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Discover new privacy-enhancing technologies. Question controversial ideas.
Challenge philosophical discussions. Explore the future of privacy. Welcome
to HotPETs 2011!

Held in conjunction with the PET Symposium, HotPETs is a forum for
hot new ideas in privacy. The venue aims at collecting early stage works. It
provides a unique chance to receive feedback from the audience of PETS and
stimulate future research directions. We were excited to receive 19 submissions
and after some tough decisions, 10 remain for presentation in Waterloo.

This is the fourth HotPETs. First, in Leuven, we had an exciting panel
debating legal aspects of privacy. A year later, in Seattle, Alessandro Ac-
quisti discussed the economics of privacy. Last year, in Berlin, Alexander Dix
enlightened us about privacy policies. This year, Sid Stamm, Mozilla’s lead pri-
vacy engineer, will present the keynote and hopefully fuel numerous discussions
about privacy issues on the web.

We hope that HotPETS 2011 lives up to previous editions standard: infor-
mal, lively, inspiring, sometimes controversial and definitely thought-provoking.

We thank authors of submitted papers, presenters, PETS program chairs
Simone Fischer-Huebner and Nicholas Hopper, and PETS general chairs, Kat-
rina Hanna and Ian Goldberg.

Have a cool time at HotPETs!

Carmela Troncoso
Julien Freudiger

Waterloo, July 29, 2011
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Abstract. This paper proposes Mr. Privacy, a social application frame-
work built on top of email, that encourages open competition and pro-
vides privacy for users. Applications built on Mr. Privacy are “social
apps” that look nothing like email. Email is used only as a transport
mechanism and personal database. We choose email because it is more
pervasive than any social network and it uses standardized open proto-
cols enabling inter-operability across vendors. Consumers can pick their
email providers or even host their own servers. We have developed a pro-
totype Mr. Privacy platform for the Android, iOS, and Firefox. On top
of Mr. Privacy, we created applications which share GPS locations, mu-
sic playlists, and contextual discussions of websites. Preliminary results
suggest that the email protocols suffice for building these kinds of so-
cial applications. This model supports data privacy and ownership, and
facilitates inter-operability and competition.

Keywords: distributed social network, privacy, email

1 Introduction

Online social networking is no longer just about visiting a social network web-
page. We can now socialize in situ, which means that our friends are with us on
online while we browse the web, play music, and play a games. Facebook is a
leader in in situ social networking; their social plugins enable websites to gain
access to Facebook’s over 600 million active users. More than two million web-
sites have integrated with Facebook, and over 250 million people engage with
Facebook on external websites.

In return for access to the large social graph, companies are sharing their
customer relationships with Facebook and giving the social networking partner
detailed knowledge of our browsing history and everything that we wish to share
with our friends. Social networks are now brokers of highly-marketable detailed
profiles of large numbers of users[1].

All the social networks available today are social intranets; individuals must
sign up to the same proprietary network before they can interact socially. The
owner of a social intranet controls the application platform; it can decide which



applications are allowed and can demand compensation for the use of its so-
cial graph. Because of network effect, there may one day be a single monopoly
owning the majority of the world’s social graph. Lack of open competition sti-
fles innovation and offers consumers less choice. In a social internet, there is no
single owner of the global social graph. With open competition, vendors may
differentiate from each other by offering EULAs (end-user license agreements)
that respect privacy, or offering paid services that allow users to opt out of pro-
filing. Application developers are free to innovate without being subjected to the
control of a single-party application platform owner.

1.1 Open Social Sharing

A social network offers many important functions such as discovering friends,
“stalking” people of interest, status broadcast, photo sharing, and selective in-
teractions with friends like playing games and sharing favorite web pages. This
paper focuses on the latter and asks if social applications can be shared by
friends using different service providers, no different from how inter-operability
is provided by telecom and email providers today. Open standards encourage
competition, promote innovation, offer consumers choice, and generally lead to
wider adoption. Imagine an open standard for playing music: friends can pick
their service providers and music providers of their choice without having to sign
up with a Big Brother social network which intercepts all interactions.

It is not easy to create an open social application platform that can challenge
the status quo. To attract developers, such a platform needs a large user base and
a programming abstraction that is as capable and easy to use as the comparable
centralized API. It is not possible to start such a platform from scratch–social
networking is sticky, individuals cannot change their network on their own and
still interact with their friends. Furthermore, while it is desirable to let people
own their data if desired, the solution must also accommodate the general public
who would give up data ownership for free services.

1.2 Email as a Distributed Back End

This paper presents what we believe is a plausible solution to this thorny prob-
lem. We propose to build this platform on top of email. Email is a mature, scal-
able, and open infrastructure used by over 1 billion users. We can communicate
with anybody as long as we know his or her email address. We need not sign up to
join the same social network. All the shared information is stored as email mes-
sages. While most people get their email accounts from a few large companies,
individuals and corporations do have the freedom to use paid, advertisement-free
email services or to run their own servers.

We have created a prototype of such a system called Mr. Privacy. Mr. Privacy
includes a collection of APIs to support social networking functions. Applications
can get access to a user’s social contacts and interact with them using simple data
access operations for application-defined data types. Mr. Privacy hides the low-
level details by translating these operations into email protocols, SMTP (Simple



Mail Transfer Protocol) [15] and IMAP (Internet Message Access Protocol) [7].
With Mr. Privacy,

1. users do not know that Mr. Privacy applications are email clients because
they sport a user interface similar to any other social applications, and

2. developers need not know they are writing email clients either. They sim-
ply create their application-specific data structures, store them, and retrieve
them from a database. The database turns out to be distributed, imple-
mented on top of email, and the developers need not worry about hosting or
scaling it!

Mr. Privacy overcomes the difficulty of creating a new infrastructure by boot-
strapping with email. Applications can be built using the email system as it is
today, allowing users to interact with their email contacts through social user
interfaces. Even though the email protocol is not optimal, this allows for exper-
imentation with open and distributed social networking. Demonstrated success
will hopefully entice email providers to collaborate in optimizing the protocol.

1.3 Contributions

This paper introduces the concept of using email to create an open and stan-
dard platform for in situ social networking. By turning email into a distributed
database, we are leveraging a mature and open system with an even larger in-
stalled base than the largest online social network today. Not only does it support
better data privacy and ownership, its openness facilitates competition that will
lead to better products for consumers.

We have created a prototype of our proposed idea called Mr. Privacy that
runs on three platforms: Android, iPhone, and Firefox. We have created three
proof-of-concept applications. A GPS sharing application that supports location
sharing without having our whereabouts tracked by a central authority. A social
music application that illustrates how friends can share music playlists while
getting their music from different sources. And finally, a SocialBar extension
for Firefox that let friends share comments on any webpage they visit, without
having to give away their browsing history and conversations to a single third-
party.

While the lack of server-side support of message filtering added significant
complexity to our implementation, we found that the SMTP and IMAP protocols
with the appropriate extensions are adequate as data storage and transport for
the class of social applications we studied.

2 Mr. Privacy Design Rationale

Mr. Privacy is designed to provide developers the primitives needed to build
social applications that can inter-operate across email service providers. These
primitives are built around IMAP and SMTP to allow developers to use email
to store and transport information. As social computing is quickly evolving, Mr.



Privacy is designed to be open and simple, both in interface and implementation,
to allow for easy integration across platforms and innovations at the application
level.

2.1 Specification

An application developer interacts with Mr. Privacy using four simple API calls
that are implemented across device platforms.

– SHARE: Transmits a JSON object as a Mr. Privacy message with the spec-
ified tag to a set of recipients.

– LIST: Retrieves a list of JSON objects with the specified tag newer than a
certain reference object.

– GET: Retrieves a particular Mr. Privacy JSON object.

– WAIT: Waits for a JSON object with the specified tag that are newer than
a certain reference object to arrive.

Mr. Privacy messages are formatted to allow applications that are built us-
ing Mr. Privacy to programmatically read the messages. To allow for server-
side search, Mr. Privacy messages have the following subject header: “<message
subject>[Mr Privacy][<Tag>]”. The tag is the name of the application that owns
the data in the message. The message body allows the data to be both humans
and machine readable. The human readable component of the email is layered
using html for rich email clients, such as desktop clients, and text for text-only
email clients, such as mobile phones. The machine readable component of the
message encodes JSON formatted data for Mr. Privacy applications to use. The
layering of information is done using multiple “multipart/alternative” MIME
messages. A typical email client reads through each layer of a message and dis-
plays the highest fidelity layer that it can. Additional attachments can contain
other types of data such as photos. The JSON object encoding the Mr. Pri-
vacy data can reference these extra attachments to support multimedia sharing
applications.

The human readable version provides a few other benefits. Firstly, users
can receive information promptly even if they are not running the application.
Secondly, and most importantly, it helps make social applications “viral”. If
a user of an application shares a piece of data with another user who does not
currently have the application installed, the email message acts as an “invitation”
to use the application.

The Mr. Privacy platform keeps the user’s inbox free from Mr. Privacy mes-
sages. When a new message arrives in the inbox, Mr. Privacy checks the header
to see if it is for a Mr. Privacy application. If it is, the message is moved into a
special folder. This is done automatically as long as a Mr. Privacy application
is connected to the IMAP server.

2.2 Discussion

Data privacy and ownership. The primary benefit of an email-based archi-
tecture is providing privacy and giving data ownership back to the users. A social



application in this model can be just client software. It is not necessary to have a
central server that mediates all communication; the contact information is stored
on the clients’ machine and all the data shared are stored with the users’ respec-
tive mail provider. Higher-level privacy protection is generally expected of email
providers than social network providers, as a wealth of private information is
stored in email today. Note that users will be sharing their information with the
vendors of their friends’ choice as well, they still need to be vigilant about not
sending confidential information to untrusted vendors. Nonetheless, having an
open system allowing inter-operability is much preferred to having a monopoly
that has the ability to modify the terms of use unilaterally.

Large installed user base and mature infrastructure. Applications
written using Mr. Privacy can enjoy a large user base immediately and have
no problems scaling by leveraging email. In addition, various services are offered
around email identities. Users can have multiple email accounts to prevent others
from linking activities of our different personas through avatars. OpenID lets
us log in to many web services using our email identities without having to
create a new account [16]. Webfinger lets us attach public metadata to our
email accounts [20]. The information is stored with our email providers so no
single server monitors who is retrieving the information. Webfinger will allow Mr.
Privacy to transition to an optimized non-email protocol by allowing a dedicated
data service to be linked to our email identities.

Standard and extensible data representation. The social data trans-
port provided by Mr. Privacy allows for both normal social networking and
long-tail applications. Consider for example a social application for patients in a
medical study. Doctors could let their patients use a Mr. Privacy application on
mobile phone to enable database functionality without having to set up a server
thus avoiding the addition of a new dimension of HIPPA-compatible IT support
requirements. Standard Facebook-like capabilities can be provided by transport-
ing ActivityStreams [3] JSON objects via Mr. Privacy. Because the data are not
owned by one provider, users are free to use any viewer application they wish.
This brings up the need for access control on subsets of the structured social
data that will be stored in email.

Social rules of engagement. Mr. Privacy applications, with user interfaces
similar to social applications rather than traditional email clients, need not abide
by the rules of engagement established for email. Mr. Privacy changes the con-
tract for email by isolating the social data messages from the normal inbox. We
also expect these applications to provide an intuitive way for users to specify a
white list. Not only does this prevent spam, it also provides the socially pleasing
“read it if you feel like it” paradigm.

Performance. Using Mr. Privacy, when a message is sent to multiple users,
each user receives a separate copy. A centralized social network, on the other
hand, needs to keep only one copy of the item. Luckily because of the presence
of spam, many email providers have optimizations to eliminate duplicate email
messages.



Lack of server side computation. IMAP supports only data queries and
provides no other functionality typically expected of a social networking server.
This makes it difficult for Mr. Privacy to handle public interactions or support
friend-of-a-friend interactions. We have chosen email primarily for bootstrapping,
extensions to email are expected in the future to support more social networking
features. In the meantime, we can leverage existing services to overcome Mr.
Privacy’s deficiencies. For example, we can selectively make certain parts of our
interactions public, such as sharing a photo with Flickr or status update on
Twitter.

Invalidating information. Once an item is sent from one user to another,
it cannot be invalidated. Invalidation is available in a centralized social network
because it has control over all the data. While Mr. Privacy could send out a
recall message to be interpreted by applications, users could still read their own
email and gain access to the invalidating information.

3 Prototype

We explored the implementation of a Mr. Privacy framework on three different
platforms: iOS, Android, Firefox. In the ideal implementation, Mr. Privacy is a
core platform service. A user trusts Mr. Privacy with with full email access, and
Mr. Privacy restricts the data social applications are able to use. The Android
implementation of the Mr. Privacy platform was built on the JavaMail frame-
work, which connects directly to a mail server directly via SMTP and IMAP.
Unfortunately, the iOS platform disallows local services, so each application must
request credentials from the user. The Firefox browser version of Mr. Privacy is
a custom mail client implemented in Javascript using the native socket transport
functionality exposed to plugins.

Typical social networking applications are built on top of a centralized database.
Since we cannot change email servers at all, all application-specific functionality
must be provided on the clients. This fundamental shift of responsibility affects
both developers and users, so we built three demonstration applications to test
out the acceptability of the Mr. Privacy concept from these two points of view.

3.1 GPS Sharing

Consider physical check-in services like Facebook Places, Four Squares, and
Google Latitude. While it is fun to let our friends know all the new places we
are visiting, making such sensitive information like locations public is potentially
dangerous. The “PleaseRobMe.com” website, for example, collects information
about when people are away based on public status information and can be used
by burglars to pick their victims [17]. We have created an application for the
Android phone called Mr. GPS that allows individuals to exchange GPS loca-
tions using Mr. Privacy. The application sports a UI similar to other check-in
services, as shown in Fig. 1(a).



