
Virtual Private Services

Karsten Loesing and Guido Wirtz

University of Bamberg
Distributed and Mobile Systems Group

Feldkirchenstr. 21, 96047 Bamberg, Germany
{karsten.loesing, guido.wirtz}@uni-bamberg.de

Abstract. Providing an Internet service is no longer only a domain of
organizations and enterprises, but becomes increasingly popular for pri-
vate persons. Virtual private services are defined as services that are
offered by private users over public Internet connections and for a lim-
ited, possibly changing set of other private users. Virtual private ser-
vices demand extended security properties, e.g. hiding service activity
from unauthorized clients, that are less important in public services.
Two common approaches exist to utilize Tor hidden services for offer-
ing virtual private services. These are examined for security problems
that might be privacy-relevant for the service provider. Subsequently,
an extension of the hidden service protocol is presented that is designed
to better support virtual private services. This design is not meant to
replace the existing hidden service design, but should complement it.

1 Problem Statement

Providing an Internet service has first and foremost been a domain of
organizations and enterprises. Dedicated and well-equipped servers handle
thousands of service requests simultaneously. This makes sense for a large
number of applications ranging from websites to Internet relay chat. In
the area of privacy-enhancing technologies most effort has been dedicated
on protecting the privacy of clients of such public Internet services.

In recent years, the decreasing costs of processing power, memory, and
network bandwidth have enabled private persons to set up and operate
their own Internet services. In most cases these private services are not
meant to replace public services at all. A possible scope of private services
is to offer them over the public, untrustworthy Internet, but only to a
limited, possibly changing set of clients. In the following these services
will be referred to as virtual private services following virtual private
networks that allow creation of a secure private network on top of an
untrustworthy public network.

In contrast to public services, virtual private services exhibit specific
security requirements that stem from the fact that they are provided by
private users and not by enterprises or organizations:



Hide Server Location The location of the server reveals a lot of infor-
mation about the service provider and should therefore be hidden. If
a service is provided on a laptop or mobile device, the service provider
might even be tracked while being under way as demonstrated in [3].

Prevent Unauthorized Access Access attempts performed by non-
authorized users need to be blocked as early as possible. Since most
private services still have limited resources, unauthorized access at-
tempts may not be exploited to perform denial-of-service attacks.

Conceal Service Activity Non-authorized users may not be able to
learn about service activity. In some cases service activity is consis-
tent with the service provider’s online activity. An adversary could
exploit knowledge about service activity over time to learn useful in-
formation like timezone or personal online behavior about the service
provider. One particular requirement of virtual private services is sim-
plicity to remove authorization from clients. In such a case, the service
should appear unavailable again to the former client. This is useful for
temporarily granting access to a service.

Impede Service Usage Profiles Network components should not be
able to generate profiles of client requests to a private service, even if
requests cannot be attributed to specific clients.

One example for private services is presence-aware real-time commu-
nication. In a server-less instant messaging system the end user can be
considered as service provider who offers a presence and messaging service
to his communication partners. Usually, instant messaging users want to
hide their presence from the public and avoid being annoyed by unsolicited
messages from strangers. When it comes to communication, the possibil-
ity to gently remove authorization by letting the service disappear gains
particular important, rather than explicitly explaining removal to a com-
munication partner. [6, 7] contain proposals of such a privacy-protecting
instant messaging system.

The anonymous communication system Tor [2] provides anonymity
to its users by relaying traffic over a network of relay nodes. A client
that wants to communicate anonymously creates a circuit consisting of
three randomly selected Tor relays. The last relay in a circuit connects to
the public server that the client actually wants to talk to. All messages
between client and the last relay are encrypted in multiple layers, which is
the reason for Tor’s name: The Onion Routing. The idea is that no single
entity but the client learns where a circuit starts and where it ends.

