
On the Security of the

Tor Authentication Protocol

Pre-proceedings version

Ian Goldberg

David R. Cheriton School of Computer Science, University of Waterloo,
200 University Ave W, Waterloo, ON N2L 3G1

iang@cs.uwaterloo.ca

Abstract. Tor is a popular anonymous Internet communication sys-
tem, used by an estimated 250,000 users to anonymously exchange over
five terabytes of data per day. The security of Tor depends on properly
authenticating nodes to clients, but Tor uses a custom protocol, rather
than an established one, to perform this authentication. In this paper,
we provide a formal proof of security of this protocol, in the random
oracle model, under reasonable cryptographic assumptions.

1 Introduction

The Tor anonymous communication system [11] is used by an estimated 250,000
users worldwide [15] to protect the privacy of their Internet communications.
Users can maintain their anonymity with Tor while taking advantage of many
Internet services, including web browsing and publishing, instant messaging, and
ssh.

In order to protect users’ privacy, Tor utilizes of a number of nodes (also known
as “onion routers” or “ORs”) situated around the Internet. A client (an Internet
user, whom we will call Alice, who does not necessarily run a node herself) builds
a circuit through the network as follows:

– Alice picks a Tor node, n1, and establishes an encrypted communication
channel with it.

– Alice picks a second Tor node, n2, and, over the previously established chan-
nel, instructs n1 to connect to n2. Alice then establishes an encrypted com-
munication channel with n2, tunneled within the existing channel to n1.

– Alice picks a third Tor node, n3, and, over the previously established channel,
instructs n2 to connect to n3. Alice then establishes an encrypted commu-
nication channel with n3, tunneled within the existing channel to n2.

– and so on, for as many steps as she likes.

The security of the Tor system derives in part from the fact that the various
nodes in the circuit are operated in different administrative domains; if one party

had access to the internal state of all of the nodes in Alice’s circuit, he could
easily compromise Alice’s anonymity.

For this reason, it is important that Alice be assured that her communications
with the various nodes be authenticated: if Mallory (a malicious man-in-the-
middle) operated (or compromised) any single node ni, then, without authenti-
cation, he could simulate all subsequent nodes ni+1, ni+2, . . . in Alice’s circuit.
If Alice were unlucky enough to pick Mallory’s node as her n1, he would be able
to control her entire circuit.

Therefore, at each step, Alice (a) establishes a shared secret with a node, and
(b) verifies that node’s identity, so that it cannot be impersonated. Note that
Alice’s identity is never authenticated; she operates anonymously.

Tor uses a new protocol to achieve this, which we call the Tor Authentication
Protocol (TAP) [10]. TAP is not an established authentication protocol, however,
and its first deployment had at least one serious weakness [9]. In this paper, we
analyze the (updated) TAP, and give a formal proof of security in the random
oracle model [3]. This formal proof provides confidence that there are no similar
weaknesses remaining in the protocol.

2 The Tor Authentication Protocol

We will first describe TAP in abstract terms. TAP is built from the following
pieces:

– There is a trusted PKI that allows Alice to determine each node’s public
encryption key. Let EB be public-key encryption using B’s public key, and
let DB be the corresponding decryption using B’s private key.

– p is a prime such that q = p−1
2 is also prime, and g is a generator of

the subgroup of ZZ∗
p of order q. lx is an exponent length; when a “ran-

dom exponent” is required, select an lx-bit value uniformly from the interval
[1, min(q, 2lx)− 1].

– f is a hash function, which we will model by a random oracle, taking as
input elements of ZZp, and outputting bit strings of length lf .

The abstract protocol is as follows:

1. Alice selects a node to add to her circuit. Let us suppose she selects Bob
(B).

2. Alice picks a random exponent x, and computes gx (all exponentiations will
be assumed to be mod p, and the least nonnegative representative will always
be used).

3. Alice sends c = EB(gx) to Bob.
4. Bob computes m = DB(c), checks that 1 < m < p − 1, picks a random

exponent y, and computes a = gy and b = f(my).

5. Bob sends (a, b) to Alice.

6. Alice checks that 1 < a < p− 1 and that b = f(ax).1

7. If the checks are successful, Alice accepts Bob’s authentication, and they use
ax = my as a shared secret in order to communicate privately.

Note that in step 4, it is possible that m ≤ 1 or m ≥ p−1 or even that DB(c) =⊥;
i.e. c is not a valid ciphertext. In these cases, Bob aborts the protocol.

Remember that all of the communication in TAP, other than that between Alice
and the first node, is visible to, and modifiable by, the previous node in the
circuit. We will assume this node is malicious, and denote it by Mallory (M).

3 Formalization

In this section, we formally define what we mean by the security of TAP.

