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Abstract. Secure processing of location data in location-based services
(LBS) can be implemented with cryptographic protocols. We propose
a protocol based on oblivious transfer and homomorphic encryption. Its
properties are the avoidance of personal information on the services side,
and a fair revenue distribution scheme. We discuss this in contrast to
other LBS solutions that seek to anonymize information as well as pos-
sible towards the services. For this purpose, we introduce a proxy party.
The proxy interacts with multiple services and collects money from sub-
scribing users. Later on, the proxy distributes the collected payment to
the services based on the number of subscriptions to each service. Nei-
ther the proxy nor the services learn the exact relation between users
and the services they are subscribed to.

1 Introduction

Does my electronic map need to know where I am – or that I am looking at
it? Electronic maps can be augmented with information provided by location-
based services (LBS). This way subscribed users can find what they need fast.
With LBSs, location privacy is at stake. To reach good privacy, it is advisable to
limit access to identity information and access to location information. Even the
regular observation of service usage patterns might reveal private information.

Today LBSs are provided in one of two ways. Either all the service specific
data is made available to the user who computes the result locally—this is the
case for car navigation systems; or the service is provided remotely. The latter is
the dominant approach for providing LBSs in mobile communication networks.
Such LBSs can be seen as a by-product of the GSM system (Global System
for Mobile Communications), as the location of subscribers is already used for
mobility management [17]. Given these constraints, we aim at achieving privacy
for mobile subscribers who want to use LBSs. We presume that the location
will be gathered from a mobile network, while the service will be provided by
external service providers.

Our approach uses cryptographic protocols to ensure privacy: Oblivious trans-
fer and homomorphic encryption. By developing a framework where the user’s



location and subscription are processed in the encrypted domain, we achieve
privacy for certain classes of LBSs in a new way. Unlike classic approaches using
Mixes or anonymous credentials [19], our approach achieves the following strong
privacy properties: First, the mobile operator learns nothing in addition to what
he already knows except for the set of users that are at all interested in using
LBSs. Thus, no usage profiles can be collected. Second, the service providers
only learn the number of subscribers to their service. Thus, service providers do
not learn the users’ location.

Our protocol offers the additional privacy property of service unobservabil-
ity. Even the service providers do not know whether a user is accessing their
service or not. By introducing a privacy trustee we are able to preserve service
unobservability in case of service/operator collaboration.

The privacy provided is optimal: the operator needs to know the set of LBSs
users such that he can localize and charge them, and services are payed by the
operator depending on the number of subscribers they were able to attract.

Efficiency consideration. Despite the strong security requirements, our pro-
tocol scales well: The initialization is independent of the number of users. Sub-
scriptions are linear both in effort and in size in the number of services. This is
unavoidable, as all services need to be involved to guarantee service unobserv-
ability. The mobile user as the party with the most restricted resources has to
receive and decrypt only a single message.

Related Work. Various privacy enhancing technologies (PET) have been pro-
posed for LBSs. Most of these techniques focus on providing pseudonymity and
anonymity for LBSs. Federath et al. [13] proposed the use of a trusted fixed
station and Mixes [9] for hiding the relation of real world identities to location
data in GSM networks. While our protocol can be adapted to such a privacy
enhanced GSM network by letting the fixed station localize the user (and take
over some of the responsibilities of the mobile operator), we explicitly focus on
the less privacy friendly but more practical setting where a third party knows
the user’s location.

Researchers started to develop LBS specific PETs called mix-zones (see [5]
and [16]). Mix-zones allow users to switch pseudonyms associated to their lo-
cation in an unobservable way. Kölsch et al. [19] use pseudonymization tech-
niques in the following realistic setting. A network operator (or a party con-
nected to multiple operators) knows the user’s location, while the LBSs are
provided by independent service providers that know the user only under short
lived pseudonyms. Basically, as location information is inherently attached to a
person’s life, reidentification is often easy [15]. Location needs to be hidden, not
anonymized.

Structure of the paper. Section 2 considers cryptographic tools. We describe
the properties and high level implementation of our privacy protecting LBS
scheme in Sec. 3. The detailed construction is given in Sec. 4. We analyze the
efficiency and security of our solution in Sec. 5 and finally conclude in Sec 6.



2 Tools

Zero-Knowledge Proofs of Knowledge. A zero-knowledge proof is an in-
teractive proof in which the verifier learns nothing besides the fact that the
statement proven is true. Zero-knowledge proofs-of-knowledge protocols exist
for proving various statements about discrete logarithms in groups of known
and hidden order [4, 6, 8, 26]. These techniques allow to prove statements about
cryptographic primitives that operate in these groups, for instance that two com-
mitments contain the same value, or that a value was verifiably encrypted. Given
a statement Alg(x) = y and Alg′(x′) = y′ about two algorithms, with secret in-
put x, x′ and public output y, y′, it is possible to prove AND and OR relations
of these statements. Such protocols can be made non-interactive by applying a
cryptographic trick called the Fiat-Shamir heuristic [14]. We write in a short
form notation, e.g., for AND

π = PK{(x, x′) : Alg(x) = y ∧ Alg′(x′) = y′}.

Homomorphic Encryption. Homomorphic encryption is a form of malleable
encryption. Given two ciphertexts, it is possible to create a third ciphertext,
with a plain text that is related to the first two. For (additive) homomorphic
encryptions, the encrypted plain texts fulfill the following relations:

Ench(m1)⊕ Ench(m2) = Ench(m1 + m2), c⊗ Ench(m) = Ench(c ·m).

