) is valid iff:

- \(m_1, \ldots, m_k \in \{0,1\}^\ell\)
- \(e > 2^\ell\)
- \(d = a_1^{m_1} \cdots a_k^{m_k} b^s \cdot c^e \mod n\)

Theorem: Signature scheme is secure against adaptively chosen message attacks under SRSA assumption.
Getting a Signature on a Secret Message

$C = a_1^{sk} b^{s'}$
Getting a Signature on a Secret Message

\[C = a_1^{sk} b^{s'} \]

\[\text{PK}(\mu_1, \sigma') : C = a_1^{\mu_1} b^{\sigma'} \]
Getting a Signature on a Secret Message

C = a_{1}^{sk} b^{s'}

PK{(\mu_{1}, \sigma')} : C = a_{1}^{\mu_{1}} b^{\sigma'}

d = C a_{2}^{nym} b^{s''} c^{e} \mod n

d = a_{1}^{sk} a_{2}^{nym} b^{s''} + s' c^{e} \mod n
Proof of Knowledge of a Signature

Observe:

- Let $c' = c b^{s'} \mod n$ with randomly and s'
- then $d = c'^e a_1^{m_1} \cdot ... \cdot a_k^{m_k} b^{s*} \pmod{n}$,
 i.e., $(c', e, s*)$ is also a valid signature!

Therefore, to prove knowledge of signature on some m

- provide c'
- $PK\{(\varepsilon, \mu_1, ..., \mu_k, \sigma) : \quad d := c'^\varepsilon a_1^\mu_1 \cdot ... \cdot a_k^\mu_k b^\sigma$
 $\land \mu_1 \in \{0,1\}^\ell \land \varepsilon \in 2^{\ell+1} \pm \{0,1\}^\ell \}$
Proof of Knowledge of a Signature

Using second Commitment

- $C = a_1^{sk} b^{s^*}$

To prove knowledge of signature on some m

- provide c'

- $PK\{(\varepsilon, \mu_1, ..., \mu_k, \sigma, \sigma^*,) :$

\[C = a_1^{\mu_1} b^{\sigma^*} \land d := c' \varepsilon a_1^{\mu_1} \cdots a_k^{\mu_k} b^\sigma \}$
Verifiable Encryption
The Decision Composite Residuosity Assumption

The DCR Problem: Given \(n \) and \(x \), decide whether or not
\[
x \in (\mathbb{Z}_n^*)^n.
\]

- Introduced by Paillier '99.
- If \(n = (2p' + 1)(2q' + 1) \) then \(\mathbb{Z}^*_n = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_n \times \mathbb{Z}_{p'q'} \).
- \((1+n)^u = (1+un) \mod n^2\).
An Encryption Scheme

Public Key: \(n \) and \(g, Y_1, Y_2, Y_3 \in \langle (g')^{2n} \rangle \), where \(g' \in \mathbb{Z}^*_{n^2} \).

Secret Key: \(x_i = \log Y_i \)

Encryption message \(m \in [0,n] \) under label \(L \):

- choose \(r \in [0,n/4] \)

- \(u := g^r, e := Y_1^r (1+n)^m, v := \text{abs}(Y_2 Y_3^{H(u,e,L)})^r \)

- output \((u,e,v)\).

where \text{abs()} \space maps \((a \mod n^2)\) to \((n^2 - a \mod n^2)\) if \(a > n^2/2\),

and \((a \mod n^2)\) otherwise, where \(0 < a < n^2\).
An Encryption Scheme

Decryption of ciphertext \((u,e,v)\) under label \(L\):

- verify \(v = \text{abs}(v)\) and \(u^{2(x_2 + H(u,e,L)x_3)} = v^2\).
- \(\check{c} := (e/u^{x_1})^{2^t}\) where \(t = 2^{-1} \mod n\),
- if \(n \mid (\check{c}-1)\) output \(m := (\check{c}-1)/n\), otherwise output \(\bot\).

Intuition: remember \((1+n)^q = 1+an \pmod{n^2}\)

so \((e/u^{x_1}) = \gamma_1 \left(1+n\right)^m / (g^r)^{x_1} = (1+n)^m = 1+mn\)

Theorem: Encryption scheme is secure against adaptively chosen ciphertext attacks under DCR assumption.
Verifiable Encryption of a Discrete Logarithm

Let \(d = a_1^{sk} a_2^{nym} b^s c^e \pmod{n} \) be a driver's license and \((u,v,e)\) be an encryption of \(nym\).

To prove that \((u,v,e)\) indeed encrypts \(m\):

\[
PK\{(\epsilon, \mu_1, \mu_2, \rho, \sigma) : \\
d := c^\epsilon a_1^{\mu_1} a_2^{\mu_2} b^\sigma \land \mu_1, \mu_2 \in \{0,1\}^\ell \land \\
u^2 = g^{2\rho} \land e^2 = Y_1^{2\rho} (1+n)^{2\mu_2} \land v^2 = (Y_2 Y_3^{H(u,e,L)})^{2\rho} \}
\]
Conclusion & Outlook

- Efficient Anonymous Credentials and more!
- TCG TPM V1.2 will have some of this

 Was known in theory; soon your computer will have it.

- EU Project PRIME will have all of this

 www.prime-project.eu.org

- Plans:
 - Open source
 - Lots of more research :-}
Thanks for your attention!