We begin by formally defining, in the usual way, a public-key encryption system
(in the random oracle model) Π as a triple (K, EH ,DH) of algorithms:

– K is the key generation algorithm. It takes as input a security parameter, k, in
unary notation, and outputs a pair (pk, sk). pk is the public key, and sk is the
private key. K is a polynomial-time randomized algorithm. If additionally,
there is a polynomial-time algorithm κ that inputs pk, and outputs the value
of k used to generate it, we say that Π is k-aware.2

– EH is the encryption algorithm. It has access to a random oracle H , takes
as input a public key output by K and a plaintext message m, and outputs
a ciphertext c. EH is also a polynomial-time randomized algorithm, so there
are many possible outputs c for the same inputs pk and m.

– DH is the decryption algorithm. It has access to the same random oracle H ,
takes as input a private key output by K and a ciphertext c, and outputs
either a plaintext message m, or else a special symbol ⊥, indicating an invalid
input. DH is also polynomial-time, but is deterministic.

We of course require that, for any (pk, sk) output by K(1k), any plaintext mes-
sage m in the domain of EH

pk (which may depend on pk), and any c output by

EH
pk(m), it must be the case that DH

sk(c) = m. Note that we indicate the keys as

subscripts to EH and DH .

1 The error corrected in [9] was that Alice neglected to check that 1 < a < p − 1.
This allowed Mallory to ignore Alice’s first message, reply with (1, f(1)), and use
the “shared secret” of 1 to read Alice’s subsequent messages, pretending to be Bob.

2 Almost every reasonable public-key encryption system is k-aware. k-awareness is an
easy-to-verify technical condition that will prevent the use of certain pathological
systems in section 6.

Next we define a group parameter generator. This is a function G, which is
possibly, but not necessarily, randomized. G takes as input a security parameter
k, again in unary notation, and outputs a pair (p, g) such that:

– p is prime
– q = p−1

2 is also prime
– g is a generator of the subgroup of ZZ∗

p of order q
– the length of p, in bits, is Ω(k), and polynomial in k

Finally, we recall that a function ε(k) is negligible with respect to k if for every
constant c ≥ 0, there exists an integer kc such that ε(k) ≤ k−c for all k ≥ kc.
Throughout this paper, the term “negligible” by itself will mean “negligible with
respect to the security parameter k”.

Definition 1. For a given public-key encryption system Π, and a given group
parameter generator G, we say TAP is (Π,G)-insecure if there exists a polynomial-
time randomized algorithm Mf,H,N such that, for a random output (pk, sk)
of K(1k), a (possibly random) output (p, g) of G(1k), and a random exponent
x, with non-negligible probability, Mf,H,N (pk, p, g, EH

pk(g
x)) = (a, ax), for some

1 < a < p− 1.

If no such algorithm exists, we say TAP is (Π,G)-secure.

As the notation would suggest,Mf,H,N has access to three oracles: the random
oracles f and H , and a node oracle N . The node oracle is one which emulates
the behaviour of the above Tor node Bob: given an input c, it outputs a pair
(

gy, f
(

DH
sk (c)

y))

for an exponent y chosen freshly at random on each invoca-
tion.3

It is easy to see how, if such an algorithm exists, Mallory could compromise the
security of Tor: when Alice asks Mallory to extend her circuit to Bob, Alice will
choose an x and give him EB(gx). Mallory will runMf,H,N on that value, Bob’s
public key, and the group parameters, replacing every call to N by contacting
Bob, sending c, and receiving Bob’s output (gy, f (DB (c)y)) for an exponent
y chosen freshly at random each time. Mallory takes the output (a, ax), with
1 < a < p − 1, and returns (a, f(ax)) to Alice. Now Alice will send messages
protected with the shared secret ax, thinking that only Bob can read them. But
Mallory knows this value, and Tor’s security is compromised.

Broadly, there are two main strategies Mallory could use to construct such an
algorithm. First, he could perform an attack on EB(gx) to try to recover gx; in
this case, he can pick a random r and output (gr, (gx)r). Second, Mallory could
try to construct a “master” (a, ax) pair that works despite his not knowing
gx. It was this latter strategy that was exploited in the previous version of the
Tor protocol, where the restriction 1 < a < p − 1 was absent. The purpose of
this paper is to show that Mallory has no way to succeed using either of these
strategies, or indeed any other strategy.

3 So long as DH
sk (c) 6=⊥ and 1 < Dsk (c) < p − 1. Otherwise N returns ⊥.

4 IND-CPA

We next recall the definition of IND-CPA (indistinguishability in a chosen plain-
text attack) [1]:

Definition 2. Let Π = (K, E ,D) be a public-key encryption scheme. For a pair
of randomized algorithms A = (A1, A2), define the advantage of A to be

Adv
ind−cpa
A,Π (k) = |2 · Pr [(pk, sk)← K

(

1k
)

; (m0, m1, σ)← A1 (pk) ; b← {0, 1} ;

y ← Epk (mb) : A2 (m0, m1, σ, y) = b]− 1|

We additionally require that the outputs m0 and m1 of A1 be of the same length.

Definition 3. If, for a given public-key encryption scheme Π, any pair of poly-
nomial-time randomized algorithms A has advantage Adv

ind−cpa
A,Π (k) negligible in

k, we say Π is IND-CPA.