(a) (b) (c)

Fig. 1. (a) GPS sharing using Mr. Privacy on an Android phone, (b) a shared playlist
on Jinzora Mobile on iOS, (c) SocialBar showing comments in Firefox.

3.2 Social Music with Jinzora Mobile

As a prototype, we added playlist sharing via Mr. Privacy to Jinzora Mobile, an
open-source music application on the iPhone that allows users to stream music
from their PCs[12]. At 30 seconds into each song, Jinzora Mobile shares a datum
with the registered friends indicating that the song is being played. Users can
now select a new option “Recently Played by Friends”, which uses Mr. Privacy
list and get commands to fetch the list of music their friends have played. Users
can view these plays, as shown in Fig. 1(b), and tap on them to start listening.
By using a standard playlist format, other music players can also be built upon
Mr. Privacy to share playlists across all the music services.

3.3 Contextual Social Browsing

To allow users to curate content for each other with privacy, we have developed
SocialBar, a FireFox sidebar extension built on top of Mr. Privacy. SocialBar
allows us to discover new content, explore a friends interests, and most impor-
tantly, discuss the pages we are viewing with friends. SocialBar provides a better
in situ browsing experience than a portal-based one because it is built into the
browser, as shown in Fig. 1(c). Our friends are available on the side as we browse
the web. It is particularly engaging if we can continue the conversation on the
side as we view live content. Another important advantage of SocialBar is that
we can socialize on any web page. For example, academicians can discuss the
content of research websites, which normally do not have any integrated social
features. We can even leave notes to our friends, and ourselves for that matter,
on files of a web-accessible file repository!



3.4 Suitability of Email Protocols

Deploying our applications gave several insights into the viability of the Mr.
Privacy concept. We summarize the lessons learned below.

Not all users have a suitable email service. Mr. Privacy requires an IMAP
service provider to allow for isolation of data messages to support the “read it
if you feel like it” model. POP does not have the support for folders required to
hide the messages from the user. Some providers do not offer IMAP access, but
there are free alternatives like Yahoo! Mail and Gmail that will suffice.

Servers tamper with messages as a normal part of existing infrastructure. We
had originally assumed that Mr. Privacy messages received would be identical to
the ones sent. To our surprise, this turned out not to be the case, for example,
when mails were sent to mailing lists. This can be handled by not relying on
a specific MIME layout of the received messages. Also, spam detection systems
occasionally quarantine messages or alter them in minor ways.

Basic IMAP does not provide the full gamut of features required. Mr. Privacy
must provide alternative implementations to handle the variations in IMAP sup-
port. For example, Mr. Privacy takes advantage of the IMAP extension called
“IDLE” so it can be alerted when new messages arrive in a particular folder.
Similarly, Mr. Privacy uses the IMAP “CREATE” command to make a new
folder on the server. Some mail services, notably AOL mail, do not support this.

Mail systems may have standard protocols, but individual implementations
may have different performance characteristics. Mr. Privacy relies on existing
servers and therefore must work with existing implementations. It is important
that we take advantage of the techniques that servers use to optimize typical
email usage. For example, Mr. Privacy takes advantage of server-side search.
The first technique we explored was adding Mr. Privacy tags to message headers.
This worked well for small test accounts, but would take minutes on accounts
with greater than 10,000 messages. Instead, we now tag Mr. Privacy messages by
adding “Mr. Privacy” to the subject and use subject search in IMAP to retrieve
relevant messages. Because existing mail server implementations have an index
dedicated to accelerating subject searches this search filter was dramatically
faster. On large inboxes search times were reduced from minutes to seconds.

We have to make compromises in our design and implementation because we
are using a legacy protocol. Nonetheless, we found that we were able to provide
sufficient functionality for the kinds of social applications we have built while
requiring minimal Mr. Privacy related code.

4 Related Work

A growing number of efforts are underway to provide choice in social network-
ing. Google’s Open Social allows developers to create a social application once
and deploy it on different social networks [9]. However, users cannot interact
across networks. This model only reduces the development effort for supporting
multiple social data providers. Mozilla’s Contacts abstracts existing networks



at the browser level [14] based on the W3C Contacts specification [19]. One-
SocialWeb uses federated XMPP and server extensions to create a federated
social network [5]. Google’s Wave was a collaboration tool that used XMPP and
server extensions to enable users to have rich discussion threads across providers
[10]. Diaspora [11] and Appleseed [2] define a P2P protocol for social network-
ing. PeerSoN explores building social functionality on top of distributed storage,
such as OpenDHT [4].

Various other projects have proposed techniques to improve the usability and
effectiveness of email. Flores et al. created The Coordinator, a messaging tool
that uses structured requests to capture the essence of language thus enabling
social actions [8]. Cockbrun et al. explored Mona, a novel conversation based
platform to enhance email for collaborative work [6]. Rodden et al. designed
Mailtrays, a system that automatically organizes and filters incoming messages
to match the current needs of the user [18]. Semantic Email examined how a
better user interface can be presented on top of existing email infrastructure. A
management agent orchestrates sending, receiving, and reprocessing messages in
order to simplify tasks for the user [13].

5 Conclusions

This paper provides an alternative social application platform to the current
status quo where a single company owns all the social data. By building on top of
email, our proposed Mr. Privacy platform leverages the billions of email accounts
that already exist, the open email protocols that enable inter-operability, and a
mature and scalable infrastructure.

Application developers can choose to write their social applications as pure
client software if they wish, letting all the data be stored with the users’ pre-
ferred service providers and leaving scalability issues to email providers. Users
can choose an email service provider or host their own email server if they are
concerned about data ownership.

We have developed a prototype Mr. Privacy platform for Android, iOS, and
Firefox. On top of Mr. Privacy, we created applications which share GPS loca-
tions, music playlists, and contextual discussions of websites. There is no single
third-party company monitoring all our activities. Furthermore, these applica-
tions are using the social contacts in individuals email address books and there
is no third-party social network owner that has complete control of the platform.

SocialBar is available at http://mobisocial.stanford.edu/socialbar/.
Additionally, the source code including the Mr. Privacy client library is publicly
released at https://github.com/Mobisocial/socialbar/.
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Abstract. Contrary to many other approaches to security and privacy in the cloud, we
are interested in the problem of hiding behavioral information of users consuming their
cloud resources, e.g. CPU time or storage space, from the cloud provider. More precisely,
we are looking for solutions that allow users to purchase a contingent of resources from
a cloud provider and to anonymously consume their resources till their limit is reached
(in case of storage they can also reclaim these resources back anonymously). We present
a definition of such anonymous yet authorized and bounded cloud resource schemes along
with an instantiation based on Camenisch-Lysyanskaya signatures. Then, we extend the
scheme to another scheme providing even more privacy for users (by even hiding the
issued resource bound during interactions and thus providing full anonymity to users)
and provide some useful extensions for both schemes. We also underpin the practical effi-
ciency of our schemes by means of experimental results obtained from an implementation.

Keywords. Anonymous resource consumption, privacy, cloud computing, Camenisch-
Lysyanskaya signatures, proofs of knowledge.

1 Introduction

Cloud computing is an emerging paradigm, but some significant attention remains justifiably
focused on addressing security and privacy concerns. Reasons are among others that customers
have to trust the security mechanisms and configuration of the cloud provider and the cloud
provider itself. Recently, different cryptographic solutions to improve privacy have been pro-
posed, which mainly focus on private storage, private computations and private service usage.

Storing data encrypted seems to be sine qua non in many cloud storage settings, since cloud
providers, having access to the storage infrastructure, can neither be considered as fully trust-
worthy nor are resistant to attacks. Kamara and Lauter [26] propose several architectures for
cryptographic cloud storage and provide a sound overview of recent non-standard cryptographic
primitives like searchable encryption and attribute-based encryption, which are valuable tools
in this context. Other issues are data privacy and verifiability when outsourcing data and per-
forming computations on these data using the cloud as computation infrastructure. The recent
introduction of fully homomorphic encryption [24] is a promising concept for performing arbi-
trary computation on encrypted data. However, up to now these concepts are far from being
practical [25]. Another interesting issue from a privacy perspective is to hide user’s usage behav-
ior (access patterns and frequencies) when accessing services, e.g. cloud storage services. More
precisely, users may not want the cloud provider to learn how often they use a service or which
resources they access, i.e. they want to have anonymous and unlinkable access. Nevertheless,
cloud providers can be assumed to have access restricted to authorized users and additionally
users may want to enforce (attribute-based) access control policies. There are quite different
existing approaches to realize this, e.g. one can employ anonymous credential systems [4] or
oblivious transfer [8, 9].

In this paper we introduce an additional aspect which may be valuable when moving to-
wards privacy friendly cloud computing and seems to be valuable when used in conjunction
with the aforementioned approaches. In particular, we focus on the anonymous yet authorized
and bounded use of cloud resources like CPU time (e.g. CPU per hour) or storage space. Al-
though we illustrate our concept by means of the resource storage space in this paper, one may
use this approach for arbitrary resources.



Our contribution. We consider a setting where users should be able to register and obtain a
resource bound (limit) from a cloud provider (CP) in form of a partially blindly signed token.
This token includes an identifier, the already consumed resources and the limit, wheres the limit
in fact is the only value signed in clear. This limit determines how much of a resource, e.g.
CPU time, storage space, a user is allowed to consume. Then, users should be able to consume
their resources in an anonymous and unlinkable yet authorized fashion. For instance, if a user
wants to consume l resources, he has to convince the CP that he possesses a signed token with
a valid identifier (double-spending protection) and that his consumed resources (including l) do
not exceed his bound. If this holds, the anonymous user is allowed to consume the resources
and obtains an updated signature for a token corresponding to a new identifier and updated
consumed resources. Note, due to the anonymity and unlinkability properties, the CP is unable
to track how much a user has already consumed, however, can be sure that he solely consumes
what he has been granted. Furthermore, when the resource represents storage space a user may
also reclaim resources when he deletes data, whereas these actions should also be anonymous
and unlinkable.

We for the first time consider this problem and provide a definition for the concept of anony-
mous yet authorized and bounded cloud resource schemes. Furthermore, we present an efficient
instantiation of such schemes. Then, we extend the scheme to another scheme providing even
more privacy for users (by even hiding the issued resource bound during interactions) and pro-
vide some useful extensions for both schemes. Our schemes are obtained using recent signature
schemes due to Camenisch and Lysyanskaya [12, 13] along with efficient zero-knowledge proofs
for proving properties of signed messages. We note that many of the approaches discussed subse-
quently employ similar features of CL signatures as our approach does. But the signer controlled
interactive update of signed messages discussed in Section 4.1, which is an important function-
ality behind our protocols, seems to be novel. Furthermore, we note that we base our concrete
scheme on groups of known order and the essential ingredient is the pairing based CL signature
scheme [13]. We want to emphasize that one could as well base the construction on hidden order
groups. Then, one can use the strong RSA based CL signature [12], Fujisaki-Okamoto commit-
ments [23] and the range proof proposed by Boudot [7]. But within our construction we achieve
much shorter proofs and signatures.
Related work. Pairing based CL signatures [13] and it’s strong RSA based pendant [12] are
useful to construct various privacy enhancing cryptographic protocols. Among them are anony-
mous credential systems and group signatures [13] as well as privacy protecting multi-coupon
systems [16, 18], anonymous subscriptions [6], electronic toll pricing [5], e-cash systems [11] and
n-times anonymous authentication schemes [10] based on compact e-cash or unclonable group
identification schemes [21] which achieve similar goals as in [10]. To solve our problem, the most
straightforward solutions seems e-cash, i.e. CP issues k coins to a user and a user can use one
coin per resource unit. However, to achieve a suitable granularity this induces a large amount
of “small valued coins” which makes this approach impractical. The same holds for compact
e-cash schemes [11], where a user can withdraw a wallet of 2l coins at a time and thus the
withdrawal procedure is much more efficient. However, in compact e-cash coins from the wallet
can only be spend one by one and the above problem still exists. In divisible e-cash [15, 3], which
allows a user to withdraw a wallet of value 2l in a single withdraw protocol, spending a value
2m for m ≤ l can be realized more efficient than repeating the spending 2m times. However, in
the former solution even for a moderate value of l = 10 the spending of a single coin requires
800 exponentiations which makes it very expensive. The latter approach is more efficient, but
statistical, meaning that users can spend more money than what they withdraw.

Multi-coupons [16, 18] represent a collection of coupons (or coins or tokens) which is issued
in a single withdraw protocol and every single coupon of the MC can be spend in an anonymous
and unlinkable fashion. But in our scenario, they suffer from the same problem as e-cash.

Recently, Camenisch et al. proposed an interesting protocol for unlinkable priced oblivious
transfer with rechargeable wallets [9]. This does not exactly fit our scenario but could be mapped
to it. However, [9] do not provide an efficiency analysis in their work and their protocols seem
to be quite costly. Their rechargeable wallets are an interesting feature and such an idea is also
supported by our second scheme.



2 Definition

Below, we present a description of the problem along with a model of anonymous yet authorized
and bounded cloud resource scheme. We note, that we do not provide formal security arguments
for the presented schemes in this extended abstracts, but they are presented in the full version.

2.1 Problem Description and Motivation

In our setting we have a cloud provider (CP) and a set of users U . Our main goal is that users
are able to purchase a contingent of resources (we focus on storage space here) and CP does not
learn anything about the resource consumption behavior of users. In particular, users can store
data at the CP as long as there are still resources from their contingent available. The CP is in
any interaction with the user convinced that a user is allowed to consume (or reclaim) resources
and cannot identify the user nor link any of the user’s actions. Clearly, if the resource is storage
space and the data objects contain information on the user then this may break the anonymity
property. Nevertheless, then we can assume that data is encrypted which seems to be sine qua
non in many cloud storage settings.