We speak of additive homomorphic encryption because + corresponds to the
addition operation of a ring. We write c ⊗ Ench(m) to denote the c times ho-
momorphic addition of Ench(m). Note that for Damg̊ard-Jurik Encryption [12]
c⊗ Ench(m) corresponds to Ench(m)c and can be implemented efficiently.
Damg̊ard-Jurik Encryption. The Damg̊ard-Jurik cryptosystem is a generalization
and adaptation of the Pallier cryptosystem [23] based on the decisional composite
residuosity assumption. It allows for the encryption of arbitrary long messages
without the need to generate new keys. It preserves the homomorphic property of
Pallier. They also describe the zero-knowledge proofs and threshold decryption
techniques required by our protocol.

Threshold encryption. In a distributed decryption protocol a private key is
shared among a group of parties, where only a qualified subset of the parties
is allowed to decrypt a ciphertext c, whereas fewer parties learn nothing on
the secret nor on the decryption of c. In our scheme we use the special case of a
distributed 3-out-of-3 threshold encryption scheme, which could be implemented,
e.g., with the threshold protocol presented in [12].

Oblivious Transfer. Oblivious transfer (OT) was first introduced by Rabin
[25]. The primitive captures the notion of a protocol by which a sender sends
some information to the receiver, but remains oblivious as to what is sent.
Adaptive OT from Blind Signatures. For LBSs, we are not so much interested
in single executions of OT, but want to query the same database multiple times



at different indices (for different users and changing locations). Adaptive OT
protocols were proposed in [11, 20, 21]. Camenisch et al. [7] recognized that the
schemes in [11, 21] are based on a common principle to construct adaptive OT
from unique blind signature schemes (UBSS). The first UBSS is described by
Chaum in [10].

We briefly sketch the basic idea of adaptive OT schemes based on UBSS.
First, all messages m1, . . . ,mn are symmetrically encrypted using the hashed sig-
nature of the index i, 1 ≤ i ≤ n, as the key. Thus Ci = Encs(mi;H(Sign(i; sk))).
H is a symmetric hash function, Encs is a secure symmetric cipher, Sign is the
signature algorithm corresponding to the UBSS, and sk is the signing key of
the sender that will be used for creating the blind signature. The ciphertexts
C1, . . . , Cn are transferred to the receiver. To obtain message mı̂, the receiver
runs a blind signature protocol with the sender on message ı̂ to obtain the sym-
metric key (signature on ı̂).

OT using Homomorphic Encryption. It is a known property of additive ho-
momorphic encryption that given an encryption Q = Ench(1) it is possible to
compute an encryption of a message m as m ⊗ Q = Ench(m · 1) = Ench(m).
However, if Q = Ench(0), the same operation does not change anything, i.e.,
m⊗ Ench(0) = Ench(0) [22].

Given the semantic security of the encryption, the party trying to encode the
message cannot distinguish the two cases above. Based on this observation an
OT can be constructed by using a vector Q = (Q1, . . . , Q`). To request message
m̂, Q̂ = Ench(1) and Qj = Ench(0) for j 6= ̂. Zero-knowledge proofs can be
used to prove the correct construction of Q. The communication complexity of
the protocol can be reduced by computing E =

⊕`
j=1 mj ⊗Qj , and transferring

only E to the recipient.

3 Privacy Protected LBS Scheme: Security Definition
and Solution Sketch

3.1 Definition

Parties. Our protocol involves a user U who accesses LBSs over her mobile
device. Her goal is to obtain location specific information on topics of her interest.
This information is collected and served by service providers L1, . . . ,L`. A third
party that knows the user’s location and stands in a financial relationship with
the user acts as a proxy P between users and services — this could be the
mobile operator of the user or an organization associated with it. The proxy is
responsible for the security of the location information and assists in the payment
transaction. We assume that the number of users connected over a proxy is
much higher than the number of services. Finally, we assume the existence of
an independent party without any commercial interests: a privacy protection
organization T that can be offline for most of the time. We refer to all parties
except users as organizations.



Security and Privacy Requirements. A secure and privacy friendly LBS
protocol should protect the assets and interests of all involved parties. The assets
that need to be protected are: the user’s location, the user’s subscription, the
topic specific databases of the Lj , and the payment. We consider the following
requirements:

– Location privacy: The protocol does not reveal the user’s location to the
service.

– Service usage privacy: Even when the proxy and the LBSs collude, the se-
crecy of the user’s subscription remains protected. This includes message
privacy; i.e., only the users can decrypt the messages of services.

– Database secrecy: The user and the proxy get no information about the topic
specific database of Lj . A user gets only the information for the locations she
requested. This property must hold even if the proxy and the proxy collude.

– Fairness: It is guaranteed that either the user receives the expected data for
the requested location and the LBS receives his expected payment, or the
cheating party can be uniquely identified. In order to preserve service usage
privacy, the user reveals the cheating party only to the trustee T .

Protocol phases. In the Setup phase the involved parties generate their keys.
During the Service Update phase, each service Lj encrypts its topic specific
database and transfers it to the proxy. In the Subscription phase a user U creates
an encrypted subscription for a service, sends it to the proxy, and is charged the
subscription fee. In the Data Retrieval phase the proxy runs a protocol with
every service Lj and obtains an encrypted result. The proxy combines them into
a single encrypted result for the user such that she only receives the data of the
subscribed service. The fair allocation of the money collected in the subscription
phase takes place in the Settlement phase under the supervision of the trustee
T .

Remarks. The database of a service Lj is represented as a one-dimensional vec-
tor with one element for each location. We assume that the number of locations
n is the same for all services. Further, we assume that services only update the
whole database at once. In the current version of our protocol a user is only
subscribed to a single service. Service usage privacy is guaranteed with respect
to the total number of users that subscribed during a subscription period. A
subscription period is defined as the time between two settlement phases. Fi-
nally, we assume that parties communicate over secure channels and that P, Lj ,
and T , are able to authenticate communication, and to sign messages using their
identity.