Informally, we say Π is IND-CPA if there is no way for a polynomial-time ad-
versary to win the following game (against a tester) non-negligibly more often
than half the time: 4

– (Key generation:) The tester generates a public/private key pair.
– (Message generation:) The adversary is told the public key, and picks two

messages m0 and m1 of the same length.
– (Challenge:) The tester picks a bit b at random, and produces y, an encryp-

tion of mb using the public key.
– (Response:) The adversary is given y, and tries figure out the value of b.

The adversary can keep state (symbolized by σ in the formalization) between
the message generation and the response phases.

5 Reaction Resistance

In this section, we introduce the concept of reaction resistance, which is similar
to plaintext awareness [1], but weaker. Therefore, we first review the latter.
Informally, a public-key encryption system is said to be plaintext aware if there
is no way to produce a valid ciphertext (one which does not decrypt to⊥) without
knowing the corresponding plaintext. Even if you observe some valid ciphertexts
(say, by intercepting messages), you should be unable to modify them to produce
a new ciphertext whose decryption you do not know.

4 The adversary can trivially win half the time by simply picking an answer at random.

We formalize this by saying that an IND-CPA public-key encryption system
is plaintext aware if there is an algorithm K, known as a knowledge extractor.
K is given the public key pk, a list C of observed ciphertexts (for which the
plaintext is not necessarily known), a challenge ciphertext y 6∈ C, generated by
some adversary, and the list η of all of the random oracle queries and responses
used by the adversary to construct y. K must then output the correct decryption
of y, except with negligible probability.

Plaintext awareness is a very strong property for a public-key encryption system
to have; for example, any system which is plaintext aware is also resistant to
adaptive chosen ciphertext attacks. We define the weaker property of reaction
resistance, which allows the adversary to construct certain valid ciphertexts for
which it doesn’t know the corresponding plaintext. To do this, we remove the
requirements that the system be IND-CPA and that y 6∈ C, and also allow the
knowledge extractor to do any of the following:

– output (plain, v) where v is the decryption of y, as in the plaintext awareness
case (v is allowed to be ⊥)

– output (match, i), claiming that the decryption of y is the same as that of
Ci (this can be used when y ∈ C, for example)

– output (guess), indicating that the only way for an adversary to know the
decryption of y is to guess it (note that the extractor is given the transcript
of the adversary’s calls to the random oracle, so it would know how y was
generated)

Formally:

Let Π = (K, EH ,DH) be a public-key encryption system where the encryption
and decryption algorithms have access to a random oracle H .

Let BH be an adversary that is given a public key pk output by K and a list of
ciphertexts C, and outputs a tuple (η, y, m), where:

– η is the list of queries and results that BH made to the random oracle H

– y is a challenge ciphertext
– m is a guessed plaintext

Definition 4. Π is reaction resistant (RR) if there exists a knowledge ex-
tractor K, which, for any such adversary BH , has the property that

K(η, C, y, pk) =

(plain, v) ⇒ DH
sk(y) = v

(match, i)⇒ DH
sk(y) = DH

sk(Ci)
(guess) ⇒ DH

sk(y) 6= m ∧ ∀i : DH
sk(y) 6= DH

sk(Ci)

for any (pk, sk) output by K, any list of ciphertexts C (created by using EH
pk to

encrypt plaintexts selected from some distribution), and any (η, y, m) output by
BH(pk, C), except with negligible probability.

We note that this definition of RR is in the random oracle model, and follows the
definition of plaintext awareness from [1]. The methods used in [2] could be used
to produce a definition of RR in the standard model, but this is not necessary
for our purposes.

Reaction resistance is so named because it is the property a cryptosystem needs
in order to prevent reaction attacks [13], such as those against Atjai-Dwork [13],
NTRU [14], and PKCS#1-v1.5 [5]. In these attacks, the adversary sends chosen
ciphertexts (typically modified versions of intercepted ciphertexts) to one of the
participants in the protocol, and watches her reaction in order to determine
whether the ciphertext decrypted to something sensible. This information can
be enough for the adversary to determine the original plaintext, or sometimes
the secret key.

Finally, we define the weaker notion of RR1 (reaction resistance with a single
observed ciphertext):

Definition 5. Π is RR1 if there exists a knowledge extractor K that satis-
fies the conditions of Definition 4, but which may also assume that its second
parameter, C, is a list consisting of exactly one ciphertext.

6 Security Reduction

In this section, we provide a reduction from the security of TAP to the security
of the underlying public-key encryption system. We start by defining an x-power
pair, and the G-restriction of a public-key encryption system. The latter is just a
slight modification to the original system that additionally checks that decrypted
values are integers from some particular interval.

Definition 6. For a fixed exponent x, an x-power pair is a pair (α, αx) such
that 1 < α < p− 1.