Our main motivation is that it is very likely that only a few large cloud providers will
own large portions of the infrastructure of the future Internet. Thus, these cloud providers will
eventually be able to link data and information about resource consumption behavior of their
consumers (users) allowing them to build extensive dossiers. Since for many enterprises such
a transparency can be too intrusive or problematic if these information are available to their
competitors we want to hide these information from cloud providers. As for instance argued in
[19], activity patterns may constitute confidential business information and if divulged could
lead to reverse-engineering of customer base, revenue size, and the like.

2.2 Definition of the Scheme

An anonymous yet authorized and bounded cloud resource scheme is a tuple (ProviderSetup,
ObtainLimit, Consume, Reclaim) of polynomial time algorithms or protocols between users U
and cloud provider CP respectively:

– ProviderSetup. On input a security parameter k, this algorithms outputs a key pair sk and
pk of a suitable signature scheme and an empty blacklist BL (for double-spending detection).

– ObtainLimit. In this protocol a user u wants to obtain a token t for a resource limit of L
units from the CP. The user’s output is a token t with corresponding signature σt issued
by CP. The token contains the limit L and the actually consumed resources s (wheres both
may be represented by a single value L′ := L − s). The output of CP is a transcript TOL of
the protocol.

– Consume. In this protocol user u wants to consume l units from his remaining resources. The
user shows value t.id of a token t and convinces the CP that he holds a valid signature σt

for token t. If the token was not already spend (t.id is not contained in BL), the signature
is valid and there are still enough resources left, i.e. s′ + l ≤ L (or L′ − l ≥ 0), then the
user’s output is accept and an updated token t′ for resource limit L and actually consumed
resources s′ + l (or L′ − l) with an updated signature σt′ from CP. Otherwise the user’s
output is reject. The output of CP is a transcript TC .

– Reclaim. In this protocol user u wants to reclaim l units, e.g. he wants to delete some data of
size l. The protocol is exactly the same as the Consume protocol. Except for the accept case
the updated token t′ contains s′ − l (or L′ + l) as the actually consumed resources and the
transcript is denoted as TR. We emphasize that u needs to prove by some means that he is
allowed to reclaim l resources, e.g. when deleting some data, the user needs prove knowledge
of some secret associated with the data during the integration. Otherwise, users could simply
run arbitrary many Reclaim protocols to illicitly reclaim resources and indirectly improve
their actual resource limit.



3 Preliminaries

An essential ingredient for our construction are honest-verifier zero-knowledge proofs of knowl-
edge (Σ-protocols). We use the notation from [14], i.e. a proof of knowledge of a discrete log-
arithm x = logg y to the base g will be denoted as PK{(α) : y = gα}, whereas Greek letters
always denote values whose knowledge will be proven. We note, that compositions of single Σ-
protocols using conjunctions and disjunctions can be efficiently realized [20]. Furthermore, the
non-interactive version of a (composed) proof obtained by applying the Fiat-Shamir transform
[22] is denoted as a signature of knowledge or SPK for short.

3.1 Bilinear Maps

Let G and Gt be two groups of prime order p, let g be a generator of G and e : G × G → Gt a
bilinear map between these two groups. The map e must satisfy the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.
3. Computable: There is an efficient algorithm to compute e(u, v) for any u, v ∈ G.

Though the group operation in G is in general an additive one, we express both groups using
multiplicative notation. This notion is commonly used, since Gt is always multiplicative and it
is more easy to capture the sense of cryptographic protocols.

3.2 Pedersen Commitments

Pedersen commitments [30] represent a widely used commitment scheme working in any group G
of prime order p. Let g, h be random generators of G, whereas logg h is unknown. To commit to
a value s ∈ Zp, one chooses r ∈R Zp and computes C(s, r) = gshr, which unconditionally hides
s as long as r is unknown. To open the commitment, one simply publishes (s, r, C(s, r)) and one
verifies whether gshr = C(s, r) holds. For simplicity, we often write C(s) for a commitment to
s instead of C(s, r). We note that the Pedersen commitment inherits an additive homomorphic
property, i.e. given two commitments C(s1, r1) = gs1hr1 and C(s2, r2) = gs2hr2 then one is able
to compute C(s1 + s2, r1 + r2) = C(s1, r1) · C(s2, r2) without either knowing any of the hidden
values s1 or s2. Furthermore, note that a proof of knowledge PK{(α, β) : C = gαhβ} of the
ability to open a Pedersen commitment can be realized using a proof of knowledge of a DL
representation of C with respect to the elements g and h [28].

3.3 Range Proofs

An elegant proof that a number hidden within a Pedersen commitment lies in an interval [a, b] in
the setting of prime order groups was presented in [27]. Although this proof might be impractical
in general, since it requires O(log b) single bit-proofs, it is efficient for the application that we
have in mind due to small values of b. The basic idea is to consider for a number x ∈ [0, b] its
binary representation x = x02

0+x12
1+ . . .+xk−12

k−1, whereas xi ∈ {0, 1}, 0 ≤ i < k. Thereby,
k = [log2 b] + 1 represents the number of digits, which are necessary to represent every number
within [0, b]. Now, in essence one proves that the binary representation of x lies within the
interval [0, 2k − 1]. This can be done by committing to each xi using an Okamoto commitment
[29] (essentially a Pedersen bit commitment) along with a proof that this commitment hides
either 0 or 1 and demonstrating that for commitments to x and all xi’s it holds that x =
x02

0 +x12
1 + . . .+xk−12

k−1. The concrete range proof is a Σ-protocol for a proof of knowledge

PK{(α0, . . . , αk−1) :
k−1∧

i=0

(Ci = hαi ∨ Cig
−1 = hαi)}

or PK{(α, β) : C = gαhβ ∧ (0 ≤ α ≤ b)} for short.



3.4 Camenisch-Lysyanskaya Signature Scheme

Camenisch and Lysyanskaya have proposed a signature scheme in [13] which satisfies the usual
correctness and unforgeability properties of digital signatures and is provably secure under the
LRSW assumption for groups with bilinear maps, which implies that the DLP is hard (cf. [13]).
We present the CL signature scheme below:
Key Generation. Let G and Gt be groups of prime order p and e : G × G → Gt a bilinear
map. Choose x, y, z1, . . . , zl ∈R Zp. The private key is sk = (x, y, {zi}) and the public key is
pk = (X,Y, {Zi}, e, g,G,Gt, p), whereas X = gx, Y = gy and Zi = gzi .
Signing. On input message (m0, . . . ,ml), sk and pk, choose a ∈R G, compute Ai = azi , b = ay,

Bi = (Ai)
y and c = ax+xym0

∏l
i=1 Axymi

i . Output the signature σ = (a, {Ai}, b, {Bi}, c).
Verification. On input of (m0, . . . ,ml), pk and σ = (a, {Ai}, b, {Bi}, c) check whether

– Ai’s are formed correct: e(a, Zi) = e(g,Ai)
– b and Bi’s are formed correct: e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi)

– c is formed correct: e(X, a) · e(X, b)m0
∏l

i=1 e(X,Bi)
mi = e(g, c)

What makes this signature scheme particularly attractive is that it allows a receiver to ob-
tain a signature on committed messages (using Pedersen commitments), while the messages are
information-theoretically hidden from the signer (messages here means elements of the mes-
sage tuple). Additionally, the receiver can randomize a CL signature such that the resulting
signature is unlinkable to the original signature. Furthermore, receivers can use efficient zero-
knowledge proofs to prove knowledge of a signature on committed messages. We will elaborate
on the aforementioned functionalities more detailed in Section 4.1 and will show how to extend
this functionality to interactive updates of signatures, the signed commitments and messages
respectively.

4 Scheme

In this section we present our scheme along with an optional modification in order to increase
the privacy in some settings even further. We start with the presentation of an important
observation of CL signatures which is central to our constructions. Then, we first give a high
level description followed by a detailed description of the schemes. Additionally, we present an
performance evaluation of a prototypical implementation which supports the efficiency of the
schemes. Finally, we present some extensions as well as system issues.

4.1 Interactive Update of Signed Messages

As already noted, CL signatures allow signing of committed messages (using Pedersen commit-
ments), while the signer does not learn anything about them. Assume that the signer holds a pri-
vate key sk = (x, y, z) and publishes the corresponding public key pk = (X,Y,Z, e, g,G,Gt, p).
Blind signing. If a receiver wants to obtain a blind signature for message m, he chooses
r ∈R Zp, computes a commitment C = gmZr and sends C along with a signature of knowledge
SPK{(α, β) : C = gαZβ} to the signer (the ability to open the commitment is necessary for
the security of the scheme, cf. [13]). If the verification of the proof holds, the signer computes
a signature σ = (a,A, b,B, c) for the commitment C by choosing k ∈R Zp, setting a = gk and
computing σ = (a, az, ay, ayz, axCkxy) and sends σ to the receiver.
Verification. In order to show the signature to a verifier, the receiver randomizes the signature
by choosing r, r′ ∈R Zp and computing σ′ = (a′, A′, b′, B′, c′) as σ′ = (ar, Ar, br, Br, crr

′
) and sends

σ′ with the message m along with a signature of knowledge SPK{(γ, δ) : vγ
σ = vvδ

r} to the ver-
ifier. Therefore, both need to compute vσ = e(c′, g), v = e(X, a′) · e(X, b′)m and vr = e(X,B′).
The verifier checks the proof and checks whether A′ as well as b′ and B′ were correctly formed.
Note, that the proof can be conducted by means of a standard DL-representation proof [17],
which can easily be seen by rewriting the proof as SPK{(γ, δ) : v = vγ

σ(v−1
r )δ}.

Remark. Observe, that we can realize a concept which is similar to partially blind signatures.
However, in contrast to existing partially blind signature schemes [1], where the signer can in-
tegrate some common agreed upon information in the signature, here, the signer arithmetically



adds a message to the “blinded message” (hidden in the commitment). Therefore, during the
signing, the signer simply updates the commitment to C ′ = CgmS and uses C ′ instead of C
during signing. The receiver then obtains a signature for message m + mS , whereas mS is de-
termined by the signer and m is hidden from the signer.
Update. The interesting and from our point of view novel part is that a signer can use a some-
what related idea to “update” a randomized signature without showing the message. Assume
that a receiver holds a randomized signature σ′ for message (m′, r) whereas m′ = m + mS

and wants the signer to update the signature such that it represents a signature for message
(m′ + m′

S , r + 1). Since showing m′, as within the signature above, would destroy the unlinka-
bility due to both messages are known, the receiver can solely prove that he knows the message
in zero knowledge and both can then interactively update the signature. Therefore in the ver-
ification the receiver provides a signature of knowledge SPK{(α, β, γ) : vα

σ = vvβ
m′vγ

r } to the
verifier, whereas vσ = e(g, c′), v = e(g, a′), vm′ = e(g, b′) and vr = e(g,B′), which convinces
the signer that the receiver possesses a valid signature for unknown message (m′, r). Then, for
the update, i.e. to add m′

S it is sufficient for the signer to compute C̃m′+m′
S

= a′m′
SA′ and

send it to the receiver. The receiver computes Cm′+m′
S

= (C̃m′+m′
S
)r

′
and provides a signa-

ture of knowledge SPK{(α, β, γ) : vα
σ = vvβ

m′vγ
r ∧ C̃m′+m′

S
= (Cm′+m′

S
)α}. Note that this

proof convinces the signer that the receiver has randomized the commitment of the signer using
the same random factor (r′) as within the randomization of the signature. Then, the signer
computes the updated signature σ′′ = (ar̃, A′̃r, b′̃r, B ′̃r, (c′(Cm′+m′

S
)xy)r̃) for r̃ ∈ Zp and gives

σ′′ = (a′′, A′′, b′′, B′′, c̃′′) to the receiver. The receiver sets c′′ = (c̃′′)r
′−1

and now holds a valid
signature for message (m′ + m′

S , r + 1) which he can in turn randomize. Therefore, observer
that in the signature tuple only the last element actually includes the messages and we have
c′ = crr

′
= (axC ′kxy)rr

′
= (ax+xy(m′+zr))rr

′
and (Cm′+m′

S
)xy = (axy(m′

S+z))r. By taking these

results together we have a well formed signature component c′′ = (ax+xy(m′+m′
S+z(r+1)))rr

′
. The

remaining elements of the signature are easy to verify for correctness.
Remark. This functionality can easily be extended to signatures on arbitrary tuples of mes-
sages, will be a building block for our scheme and may also be of independent interest. Note that
issuing a new signature in every step without revealing the hidden messages would not work
and thus we use this “update functionality”.

4.2 High Level Description of the First Scheme

Before presenting the detailed protocols, we provide a high level description. The aim of our
construction is to let the user solely prove in each Consume protocol that enough storage space
is available. In this setting, the user does not provide any useful information about the actual
consumed space to the verifier, but the verifier learns only the fact that the user is still allowed
to consume storage space.

ProviderSetup. The cloud provider generates a key-pair (sk, pk) for the CL signature scheme,
publishes pk, initializes an empty blacklist BL and fixes a set L = {L1, . . . , Ln} of space limits.

ObtainLimit. A user chooses a limit L ∈ L and obtains a CL signature σt for a token
t = (C(id), C(s), L), whereas the initially consumed storage space is set to be s = 1.

Consume. Assume that the user holds a token signature pair t = ((C(id), C(s), L), σt). Note,
that id (the token-id) and s were signed as commitments and thus the signer is not aware of
these values. When a user wants to integrate a data object d, the user computes C(id′) for the
new token, randomizes the signature σt to σ′

t and proves that σ′
t is a valid signature for id and

L (by revealing these two elements) and an unknown value s that satisfies (s + |d|) ∈ [0, L]
or equivalently s ∈ [0, L − |d|], i.e. when integrating the new data object d the user needs to
prove that after adding of |d| space units at most L storage space will be consumed. If id is
not contained in BL and this proof succeeds, the signature will be updated to a signature for
C(id + id′), C(s + |d|) and L. Consequently, the provider adds id to BL and the user obtains
an updated signature for a token t′ = (C(id + id′), C(s + |d|), L). Otherwise, the cloud provider



will reject the integration of a new data object.