3.2 High-Level Approach and First Sketch

We follow a constructive approach in the description of our protocol. We use
building blocks from Sec. 2, put them into place, and describe their function
in our construction. Some of the security requirements can be fulfilled by the
functionality provided by individual building blocks; others require a complex



interplay between building blocks. As a consequence the mapping from building
blocks to the sub-protocols of our solution is not one-to-one. We will sketch the
sub protocols (cf. Fig. 1) as they get assembled from their building blocks.

Our main building blocks are two variants of OT and a threshold encryp-
tion scheme. Homomorphic encryption and zero-knowledge protocols serve as
sub - building blocks in the previous schemes, but are also used to glue them
together in a secure way. The two OT protocols are specifically selected for their
good performance under repetition of input data. The blind signature based OT
scheme (cf. Sec. 2) is optimized for the case that the input database remains
fixed, while the index varies. The homomorphic encryption based OT is efficient
in the opposite case; it is efficient for fixed indices.

During the protocol execution, a single proxy interacts with a multitude of
users and multiple services. The first building block we put into place is a blind
signature based OT protocol. It is executed with the proxy acting as the requester
and one of the services as the sender. It allows the proxy to retrieve location
specific information mı̂,j for a user at location ı̂ without service Lj learning the
user’s location. This guarantees location privacy. The proxy executes this sub-
protocol with all offered services. This assures service privacy at the service side.
In this way the proxy obtains an information vector mı̂,1, . . . ,mı̂,`.

Our second building block is a homomorphic encryption based OT protocol
(cf. Sec. 2). It is run with the proxy acting as the sender (using the aforemen-
tioned vector as input) and the user acting as the requester (using the index of
the service L̂ she subscribed to as input). The protocol allows the user to learn
mı̂,̂ without the proxy learning the user’s subscription; we achieve full service
privacy.

Note how the choice of OT protocols is crucial for the performance of our
protocol. In the first OT, the same database is queried by the proxy for all
users (and different locations as they move about). The database needs to be
encrypted and transferred to the proxy only once (cf. Fig. 1.2). For the second
OT between user and proxy, the subscribed service is invariant for the duration
of a subscription period and it is sufficient to send the first (and expensive)
message of the homomorphic OT only once (cf. Fig 1.3 ©1 ). Consequently we
split off these operations as sub-protocols which have the semantic of a service
update and a user’s subscription.

This gives us a first instantiation of the first 4 protocol phases. The outline
of the protocol is depicted in Fig. 1. Note that some of the sub protocols are
not yet implemented. For ease of presentation we use a simplified notation. We
refer the reader to App. A for a more formal definition of our LBS scheme. The
detailed protocol description is given in Section 4.

Setup. (cf. Fig. 1.1: ©1 KeygenU, ©2 KeygenL) Every user generates a key-pair
for a homomorphic encryption scheme ©1 . These keys are used for the OT based
on homomorphic encryption. Every service generates a key-pair (skB, pkB) that
is used for OT based on blind signatures ©2 .

Service Update. (cf. Fig. 1.2: ©2 EncryptData) The database of the LBS Lj

consists of the n elements m(1,j), . . . ,m(n,j) ©1 . Each of the elements is encrypted



with its own symmetric key H(ki) that is computed by hashing the signature
ki = Sign(i; skB) of the index ©2 . The encrypted database DBj = (C1, . . . , Cn),
with Ci = Encs(mi,H(ki)) is sent to the proxy ©3 .

Subscription. (cf. Fig. 1.3: ©1 Subscribe) A user’s subscription ©1 consists of
` elements S(U,1), . . . , S(U,̂), . . . , S(U,`), one for each service ©2 . Each element
contains a ciphertext Q of the homomorphic encryption scheme. Q decrypts to
1 for the service L̂ the user subscribes to and to 0 otherwise. To ensure the
security of the OT the user proves in zero-knowledge that all S(U,j) are correctly
constructed.

Data Retrieval. (cf. Fig. 1.4: ©1 Request, ©2 Combine, ©4 Decrypt) In the data
retrieval phase a user obtains location-specific data from her subscribed service.
The proxy is involved since he is aware of the user’s location and stores the
encrypted databases of the services. Recall that these databases are encrypted
using hashed signatures as keys. The proxy acts on the user’s behalf and can
request decryption of individual items without revealing the location of the user.
To guarantee service usage privacy the proxy has to repeat the following steps
for every service Lj ©1 :

The proxy blinds the location ı̂ and sends the blinded value Blind(̂ı; b, pkB)
to the service. The service replies with the blinded signature 〈kı̂〉blind. The proxy
computes mı̂,j = Decs(Cı̂;H(Unblind(〈kı̂〉blind; b, pkB))). This completes the first
OT. The proxy collects mı̂,1, . . . ,mı̂,` and continues with the second OT (the
user’s first message is taken from her subscription). The proxy takes the Q
corresponding to S(U,j) and computes Ej = mı̂,j ⊗ Q for all 1 ≤ j ≤ `.This
corresponds to an encryption of mı̂,̂ for L̂ and an encryption of 0 otherwise.

As a last step the proxy combines the Ej by homomorphically adding all the
encryptions (not knowing which of them contain the message) ©2 . This way all
encryptions of 0 cancel out. The result is transferred to the user ©3 . She decrypts
E to obtain mı̂,̂ ©4 .

The two main flaws of this construction are (1) the fact that the proxy learns
the mi,j vector for the locations of all users. This is a compromise of database
secrecy and (2) the lack of a fair payment infrastructure.