Note: It will be important in section 6.2 that an algorithm that knows no infor-
mation about x, save that is a random exponent, be able to create an x-power
pair only with negligible probability. Since 1 < α < p− 1, and each member of
this interval has order either p−1

2 or p− 1, this is trivially true. However, if the
restriction on α were not present, an attacker could choose an element of low
order for α, and easily create an x-power pair, so the proof of Theorem 1 would
not go through. This was the problem in the earlier version of the protocol.

Definition 7. If Π is a public-key encryption system, and G is a group pa-
rameter generator, then the G-restriction of Π, denoted ΠG, is a public-key
encryption system (K∗, E∗,D∗), where

– K∗(1k) = ((pk, p, g), (sk, p, g)), where (pk, sk)← K(1k) and (p, g)← G(1k).

– E∗(pk,p,g)(m) = Epk(m).

– D∗
(sk,p,g)(c) =

{

Dsk(c) if Dsk(c) 6=⊥ and 1 < Dsk(c) < p− 1
⊥ otherwise

.

Theorem 1. Let G be a group parameter generator, and Π be a k-aware public-
key encryption system. If Π is IND-CPA and ΠG is RR1, then TAP is (Π,G)-
secure.

We will prove the following logically equivalent statement: if ΠG is RR1, and
TAP is (Π,G)-insecure, then Π is not IND-CPA.

Therefore, we now assume that we have in hand a knowledge extractor K for
ΠG satisfying the properties of section 5, and an algorithm Mf,H,N satisfying
the properties of section 3, and will try to produce a pair of algorithms (A1, A2)
that can win the guessing game of section 4. We will do this in two steps: (1)
remove the node oracle; (2) win the guessing game.

6.1 Remove the Node Oracle

In this step, we take our algorithm Mf,H,N , which has access to the random
oracles f and H and the node oracle N , and produce an algorithmMf,H

1 , which
just has access to the random oracles.

Mf,H
1 (pk, p, g, c0), then, is calculated as follows:

– Initialize Γ , Φ, and η to be empty lists.
– Set out ← Mf ′,H′,N ′

(pk, p, g, c0). Note that we have replaced each call to
f(m) by a call to the following subroutine f ′(m):

append m to the list Φ

return f(m)

each call to H(m) by a call to the following subroutine H ′(m):

set h← H(m)
append (m, h) to η

return h

and each call to N (c) by a call to the following subroutine N ′(c):

set k ← K(η, {c0}, c, pk)
if k = (plain,⊥):

return ⊥
else if k = (plain, v):

pick a random exponent y

set s← f(vy)
return (gy, s)

else:
pick a random exponent y

pick a random string s of length lf
append gy to the list Γ

return (gy, s)

– Pick a random bit β.
– If β = 0, return out.
– If β = 1, and either Γ or Φ is empty, return ⊥
– Otherwise, pick a random element γ of Γ and a random element φ of Φ, and

return (γ, φ).

Lemma 1. IfMf,H,N (pk, p, g, EH
pk(g

x)) outputs an x-power pair with non-negligible

probability, thenMf,H
1 (pk, p, g, EH

pk(g
x)) outputs an x-power pair with non-negligible

probability.

Proof. The intuition behind the proof is that the input/output behaviours of f

and f ′ are the same, as are those of H and H ′, so we only have to consider the
difference between N and N ′. We can use K, the knowledge extractor for ΠG ,
to give us a partial decryption oracle: if K reports that it knows the plaintext
corresponding to the given ciphertext, N ′ can just use that value to perform the
same operations as N would. On the other hand, if K reports that there’s no
way to know the plaintext, then N ′ can output a value which, by the properties
of the random oracle, will be indistinguishable from those of N , except in certain
cases we consider separately.

We first note that N ′, and thus K, is called only polynomially often. Since each
call to K only has a negligible probability of returning an erroneous result, we
can conclude that, except with negligible probability, all of the calls to K return
a correct result.

We assume, then, that indeed all of the calls to K return a correct result. Since
K is a knowledge extractor for ΠG , if K returns (plain, v), it must be the case
that either v =⊥ or else 1 < v < p − 1. In either case, N ′ performs the same
operations as N .

If K returns (guess), then Mf,H
1 (in the role of K’s adversary) cannot learn

DH
sk(c) (and in particularDH

sk(c) cannot be ⊥), except with negligible probability.
In this case, N will return (gy, f(DH

sk(c)
y)), while N ′ will return (gy, s), for a

randomly chosen exponent y and a randomly chosen string s of length lf . But

Mf,H
1 will not be able to compute DH

sk(c)
y, so it will not be able to distinguish

the two results. We also note that the probability that two different calls to N
produce the same input to f is negligible: N only calls f on random powers of
numbers d with 1 < d < p−1. All such numbers have order either q or 2q = p−1,
and note that p was selected to be Ω(k) bits long. There are only polynomially
many of these calls that N makes to f (sinceMf,H,N runs in polynomial time),
so the probability that two of these calls have matching inputs is negligible.