In addition to providing anonymity for clients, Tor enables users to
offer location-hidden services that conceal the location of a server. Tor



implements this by connecting two circuits—one created by a client, the
other by a hidden server—at a commonly agreed Tor relay, the so-called
rendezvous point. A rendezvous point passes end-to-end encrypted mes-
sages from client to hidden server and vice versa. In order to protect
rendezvous points from attacks, a hidden service picks a set of Tor relays
as introduction points which work like rendezvous points, but only trans-
fer a single message containing the rendezvous request. While rendezvous
points are established for a single connection, introduction points accept
multiple connection requests and are set up for an interval of hours or
even days. Finally, a hidden service publishes a hidden service descriptor,
containing a signed list of introduction points, to a set of directory servers
from which it can be downloaded by clients.

When using Tor hidden services for virtual private services, the first
goal of hiding server location is achieved. However, Tor hidden services—
just as little as any other pseudonymous communication system—offer no
built-in support for client authorization. The reason is that the primary
purpose of hidden services is to offer services to the anonymous public, at
what client authorization seems to be contradictory. The earliest time to
perform client authorization is after an anonymous client has successfully
established a connection to a hidden service. Ideally, authorization does
not leak any information that could be used by unauthorized users to
identify the hidden service.

There are two rather different approaches to implement virtual private
services with Tor hidden services: In the first approach, a service provider
sets up a single hidden service for all users and performs user authoriza-
tion after successful connection establishment. Albeit being simple, there
is no way to hide the existence of a service once issued to a client, putting
the private service at risk on being attacked or profiled. A second ap-
proach is to configure a separate hidden service for each client in addition
to a later authorization when the connection is established.1 Although
this gives a service provider much more control over visibility of his ser-
vice, it uses up lots of resources from the Tor network and leaks links
between provided hidden services to the network.

The approach taken here is to extend the hidden service protocol to
support both, public services to anonymous users and private services
1 A superficially neat idea is to advertise a separate hidden service for each user,

but omit subsequent client authorization in the belief that hiding a service prevents
other people from accessing it. The hidden service design does not conceal service
existence from directory servers and introduction points. These could easily access
a hidden service that performs no further authorization. Therefore, separate client
authorization is taken for granted here.



Fig. 1. Overview of the hidden service protocol

to authorized clients only. The main idea is to keep the Tor hidden ser-
vice protocol sequence unchanged, but modify single steps to fulfill the
extended security requirements of virtual private services.

The next section contains a description of the cryptography behind
the Tor hidden service protocol. The security issues of either of the two
approaches to implementing virtual private services using Tor hidden ser-
vices are discussed in Section 3. The new approach to extend the hidden
service protocol for virtual private services is presented in Section 4. Sec-
tion 5 contains an analysis of security properties of the new approach.
Section 6 concludes.

2 Hidden Service Protocol

A description of the Tor hidden service protocol [1,2] and of the underly-
ing cryptography is necessary to understand the current security problems
and proposed extensions. Figure 1 shows an overview of exchanged mes-
sages while Figure 2 contains the corresponding cryptographic message
contents. Table 1 lists all symbols used in Figure 2 and throughout the
rest of this report. All messages (besides message 5) are sent over Tor
circuits and are therefore end-to-end encrypted.

Suppose that a user Bob wants to establish a new hidden service. For
this purpose, Bob sends his signed public permanent key PKB to a small
number of Tor relays requesting them to act as his introduction points.
This happens in step 1 whereupon Bob receives an acknowledgement in



Bob→ IPO : PKB , N, S
PK−1

B
(PKB , N) (1)

IPO→ Bob : − (2)

Bob→ Dir : H(PKB), M = (PKB , T, IPO1...n), S
PK−1

B
(M) (3)

Dir→ Bob : − (4)

Bob→ Alice : H(PKB) (5)

Alice→ Dir : H(PKB) (6)

Dir→ Alice : M = (PKB , T, IPO1...n), S
PK−1

B
(M) (7)

Alice→ RPO : RC (8)

RPO→ Alice : − (9)

Alice→ IPO : H(PKB), EPKB (RPO, RC, gx) (10)

IPO→ Alice : − (11)