3.3 First Revision: Database Secrecy

We address the lack of database secrecy by intertwining the first OT with the
second. To this end we let the proxy pass on S(U,j) to Lj . Now (after agreeing
on who sends which bit range) both Lj and the proxy can act as senders in
the second OT without learning each others inputs. This is made possible by
the properties of homomorphic encryption, which lets everyone manipulate en-
crypted data. Informally, the last message of the first OT will be transferred as
part of the encrypted payload of the second OT. This guarantees that only the
user with her secret decryption key can obtain the results of both protocols.

More concretely the following changes have to be made in the subscription
and data retrieval phases.



Fig. 1. Setup and Service Update, Subscription, Data Transfer, and the Settlement
phase: Subscription S(U,j), encrypted database DBj , service result Ej , combined result
E, location-specific message m(ı̂,̂), number of subscriptions Nj , location ı̂, and the
subscribed service ̂.

Subscribe. The S(U,j) are now also sent to the services ©2 .

Data Retrieval. During Request ©1 the proxy blinds the location ı̂ and sends
the blinded value Blind(̂ı; b, pkB) to the service. To ensure that only the user
(and not the proxy) can decrypt Cı̂, the service encrypts the blinded signature
〈kı̂〉blind. This is done with an additive homomorphic encryption scheme. Re-
member that during subscription the user (through the proxy) provided the ser-
vice L̂ with an encryption Q = Ench(1). The service computes E̂ = 〈kı̂〉blind ⊗
Q = Ench(〈kı̂〉blind ·1) = Ench(〈kı̂〉blind). The result is sent to the proxy who uses
a similar approach to add b and Cı̂ to E̂. These requests are done for all ser-
vices, including those the user did not subscribe to. The latter however received
Q = Ench(0) during Subscribe and all the operations result in Ej = Ench(0), for
j 6= ̂.



As a last step the proxy computes the homomorphic sum of all encryptions—
not knowing which of them contain the unblinding information, the encrypted
message, and the blinded signature ©2 . This way all encryptions of 0 cancel out.
The result is transferred to the user ©3 . She decrypts E, obtains b‖Cı̂‖〈kı̂〉blind,
and computes mı̂̂ = Decs(Cı̂;H(Unblind(〈kı̂〉blind; b, pkB))) ©4 .

3.4 Second Revision: Payment Infrastructure

The core idea for the payment infrastructure is to bind the request of the sec-
ond OT (the subscription) to a vote. Now revenues can be fairly distributed
between services by anonymously counting the number of times users voted for
(subscribed to) a service. We use ballot counting techniques based on homo-
morphic encryption and threshold decryption. We make the following changes
to the setup and subscription phase, and we provide an implementation for the
settlement phase.

Setup. (cf. Fig. 1.1: ©3 PaymentSetup) Each LBS Lj runs a distributed key
generation protocol together with the proxy and the privacy trustee ©3 . This
results in a key pair with a secret key shared according to a (3, 3)-threshold
scheme. The shared key is needed in the settlement phase to jointly compute the
payment result.

Subscription. (cf. Fig. 1.3: ©1 Subscribe, ©3 VerifySubscription) A user’s sub-
scription ©1 consists of ` elements S(U,1), . . . , S(U,̂), . . . , S(U,`), one for each ser-
vice ©2 . Each element contains two ciphertexts Q and P of the homomorphic
encryption scheme, where the first is encrypted with the user’s public key and
the latter with the payment key. Both Q and P decrypt to 1 for the service L̂ the
user subscribes to, and to 0 otherwise. To ensure the security of the OT and the
payment, U proves in zero-knowledge that Q and P are constructed correctly.
The service providers check these proofs before providing the service ©3 .

Settlement. (cf. Fig. 1.5: ©1 Settlement) The technique used in the Settlement
phase is similar to a technique used in electronic voting protocols. The non-
interactive zero-knowledge proof sent by the user in the subscription ensures
that P and Q encrypt the same value (either 1 or 0). The homomorphic property
of the ciphertexts allows to anonymously sum up the content of all different
P values. The trustee T ensures that only the homomorphic sums (and not
individual subscriptions) are decrypted in a 3-out-of-3 threshold decryption ©1 .
Based on the result the proxy divides the subscription money received from the
users during subscription in a fair way ©2 .

4 Our Multi-Party Proxy LBS Scheme

Notation. We write cryptographic primitives as Alg(x; k), where x denotes the
processed inputs of the algorithm and k denotes keys, randomness, or pub-
lic parameters. When it is clear from the context k is omitted. We use the



Alg(E1(x1; k1), E2(x2; k2)) to denote an interactive algorithm between entities E1

and E2 with the respective inputs and keys.

Length Parameters. Let κ be a security parameter that determines the key
sizes of the underlying cryptographic schemes. We use lN ∈ Θ(κ) to denote
the length of the RSA modulus N used for Damg̊ard-Jurik encryption. The
length of a ciphertext for a plaintext of length Ns is Ns+1. For simplicity we use
ciphertexts of length lN (s + 1), to encode plaintexts of length (lN − 1)s. We use
lH to denote the length of the plaintext for the homomorphic encryption scheme.
Let lB , lb, and lD be the length of a blinded signature, the blinding factor, and
an encrypted database entry respectively. We require lB + lb + lD ≤ lH .

Setup. PaymentSetup(Lj(1κ),P(1κ), T (1κ)) is executed for each service Lj . The
privacy trustee T , the proxy P and the LBS Lj run a distributed key generation
protocol to generate a public payment key pkSj . The secret key skSj is shared
according to a (3, 3)-threshold encryption scheme such that only the three parties
together can reconstruct the key. This results in three secret shares skS(Lj ,j),
skS(P,j), and skS(T ,j), which are included in the secret key of P, Lj , and T
respectively.