Finally, if K returns (match, i), then i must be 1, since {EH
pk(g

x)} is a list of length

1, and so DH
sk(c) = gx. Again, N will return (gy, f(gxy)), and N ′ will return

(gy, s), for a randomly chosen exponent y and a randomly chosen string s of
length lf . What ifMf,H,N makes a call to f that happens to match one of these
inputs that N uses in a call to f? Suppose the probability of this event (which
we will label C for “Collision”) is ∆. Let θC be the conditional probability of
Mf,H,N succeeding (i.e. outputting an x-power pair), given that C has occurred.
Similarly, let θ

C
be the conditional probability of Mf,H,N succeeding, given

that C has not occurred. Then the overall probability of Mf,H,N succeeding is
∆ · θC + (1−∆) · θ

C
, which by assumption is non-negligible, so either ∆ · θC or

(1−∆) · θ
C

(or both) must be non-negligible.

Note that, if C does not occur, thenMf,H
1 will not be able to distinguish outputs

of N ′ from outputs of N , and so the probability ofMf ′,H′,N ′

outputting an x-
power pair, given that C does not occur, is at least θ

C
− ε, for some negligible ε

(which takes into account the negligible probabilities of error mentioned above).

On the other hand, if C does occur, then Mf,H
1 will have made a call to f ′,

passing an input gxy (thus entering gxy into the list Φ), where gy is some value
entered into the list Γ . Therefore, this (gy, gxy) pair is an x-power pair that
appears in the set Γ × Φ.

So what is the overall probability ofMf,H
1 succeeding? If C does not occur, and

β = 0 (the combined probability of which is 1−∆
2), then Mf,H

1 will output out,
which will be an x-power pair with probability at least θ

C
− ε. If C does occur,

and β = 1 (the combined probability of which is ∆
2), then Mf,H

1 will output a
random element of Γ ×Φ, a set of polynomial size, of which at least one element
is an x-power pair.

Therefore, the overall probability is at least z = ∆
2 ·

1
|Γ×Φ| +

1−∆
2 ·

(

θ
C
− ε

)

. Now

recall that either ∆ ·θC or (1−∆) ·θ
C

(or both) must be non-negligible. If ∆ ·θC

is non-negligible, then z ≥ ∆
2 ·

1
|Γ×Φ| = 1

2·|Γ×Φ| · ∆ ≥
1

2·|Γ×Φ| · (∆ · θC), which

is non-negligible. If (1 − ∆) · θ
C

is non-negligible, then z + ε ≥ z + 1−∆
2 · ε ≥

1−∆
2 ·

(

θ
C
− ε

)

+ 1−∆
2 · ε = 1

2 · (1−∆) · θ
C

, which is non-negligible. In either case,
z is non-negligible, as required. ut

6.2 Win the Guessing Game

With Mf,H
1 in hand, it is now straightforward to win the guessing game of

section 4 against Π . Remember that Π is k-aware, so there is an polynomial-
time algorithm κ that can extract the security parameter k from a public key
pk generated by K(1k).

Algorithm A1(pk):
set k ← κ(pk)

set (p, g)← G(1k)
pick two (distinct) random exponents x0, x1

return (m0, m1, σ)← (gx0 , gx1 , (pk, p, g, x0, x1))

Algorithm A2(m0, m1, σ, y):
set (pk, p, g, x0, x1)← σ

set out←Mf,H
1 (pk, p, g, y)

if out = (α, αx0) for some 1 < α < p− 1:
return 0

else if out = (α, αx1) for some 1 < α < p− 1:
return 1

else:
return a random element of {0, 1}

Why does this work? The tester (in the nomenclature of section 4) will pick a
random bit b, and pass EH

pk(mb) = EH
pk(g

xb) to A2 as y. A2 will then calculate

out =Mf,H
1 (pk, p, g, EH

pk(g
xb)), which, by the above, will be a xb-power pair with

non-negligible probability δ. Also, since x0 and x1 were picked randomly, and
Mf,H

1 never learns any value that depends on x1−b, the probability that out is
an x1−b-power pair must be some negligible value ε. So the probability of A2

outputting b is then δ + 1−δ−ε
2 = 1

2 + δ−ε
2 , and Adv

ind−cpa
(A1,A2),Π

= δ − ε, which is

non-negligible, so Π is not IND-CPA.

Therefore, we have that if ΠG is RR1, and TAP is (Π,G)-insecure, then Π is
not IND-CPA, which completes the proof of Theorem 1. ut

7 The Concrete Protocol

In this final section, we examine the actual encryption mechanism used by Tor,
and show that it indeed satisfies the preconditions of Theorem 1, under reason-
able assumptions.

First, we need to work around a slight technicality: so far, all of our analyses
have been parameterized by the security parameter k. Unfortunately, the Tor
specification [10] is not so parameterized: it specifies a single Diffie-Hellman
group, for example. The algorithms we outline here, therefore, are generalizations
of the actual Tor algorithms, and reduce to the actual algorithms for a specific
value of k.