Reclaim. Assume that the user holds a token signature pair t = ((C(id), C(s), L), σt). When
a user wants to delete a data object d, as above, the user computes C(id′) for the new token,
randomizes the signature σt to σ′

t and proves that he is allowed to delete d and that σ′
t is a

valid signature for id and L (by revealing these two elements). If id is not contained in BL and
the signature is valid, the user obtains a signature for a token t′ = (C(id + id′), C(s − |d|), L).
Otherwise, the cloud provider will reject to delete d.

4.3 Detailed Description of the First Scheme

Subsequently, we provide a more detailed description of our protocols providing the technical
details.
ProviderSetup: The cloud provider generates a key-pair for the CL signature scheme to sign
tokens of the form t = (id, s, L). More precisely, the cloud provider signs tokens of the form
t = (id, rid, s, rs, L), but we usually omit the randomizers for the ease of presentation. Conse-
quently, the cloud provider obtains the private key sk = (x, y, z1, z2, z3, z4) and publishes the
public key pk = (X,Y,Z1, Z2, Z3, Z4, e, g,G,Gt, p). Furthermore, he initializes an empty black-
list BL and fixes a set L = {L1, . . . , Ln} of limits that can be obtained by users.

ObtainLimit: A user registers with the cloud provider and obtains a space limit Li ∈ L
(we do not fix any concrete protocol for this task here since no anonymity is required). After
the user has registered and both have agreed on the value Li (which we denote as L below for
simplicity), they proceed as depicted in Protocol 1.

1. The user chooses a token-identifier id ∈R {0, 1}lid and randomizers rid, rs ∈R Zp for the commitments and we let

the user start with value s = 1. Then, he computes the commitments Cid = gidZ
rid
1 and Cs = Zs

2Z
rs
3 and sends

them along with a signature of knowledge

SPK{(α, β, γ) : Cid = g
α
Z

β
1 ∧ Cs = Z2Z

γ
3 } (1)

to prove the ability to open the commitments, whereas the second part in the proof also convinces the cloud
provider that s = 1.

2. If the verification of the signature of knowledge in (1) holds, the cloud provider computes a CL signature for

(Cid, Cs, L) as follows: He chooses k ∈R Zp, computes a = gk, b = ay , Ai = azi , Bi = Ay
i for 1 ≤ i ≤ 4 and

c = ax(CidCsZ
L
4 )kxy and sends σ = (a, {Ai}, b, {Bi}, c) to the user.

3. The user verifies whether the signature is valid and if this holds the user is in possession of a valid signature
σ for a token t = (id, s, L), whereas the cloud provider is not aware of id and knows that s = 1. Furthermore,
the user locally randomizes the signature σ to σ′ = (a′, {A′

i}, b′, {B′
i}, c′) by choosing r, r′ ∈ Zp and computing

σ′ = (ar, {Ar
i}, br, {Br

i}, crr
′
).

Remark. All further actions are fully anonymous and in practice also unlinkable, since we can assume that one limit
will be issued to a quite large number of users (and the limit is the only information that could potentially be used for
linking)!

Prot. 1: The ObtainLimit protocol.

Consume: A user holds a randomized signature σ′ = (a′, {A′
i}, b′, {B′

i}, c′) for a token t =
(id, s, L) and wants to integrate a data object d. The protocol to integrate a data object and
obtain a new token is depicted in Protocol 2.



1. The user sends the randomized signature σ′, the “visible part” (id, L) of the token t and a data object d along
with a signature of knowledge

SPK{(α, β, γ, δ) : v
α
σ = vv

β
rid

v
γ
s v

δ
rs

∧ (0 ≤ γ ≤ 2
lL−l|d| − 1)} (2)

for the validity of the randomized signature containing a proof that still enough space is available to the cloud
provider. It must be noted, that the presentation of the proof in (2) represents a shorthand notation for the
signature of knowledge

SPK{(α, β, γ, δ, ǫ, ǫ1, . . . , ǫk, ζ, ζ1, . . . , ζk) : v = v
α
σ (v

−1
rid

)
β
(v

−1
s )

γ
(v

−1
rs

)
δ ∧

C = g
β
Z

′ζ
1 ∧

C =
k∏

i=1

(g
ǫiZ

′ζi
1 )

2i−1
∧

k∧

i=1

(Ci = Z
ζi
1 ∨ Cig

−1
= Z

′ζi
1 )}

Essentially, besides the DL-representation proof for the validity of the randomized signature, we use an additional
commitment C = gsZ′r

1 to the value s with a new randomizer r computed as

r = r12
0
+ r22

1
+ . . . + rk2

k−1
MOD p

for ri’s chosen uniformly at random from Zp and the single commitments for the range proof are Ci = gsiZ
′ri
1 . It

also must be mentioned, that k represents lL − l|d|, the binary length of L− |d|. Furthermore, note that in case of
s = 1, i.e. in the first execution of the Consume protocol, it would not be necessary to provide a range proof. However,
when performing a range proof, the initial Consume protocol is indistinguishable from other protocol executions and
thus provides stronger privacy guarantees.

2. The cloud provider checks whether id /∈ BL. If id is not blacklisted, the cloud provider verifies the validity of the
signature for the part (id, L) of the token t. Therefore, the cloud provider locally computes the values

vσ = e(g, c
′
), vrid

= e(X,B
′
1), vs = e(X,B

′
2), vrs = e(X,B

′
3) and

v = e(X, a
′
) · e(X, b

′
)
id · e(X,B

′
4)

L

from pk, (id, L) and σ′ and verifies the signature of knowledge (2) Additionally, he checks whether the A′
i’s as well

as b′ and B′
i’s are correctly formed.

3. A positive verification convinces the cloud provider that enough storage space is available to integrate d and a
signature for an updated token t′ can be computed in cooperation with the user as follows: Firstly, we need an
observation regarding the signature σ′. Note, that the only element of the signature that depends on the message
is c′, which can be rewritten as

c
′
= (a

x+xy(id+z1rid+z2s+z3rs+z4L)
)
rr′

= (a
x+xyid

A
xyrid
1 A

xys
2 A

xyrs
3 A

xyL
4 )

rr′

and in order to update a signature for the id-part (to construct a new id for the new token) it is sufficient to
update a and A1. To update the s-part, which amounts to update the currently consumed space, it is sufficient
to update A2 and A3. The latter update needs to be computed by the cloud provider to be sure that the correct
value |d| is integrated and the former one needs to be computed by the user to prevent the cloud provider from

learning the new token identifier. Hence, the cloud provider computes C̃s+|d| = A
′|d|
2 A′

3 and sends C̃s+|d| to the
user, who verifies whether |d| has been used to update the commitment. The user in turn chooses a new identifier

and randomizer id′, rid′ ∈R Zp, computes Cid+id′ = (a′id′A
′r

id′
1 )r

′
, Cs+|d| = (C̃s+|d|)

v = (A
′|d|
2 A′

3)
r′ and sends

(Cid+id′ , Cs+|d|) along with a signature of knowledge:

SPK{(ǫ, ζ, η, φ, ι, κ) : Cid+id′ = a
′ǫ
A

′ζ
1 ∧

C̃s+|d| = (Cs+|d|)
η ∧ v = v

η
σ(v

−1
rid

)
φ
(v

−1
s )

ι
(v

−1
rs

)
κ}

to the cloud provider. Note, that the user additionally to the knowledge of the ability to open the commitments
proves that he has randomized the commitment C̃s+|d| to a commitment Cs+|d| using the same randomization

factor (r′) as used to randomize the signature σ without revealing this value. After positive verification of this
signature of knowledge, the cloud provider chooses r̃ ∈R Zp and computes an updated signature

σ
′′

= (a
′̃r
, {A′̃r

i }, b
′̃r
, {B ′̃r

i }, (c
′
(Cid+id′Cs+|d|)

xy
)
r̃
) (3)

and sends this updated signature σ′′ = (a′′, {A′′
i }, b′′, {B′′

i }, c̃′′) to the user. The user sets c′′ = (c̃′′)r
′−1

and
obtains a valid signature for a token t′ = (id+ id′, s+ |d|, L) or more precisely a token t′ = (id+ id′, rid + rid′ , s+
|d|, rs + 1, L), which he verifies for correctness (in Appendix A we show that σ′′ is indeed a valid signature).
Consequently, the user can randomize σ′′ and run a new Consume protocol for a data object d′ with token t′ =
(id + id′, s + |d|, L).

Prot. 2: The Consume protocol.

Reclaim: Reclaiming resources, i.e. deleting a data object, is achieved by a slight adaption
of the Consume protocol. In step 1, instead of the SPK (2) the user provides the subsequent



signature of knowledge (the proofs that enough space is available is not necessary)

SPK{(α, β, γ, δ) : vα
σ = vvβ

rid
vγ
s vδ

rs}

And in step 3, the cloud provider computes C̃s−|d| = A
′p−|d|
2 A′

3 instead of C̃s+|d| = A
′|d|
2 A′

3.

Remark. As we have already mentioned, a cloud provider should only perform a Reclaim

protocol if the user is able to prove the possession of the data object d (and we may assume that
only owners delete their data objects). It is not the focus of this paper to provide a solution to
this task. However, a quite straightforward solution would be to commit to some secret value
for every data object and the cloud provider requires a user to open the commitment or prove
knowledge that he is able to open the commitment to delete a data object. This problem is
somewhat similar to what Halevi et al. recently denoted as proofs of ownership (PoWs) [32].
However, their focus although also in the cloud storage setting is (client-side) deduplication,
i.e. storing exactly the same file only once thus avoiding unnecessary copies of repeating data.
This is usually achieved by sending a hash of a file and the cloud checks if this hash is already
registered. In order to avoid security problems in this setting, they employ PoWs which require
users to prove that a user actually holds a file. This is somewhat similar but diametric to proofs
of data possession (PDPs) [2] and proofs of retrievability (PORs) [31] respectively.

4.4 A Modified Scheme (Scheme 2) Providing Even more Privacy for Users

In order to increase privacy further, it may be desirable that the initially issued limit L is hidden
from the CP during Consume or Reclaim protocols. We, however, note that if the number of
initial tokens associated to CP-defined limits in L is huge, the respective anonymity sets may be
of reasonable size for practical application and this adaption may not be necessary. Nevertheless,
we provide an adaption of our protocols which removes the necessity to include L, does only
include the available amount of resources (denoted as s) and hides this value s from the CP
during any further interactions. We present the modification below:
ProviderSetup. Now, tokens are of the form t = (id, rid, s, rs) and thus the private key is
sk = (x, y, z1, z2, z3) and the public key is pk = (X,Y,Z1, Z2, Z3, e, g,G,Gt, p).
ObtainLimit. The user computes commitments Cid = gidZrid

1 and Cs = Zrs
3 and provides

SPK{(α, β, γ) : Cid = gαZβ
1 ∧Cs = Zγ

3 }. The element c of the signature is now computed by the
CP as c = ax(CidCsZ

L
2 )kxy and the user can randomize this signature for token t = (id, rid, L, rs)

as usual.
Consume. Here the user only provides id of the actual token and a signature of knowledge

SPK{(α, β, γ, δ) : vα
σ = vvβ

rid
vγ
s vδ

rs ∧ (2l|d| − 1 ≤ γ ≤ 2lL − 1)}

In this setting L does not represent a user-specific limit but the maximum of all issued limits,
whereas this proof convinces the CP that enough resources to integrate d are still available
(note that the local computations of the CP for the verification of the signature in step 2 have
to be adapted, which is however straightforward). In step 3, the update of the signature remains
identical to the first scheme with the exception that the CP computes the commitment as

C̃s−|d| = A
′p−|d|
2 A′

3, which updates the remaining resources, e.g. in the first run of the Consume

protocol to s := L − |d|.
Reclaim. The reclaim protocol remains identical to the first scheme with the exception that

C̃s+|d| = A
′|d|
2 A′

3.

4.5 Performance Evaluation

In this section we provide a performance evaluation of our first scheme. We have implemented the
user’s and the cloud provider’s parts of the protocols in Java using the jPBC1 library version 1.2.0
written by Angelo De Caro. This library provides a Java porting of as well as a Java wrapper

1 http://libeccio.dia.unisa.it/projects/jpbc/



for the Pairing-Based Cryptography Library (PBC)2 developed by Ben Lynn in C. In particular,
we have used the Java PBC wrapper which calls the PBC C library and is significantly faster
than the pure Java implementation. All our experiments were performed on an Intel Core 2 duo
running at 2.6 GHz with 3GB RAM on Linux Ubuntu 10.10.

As the cryptographic setting we have chosen a symmetric pairing e : G×G → Gt constructed
on the supersingular elliptic curve y2 = x3+x over a prime field Fq where |q| = 512 bits and q ≡ 3
(mod 4). The group G represents a subgroup of E(Fq) of order r = 160 bits. The embedding
degree is k = 2 and thus Gt is a subgroup of Fq2 and with our choice of the parameters we
obtain a DL security of 1024 bit. For the non-interactive proofs of knowledge we have used the
SHA-256 hash function.
Experiments. Our setting for the experiments is as follows: For the computational performance
we have taken the average over 100 experiments, with limits L = 10i, i = 3, . . . , 9 each. Thereby,
within every of the 100 experiments per limit, the user has conducted 10 Consume as well as 10
Reclaim operations with |d| sampled uniformly at random from [1, 10i−2]. Figure 1 presents the
performance of the ObtainLimit, the Consume and the Reclaim protocols from a computational
and bandwidth perspective, whereas point compression for elements in G is used to reduce the
bandwidth consumption. As one can see, all protocols are highly efficient from the user’s as
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Fig. 1. Experimental results from a Java implementation of our first scheme.

well as the cloud provider’s perspective, both in the computational effort and the bandwdith
consumption. This holds, although the code has not been optimized for performance and pre-
computations have not been used. Hence, our evaluation shows that from the efficiency point of
view our protocols are entirely practical.