LBS Key Generation. Every service Lj runs KeygenL(1κ) to generate the keypair
(pkLj

, skLj ) that contains amongst others a key pair (pkBj , skBj) for a unique
blind signature protocol.

Proxy Key Generation. For our construction the proxy does not need to generate
keys on his own. The public key pkP of P results from adding the public payment
keys of the services. Hence pkP contains pkS1, . . . , pkS`. His secret key skP
contains the corresponding secret shares skS(P,1), . . . , skS(P,`).

User Key Generation. KeygenU(1κ) generates a key pair (pkU , skU ) for an addi-
tive homomorphic Damg̊ard-Jurik cryptosystem [12] used for homomorphic OT
[22].

Service update. Each LBS Lj encrypts its location specific information using
algorithm EncryptData(m(1,j,v), . . . ,m(n,j,v), v; skLj ). The value v denotes the
version number of the data update. Note that m(i,j,v) contains i,j, and v and is
signed by Lj to allow for checks of authenticity. A service Lj uses his secret key
skBj to compute DB(j,v) = (C(1,j,v), . . . , C(n,j,v), v):

k(i,j,v) = Sign(i‖v; skBj)
C(i,j,v) = Encs(m(i,j,v);H(k(i,j,v))).

The cryptographic hash function H is used for computing the symmetric key.
Note that in Sign the values i and v need to be interpreted as fixed length bit
strings. The resulting database DB(j,v) is sent to the proxy.

Subscription. User U must subscribe to a service L̂ to receive location related
information from him. This is done by running the protocol Subscribe(P(skP , pkU ),
U(̂; skU , pkP)) together with the proxy. The proxy’s public key is parsed as
pkP = (pkS1, . . . , pkS`) and the user proceeds as follows:



1. U uses her public key pkU to compute subscription elements S(U,j), 1 ≤ j ≤ `:

S(U,j) = (Q(U,j), P(U,j), πj) where

Q(U,j) =

{
Ench(1; pkU ) if j = ̂

Ench(0; pkU ) otherwise
, P(U,j) =

{
Ench(1; pkSj) if j = ̂

Ench(0; pkSj) otherwise

πj = SPK{(r1, r2) :
(Q(U,j) = Ench(1; r1, pkU ) ∧ P(U,j) = Ench(1; r2, pkSj))∨
(Q(U,j) = Ench(0; r1, pkU ) ∧ P(U,j) = Ench(0; r2, pkSj)}

The Q(U,j) are used to request the location specific information from the
LBS L̂ and the P(U,j) are used for the oblivious payment.

2. The resulting S(U,1), . . . , S(U,`) are sent to the proxy together with the pay-
ment for the subscription, e.g., by using a credit card.

3. Additionally, the user proves in zero-knowledge that the homomorphic sum
of the values Q(U,j) is an encryption of 1. This can be done using standard
techniques from [12]. See also Sec. 2.

4. If the verification of the the last proof and of the individual πj proofs suc-
ceeds, the proxy adds a time stamp to each S(U,j) and signs it.

The proxy passes each subscription S(U,j) on to the respective service Lj . He
keeps a counter of the number of user subscriptions in this subscription period.
Optionally the proxy may also retain all S(U,j).
Verify Subscription. Service Lj runs VerifySubscription(S(U,j), j; pkU , pkP) to ver-
ify that S(U,j) is correct, i.e., that the content of the queries Q(U,j) and P(U,j)

are equal and encryptions of 0 or 1, and that the proxy cannot deny that the
user has subscribed. The first is done by verifying the proofs of knowledge, the
latter by verifying the proxy’s time stamp and signature.

If the algorithm succeeds, S(U,j) is added to a list of subscriptions Sj . The
P(U,j) of Sj will later on be added up using the homomorphic property of the
underlying encryption scheme Ench. If one of the verifications done by the ser-
vices Lj , 1 ≤ j ≤ ` fails, they refuse to provide the information and the proxy
has to refund the payment for the subscription to the user.

Data retrieval. The proxy runs Request(P(DB(j,v̂), ı̂; skP , pkLj
),Lj(S(U,j); skLj ,

pkU , pkP)) with Lj to request location specific information for user U .
The input of the algorithm is the database DB(j,v̂) with most up-to-date

version v̂ and the current location of the user ı̂. The proxy’s output is either an
encryption of m(ı̂,j,v̂) based on the location of the user or an encryption of 0 if
U is not subscribed to Lj .

1. The proxy chooses a random b and computes

〈̂ı‖v̂〉blind = Blind(̂ı‖v̂; pkBj , b).

The random blinding factor b hides the location ı̂ of the user in 〈̂ı‖v̂〉blind.
2. The proxy sends 〈̂ı‖v̂〉blind to Lj , 1 ≤ j ≤ `, which computes

Ej = 〈k(ı̂,j,v̂)〉blind ⊗Q(U,j), where 〈kı̂,j,v̂〉blind = Sign(〈̂ı‖v̂〉blind; skBj)



3. Every service Lj sends Ej back to the proxy.
4. The proxy enriches Ej with C(ı̂,j,v̂) and b. This is done by computing Ej :=

Ej ⊕
(
(C(ı̂,j,v̂)‖b) � lB

)
⊗Q(U,j). Where � denotes shifting to the left. This

only changes the content of Ej if Q(U,j) is an encryption of 1.

Combining. After running Request with every Lj and receiving the corresponding
Ej , the proxy runs Combine(E1, . . . , El, skP , pkU ) to compute E =

⊕`
j=1 Ej .