IPO→ Bob : EPKB (RPO, RC, gx) (12)

Bob→ RPO : RC, gy, H(gxy) (13)

RPO→ Alice : H(gxy) (14)

Fig. 2. Hidden service cryptographic protocol

step 2. Next, the hidden service creates a hidden service descriptor in-
cluding his public permanent key, a timestamp T , a list of introduction
points IPO1...n, and a signature of these data, created with his private
permanent key PK−1

B . The hidden service publishes this descriptor to the
directory servers in step 3 and receives an acknowledgement in step 4.
Then, the hidden service can tell his service address which is equal to the
permanent key identifier H(PKB) to his clients out of band in step 5.

Whenever a user Alice wants to access Bob’s hidden service, she looks
up the current descriptor from a directory server by requesting an entry
for the service’s permanent key identifier in step 6. Assuming that she
receives a correct descriptor in step 7, she picks a random relay and re-
quests it to act as rendezvous point on her behalf by sending a single-use
rendezvous cookie RC to it in step 8 which is acknowledged in step 9.
Next, Alice picks one introduction point from the descriptor and sends to
it an introduction request in step 10 consisting of the unencrypted perma-
nent key identifier and an encapsulated message. The latter is encrypted
using the service’s public permanent key and contains contact informa-
tion of the client’s rendezvous point, the rendezvous cookie, and the first
half of a Diffie-Hellman handshake gx. If the introduction point recog-
nizes the permanent key identifier, it acknowledges the request in step 11
and forwards the encrypted part of the message to its hidden service in



Table 1. Symbols used in cryptographic messages

Alice authorized client
Bob hidden service

Carol another authorized client
CKAB A’s client key to access hidden service B

Dave formerly authorized client
DCAB A’s descriptor cookie to access hidden service B

Dir hidden service directory
EPK() encryption with public key PK

gx, gy, gxy Diffie-Hellman public keys and shared secret key
IKi introduction key generated for introduction point i
IPO introduction point

KSK() symmetric encryption with secret key SK
N nonce

PKB , PK−1
B public and private permanent key of hidden service B

PKAB , PK−1
AB A’s public and private permanent key to access hidden service B
RC rendezvous cookie
RI replica index

RPO rendezvous point
SPK−1() signature with private key PK−1

T timestamp
TP time period
H() secure hash function

step 12. Bob contacts the rendezvous point and sends to it the rendezvous
cookie and the second half of the Diffie-Hellman handshake consisting of
gy and H(gxy) in step 13. The rendezvous point, upon recognizing the
rendezvous cookie, forwards the request to the client in step 14, finally
establishing an end-to-end encrypted connection between Alice and Bob.

3 Security Analysis of Private Tor Hidden Services

A service provider can take (at least) two different approaches to offer
a virtual private service to a limited set of clients using Tor hidden ser-
vices. These two possibilities are discussed here together with the possible
security issues they raise.

3.1 Single Hidden Service for All Users

In the first scenario a service provider sets up a single hidden service for all
his users and performs user authorization after connection establishment.
Whenever the service provider wants to grant access to a new user, he
tells her his hidden service address and hands out new credentials for the



subsequent authorization. The other way round, when he wants to remove
authorization for a specific client, he removes her credentials from the list
of permitted clients.

There are a number of security problems in this protocol for virtual
private services. The main reason for most of these problems is the unre-
strained propagation of the hidden service’s permanent key identity:

Unauthorized Access Attempts Non-authorized clients can open an
unrestricted number of connections to the hidden service and at-
tempt to access it before failing at subsequent client authorization.
Even worse, with every established connection a non-authorized client
wastes some of the hidden service’s resources that has to build or ex-
tend a circuit to the client’s rendezvous point. This attack can be
performed by all former clients that have been removed by the ser-
vice provider but still know the hidden service address. Even though
introduction points and directory servers also learn about a hidden
service address and could attack the service, they cannot relate it to
a specific virtual private service and therefore have no such incentive.