4.6 Extensions and System Issues

Below, we present two extensions of our schemes which seem to be valuable when deploying
them for practical applications.
Limited validity. One could rightly argue that in a large scale cloud the double spending
detection of token identifiers using a database (blacklist) does not scale well. In order to overcome
this limitation, we can extend our schemes such that a resource limit associated to a token only
has a limited validity. Then, before the validity ends a user has to provide the actual token, i.e.
the identifier and the available resources (either s and L or solely s in the second scheme) along
with the corresponding signature. Then the user runs a new ObtainLimit protocol with the CP.
Note that in case of the first scheme users should not end up with a new limit L which is very
likely to be unique and thus users should take one of the predefined limits. We now sketch how

2 http://crypto.stanford.edu/pbc/



this adaption for the first scheme looks like (for the second one it is analogous): The keys of
the CP are adapted such that the public key is pk = (X,Y,Z1, Z2, Z3, Z4, Z5, Z6, e, g,G,Gt, p).
Token are augmented by elements (V, rV ) which represent the validity period, e.g. an encoding
in Unix time. In the ObtainLimit protocol the user additionally computes ZrV

6 (and proves
knowledge of this DL) and the c part of the signature is adapted to c = ax(CidCsZ

L
4 ZV

5 ZrV
6 )

whereas the CP here integrates the validity V . The remainig ideas stay the same with exception
that in the Consume protocol, the SPK needs to be adapted to

SPK{(α, β, γ, δ, ǫ, ζ) : vα
σ = vvβ

rid
vγ
s vδ

rsv
ǫ
V vζ

rV ∧
(0 ≤ γ ≤ 2lL−l|d| − 1) ∧ (2ltime − 1 ≤ ǫ ≤ 2lp − 1)}

whereas p represents the maximum validity period and time the representation of the actual
date and time (in the Reclaim we only need the second range proof). For the update of the

signature and the token respectively, the user has additionally to compute CV = (A′
5A

′r′V
6 )r

′
and

augment the prove of knowledge in step 3 of Protocol 2 to

SPK{(ζ, η, φ, ι, κ, λ, µ, ν, ξ) : Cid+id′ = a′ζA′η
1 ∧ CV = A′φ

5 A′ι
6 ∧

C̃s+|d| = (Cs+|d|)
φ ∧ v = vφ

σ(v−1
rid

)κ(v−1
s )λ(v−1

rs )µ(v−1
V )ν(v−1

rV )ξ}

Note that these modifications do influence the overall performance of the Consume protocol
approximately by a factor of two, which though performs very good in practice when compared
with our experimental results.
Elasticity. Clouds extremely benefit from users being able to request resources “on the fly”. In
our first scheme this can only be achieved by means of requesting additional tokens, i.e. running
additional ObtainLimt protocols for the required resource, and users have then to manage a list
of tokens. Although this seems to be an issue which can be handled in practical applications,
the second scheme (modification to hide the limit L) allows for such updates. Therefore we can
simply use the Reclaim protocol of Section 4.4 (we may denote it as Recharge in this case),
whereas |d| is simply replaced by the amount of resources to be extended.

5 Conclusion

In this paper we have investigated the problem of anonymous yet authorized and bounded use
of cloud resources, which means that users should be able to register and obtain a resource
limit from a cloud provider such that this limit determines how much of a resource, e.g. CPU
time, storage space, a user is allowed to consume. Then, users should be able to consume (or
reclaim) their resources in an anonymous and unlinkable fashion, but the ability of users to
consume resources should be constrained by their issued limit. We have presented a scheme,
it’s modification providing even more privacy, have presented extensions valuable for practical
application and have supported the efficiency of the proposed scheme by a performance analysis
based on a prototypical implementation. Concluding we present anonymity revocation as an
open problem and then we briefly discuss future work.

Anonymity revocation. It is not clear to us how anonymity revocation could be suitably
realized in this setting. We argue that it does not seem to be meaningful to use identity escrow
within every transaction, i.e. to employ techniques known from group signatures (which could
though be realized using CL signatures). It is absolutely not clear who would have the power to
perform anonymity revocation. In contrast, if at all, it seems more suitable to employ techniques
like used within e-cash [11] or (n-times) anonymous authentication [11, 21]. Mapped to our
scenario this would mean that the identity of an anonymous user is solely revealed if the user
tries to consume more resources than allowed (although this is prevented by the protocols).
However, it is not clear to us how to achieve this, since in the aforementioned approaches spend
protocols or authentications are atomic and in our setting we do not know in advance how often
a user will consume or reclaim resources. We leave this functionality as an open problem for
future work.



In order to gain more insights into system issues and to gather experience on limitations in
practical use we are working on the integration of our schemes with the full functionality (all
extensions) into the Eucalyptus cloud3 using Amazon’s S3 storage service to.
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18. Chen, L., Escalante, A.N., Löhr, H., Manulis, M., Sadeghi, A.R.: A Privacy-Protecting Multi-
Coupon Scheme with Stronger Protection Against Splitting. In: Financial Cryptography and Data
Security 2007. LNCS, vol. 4886, pp. 29–44. Springer (2007)

19. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security? Tech. Rep.
UCB/EECS-2010-5, University of California, Berkeley (2010)

20. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of
Witness Hiding Protocols. In: CRYPTO ’94. LNCS, vol. 839, pp. 174–187. Springer (1994)

21. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable Group Identification. In: EUROCRYPT ’06.
LNCS, vol. 4004, pp. 555–572. Springer (2006)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In: CRYPTO ’86. LNCS, vol. 263, pp. 186–194. Springer (1987)

23. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In: CRYPTO ’97. LNCS, vol. 1294, pp. 16–30. Springer (1997)

3 http://open.eucalyptus.com/



24. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: 41st Annual ACM Symposium
on Theory of Computing, STOC 2009. pp. 169–178 (2009)

25. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. Cryptology
ePrint Archive, Report 2010/520 (2010), http://eprint.iacr.org/

26. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Financial Cryptography Workshops 2010.
LNCS, vol. 6054, pp. 136–149. Springer (2010)

27. Mao, W.: Guaranteed Correct Sharing of Integer Factorization with Off-Line Shareholders. In:
Public Key Cryptography 1998. LNCS, vol. 1431, pp. 60–71. Springer (1998)

28. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature
Schemes. In: CRYPTO ’92. LNCS, vol. 740, pp. 31–53. Springer (1992)

29. Okamoto, T.: An Efficient Divisible Electronic Cash Scheme. In: CRYPTO ’95. LNCS, vol. 963, pp.
438–451. Springer (1995)

30. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In:
CRYPTO ’91. LNCS, vol. 576, pp. 129–140. Springer (1992)

31. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: ASIACRYPT 2008. LNCS, vol.
5350, pp. 90–107. Springer (2008)

32. Shai Halevi, Danny Harnik, B.P.A.S.P.: Proofs of Ownership in Remote Storage Systems. Cryptology
ePrint Archive, Report 2011/207 (2011), http://eprint.iacr.org/

A Correctness of Update and Randomization in Consume

We need to show, that σ′′ = (a′′, {A′′
i }, b′′, {B′′

i }, c′′) is a valid signature for t′ = (id + id′, rid +
rid′ , s+ |d|, rs +1, L). Therefore, we firstly take a closer look at the signature component c′′ and
then show that the signature verification for σ′′ works and consequently σ′′ represents a valid
CL signature.

Regarding the component c′′, observe that we have

c = a
x
(CidCsZ

L
4 )

kxy
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x
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1 Z
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Thus, by taking these results together we obtain

c
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′
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)
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and we can write all components of σ′′ similar to c′′. More precisely, we can represent the remaining components as
(ar̃r, {Ar̃r

i }, br̃r, {B r̃r
i }). Now, it remains to show that the verification relations for signature σ′′ work. Recall, therefore we

need to show that the A′′
i ’s, b

′′, B′′
i ’s and c′′ are formed correctly:

– A′′
i ’s need to satisfy e(a′′, Zi) = e(g,A′′

i ): This can easily be verified, since
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– b needs to satisfy e(a′′, Y ) = e(g, b′′): This holds, since
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which holds, since by rewriting the left hand side and using bilinearity we obtain
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Abstract. The current discussion of potential Do Not Track regulation
for online advertising is worrisome for the advertising industry, as it may
significantly limit the capability for targeted advertising, a key revenue
source for online content. The present discourse conflates the behavior
tracking and ad targeting processes, leading to the presumption that pro-
viding privacy must come at the cost of eliminating advertisers’ targeting
capability. This paper focuses on a family of methods that facilitate be-
havioral targeting while providing consumer privacy protections. This is
achieved by differentiating between client-side and server-side tracking.
Client-side solutions provide for mechanisms and policies that address
the privacy concerns over lack of user control over data while provid-
ing advertising platforms with the ability to target users. We compare
and contrast several client-side methods along several dimensions of user
privacy, adoption effort, and trust. A novel client-side profiling method
is proposed that differs from prior work in not requiring installation of
additional software by the user and providing compatibility with existing
ad serving infrastructure. Empirical evaluation of the method on large-
scale real-world datasets demonstrates the potential for high targeting
performance of client-side techniques. We hope that by considering such
middle-ground approaches, the present debate will converge towards so-
lutions that satisfy both advertisers’ desire for targeting and users’ desire
for privacy.

1 Introduction

Privacy concerns related to online advertising have grown over the past several
years among web users, as reflected in coverage of the issues surrounding “behav-
ioral tracking” in the popular press (e.g. the Wall Street Journal’s “What They
Know” series [15]). These concerns have attracted government attention, result-
ing in regulatory proposals [2], workshops [1], as well as Congressional hearings
and legislation. The combination of popular sentiment, media attention and gov-
ernment involvement is likely to result in action to protect consumer privacy in
online advertising in the near future. A series of discussions that has taken place
recently involving legislators, advertising and technology industries, privacy ad-
vocates, and regulatory bodies has resulted in the Do Not Track (DNT) solution
gaining the greatest momentum.
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DNT relies on incorporation of privacy-protecting features in web browsers
that either discourage or block communication with third parties that perform
behavioral advertising. Different DNT implementations proposed by browser
manufacturers can be grouped into three categories: domain blocking, opt-out
cookies, and HTTP headers. Domain blocking allows the user to specify domains
which the browser should never contact. In contrast, with opt-out cookies and
HTTP headers the browser contacts the target domain but informs it that the
user wishes not to be tracked. These latter two solutions require the user to
trust that the target domain will comply. Evaluating these DNT variants in the
context of the regulatory framework put forth by the Federal Trade Commis-
sion (FTC) [2] demonstrates that none of them currently meet all criteria in
their formal interpretation: each of the three strikes a different balance between
ease-of-use, universality and enforceability. Crucially, DNT has so far also failed
to win the endorsement of the online advertising industry, which continues to
advocate for self-regulation being sufficient.

In this position paper, we argue that the current discussions of Do Not Track
are hampered by the lack of clear distinction between tracking (collection and
aggregation user behavior data) and targeting (use of this data during ad selec-
tion). Demarcation of the two processes is crucial, as they are increasingly being
performed by multiple parties, whose interactions are increasingly non-trivial
both technically and financially. Additionally, because any party performing ei-
ther tracking or targeting can also be the content publisher (first party), policies
that do not distinguish these differences are inherently ambiguous and hence
ineffective.

Differentiating between tracking and targeting has significant implications
for protecting both consumer and industry interests. To advertisers and ad plat-
forms, tracking is only a means to an end of increasing advertising effectiveness,
which is achieved by targeting. For users, there appears to be a gap in atti-
tudes towards data collection and targeted advertising. Survey results reported
by Hallerman [9] indicate that 55% of respondents are very or somewhat com-
fortable with ad targeting, while another survey by McDonald and Cranor [11]
found that over two-thirds of respondents have agreed or strongly agreed that
“someone keeping track of my activities online is invasive”. While these results
should be viewed in the context of the fact that most users lack fundamental
understanding of how tracking and targeting work [10], they nonetheless indicate
that the two processes are perceived differently.

There is a family of solutions that differentiates between tracking and tar-
geting. In contrast to the existing DNT discussions and browser-based solutions,
these client-side tracking proposals protect the privacy of users while still en-
abling advertisers to target ads to them. This makes such solutions attractive
to both users and advertisers, and are an important category of solution that
should be considered in any future discussions on DNT and behavioral target-
ing. Client-side tracking solutions store behavioral data on the user’s machine,
giving users complete control over their data, ensuring that their behavioral in-
formation can be edited or deleted permanently as needed. In addition to provid-
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ing contrastive analysis of previously proposed client-side tracking mechanisms,
this position paper describes a new approach, Client-only Profiles(CoP), demon-
strating how it can be implemented using a recently proposed machine learning
method for constructing compact profiles [4]. Unlike previously proposed solu-
tions, CoP does not require a user-installed browser plugin, and relies on very
minor modifications to the existing advertising infrastructure. We argue that
client-side profiling strikes a balance between user privacy, advertiser revenue,
and user and advertiser adoption, and that future exploration in this direction
can yield effective alternatives to the binary policies currently being discussed.

2 Targeting vs. Tracking

To consumers, businesses, and advertising content providers, the term tracking
may have different connotations. For this paper, we adopt the definition put forth
by the Center on Democracy and Technology in the context of online behavioral
advertising [3]: “Tracking is the collection and correlation of data about the
Internet activities of a particular user, computer, or device, over time and across
non-commonly branded websites for any purpose other than fraud prevention or
compliance with law enforcement requests.” Tracking can be performed by the
first party or a third party, where the first party is the functional entity with
which a user reasonably expects to exchange data, while the third party is any
other other functional entity.