Decrypting. The user decrypts E using Decrypt(E; skU , pkL̂
):

C(ı̂,̂,v̂)‖b‖〈k(ı̂,̂,v̂)〉blind =Dech(E; skU )
k(ı̂,̂,v̂) =Unblind(〈k(ı̂,̂,v̂)〉blind; b, pkB̂)

m(ı̂,̂,v̂) =Decs(C(ı̂,̂,v̂);H(k(ı̂,̂,v̂)))

Settlement. The proxy P can share the money collected during subscription
fairly by counting the number of users that subscribed to service Lj in a given
subscription period. However, this has to be done without revealing the user’s
service usage. First, Lj transfers Sj to the proxy and the privacy trustee. P
and T check the signature and the time stamp of each S(U,j) to make sure that
Lj does not add self generated subscriptions. Moreover, the proxy checks if |Sj |
corresponds to his subscription counter. This is needed to guarantee that services
do not try to shrink the anonymity set of users. As the trustee is not online
all the time he can only check the plausibility of the value. However, privacy
savvy users can submit their encrypted subscriptions (or its hash) to the privacy
trustee, which checks if their descriptions are considered during settlement.

The computation of Lj ’s fraction of the money is jointly done by the proxy,
the privacy trustee and the service Lj . First, they compute

⊕
U P(U,j). The result

is an encryption of the number of users having subscribed to service Lj . Since⊕
U P(U,j) is encrypted with pkSj , all three parties have to participate in a dis-

tributed (3, 3)-threshold decryption. The output of Settlement(Lj(Sj ; skLj
, pkP),

P(skP , pkLj
), T (skSj ,T )) is the total number of users subscribed to service Lj .

As long as not all parties collude, the service usage privacy of the users is guar-
anteed. See Section 5.2 for details.

5 Security and Efficiency

5.1 Efficiency analysis

For our efficiency analysis we focus on two main factors. The first is the limitation
in computation and communication resources on small mobile devices. The other
factor is scalability for the organizations with respect to location resolution,
i.e. number n of map cells, number of services `, and number of users. The
costs for the setup of the payment and the service and proxy key generation
are independent of the number of users and map cells. They are executed by
unrestricted parties, and are thus ignored in the analysis. A similar argument



holds for the settlement. We consider only public-key operations and use the
length parameters from Section 4.

User. The costs incurred by the user are key generation, subscription, and de-
cryption. Computation: Key generation involves the generation of a single RSA
key. The decryption requires a single Damg̊ard-Jurik decryption. The most rel-
evant cost for the user is the generation of the subscriptions with 12 exponen-
tiations. However, this cost is incurred only once per subscription period. In
principle, the computed values can even be reused for multiple periods. Com-
munication: A Damg̊ard-Jurik ciphertext size is about lH + lN , where lN is the
size of the RSA modulus. The overhead in addition to the message length lD
is lB + lb + lN . If we use RSA blind signatures, this is three times the size of
an RSA modulus. The size of a subscription is about 12`(lH + lN ). For small
devices and slow communication channels, we suggest to do the key generation
and subscription over the user’s PC, and synchronize skU to the user’s mobile
device, or create the keys on the device, and move only pkU to the PC for added
security.

Organizations. The scalability of our service is nearly optimal. Key setup and
database encryption are independent of the number of users. Database encryp-
tion is linear in the number of locations. Subscriptions are linear in the number
of services—optimal as all services need to be involved to guarantee service pri-
vacy. Practically data transfer is independent of the number of locations and
again only depends on the number of services.1

Computation: The most prominent cost incurred by the service is database
encryption requiring one signature operation per location. Communication: The
most dominant cost for Lj and P is the transmission of the encrypted database
DB(j,v) which has length n · lD. Moreover, this costs incur whenever any of the
mi should be updated. This is a consequence of our strong database security
definition. For a wide range of services it appears reasonable to relax this re-
quirements. Updated encryptions Ci are computed like in EncryptData but only
for a subset U ⊂ {1, . . . , n} of updated locations.

5.2 Security Analysis

Our main goal is to implement LBSs without revealing additional information
about the user’s location and her service usage profiles. An adversary involved
in our protocol should learn nothing except what he already could have learned
by being involved in a scenario without LBSs. For the proxy this implies that
he is allowed to know the user’s location but should not learn anything about
the user’s service usage profiles. For service providers this implies that both the
user’s location and the user’s service usage profiles have to be concealed. Note
that in a scenario that includes payment mechanisms we have to diminish slightly
from this strong security notion of no additional knowledge since a service can
infer the number of subscribed users from the received amount of money.
1 De facto the dependence is logarithmic as locations are included in the message; 4

billion different locations can be encoded using 32 bits.



As a further trust assumption we state that the proxy helps to solve fairness
conflicts between users and service providers. This trust assumption is supported
by the rationality of the proxy: his core competence is setting up the mobile in-
frastructure such that services and users can communicate in a fair way. Cheating
or not cooperating in resolving fairness disputes decreases his reputation, thus
decreasing his profit. Only in cases where accusing the cheater would endanger
the users service privacy, we make use of the privacy trustee as an additional
off-line trusted party. The assumption of a trusted third party to resolve fair-
ness problems is common in the literature of fair exchange protocols. [2, 3] have
shown that the problem of fairly exchanging data requires at least an off-line
trusted party.

Location privacy. For the location privacy note first that in our protocol ser-
vices only get in contact with location related information in the data retrieval
phase. However, there the OT based on blind signatures protects location related
information from being revealed unintentionally. The security of the OT scheme
is based on the signature’s blindness property. This property guarantees that
for any malicious service L̃j the view of L̃j for a messages M0 = i‖v and for a
message M1 = i′‖v′ is computationally indistinguishable. As the user’s location
ı̂ is hidden in 〈̂ı‖v̂〉blind, the location privacy can be reduced to the blindness
property of the used blind signature scheme.