Service Activity Former clients can track the service’s activity even if
they are not authorized to access it any more. The easiest way to
do so is to periodically request the service’s descriptor. Further, an
adversary could run one or more relays and wait to be picked as intro-
duction point. At last, the adversary might be able to collaborate with
one of the directories to passively monitor descriptor publications.

Anonymous Service Usage A formerly authorized client could moni-
tor anonymous service usage by setting up one or more relays and wait
to be picked as introduction point for the service. She might even at-
tack other introduction points that work on behalf of the service until
one of her relays is selected. Likewise, if she is able to collaborate with
one of the directories, she can passively track requests for a service’s
descriptor and derive anonymous service usage from that.

3.2 Separate Hidden Service For Each Client

An alternative approach is establishment of a separate hidden service for
each client. In this setting the service provider hands out a new hidden
service address together with authorization credentials to a new user. In
order to remove a client’s authorization, the service provider simply stops
advertising the corresponding hidden service.

From this follows that the attacks as described for the first approach
do not apply. The only entities that can relate a hidden service address



to a service provider are the service and one client. As soon as the hidden
service is stopped, the removed client cannot learn anything about the
service, because she doesn’t know the other hidden service addresses that
the service provider uses. However, two problems remain:

Network Load The effort that is required to set up a separate hidden
service for each client is tremendous. The service provider needs to
establish a separate set of introduction points and publish separate
hidden service descriptors. This limits the number of clients that can
reasonably be authorized and puts significant load on the network.

Links Between Pseudonyms A service provider who offers more than
one hidden service at the same time might occasionally establish mul-
tiple introduction points on the same relay. Further, he is likely to
publish several hidden service descriptors in quick succession. These
events give hints to introduction points and directory servers that
two or more hidden services are run by the same provider. A once-
authorized client that learns about this relation can attack or profile
a service provider when her authorization is removed by using one of
the other hidden service addresses.

4 Extension of the Hidden Service Protocol

The main idea of the approach taken here is to reduce the amount of in-
formation that directory nodes and introduction points learn about a ser-
vice. Similarly to the second approach described above, access to hidden
services is issued on a per-user basis, but without the massive overhead of
keeping a number of circuits open that is proportional to the number of
authorized clients. The sequence of exchanged protocol messages remains
unchanged, but single steps are modified to fulfill the extended security
requirements of virtual private services. The specification details can be
found in [4]. Figure 3 contains the extended hidden service protocol that
is developed in the course of this section.

4.1 New Introduction Key for Introduction Points

In the first place the information that an introduction point learns about
a hidden service is reduced. An introduction point is not required to learn
the identity of a hidden service, but only an arbitrary identity created by
the hidden service to perform its task, i.e. match incoming client requests
with a previously registered hidden service. A client needs to learn about
that identity before contacting the introduction point and be assured that



Bob→ IPO : IKi, N, S
IK−1

i
(IKi, N) (1)

IPO→ Bob : − (2)

Bob→ Dir : H(H(CKAB), H(DCAB , TP, RI)), (3)

M = (CKAB , H(DCAB , TP, RI), T, KDCAB (IPO1...n, IK1...n)),

S
CK−1

AB
(M)

Dir→ Bob : − (4)

Bob→ Alice : H(CKAB), DCAB (5)

Alice→ Dir : H(H(CKAB), H(DCAB , TP, RI)) (6)

Dir→ Alice : M = (CKAB , H(DCAB , TP, RI), T, KDCAB (IPO1...n, IK1...n)), (7)

S
CK−1

AB
(M)

Alice→ RPO : RC (8)

RPO→ Alice : − (9)

Alice→ IPO : H(IKi), EIKi(RPO, RC, gx, DCAB) (10)

IPO→ Alice : − (11)

IPO→ Bob : EIKi(RPO, RC, gx, DCAB) (12)

Bob→ RPO : RC, gy, H(gxy) (13)

RPO→ Alice : gy, H(gxy) (14)

Fig. 3. Proposed revised hidden service protocol

it belongs to the hidden service. But there is no need for the identity that
an introduction point learns to be equal to the hidden service’s identity
or even persist for longer than a single introduction point establishment.
This prevents an introduction point from recognizing a hidden service.