Let TRSA(lN) be a lower bound on the expected amount of work an adversary
must do to break RSA with an lN -bit modulus. We of course assume this bound

is superpolynomial in lN .5 Then select values for parameters (lN , lp, lx, lf , lH , ls),
based on a security parameter k, as follows:

– lN will be the bitlength of an RSA modulus. Select a value divisible by 8,
such that blog2 TRSA(lN)c = k.

– lp will be the bitlength of a Diffie-Hellman modulus. Select lp = lN .
– lx will be the bitlength of random exponents. Select a value divisible by 8,

such that lx is Ω(k).
– lf and lH will be the bitlengths of the outputs of random oracles. Select

values divisible by 8, such that lf and lH are each Θ(k).
– ls will be the bitlength of a symmetric key. Select a value divisible by 8, such

that ls is Θ(k).

It must be the case that lN − 2lH − 16− ls is positive, and Ω(k). Define r to be
1
8 (lN − 2lH − 16).

In the specified protocol, k = 85 and (lN , lp, lx, lf , lH , ls) = (1024, 1024, 320, 160,

160, 128). The random oracles f and H are instantiated by appropriately chosen
hash functions with output lengths lf and lH bits, respectively. Let S∗ be a
family of pseudorandom functions (such as a block cipher) with keylength ls.
The specified protocol uses hash functions based on SHA-1 [16], and uses AES-
128 [17] as the symmetric encryption function.6

For m ∈ IN, define the pair (mL, mR) as follows:

– Express the integer m as a sequence mo of octets, most significant first. This
sequence should be of minimum length; i.e. no leading 0x00s.

– Let mL be the first r octets of mo, and let mR be the remainder of mo.

The public-key encryption system used in Tor is then the following ΠTAP =
(K, EH ,DH):

K(1k) outputs a randomly generated RSA keypair (pk, sk) = ((N, e), (N, d))
where the bitlength of N is lN (which depends on k, as above), and e = 65537.

EH
pk(m) is as follows:

– Pick a random key s for S∗, of length ls.
– Let C1 be the RSA-OAEP encryption (using the hash function H internally,

and the key pk) of the concatenation of s and mL.
– Let C2 be the encryption (using the cryptosystem S∗ in CTR mode with

key s and initial counter 0) of mR.

5 For concreteness, we use TRSA(lN) = exp
(

ξ (ln 2lN)1/3(ln ln 2lN)2/3
)

, where ξ =

1

3

(

92 + 26
√

13
)1/3 ≈ 1.902. This is the asymptotic expected running time for fac-

toring an lN -bit integer using the generalized number field sieve [6].
6 AES-128 is indeed an appropriate choice for S∗, as long as an attacker cannot dis-

tinguish AES-128 from a family of random functions.

– Output (C1, C2).

DH
sk((C1, C2)) is as follows:

– Decrypt C1 using RSA-OAEP (with the hash function H and the key sk).
Let s be the first ls bits of the result, and mo1 be the remainder of the result.

– Decrypt C2 using the cryptosystem S∗ in CTR mode with key s and initial
counter 0, yielding mo2.

– Concatenate mo1 and mo2, and turn the result into an MSB-first integer m.
– If any step failed, return ⊥. Otherwise, return m.

The group parameter generator GTAP for Tor returns a deterministic (p, g) for
any input 1k, with p of bitlength lp, and such that 1 − p · 2−lp is a negligible
function of k. This last condition means that a random integer of the same length
as p has only a negligible probability of being greater than p.

Now that we have specified TAP for generic k, we must simply check that ΠTAP

and GTAP satisfy the preconditions of Theorem 1, namely:

1. ΠTAP is k-aware.
2. ΠTAP is IND-CPA.
3. ΠGTAP

TAP
is RR1.

7.1 ΠTAP is k-aware

We need to produce an algorithm κ which outputs k when given a public key
output by K(1k).

This is easy: given a public key (N, e) output by K(1k), let lN be the bitlength
of N . Then output blog2 TRSA(lN)c, which will equal k, by the choice of lN .

7.2 ΠTAP is IND-CPA

We first note that, for any one-way trapdoor permutation g, g-OAEP is IND-
CPA [4], and that for any pseudorandom function F , F -CTR is IND-CPA7 [8].

We prove, more generally, that the hybrid construction of ΠTAP is IND-CPA, for
any choice of underlying public-key encryption system (R) and symmetric-key
encryption system (S), so long as they are each IND-CPA themselves.8

7 We have not formally defined the notion of IND-CPA for symmetric encryption, but
the definition is analogous to that in section 4; the only changes are that K returns
a single key instead of a keypair, and 1k (and not pk) is the input to A1.

8 Our proof is similar to that of Theorem 5 of [7], though that result pertained to
IND-CCA systems, and did not need to deal with part of the plaintext messages
being encrypted under the underlying public-key system.