It is crucial to distinguish between tracking and targeting: the former refers
to the process of data collection and processing, while the latter focuses on the
use of processed data for personalization in the context of a specific task, such
as advertising. This distinction is effectively disregarded in the ongoing public
debates. To some degree, the confusion is a reflection of the overall poor level of
understanding of tracking technologies, behavioral advertising, and the risks of
related information exchange [11]. However, the distinction is critical, because it
represents the fact that there are numerous parties involved in data collection,
processing, and its use for advertisement selection. Both the tracking and tar-
geting steps can be performed by several entities, and any policy or technology
proposal must take the complexity of ad delivery pipelines into account to be
effective and unambiguous.

The moniker Do Not Track masks this complexity and is ambiguous on mul-
tiple levels. In addition to conflating tracking and targeting, the public policy
focus has been on “Do Not Track for the Purpose of Behavioral Advertising,”
which neglects tracking performed for non-advertising purposes (e.g., data col-
lected could be used for differential pricing on retail websites). While targeting
is always performed by one or more parties involved in advertisement selection
as explained in the next section, tracking may be performed by any of the enti-
ties involved. In addition to parties involved in targeting, users may be tracked
by specialized data aggregation firms (data exchanges), which subsequently sell
the data data to interested parties, including advertising platforms. In addition,
tracking may also be performed by the first party, which then provides aggre-
gated information along with the ad request.
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2.1 Tracking Mechanics

The architectural details of the tracking infrastructure are not widely publicized,
and have mostly been revealed via reverse-engineering studies performed by re-
searchers and journalists [5, 13]. The lack of transparency is not surprising given
the combination of intellectual property value of the underlying technology and
the sensitivity of the related privacy issues.

Third-party tracking is typically performed via an element of the viewed
page that sends an HTTP request to the tracking server, passing the properties
of the current context and client-side identification data. The sending element
is typically either a tracking pixel (small image hosted on the tracking server),
or JavaScript code loaded with the page that sends the request. Identification of
the user can be performed via an ID stored in a cookie, as well as via indirect
methods such as relying on the first-party user ID encoded in the URL of viewed
page, which is passed as the Referrer header. Additionally, it has been shown that
combining standard request headers such as the IP address and UserAgent string
can lead to high-precision identification [6].

User and context properties passed to the tracking server may include at-
tributes of the viewed page. These attributes may include its category in some
publisher-defined taxonomy, or a search query if the page was visited via a link
from a search engine. In addition, the publisher may provide any additional user
data, such as user-submitted demographic or location data, or data summariz-
ing prior behavior of the user. Tracking servers also receive user data that it
stores client-side, e.g., in its cookie, or in specialized plugin cookies (known as
local shared objects), or in HTML5 browser local storage. Tracking data may
also include demographic and location data (self-reported or inferred), attributes
derived from user browsing activity (e.g., inferred interest categories), or spe-
cialized features (e.g., identifiers encoding specific products which the user has
viewed on a retail site). The tracking platform can either store all user-related in-
formation on the client-side, which requires updating the information regularly,
or utilize server-side storage.

2.2 Targeting Mechanics

The effectiveness of advertising is directly affected by the availability of data
used to estimate the user’s potential responsiveness to the advertisement cre-
ative or the underlying product. Such information may come in various forms:
demographic and location information, aggregated information about user’s past
behavior, and raw behavioral information can all be factors that affect user’s
desirability to the advertiser. Access to additional information describing the
user beyond the context in which the advertisement is served allows advertis-
ers to modulate the prices they are willing to pay to optimize their return-on-
investment (ROI).

Advertising platforms that perform their own tracking utilize the tracking in-
formation in ad selection. In recent years, an increasing volume of display adver-
tisements is allocated via ad exchanges, also known as real-time bidding (RTB)
platforms [12]. A content publisher sends an ad request to the ad exchange,
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which then forwards it to multiple advertising networks. User information col-
lected via tracking may be provided by the first party (the publisher), or by
any of the involved third parties: the ad exchange, ad networks submitting the
bids, or dedicated data exchanges (tracking-only companies), which may partner
with any of the former entities. As a result, actual ad selection may involve not
one, but multiple user profiles accumulated by a number of agents, where any of
them can be stored either server-side or client-side. Matching of user IDs is an
additional complication, which is resolved by a establishing the mappings across
the different parties and caching them, typically performed by the exchange.

3 Targeted, But Not Tracked

This section discusses how the distinction between targeting and tracking can
be exploited by technological approaches which reduce or prevent user tracking,
while allowing advertising networks to retain all or most of the revenue gains
achieved from targeting. These solutions make use of client-side aggregation of
personal data, which allows the user to be targeted while leaving user in posession
of their data. It is know that major concerns over behavioral advertising include
users’ lack of control over the data describing their past behavior, as well as
the insufficient transparency of the data collection and retention, as evidenced
by users’ poor understanding of these processes and policies [10]. Client-side
user profiling solutions respect users’ desire for privacy while maintaining the
advantages (both to users and service providers) that comes with behavioral
advertising, and hence provide a strong alternative to clear-cut, binary solutions
like Do Not Track.

First, we give an overview of three recently proposed solutions in this space,
which require the user to install a custom plugin in their browser that performs
behavioral tracking and advertisement targeting. Then, we present a novel ap-
proach, Client-only Profiles (CoP), which naturally fits into the existing adver-
tising ecosystem. CoP does not require any installation or actions by users or
advertisers, and requires only minimal changes from advertising networks. We
also summarize relevant results of an empirical study for one possible algorithmic
implementation on which CoP can be based: a machine learning method titled
Predictive Compact Profiles [4]. These results show that the CoP approach can
potentially retain nearly all of the revenue gains obtained from behavioral ad
targeting, while preserving users’ right to privacy and control of their data.

3.1 Plugin-Based Client-Side Profiling

Plugin-based client-side solutions make use of a browser extension installed on
the user’s machine to incorporate user preference in advertisement selection. The
plugin maintains a collection of the user’s browsing and behavioral data on the
user’s machine, and uses it to facilitate targeting during ad selection. The three
primary approaches that fall into this category are Privad [8], Adnostic [14], and
RePRIV [7].
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Privad [8] exemplifies an approach whose goal is complete user privacy. User
behavior is monitored by a plugin installed on the client machine that maintains
a user profile built from it. Ad platform’s server provides the plugin with all (or
a large subset) of the potential ads that may be displayed, from which the plugin
selects the actual ad to be displayed utilizing the profile to achieve targeting.
Ad impressions and clicks are encrypted and passed through a third-party dealer
which is not able to view the information, but anonymizes its source before pass-
ing it to the ad network (i.e., hides the user’s IP address from the ad network).
Thus, the ad network does not know which ads were shown to or clicked by
which users, but obtains aggregate statistics.

Adnostic [14] takes a similar approach to Privad: a browser plugin selects the
ad to display with the aid of a locally constructed profile. In contrast to Privad,
Adnostic takes the view that ad impressions should be kept hidden from the
service provided, but not ad clicks. This makes the ad platform less vulnerable
to click fraud, but also reveals the targeting attributes of a user when that user
clicks on an ad. When a user visits a webpage, the ad network sends 10 to 20 ads
which can be displayed, and the client plugin selects one of these based on local
targeting attributes. The information about which ad is displayed is encrypted
and provided to the ad network in a form that prevents the network from knowing
which ad was shown. Occasionally (monthly, for example), aggregated encrypted
data is provided to a trusted third party that decrypts it and informs the network
how many times each ad was viewed.

Both Privad and Adnostic make fraud detection difficult for ad platforms
(though less so in Adnostic), which is a significant concern from the perspective
of ad platforms. Both approaches also increase network traffic and page load
times since they move a significant portion of the ad selection step to the client
along which requires transferring the ad inventory. Another concern is advertiser
budget constraints: with Adnostic, an advertising platform must estimate when
an ad’s budget will expire in advance before sending it to the client, which may
lead to ads being shown too many or too few times depending on the quality of
the prediction. Furthermore, these two approaches take a significant portion of
control over tracking and targeting out of the hands of the advertising network,
reducing its ability to innovate and experiment with new targeting methods.

RePriv [7] takes a slightly different approach to targeting without server-
side tracking. It constructs user profiles from the raw browsing data on the
client machine, and sends the profiles up to ad platform’s server to facilitate
targeting server-side. In contrast to the previous two approaches, this allows the
ad network to view user data and perform whatever personalization it desires
at the time the ad is requested. The ad network can also provide custom miner
modules to the client that extract data from the user’s raw behavior, allowing
the network to develop more complex targeting mechanisms. The user has the
option to review the data that will be sent to the ad network, and either approve
or disapprove of its release. Since the ad network is directly selecting ads and
recording clicks, this approach solves many of the difficulties that Privad and
Adnostic have with regard to fraud, budgets, and innovation.
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3.2 Native Client-Side Profiling

This section introduces a novel approach, Client-only Profiles (CoP), that also
stores behavioral information on the client but, unlike the methods discussed
in the previous section, does not require the user to download and install a
custom browser plugin. Most importantly, CoP gives users control over their data
while allowing platforms to target advertisements without making significant
structural changes to the current delivery or pricing mechanisms.

In CoP, user behavior is maintained in aggregated form along with a cache
of raw recent behavior in the browser cookie associated with the ad network.
The ad network receives the cookie with the ad delivery request from the user’s
current context (the web page the user is loading), and returns targeted ads with
an updated cookie containing a refreshed profile. As with RePriv and Adnostic,
while the ad network does receive the raw user browsing behavior, it is bound
by policy to discard the information once it has returned the targeted ads and
the cookie to the user; it also must not store the user ID with any logs of ad
impressions and ad clicks. Thus, the only record of user behavior is maintained on
the client in the cookie, leaving the user with the option of deleting their profile
at any time, knowing that there are no records associated with them remaining
on the server. Because this method relies on policy compliance by ad networks, it
is not enforceable. However, this is the same assumption that the leading DNT
solutions (Opt-out cookies and HTTP header) and RePriv make. Given that
policy violations are detectable (by manipulations of client-side data), and bear
significant legal and public relations ramifications, compliance assumptions are
reasonable. We also note that CoP can be implemented to incorporate server-
side encryption of profiles, preventing their interception in non-secure HTTP
traffic.

CoP requires ad networks to construct incrementally-updated user profiles
to facilitate targeting. In our initial implementation of CoP for search advertis-
ing, we model the gains from ad targeting by considering bid increments that
advertisers can specify along with their bids. Increments are triggered when the
user has shown a past and has expected future interest in the ad’s topic. Bid
increments are commonplace in display advertising platforms, however they are
based only on explicitly known demographic attributes, or broad, loosely de-
fined segments. In search advertising, advertisers have an analogous interest in
adjusting their keyword bids for users known to have had a past interest in the
keyword’s topic.

To maintain a profile of the user’s predicted future interests, different profile
constructions can be employed. Here, we summarize a machine learning based
approach recently proposed in [4]. The approach utilizes features the encode re-
cency and frequency of past behavior associated with a keyword and its neighbors
(related keywords), as well as context-independent keyword and user properties.
For each candidate keyword considered for inclusion in the profile, a scoring
function trained via a machine learning approach predicts, for that user, the
likelihood that the user will click on an advertisement associated with the key-
word in the future. Based on predicted probability, top-k keywords are selected
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to comprise the user’s profile, which is then used to trigger bid increments during
future selection. Targeting is thus performed under the restriction that the only
available user information is that which is stored in the client-side cookie on the
user’s machine, yet is able to closely match the predictive accuracy of targeting
that relies on the user’s complete behavior history. In the next section, we sum-
marize an empirical study fully described in [4] that examines whether revenue is
lost in moving from traditional server-side tracking to client-side profiling based
on a particular algorithmic implementation of profile construction in CoP.

3.3 Revenue Impact Analysis

Client-side vs. server-side keyword profiles were evaluated using two months of
search and advertising behavior logs for 2.4 million users of the Bing search
engine, sampled randomly from the overall, larger pool of bot-filtered US-based
active users, where active users were defined as those users who had used the
search engine (issued at least one query) on at least 30 of the 60 days in the time
period. The first six weeks of data were used for training the machine-learning
based predictor used for keyword selection for profiles. Training is performed by
simulating the profile construction process and utilizing the subsequent behavior
to obtain a training label (ad click or lack thereof) for every keyword that was
a candidate for inclusion in the profile. With the utility predictor trained on the
first six weeks, the efficacy of online profiling was evaluated by simulating profile
construction over the seventh week, using behavior following the construction
period to estimate utility.

Client-side profiles contain two portions: the profile, which matches keywords,
and an additional keyword cache used to enhance the profile construction can-
didate pool. Both components were constrained to be no greater than 100 key-
words, which ensures that profiles fit the 4KB cookie size limit. Profile construc-
tion uses the utility model that corresponds to matching the keywords for which
future ad clicks are observed, which is equivalent to bid increments. Cache con-
struction is more straightforward: it is based on least-recently-used caching, a
standard approach that typically has good performance and is efficient to com-
pute.

Utility is reported as the fraction of ad clicks in post-profile-construction
behavior for which the profile matched the bidded keyword, and hence would
have triggered the bid increment for advertisers who specify it. This metric,
percentage of incremented clicks, can be viewed as the percentage of ad revenue
that would be increased via increments.