In this new approach a hidden service creates a new asymmetric in-
troduction key for every introduction point establishment and sends the
public key to the introduction point instead of his public permanent key
in step 1 of the hidden service protocol. The hidden service includes the
public introduction keys of all established introduction points in the de-
scriptor that it sends to the directory server in step 3. The client uses the
introduction key that she obtains in step 7 from the directory to create
her message to the introduction point in step 10. Finally, the hidden ser-
vice uses the introduction key instead of his permanent key to decrypt
client requests in step 12.



4.2 Client Key as Replacement for Permanent Key

An important requirement for the new approach is the ability to with-
draw client authorization at any time. Therefore, a hidden service issues
separate hidden service descriptors for each client, so that he can later
stop publishing descriptors for removed clients. The service creates a sep-
arate client key CKAB (CKCB, CKDB, . . . ) for each client replacing the
permanent key PKB. When advertising his service, the service provider
uses the client keys to generate and upload descriptors for all authorized
clients in protocol step 3. All service descriptors may contain the same
set of introduction points, which is why this approach scales better than
the second approach using the unmodified hidden services. Bob tells the
client key identifiers to Alice in step 5 out of band. Alice requests Bob’s
descriptor using the client key identifier in step 6 and obtains it in step 7.

4.3 Client-specific Descriptor Identifiers

An important step of this approach is to hide relations between descrip-
tors that are issued by the same service but for different clients. Other-
wise, a removed client who can link the client key identity of another, still
authorized client to the service could attack or profile the service. The
approach taken here is to store descriptors on a periodically changing
subset of a potentially large number of hidden service directory nodes as
opposed to the central directory servers. A further objective of distribut-
ing the hidden service directory is better scalability, as the new approach
requires to store and serve a number of descriptors that is proportional
to the number of authorized clients. [5] contains a possible design of a
distributed hidden service directory that is not further discussed here. In
the following it is assumed that descriptors with different identifiers will
be stored on different directories with a certain probability.

There are a couple of new requirements to hidden service descriptor
identifiers. They need to change periodically, so that a descriptor is stored
on changing directory nodes over time. Descriptor identifiers shall not
change at the same periodic time for all descriptors to avoid re-publication
bursts. A directory node needs to be able to verify that a hidden service
that creates a descriptor is allowed to store it under a claimed descriptor
identifier; otherwise, an adversary could claim that his descriptor has a
certain descriptor identifier in order to occupy the descriptor space of a
legitimate hidden service. Nobody but the authorized client may be able
to determine future descriptor identifiers from a given descriptor.



These requirements lead to three new components of descriptor iden-
tifiers besides the client key identifier H(CKAB):

Descriptor Cookie The secret descriptor cookie DCAB is meant to pre-
vent anyone who observes a descriptor from determining future de-
scriptor identifiers. This may only be done by the client as opposed
to the directory that stores the descriptor. A hidden service generates
descriptor cookies for each client and distributes pairs of client key
identifiers and descriptor cookies to them in protocol step 5.

Time Period The time period TP makes sure that a descriptor identi-
fier changes periodically, so that the descriptor is stored on changing
directories. The time period is constructed in a way that transition
from one period to the next is equally distributed over the whole time
period depending on the permanent key identifier. For example, if the
period has a length of one day, a certain descriptor’s time period is
always incremented at a specific time of the day.

Replica Index The replica index RI provides for multiple replicas of a
descriptor to be stored on distinct directories. A directory that stores
one descriptor, however, is not meant to determine storage locations
of the other replicas.