Service usage privacy. is more challenging. Unfortunately, achieving service
usage privacy First, the relationship user/service plays a role in different protocol
stages; i.e. it is present during data retrieval and in the payment processes.
Second, we consider a stronger, but realistic, adversary model and allow for a
corrupted proxy, who possibly collaborates with any service. This implies that
the service usage privacy cannot rely on the help of the proxy. We proceed by
analyzing the relevant phases.

In the subscription phase, the user’s subscription together with the proof of
knowledge could reveal the user’s service usage. In case of the first the crucial
information is protected by the semantic security of the underlying homomor-
phic encryption scheme. The semantic security guarantees that two different
subscriptions are indistinguishable. The zero-knowledge property of πj ensures
that no further information is revealed.

During the settlement, privacy is protected by using a joint decryption tech-
nique, i.e. a ciphertext can only be decrypted if the three parties, the P, Lj , and
T work together. Hence, even if P and Lj are corrupted, there is no way for
the adversary to force the decryption of a single subscription that would reveal
the user/service relationship. This is only true as long as it is not possible to
present faked subscriptions to the privacy trustee, which later on get accepted.
This would reduce the size of the anonymity set |Sj |. The faked subscription
attack reduces to n− 1-attack [9], against which a full protection is impossible.
However, to make it more difficult for an adversary, it could be mandatory for
users to always submit a subscription (or hash of it) to the trustee. This tech-
nique leads to a lower bound for the size of the anonymity set |Sj |. To some



extent the sensitivity to these attacks can be reduced by using authenticated
channels such that subscriptions can be assigned to real users.2

Although one cannot assume the honesty of the proxy in general, it often
seems more realistic to limit the adversaries’ power to corrupt only services. This
is further supported by our assumption of the proxy’s rationality. In the case
of the proxy’s honesty, we have a stronger protection against the faking attack:
first, because the proxy and the trustee verify the correctness of the signature
and the time stamp and second, because the proxy checks for the equality of |Sj |
and his subscription counter. Both techniques help to protect against attempts
in shrinking the anonymity set.

Database secrecy. In contrast to location and service usage privacy the database
secrecy protects the interest of the LBS. It guarantees that a user gets no more
than the requested information even if she collaborates with the proxy. The
database secrecy of our scheme, relies on two aspects: First, the service encrypts
his database before he sends it to the proxy. Second, as a result of the data
retrieval phase the user only gets to know the requested data. This is due to the
so called ‘Database security’ [21] of the underlying secure OT protocol.

Fairness. Our system is said to be fair if both the interests of the user and of
the service are equally protected. With respect to our protocol this means that
neither the user gets access to content without paying nor the service is able to
cheat and receive a non-authorized payment without providing the information.

The fairness of our protocol significantly relies on the rationality and the
consequential semi-honesty of the proxy. Furthermore we require a trade off
between service privacy and fairness to protect against active attacks by services.

User fairness. From the user’s perspective fairness is accomplished when the user
receives the appropriate location information for her payment.

The proxy sends a request to each service. The service responds with a signed
value Ej that is either an encryption of 0 (if the user did not subscribe to Lj)
or an encryption of the requested data. Should a service fail to provide any
value Ej , the proxy forces it to pay a fee corresponding to the price of a service
subscription and passes that money on to the affected user.

Now the proxy computes the user’s final value E by combining all responses.
The user decrypts E and checks whether it corresponds with her requested data.
To facilitate this, the messages m(ı̂,̂,v̂) contain ı̂,̂, and v̂ and is signed by Lj . If
a message is incorrect, the user can file a complaint.3

In this case the user has three choices: she can either choose full privacy
and give up her money; she can file the complaint with the privacy trustee; or
she can complain directly with the proxy. Complaints contain a proof of correct

2 A powerful adversary will always find ways to forge subscriptions, even if it is just
by convincing real users with money.

3 Note that a complaining user acts as a decryption oracle. Together with the ho-
momorphic property this can lead to the decryption of arbitrary messages. Conse-
quently, user should not complain about random looking messages to an untrusted
party.



decryption of a signed E. The recipient of the complaint verifies the proof and
pays the money back. T will ask the proxy for the money given to users during
conflict resolution in return for a list of bad services. These services will receive
reduced payment or be sanctioned otherwise. Should the proxy refuse to pay the
money to the trustee this can only be resolved legally.

Our protocol does not protect against denial of service attacks in which ma-
licious services send random ciphertexts instead of 〈k(ı̂,j,v̂)〉blind ⊗Qj . However,
this can be detected if users are willing to give up their privacy towards the
proxy. We again rely on an optimistic strategy and the punishment of attack-
ers upon detection. It is an open problem to propose an efficient data retrieval
protocol based on zero-knowledge protocols that solves this problem.
Service fairness. means that service providers receive fair payment. In particular,
a service provider must receive money for every user he serves.

This is ensured by the checks done in VerifySubscription. The algorithm checks
that Q(U,j) and P(U,j) encode the same value v ∈ {0, 1}. We refer to P(U,j) as the
vote. Obviously if v = 0, no service is provided. Consider the case of v = 1: if (1)
all votes are considered and (2) the votes are counted correctly, P(U,j) increases
the subscription counter of Lj by 1. The first is ensured by the time stamp
and signature of the proxy. The second property relies on the security of the
homomorphic encryption scheme and the security of the distributed decryption
against active adversaries.

6 Conclusion

We introduced the first privacy-preserving LBS framework based on crypto-
graphic techniques, namely, on oblivious transfer and homomorphic encryption.
The privacy of the user is protected by hiding the user’s location from the ser-
vices and by not revealing information on the user/service relationship. Addi-
tionally, we presented a system for subscription management including a fair yet
anonymous payment scheme.