Figure 1 illustrates this relative performance of client-side profiles (with their
limited knowledge of user history) with respect to server-side profiles for different
profile sizes, which correspond to server-side tracking. The figure demonstrates
that maintaining a modest cache size alongside the profiles allows achieving
targeting performance comparable to that of server-side profiling, but without
the need to track user behavior server-side. For example, if profiles are limited
to 20 keywords, utilizing a cache of the 50 most recent queries allows capturing
97% of the revenue gain achieved by server-side tracking while providing users
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Fig. 1. Relative client-side profile utility (utility as a proportion of server-side utility
for profiles of the same size)

full control of their data. These results demonstrate the practicality of allowing
users to opt-out from server-side tracking with minimal revenue or performance
cost. Complete description of the methodology and extended results are available
in [4].

4 Discussion

These four approaches make different trade-offs in a space with dimensions of
efficiency, changes from the existing infrastructure, guaranteed privacy, flexibility
of targeting mechanism, and more. In Table 1, we compare the four methods,
along with the existing methodology along these dimensions.

The dimensions are:

– Profile Construction: Is the profile constructed on the client (C) or server
(S)? The user profile consists of the behavioral data stored for the user. RePriv
constructs the profile on the client, but using code that can be sent from the
server down to the client, indicated by C(*).

– Profile Storage: Is the profile stored on the client or server? Profile storage
determines what party has control over the profile and the ability to manipu-
late or delete it.

– Ad Targeting: Is ad targeting performed by the client or server?

– User Control over Profile: Does the user maintain full control over the
content of their profile?

– Can target based on (non-contracted) third party behaviors: Does the
system allow ad networks to utilize user behaviors on web sites with which
the ad network has no relationship?

– User behaviors revealed to platform: Which of the following user behav-
iors are revealed to the ad platform, tied to a particular user:
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– Page Visits: User visits to pages on which the platform serves ads.

– Profiles: Profile information derived from raw user behavior.Derived user
information, such as aggregate counts of the number of times the user has
visited a page of a particular topic.

– Ad Impressions: The ads viewed by the user. agg indicates that this in-
formation is provided in aggregate.

– Ad Clicks: The ads clicked by the user. agg indicates this information is
provided in aggregate

– Required Changes To: What changes would be needed in order to imple-
ment the proposed solution, by:

– Client: The user’s machine. “Plugin” means a Web browser plugin would
have to be installed by the user.

– Advertiser: The advertiser. “Slow stats” means that the advertiser will
not receive real-time statistics about their advertisement budget and per-
formance.

– Platform: The advertising platform (network). Indicates a general notion
of the quantity of work required for the platform to implement the system
and change their targeting to work within the proposed system.

– Extra Parties: Are there any additional new parties (besides the client,
advertiser, and platform) necessary? “Online dlr” refers to the dealer re-
quired by Privad, which must be online with high availability. “Offline ttp”
refers to the trusted third party by Adnostic, which needs only process data
occasionally (they suggest once a month).

– Requires unified topic taxonomy: Does the system require ad networks
to agree on a single unified behavioral targeting topic taxonomy?

– Requires trust in platform: Does the user need to trust that the company
running the advertising platform is trustworthy? This is simply a reflection of
the breakdown of which data is received by the advertising platform shown in
the middle portion of the table.

– Increased traffic from ads: What (if any) is the increase in the network
traffic between the user and the platform due to communicating more ads?

– Increased traffic from profile: What (if any) is the increase in the network
traffic between the user and the platform due to communicating user profile
information?

One of the primary divisions between methods is whether the ad personaliza-
tion is done by the client or the server. In Privad and Adnostic, personalization
is done on the client, whereas for RePriv and CoP, it is done on the server. This
design decision has important implications. Methods which personalize on the
client require multiple ads to be downloaded per page view, causing increased
network traffic and/or slower page load times. Methods which personalize on the
server necessarily must reveal to the server which ads were shown to the user,
and also must pass up to the server any profile information that is used for user
targeting. These latter methods rely more heavily either on providing the user
controls to edit what is sent to the servers, or make assumptions about server
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Table 1. Comparison of various proposals for respecting user privacy while still en-
abling ad targeting.

Concept Privad Adnostic RePriv CoP Today

Profile Construction C C C(*) S S
Profile Storage C C C C S
Ad Targeting C C S S S
User Control over Profile Y Y Y Y N
Can target based on (non-contracted) third
party behaviors

Y Y Y N N

User behaviors revealed to platform:

Page Visits Y Y Y Y
Profiles Y Y Y
Ad Impressions agg. agg. Y Y Y
Ad Clicks agg. Y Y Y Y

Required changes to:

Client plugin plugin plugin
Advertiser slow stats
Platform lots lots minor very minor
Extra Parties online dlr offline ttp

Requires unified topic taxonomy yes yes no no no
Requires trust in platform no some some yes yes
Increased traffic from ads download all ads download 10x ads
Increased traffic from profile profile cookie

policies regarding retention and use of the user data in the future (in the case
of CoP, the policy is that the server is not allowed to remember the profile after
it has been used to personalize the ad). A primary advantage of personalization
on the server is that it enables up a wider variety of personalization methods. In
the case of ads, not only can the server select which ad to show, but also vary
the ranking of a set of ads, as well as charge differentially for them. Further,
servers may choose to change the ad copy (title, text, URL) or appearance of
the ad as well. By assuming that ad personalization is equivalent to simply se-
lecting one of N ads, Privad and Adnostic are provide a much more limited set
of personalization options to the ad network.

A second significant difference between approaches is whether the ad network
has the ability to develop targeting techniques. Much of the literature assumes
that targeting should be done based on categorical membership. In our experi-
ence, other targeting methods can be as or more effective, such as fine-grained
keyword-based targeting. Other platforms may find other attributes more ben-
eficial, such as estimating user demographics, or geographics. Techniques which
perform personalization on the client must also prescribe how that personal-
ization is done. This means all ad platforms will be required to conform to a
single personalization technique, a goal that is undesirable and untenable in our
opinion. For example, Adnostic uses a single categorization system built into the
client based on natural language processing heuristics. Ad networks are unlikely
to want to give up control over their category schema or the ability to develop
more and more advanced techniques for categorizing users into their schema.

One advantage of the plugin-based approaches is that they provide ad net-
works with the opportunity to target ads based on a user’s entire browsing
history, as opposed to just the portion of the history for which the ad network
was able to observe the user. On the other hand, plugins must be downloaded
and installed by end-users, increasing the difficulty of method adoption. Fur-
ther, plugins solutions are less flexible, since they constitute executing modules
that are shared across multiple ad networks, requiring cross-network agreement
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for modification and potentially slowing the rate of innovation and progress in
tracking and targeting methods. RePriv circumvents this difficulty by providing
a mechanism for servers to send routines to the plugin in a secure and verified
manner, but this openness comes at a cost – RePriv asks users for permission
when new routines are installed, and, more importantly, each time user profile
information is sent to the ad platform.

Taken as a whole, we believe the CoP approach, with its flexibility, efficiency,
and similarity to the existing ad serving infrastructure, strikes the most effective
balance between users’ privacy, ad networks desire to personalize, and feasibility
of implementation.

5 Conclusion

In this paper, we focus on the current conflation of tracking and targeting in
policy discussion, which leads to the false assumption that any method that
allows users to opt out of tracking must also neccessarily prevent ad targeting.
This leads to ambiguity because different parties may be performing tracking
and targeting, resulting in a popular misunderstanding that it is only possible
to either have both tracking and targeting operating, or neither.

Distinguishing between tracking and targeting leads to a family of middle-
ground methods which are required to store behavioral profiles locally on the
user’s machine, while allowing the ad platform to target ads. Three previously
proposed approaches in this family all assume installation of client-side plugins
and a topic-based representation of user profiles. The paper presented a novel
approach, CoP, which also relies on client-side profile storage, but departs from
prior work in not requiring additional software or a singular profile represen-
tation, making it directly compatible with existing advertising platform infras-
tructure. A possible implementation of CoP using a recently proposed machine
learning algorithm for compact profile construction [4] is discussed. Empirical
evalution on a large-scale, real-world dataset comparing CoP with traditional
server-side tracking demonstrates that client-side approaches have the potential
to give users control of their data without significant losses of revenue for the
advertising industry.
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Abstract. We describe a methodology for simulating Tor relay up/down behavior over
time and give some preliminary results.

1. Introduction

Tor [Dingledine et al., 2004] is a low-latency anonymity network. To communicate
anonymously with Bob, Alice forms a circuit through Tor consisting of three relays and
tunnels her TCP traffic through that circuit. Layered (onion) encryption is used to ensure
that each relay only knows its immediate neighbors in the circuit. In order to minimize
latency, Tor does not implement techniques such as batching and re-ordering which can be
used to provide very strong anonymity guarantees. As such, it is usually assumed that Tor
is vulnerable to timing analysis attacks. In such an attack, Eve controls the first and last
relay in a circuit and is able to identify when two streams at either end actually belong
to the same communication flow by examining timing information of the data packets.
Analyses of these (and other) attacks are often done by constructing ad-hoc simulations of
the network. Not only are such simulations sometimes poorly justified, their ad-hoc nature
makes it difficult to compare attacks and defenses, because each simulation is different.
Even fairly sophisticated models of Tor, such as the one given by Feigenbaum et al. [2007]
in terms of I/O automata, often fail to take into account time-dependent relay behavior,
even though this sort of behavior can be crucial for attacks.

We propose the development of more principled simulations that capture emergent
behavior of the network. In particular, many attacks involve manipulating circuits through
compromised relays; detecting such attacks often requires a notion of what constitutes
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“normal” relay performance and uptime. Replays of past behavior provide an accurate but
necessarily limited model of behavior. In this short paper, we describe our work in progress
to (i) characterize the behavior of individual Tor relays, (ii) capture this characterization
in a generative model, specifically, a set of hidden Markov models, (iii) use these models
to generate representative Tor relay behavior, and (iv) evaluate the “goodness-of-fit” of
this generated behavior. In the longer term, we hope to have a generative model of many
observable quantities of the Tor network such as relay failures, latency, throughput, etc. Our
hope is that such a generative model could be used as a uniform testbed for analyzing attacks
and defenses as well as proposals for changes to the Tor protocol itself. Our generative model
is based on observations of the deployed network rather than explicitly simulating details of
the Tor protocol, network links, etc., so it effectively adapts itself to changes in the network,
without changes in the architecture of the model itself.

Our starting point is work of Danner et al. [2009], who analyze a denial-of-service attack
described by Borisov et al. [2007]. In this attack, Eve compromises some number of entry
and exit relays. If a circuit passes through a compromised relay but it is not the case
that both the entry and exit relay are compromised, then Eve kills the circuit, causing the
client to reform the circuit. In this way, Eve increases the probability that she controls
both the entry and exit relays. From there she can perform data correlation attacks (see,
e.g., Murdoch and Zieliński [2007]) to confirm that streams at either end of the circuit are
actually the same flow. As an example of problems we wish to avoid, Borisov et al. associate
a single failure rate to each relay, and then use that to analyze reliability and security of
the network under this attack; but this a very poor approximation of actual relay behavior,
as actual relay failure can be heavily time-dependent.

In analyzing the effectiveness of this denial-of-service attack and possible detection
algorithms, we collected lifecycle data for relays in the deployed network. A lifecycle for
a given relay R is a function `R : {0, 1, . . . } → {0, 1}. The idea is that we “probe” R
some number of times. A probe consists of constructing a circuit of the form (G,R,E) and
downloading a small file through the circuit, where G and E are relays that we control.
Probe t succeeds (`R(t) = 1) if the file is successfully downloaded and otherwise the probe
fails (`R(t) = 0). The probe of R may fail for many reasons; there may be transient network
failures; R may refuse to allow a circuit (perhaps because of bandwidth limiting); R may
not be in consensus during the probe. We consider all failure modes to be the same for
this analysis, though it would be easy to treat different modes as distinct provided we can
determine the reason for the failure.

Our analyses of the denial-of-service attack rely on replaying collected data of this
form [Danner et al., 2009]. For example, we propose a detection algorithm that constructs
circuits, records whether the circuit construction was successful, and then uses this infor-
mation to detect the attack, making use of the fact that circuits that include compromised
relays are more likely to fail. To simulate the execution of the algorithm, we “run” it on the
replayed data under the assumption that a subset of the highly-reliable relays are actually
under the control of an attacker (who would then “kill” uncontrolled circuits). Because
some (replayed) relays are down at the “time” the detection algorithm is run, we get a
more realistic assessment of the effectiveness of the detection algorithm in the presence of
noise.

We are interested in lifecycle data because our measurements have shown that the
following is a very good predictor of successful circuit creation: perform a single probe of
each relay in the deployed network; then predict that a given circuit creation attempt will
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Figure 1: Visualization of lifecycle data for the deployed network. Each relay is represented
as a vertical line. Each probe of the entire network is represented as a horizontal
line. The pixel for relay R at probe t is white if `R(t) = 0, black if `R(t) = 1.
Relays are sorted left-to-right in decreasing order of number of successes.

succeed if and only if each of the relays was successfully probed. Unsurprisingly, for any
fixed relay R, the sequence `R is far from random; as an example, the lifecycles of the
deployed Tor network as measured over a 30-hour period in mid-March 2011 (100 probes
per relay) is visualized in Figure 1.

In this paper, we start with this collected lifecycle data to construct a generative model
of relay lifecycles. The intent is that such a model displays the same emergent behavior as
the collected data, while not being tied to replaying exactly the data that was collected.
Our generative model is constructed as follows:

(1) Collect lifecycle data of the deployed network. We consider each relay’s lifecycle to
be a binary string, and all such strings have the same length. Let the set of lifecycle
strings be S.

(2) Use an appropriate clustering algorithm to group the lifecycles into a comparatively
small number of clusters.

(3) For each cluster C, train a hidden Markov model λC that produces lifecycles “sim-
ilar” to the ones in C.

(4) To generate a new lifecycle, choose a λC with probability |C|/|S| and use it to
generate a lifecycle. To generate a set S′ of new lifecycles, do this |S′| times.