These three components, together with the client key identifier, are
composed to new descriptor identifier. Third parties need to be able to
verify that a descriptor identifier belongs to the holder of the private client
key CKAB, but without knowing the secret descriptor cookie DCAB. So,
instead of concatenating these four components and applying a secure
hash function, this process is separated into two steps: First, a secure hash
function is applied to descriptor cookie, time period, and replica index to
obtain the secret identifier part : S = H(DCAB, TP, RI). In a second
step, a secure hash function determines the actual descriptor identifier
from client key identifier and the secret identifier part: H(H(CKAB), S).
The secret identifier part is included in the signed descriptor content as
is the client key.

A directory node verifies that a descriptor is eligible for being stored
under a claimed descriptor identifier in two steps: First, the directory
node verifies the signature of the descriptor content with the included
public client key. Next, it generates a descriptor identifier using the client
key identifier and the included secret identifier part and compares it with
the claimed descriptor identifier.



4.4 Encryption of Introduction Points

As next step the introduction points that are contained in a hidden ser-
vice descriptor can be encrypted for the requesting client. This prevents
the directory nodes from attempting to access a service themselves. The
symmetric descriptor cookie DCAB is used to encrypt the introduction
points part of a descriptor that is uploaded to a directory server in step 3.
It is, however, not possible to encrypt the remaining parts of a descrip-
tor, because a directory node still needs to be able to verify legitimacy of
storage under the claimed descriptor identifier. After downloading a de-
scriptor in step 7, the client decrypts this descriptor part to learn about
the introduction points.

4.5 Delayed Descriptor Publication

With the changes so far it is almost impossible to link two or more hidden
service descriptors for different clients to be issued by the same hidden
service. The only problem that remains is simultaneous publishing of
two or more descriptors to the same directory or to two collaborating
directories. For one thing they contain the same or very close timestamps,
for another thing the upload requests arrive in short order.

As a countermeasure descriptors for different clients that ought to be
stored on the same directory are delayed, so that only one descriptor is
uploaded to a directory at a time. The remaining descriptors are uploaded
with a delay of, e.g., 30 seconds. Further, descriptors for different clients
that are to be stored on different directories are delayed for a random
time of up to, e.g., 30 seconds to hide relations from colluding directories.

Certainly, this does not prevent linking entirely, but it makes it some-
what harder. There is a conflict between hiding links between clients and
making a service available in a timely manner.

4.6 Client Identification at Hidden Service

The last change to the hidden service protocol affects the ability of a hid-
den service to selectively remove authorization of a client. Clients need
to identify themselves to a hidden service using the credentials they ob-
tained before, so that the hidden service can attribute possible misuse to
one of his clients.

For this purpose the client includes her descriptor cookie DCAB in
the encrypted introduction request that she sends to the introduction
point in step 10 and that is forwarded to the hidden service in step 12.



The hidden service checks whether a contained descriptor cookie is valid
before extending a circuit to the client’s rendezvous point.

There need to be two limitations to prevent attacks by introduction
points and rogue authorized clients:

1. An introduction point could attempt to relay valid introduction re-
quests to force the hidden service to repeatedly extend new circuits
to the enclosed rendezvous point. As a defense, the hidden service
memorizes rendezvous cookies of valid requests and drops duplicates.

2. A rogue authorized client could go after the same goal and send a
large number of valid introduction requests with different rendezvous
cookies. As a countermeasure, the hidden service accepts only a lim-
ited number of requests containing the same descriptor cookie, e.g. 10
per hour. In repeated cases of misuse the service provider can decide
to remove a client’s authorization.

5 Analysis of Security Implications

At the beginning of this report it was found that two different approaches
to utilize the unchanged hidden service protocol for virtual private ser-
vices raise several security issues. A brief analysis shall evaluate whether
the extended hidden service protocol can resist these security problems.

Unauthorized Access Attempts Only authorized clients can prompt
a hidden service to extend circuits to rendezvous points and thereby
establish a connection. Rogue authorized clients can only force a lim-
ited number of connections to be established in a given time before
risking detection by the service. The service’s introduction points can-
not force the service to extend any circuit, because they lack a descrip-
tor cookie to send a valid introduction request. An introduction point
does not learn about other introduction points for launching an at-
tack on them. Neither directory nodes nor unauthorized clients learn
about the introduction points to make an attempt to access. The only
thing a directory node could do to learn about a descriptor cookie is
break the encryption of introduction points or reverse the secure hash
function, which is why the descriptor cookie should be generated by
Tor instead of using a possibly weak password.