Let (A1, A2) be any polynomial-time adversary in the IND-CPA game of section
4 against ΠTAP. Let [s, ρ] denote the concatenation of the ls-bit value s and the
r-octet value ρ. Then define an adversary A′ = (A′

1, A
′
2) against S and a pair of

adversaries A′′
β = (A′′

1,β , A′′
2,β) (for β ∈ {0, 1}) against R as follows:

Algorithm A′
1(1

k):
(pk, sk)← K(1k)
(m0, m1, σ)← A1(pk)
return (mR

0 , mR
1 , (pk, m0, m1, σ))

Algorithm A′
2(m

R
0 , mR

1 , (pk, m0, m1, σ), y):
pick a random ls-bit key s and a random r-octet string ρ

return A2(m0, m1, σ, (Rpk([s, ρ]), y))

Algorithm A′′
1,β(pk):

(m0, m1, σ)← A1(pk)
pick two random ls-bit keys s0, s1 and a random r-octet string ρ

return ([s0, m
L
β], [s1, ρ], (m0, m1, σ))

Algorithm A′′
2,β([s0, m

L
β], [s1, ρ], (m0, m1, σ), y):

return A2(m0, m1, σ, (y, Ss0
(mR

β)))

For β ∈ {0, 1}, define µβ to be the conditional probability that A2(m0, m1, σ, y) =
0, given that (m0, m1, σ) is an output of A1(pk), and that y = (Rpk([s, m

L
β]),

Ss(m
R
β)) for a randomly chosen ls-bit key s. That is, µβ is the probability that

A2 outputs 0 as its guess for the tester’s value b, when the correct answer was
β.

Also for β ∈ {0, 1}, define νβ to be the conditional probability that A2(m0, m1, σ,

y) = 0, given that (m0, m1, σ) is an output of A1(pk), and that y = (Rpk([s1, ρ]),
Ss0

(mR
β)) for randomly chosen ls-bit keys s0 and s1 and a randomly chosen

r-octet string ρ. That is, |νβ − µβ | is the probability that A2 can distinguish
between a correctly formed value of y, encrypting mβ (namely, (Rpk([s, m

L
β]),

Ss(m
R
β))), and one in which the wrong symmetric key (and the wrong mL

β) is

encrypted with the public-key system (namely, (Rpk([s1, ρ]), Ss0
(mR

β))).

We now note that Adv
ind−cpa
A,ΠTAP

=
∣

∣2
(

1
2µ0 + 1

2 (1− µ1)
)

− 1
∣

∣ = |µ0 − µ1|. Simi-

larly, Adv
ind−cpa
A′,S = |ν0 − ν1|, and Adv

ind−cpa
A′′

β
,R

= |µβ − νβ |.

Therefore, Adv
ind−cpa
A,ΠTAP

≤ Adv
ind−cpa
A′′

0
,R

+Adv
ind−cpa
A′,S +Adv

ind−cpa
A′′

1
,R

. So if ΠTAP is not

IND-CPA, then for some adversary A, Adv
ind−cpa
A,ΠTAP

is non-negligible, which means

at least one of Adv
ind−cpa
A′,S , Adv

ind−cpa
A′′

0
,R

, and Adv
ind−cpa
A′′

1
,R

must be non-negligible,

which means at least one of R and S is not IND-CPA, as required.

So under the usual assumption that RSA is a one-way trapdoor permutation,
ΠTAP is also IND-CPA.

7.3 Π
GTAP

TAP
is RR1

We must produce a knowledge extractor K for ΠGTAP

TAP
with the properties of

section 5.

From [12], we know that, under the RSA assumption, there is a decryption simu-
lator DS for RSA-OAEP (but not f -OAEP in general!) such that DS(η, c∗, c, pk)
= DH

sk(c), for any (pk, sk) output by K(1k), any distinct ciphertexts c, c∗, and
the list of oracle queries and responses η used to generate c (but not c∗), except
with negligible probability.

Given this, the construction of K is straightforward:

K(η, {(C∗
1 , C∗

2)}, (C1, C2), (pk, p, g)):
determine lp, ls, and r based on k ← κ(pk)
let r2 be the length (in octets) of C2

if C1 = C∗
1 :

(1) if 8(r + r2)− ls > lp: return (plain,⊥)
(2) else if C2 = C∗

2 : return (match, 1)
(3) else: return (guess)

else:
let m1 ← DS(η, C∗

1 , C1, pk)
if m1 =⊥: return (plain,⊥)
let s be the first ls bits of m1, and let mo1 be the remainder of m1

decrypt C2 using S∗-CTRs and initial counter 0, yielding mo2

if mo2 =⊥: return (plain,⊥)
concatenate mo1 and mo2, yielding mo

turn mo into an MSB-first integer m

if 1 < m < p− 1: return (plain, m)
else: return (plain,⊥)

Remember that (C∗
1 , C∗

2) can be assumed to be a valid encryption of the plaintext
message gx for some random exponent x, so if C1 = C∗

1 , then (C1, C2) will
decrypt (under ΠTAP) to a value v whose first 8r − ls bits will be the same as
those of gx. Also, still assuming C1 = C∗

1 :

– If the length of v is larger than the length of p, then certainly v > p, and
ΠGTAP

TAP
would return ⊥, so we return (plain,⊥) in line (1).