We have given strong intuitions on the different security properties of our
scheme, however, it remains an open challenge to prove them in a formal context.
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A Formal Definitions

Notation. We write cryptographic primitives as Alg(x; k), where x denotes the
processed inputs of the algorithm and k denotes keys, randomness, or pub-
lic parameters. When it is clear from the context k is omitted. We use the
Alg(E1(x1; k1), E2(x2; k2)) to denote an interactive algorithm between entities E1

and E2 with the respective inputs and keys.

Algorithms. U , P, the Lj , and T interact using the following algorithms:
– KeygenL(1k), KeygenP(1k), and KeygenU(1k) generate the public/private-key

pairs (pkLj
, skLj

), (pkP , skP), and (pkU , skU ) of the LBS service, the proxy,
and the user respectively.

– PaymentSetup(Lj(1k),P(1k), T (1k)) computes the public payment key pkSj ,
and the secret settlement keys skS(Lj ,j), skS(P,j), and skS(T ,j) that are pri-
vate output of Lj , P, and T respectively. The key pkSj is used for creating
subscriptions; skS(L,j), skS(P,j), and skS(T ,j) are only used during settlement.

To complete the key setup, pkSj and skS(E,j) are added to pkE and skE , E ∈
{P,Lj}, respectively. Consequently pkP contains the public payment keys of all
services. Trustee T stores all skS(T ,j) together as skT . Key generation is required
only once during the setup of the system.
– Subscribe(P(skP , pkU ),U(̂; skU , pkP)) allows the user to subscribe to service
L̂. The output of the protocol on the proxy side is real money collected
by the proxy and oblivious subscription information S(U,j) for every service,
1 ≤ j ≤ l. P passes S(U,j) on to Lj respectively. For j 6= ̂, S(U,j) hides the fact
that U is not interested in the service. However, S(U,̂) will allow L̂ to provide
the service (without even knowing that it is doing so). The S(U,j) values also
contain the necessary information for the settlement.

– VerifySubscription(S(U,j), j; pkU , pkP) checks that S(U,j) is a valid subscription
for service j, and that it can be used for settlement. If VerifySubscription fails,
the service is denied. In this case the proxy has to give back the money to the
user. Otherwise, the service adds S(U,j) to its list of subscriptions Sj .

– Settlement(Lj(Sj ; skLj
, pkP),P(skP , pkLj

), T (skT , pkP)) outputs the number
of users who subscribed to service j. collected during subscription. As long as
not all three parties cooperate, none of them learns which users accessed the
service.

To keep our protocol simple we restrict users to subscribe only once per sub-
scription period. After all subscriptions have been made, the money collected
by the proxy is distributed based on the number of times the different services
were subscribed to. The proxy and the trustee need to check that the list of
subscriptions is complete. A reduced list Sj would compromise the privacy of
the user as a user could ‘hide’ between a smaller number of other users.
– EncryptData(m(1,j,v), . . . ,m(n,j,v), v; skLj ) encrypt the location specific service

information of Lj with version v. To every location i, 1 ≤ i ≤ n, corresponds
one encrypted message. The output of the algorithm is the encrypted database
DB(j,v).



The above operation is only required when a service is newly created or when
the location specific data used for providing a service changes. The database
DB(j,v) is transferred to the proxy over a high volume connection.
– Request(P(DB(j,v̂), ı̂; skP , pkLj

),Lj(S(U,j); skLj , pkU , pkP)) The proxy runs
Request with service Lj giving DB(j,v̂) of verson v̂ and the users current
location ı̂ as input. The input at the service side is the user’s subscription
S(U,j). The proxy obtains an encrypted result Ej from the service. For services
(and corresponding S(U,j)) the user is not subscribed to Ej is an encryption
of 0.

– Combine(E1, . . . , El; skP , pkU ) After running Request with all services, algo-
rithm Combine merges the individual results into a single result E containing
an encryption of m(ı̂,̂,v̂).

– Decrypt(E; skU , pkL̂
) decrypts E to obtain the result m(ı̂,̂,v̂).

The last three operations are triggered by the proxy and result in user U obtain-
ing the service and location specific message m(ı̂,̂,v̂).

Required security properties. In our security considerations we assume that
parties communicate over secure channels and that P, Lj , and T , are able to
authenticate communication, and to sign messages using their identity. This can
for instance be realized using a public key infrastructure. Note that we do not
require client authentication and are thus able to avoid client-side certificates. A
secure multi-service proxy LBS scheme needs to have the following properties:
Location privacy. As long as the proxy is honest, the location of the user is not
revealed. adversary possibly corrupting any number of LBSs and other users and
interacting with the honest proxy using protocols EncryptData, Request, ... , can
choose two tuples (i, j, v) and (i′, j, v′). Based on a random bit b, the attacker
then runs the Request protocol with the proxy with one of these tuples as input,
without knowing which. The advantage of the attacker in guessing this bit is
negligible.
Service usage privacy. Even if the proxy and all the services collude, they cannot
determine to which service a user subscribed. Subscribe protocol. The adversary
cannot distinguish whether he is interacting with the real protocol or the sim-
ulated one. This includes message privacy; i.e., only the users can decrypt the
messages of services.
Database secrecy. The user should only get the information she (together with
the proxy) requested. ideal implementation simulation. This property must hold,
even if users and proxy collude.
Fair payment. The LBS only provides the service if it gets payed for it. If a user
pays for a service she can successfully blame others for the bad service.
Authenticity of result. The user is assured that her result is for the right location
and of the right version, really originates from the LBS, and is the same as the
one committed to in EncryptData.