Service Activity An adversary trying to track service activity needs
to know the link between a client key identity and the service to be
tracked and needs to observe current existence of a hidden service



descriptor for that client key identity. This reduces the set of possi-
ble adversaries to former clients, because currently authorized clients
know the service activity anyway. Hence, the adversary must have
observed a link between her own and another client key identity at
a time when she was still authorized. Further, the adversary needs
to run or collaborate with a directory node that currently stores a
descriptor for the client key identity of the still authorized client.

Anonymous Service Usage An attack to uncover anonymous service
usage would be performed similarly to the attack on service activity.

Network Load Though not being a security problem, an approach that
puts a high load on the network is not practical, either. The presented
approach reuses the same set of introduction points for an arbitrary
number of clients. However, it issues a number of hidden service de-
scriptors that is proportional to the number of authorized clients.
With a distributed directory as assumed for this approach this may
be acceptable for the network. But it still imposes the task of pub-
lishing a large number of descriptors on the service.

Links Between Pseudonyms Directory node operators could try to
conclude from multiple descriptor uploads on short notice that the
descriptors were issued by the same hidden service. This knowledge
can be accumulated over time. If one of the clients in the set of jointly
observed client keys is removed at some time, the directory node op-
erator can collaborate with the removed client to exploit existence of
a descriptor that is still published to attack or profile the service.

6 Conclusion

This report motivated the use of virtual private services which are offered
by private users and for a limited, possibly changing set of clients. An
analysis of two common approaches to utilize Tor hidden services for
this task has shown several security problems that might turn out to
be privacy-relevant for the service provider. An extension of the hidden
service protocol was presented that is designed to better support virtual
private services. A subsequent security analysis has discussed possible
attacks on the stated security properties.

The proposed protocol extensions are not meant to replace the existing
hidden service design. The only overlapping of public and private hidden
services is the distributed directory. This can be used by both types of
services, which even makes sense in terms of scalability. The remaining
changes of private services only affect the hidden service and the clients.



References

1. Roger Dingledine and Nick Mathewson. Tor Rendezvous Specification, February
2008. https://tor-svn.freehaven.net/svn/tor/trunk/doc/spec/rend-spec.

txt.
2. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation

onion router. In Proceedings of the 13th USENIX Security Symposium, pages 303–
320, August 2004.

3. Saikat Guha and Paul Francis. Identity trail: Covert surveillance using dns. In
Proceedings of the Seventh Workshop on Privacy Enhancing Technologies (PET
2007), pages 153–166, Ottawa, Canada, June 2007. Springer.

4. Tobias Kamm, Thomas Lauterbach, Karsten Loesing, Ferdinand Rieger,
and Christoph Weingarten. Hidden Service Authentication, September
2007. https://tor-svn.freehaven.net/svn/tor/trunk/doc/spec/proposals/

121-hidden-service-authentication.txt.
5. Karsten Loesing. Distributed Storage for Tor Hidden Service Descriptors, May

2007. https://tor-svn.freehaven.net/svn/tor/trunk/doc/spec/proposals/

114-distributed-storage.txt.
6. Karsten Loesing, Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian

Röglinger, Matthias Sehr, Christian Wilms, and Guido Wirtz. Privacy-aware pres-
ence management in instant messaging systems. In 20th IEEE International Parallel
and Distributed Processing Symposium, April 2006.

7. Karsten Loesing, Maximilian Röglinger, Christian Wilms, and Guido Wirtz. Imple-
mentation of an instant messaging system with focus on protection of user presence.
In Proceedings of the Second International Conference on Communication System
Software and Middleware. IEEE CS Press, January 2007.