– If C2 = C∗
2 , then of course DH

sk((C1, C2)) = DH
sk((C

∗
1 , C∗

2)), so we return
(match, 1) in line (2).

– Otherwise, the length of v is at least 8r − ls, and at most the length of p,
so 1 < v < p − 1 except with negligible probability, by our choice of p, so

v = DH
sk((C1, C2)). Further, v 6= DH

sk((C
∗
1 , C∗

2)), since S∗-CTR with an initial
counter of 0 is a deterministic encryption function. Finally, no algorithm can
predict v, since its first 8r − ls bits are the same as those of the randomly
chosen gx, so we return (guess) in line (3).

If C1 does not equal C∗
1 , then we can use the decryption simulator for RSA-

OAEP to decrypt it successfully, except with negligible probability, and then we
just perform the same actions as the real ΠGTAP

TAP
would.

Therefore, this K satisfies the properties of Definition 5 for ΠGTAP

TAP
, so ΠGTAP

TAP
is

RR1, as required.

8 Conclusion

Under the assumptions that RSA is one way, and that an appropriately strong
block cipher is used, we have shown that the Tor Authentication Protocol is se-
cure in the random oracle model; that is, without exploiting particular structure
of the hash functions, a man-in-the-middle has only a negligible chance of being
able to read messages that Alice thinks she’s sending to Bob.

It should be noted, however, that the proof is sensitive to specific properties
of TAP, and any modifications to the protocol should take care not to destroy
these properties. For example, if Bob were to check that the order of the received
message m were equal to exactly q, as opposed to merely checking that 1 < m <

p − 1, ΠGTAP

TAP
would not be RR1. On the other hand, replacing ΠTAP with a

stronger system, such as one that is plaintext aware, would make TAP more
robust to other modifications.

Acknowledgements

We would like to thank Stefan Brands for originally suggesting the problem,
Jan Camenisch for his helpful initial discussion, Dennis Kügler for clarifying the
presentation of the paper, and the anonymous referees.

References

1. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
Among Notions of Security for Public-Key Encryption Schemes. In Advances in

Cryptology—CRYPTO ’98, Lecture Notes in Computer Science 1462, pages
26–45. Springer-Verlag, August 1998.

2. Mihir Bellare and Adriana Palacio. Towards Plaintext-Aware Public-Key
Encryption without Random Oracles. In Advances in Cryptology—Asiacrypt

2004, Lecture Notes in Computer Science 3329, pages 48–62. Springer-Verlag,
2004.

3. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In ACM Conference on Computer and

Communications Security, pages 62–73, 1993.
4. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption—How to

Encrypt with RSA. In Advances in Cryptology—Eurocrypt ’94, Lecture Notes in

Computer Science 950. Springer-Verlag, 1994.
5. Daniel Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on

the RSA Encryption Standard PKCS#1. In Advances in Cryptology—CRYPTO

’98, Lecture Notes in Computer Science 1462, pages 1–12. Springer-Verlag,
August 1998.

6. Don Coppersmith. Modifications to the Number Field Sieve. Journal of

Cryptology, 6(3):169–180, 1993.
7. Ronald Cramer and Victor Shoup. Design and Analysis of Practical Public-Key

Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM

Journal on Computing, 33(1):167–226, 2003.
8. Anand Desai and Sara Miner. Concrete Security Characterizations of PRFs and

PRPs: Reductions and Applications. In Advances in Cryptology—Asiacrypt 2000,

Lecture Notes in Computer Science 1976, pages 503–516. Springer-Verlag, 2000.
9. Roger Dingledine. Tor security advisory: DH handshake flaw.

http://archives.seul.org/or/announce/Aug-2005/msg00002.html, August 2005.
10. Roger Dingledine and Nick Mathewson. Tor Protocol Specification, version 1.112.

http://tor.eff.org/cvs/tor/doc/tor-spec.txt, January 2006.
11. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

Second-Generation Onion Router. In Proceedings of the 13th USENIX Security

Symposium, August 2004.
12. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.

RSA-OAEP is Secure under the RSA Assumption. In Advances in

Cryptology—CRYPTO 2001, Lecture Notes in Computer Science 2139, pages
260–274. Springer-Verlag, August 2001.

13. Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction Attacks Against Several
Public-Key Cryptosystems. In International Conference on Information and

Communication Security 1999, November 1999.
14. Jeffrey Hoffstein and Joseph H. Silverman. Reaction Attacks Against the NTRU

Public Key Cryptosystem. NTRU Cryptosystems Technical Report #015,
Version 2, http://www.ntru.com/cryptolab/pdf/NTRUTech015.pdf, June 2000.

15. Paul Syverson. Personal communication.
16. U.S. Department of Commerce, N.I.S.T. Secure Hash Algorithm. FIPS 180-1,

1995.
17. U.S. Department of Commerce, N.I.S.T. Advanced Encryption Standard (AES).

FIPS 197, 2001.