In the remainder of this note we describe the model in more detail. We also discuss an
important but oft-neglected aspect of simulation: measuring how well a proposed simulation
models the observed phenomenon. There is still much work to be done; in particular, we
want to be able to model more interesting behavior than just lifecycles, such as latency
and throughput. But the current work leads us to believe that our approach has a lot of
promise.

2. Lifecycle clustering

We expect relays (as described by their lifecycles) to fall into a number of relatively
well-defined categories. For example, there are many relays which exhibit perfect uptime
over the course of an observation run, and some which exhibit regular uptime/downtime
cycles as their administrators take them off-line at night or over weekends. A clustering
algorithm partitions a set of observations (lifecycles) without an a priori definition of what
constitutes a category. By clustering lifecycles and choosing a representative of each cluster,
we obtain a simplified model of the network, in which each representative can be used to
generate lifecycles comparable to those in the cluster it represents. Furthermore, we can
easily modify the network model to provide insight into the behavior of the real network
under various assumptions. If, for example, we wanted to observe network behavior when
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function kmedoids(X : set of binary sequences , k : int) : list of k sets of binary sequences

begin

Z ← [{x1},...,{xk}] (∗ xi chosen at random from X ∗)
C′ ← [{},...,{}] : list k sets of binary sequences

do

C ← C′

C′ ← [{},...,{}] : list of k sets of binary sequences

foreach x in X do

i ← the j that minimizes E(x, Z(j))

add x to C′[i]
endf

for i ← 0 to k do

Z[i] ← center of C′[i]
endf

while C′ 6= C

return C

end

Figure 2: Pseudocode for k-medoids approximation with Lloyd’s algorithm. Z[i] is the
center of cluster i and C[i] and C ′[i] are the old and new i-th cluster. A bit of
restructuring eliminates the unnecessary last calculation of centers and also makes
it easy to determine when a lifecycle has moved from one cluster to another.

high-profile relay operators are attacked or their relays blocked from access, we could reduce
the proportion of several high-uptime clusters in the model.

A clustering algorithm depends upon a metric on the objects being clustered. We have
considered several, but here will just concentrate on a version of edit-distance. To that end,
we define E(s, s′) to be the number of “edits” that must be made to s to obtain s′. The
edits that we allow are flipping a single bit and rotation by one position (the bit that is
“pushed off the end” is tacked on at the other end). Our rationale is that the first type of
edit can help minimize the effect of transient phenomena when identifying similar lifecycles.
Rotation also allows us to consider as similar two relays that have similar cyclic behavior
that start at slightly different times. For example, it is well-known that many relays are
shut down at night (and this can be seen in the visualization in Figure 1). We end up
considering such relays to be similar if “night-time” is approximately the same, but they
become less similar as that time diverges.

Xu and Wunsch [2005] provide a fine survey of a wide variety of clustering algorithms.
Here we just consider k-means clustering, which groups objects into a pre-determined num-
ber k of clusters in a way that attempts to minimize the average value of E(x, c) over all
objects, where c is the center of the cluster containing x. An exact solution is not feasible,
but the standard approximation algorithm, Lloyd’s algorithm, gives good results in time
O(nk) and space O(n+k) where n is the number of sequences. In Lloyd’s algorithm, initial
centers are selected, and then items are assigned to the cluster with the nearest center. New
centers are selected for each cluster, items are again assigned to the cluster with the nearest
center, and the process is repeated until it converges. k-means clustering is typically used
with Euclidean distance, for which it is easy to define the center of a cluster. With edit-
distance, computing this new center is not so straightforward. Thus we define the center of
a cluster C to be the sequence c ∈ C that minimizes

∑
s∈C(E(s, c))2. An algorithm that de-

fines “center” in this way is sometimes referred to as a k-medoids algorithm (see [Kaufman
and Rousseeuw, 1990, Ch. 2]). The k-medoids algorithm we use is shown in Figure 2.
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3. Hidden Markov models

Hidden Markov models are a commonly used statistical model for temporal processes
that obey the Markov property: the behavior of the process at any given point in time
depends on at most a constant, finite amount of its past state. Rabiner [1989] is a standard
reference, and we follow his presentation. If we have in hand a sequence of observations
and want to determine a Markov model that is likely to have generated that sequence, we
generate a hidden Markov model, which consists of the following data:

• A finite set Q of states.
• An alphabet Σ of output symbols; these correspond to our observations (so in the

case at hand, Σ = {0, 1}).
• A state transition probability distribution function A : Q × Q → [0, 1] giving the

probability of a transition from one state to another.
• An output symbol emission probability distribution function B : Q× Σ→ [0, 1] giv-

ing the probability of a given symbol being observed from a given state.
• A start state probability distribution function π : Q → [0, 1] giving the probability

that a given state is selected as the first state in a sequence.

A (non-hidden) Markov model with states Q, state transition probability distribution A,
and initial state q0 is a special case of a hidden Markov model: Σ = Q, B(q, q′) = 1 if q′ = q
and 0 otherwise, and π(q) = 1 if q = q0 and 0 otherwise.

An HMM λ generates an observation sequence O ∈ Σ∗ as follows:

(1) Choose an initial start state using π; call this the current state s.
(2) Repeat the following some finite number of times:

(a) Use B(s, ·) to choose a symbol to emit.
(b) Use A(s, ·) to choose the new current state s.

Given an observation sequence, we would like to determine the HMM that is most likely
to have generated that sequence. The solution to this problem breaks down to solving the
following three problems:

(1) Given an HMM λ and observation sequence O determine Pr[O | λ], the probability
that λ generates O. There is a straightforward dynamic programming algorithm
known as the forward algorithm to compute this probability.

(2) Given an HMM λ and observation sequence O determine the state sequence for λ
that is most likely to generate O. The Viterbi algorithm is a dynamic programming
algorithm to compute the state sequence.

(3) Given an HMM λ and observation sequence O, adjust the parameters of λ to obtain
a new HMM λ′ that is more likely to generate O. The Baum-Welch algorithm
performs what is essentially a hill-climbing procedure to estimate new parameters
based on the solutions to the previous two problems.

For details of all three algorithms, we refer the reader to Rabiner [1989].
Iterating the Baum-Welch algorithm finds a local maximum of Pr[O | λ]. Because

the search space is very hilly, in practice one applies the algorithm from many different
randomly-chosen initial positions and chooses the best local maximum. The Baum-Welch
algorithm trains an HMM on a single observation sequence, whereas we will want an HMM
that is trained on a set of such sequences. A simple solution to this problem is to train the
HMM on the concatenation of the sequences in the sets. Assuming we do not allow too



6 WILLIAM BOYD, NORMAN DANNER, AND DANNY KRIZANC

Figure 3: Collected data and our simulation. The collected data is the left and middle
figures and the simulated data is the right figure. The middle figure is the same
as Figure 1. The left figure shows the same data after clustering; clusters are
sorted by failure rate of the center of the cluster, and lifecycles within a cluster
are sorted by failure rate. Blue lines (visible in electronic version) separate the
clusters. Pixel values are as in Figure 1.

many states in the resulting HMM, the spurious transitions at the concatenation boundaries
should not have a significant effect on the result.

4. Preliminary results

We cluster the lifecycle data displayed in Figure 1 using k-medoids clustering with edit-
distance. We follow a rule-of-thumb that says that

√
N/2 is often a reasonable number of

clusters when there are N items in the original dataset. We observed about 3500 relays, so
we use 41 clusters. For each computed cluster C, we concatenate the sequences in C into a
single sequence, then apply the Baum-Welch algorithm to train an HMM λC for the cluster.
In our runs, the median number of states is 8 (with a maximum of 10). We then produce
a simulation of the Tor network by repeating the following 3500 times:

(1) Choose an HMM λ; λC is chosen with probability |C|/3500.
(2) Generate an observation sequence using λ as described above.

In Figure 3 we display a visualization of the original data along with our simulation. As
we can see, some (but not all) of the emergent behavior seems to have been captured in this
simulation. Although we do not see the “peak” of successfully-probed relays (corresponding
to the above-mentioned diurnal pattern that has been already observed) strongly, it is
visible. And likewise we see some of the additional uptime behavior of at the edges. It looks
as though there may have been some transient problem in our data collection (indicated
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by the two visible vertical white lines) but that same problem does not show up in the
simulated lifecycles; this might be considered to be either a feature or a bug of the model.

5. Assessment

To properly assess the quality of any simulation, we need a measure by which to do
such an assessment. This is a general problem in simulation studies, and appears to be a
very difficult problem. However, we believe we can make a start by proposing the following.
We think that a quality measure ought to satisfy the following two properties:

(1) The best simulation of a data set is the data set itself.
(2) A simulation that cannot produce a given data set is a poor simulation.

Define a model M of lifecycle data to be any process that, given n, produces a set of
n lifecycle sequences. Furthermore, for a given set S of lifecycle sequences, we require that
Pr[S | M], the probably thatM produce S on input |S|, be defined. We can then define the
quality of the model relative to a fixed set S0 (such as our collected data) to be Pr[S0 | M].
With this quality measure:

(1) The model M0 that just returns S0 is the highest-quality model possible, since
Pr[S0 | M0] = 1.

(2) A modelM that cannot reproduce S0 is a lowest-quality model, as Pr[S0 | M] = 0.

With this quality measure, we compared several combinations of different clustering al-
gorithms and distance metrics, and all resulted in seemingly-close quality. Other models
that we expect to be poor in fact compare poorly to our model. An example is a model
that produces |S0| sequences, each of which is a Bernoulli process that chooses failure with
probability equal to the average failure rate of all relays represented in S0.

This notion of quality is very preliminary and needs work. For example, M0 is the
highest-quality model possible relative to S0, but would be a lowest-quality model relative
to a dataset S that is identical to S0 except for a single change of one bit of one lifecycle.
Nonetheless, we feel it is a useful starting point for discussion.

6. Conclusions

We have presented a generative model of Tor relay lifecycles based on collecting such
data, clustering it, and then training hidden Markov models on the resulting clusters. Pre-
liminary investigations indicate that this is a promising approach to simulating at least
some properties of Tor. We have also presented an initial proposal of quality-measurement
for any proposed model.

More work needs to be done to determine appropriate distance metrics and clustering
algorithms. Showing that we can use a similar methodology to accurately simulate more
sophisticated phenomena (such as inter-relay latency and throughput) is a necessary step.
Finally, we need to understand how to define a generative model in general, and to compare
different generative models. Little work has been done in this area, though Kleinberg [2003]
and Carlsson and Memoli [2010] provide some very interesting ideas on the related question
of assessing the quality of clustering algorithms.
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1 Introduction

In this work, we consider the question of how to determine—in a privacy-preserving
way—the number of distinct users that have contacted an Internet service. This question
is particularly challenging in a distributed setting. In order to protect the users’ privacy,
the service operators should obviously not exchange information about user identities.
Then, however, it becomes challenging to determine the total number of distinct users
in the overall system without counting users more than once.

One key motivation for our work is the anonymization network Tor [3], and the
problems the Tor project is currently facing when it comes to estimating the number of
Tor users [6]. Tor node operators definitely shouldn’t exchange (or even record) explicit
information about locally observed IP addresses of Tor users. Nevertheless, it would
still be very interesting to obtain statistics about the total number of distinct users of the
system.

From a more general perspective, we are looking for a way to obtain the number
of distinct elements in a multiset of user IDs (e. g., in case of Tor, the IP addresses of
users). These user identifiers can occur multiple times at the same service entry point,
and they can occur at multiple entry points. No single point, however, will in general be
able to see the “whole” multiset.

In order to tackle this challenge, we start from an existing algorithm for probabilistic
counting [5]. This algorithm allows for estimating the total number of distinct elements
in a sequence of user IDs without keeping track of the IDs that have already been
seen. It also provides an interesting basis for obtaining such estimates in a distributed
fashion at multiple observation points. What is more, this approach already mitigates
the privacy problems to some extent. However, it does not fully eliminate the problems:
in the worst case, it is still possible to conclude with arbitrarily high probability that
a specific user was present. We thus proceed with modifications which avoid that an
attacker can gain an arbitrary amount of knowledge. Here, the knowledge gain of an
attacker can be considered as a privacy metric.

2 Naive Distributed Counting

In this section, we start by introducing the algorithmic basis of our approach—FM
sketches—, and how they could be used to determine the total number of users of a
distributed Internet service like Tor. In this first step, the application of FM sketches
will be quite naive, and we will see that it comes with severe privacy problems.



2.1 FM sketches

FM sketches, introduced in [5], are an algorithmic mean to estimate the cardinality of
a multiset M of n elements. Their low computational effort was the key original mo-
tivation behind them. However, as we will see, they also exhibit other very interesting
properties, which make them a promising basis for solving the problem considered here.
We will now outline the key ideas behind FM sketches; more details can be found in [5].

An FM sketch is based on a bit vector S = (s1, . . . ,sw), w ≥ 1, which is initialized
to zero. We also need a hash function h1 with geometrically distributed positive integer
output, where the probability that h1(x) = j (with j ≥ 1) for any randomly picked ele-
ment x equals P(h1(x) = j) = 2− j. Each element x ∈ M is hashed using h1. The hash
value is interpreted as an index in S, and the corresponding bit sh1(x) is set to one. This
leads to a bit pattern in S with many 1-bits on the left and many 0-bits on the right.

Flajolet and Martin found that a good estimate for the number of distinct elements
can be obtained from the length of the uninterrupted, initial sequence of ones in S, i. e.,
from Z := min

{
j ∈ N0 | s j+1 = 0

}
. There is a constant factor ϕ ≈ 0.77351 such that

n≈ 2Z/ϕ , so that estimates can be obtained on this basis.
The accuracy can be improved by using multiple sketches in parallel. The respective

technique is called Probabilistic Counting with Stochastic Averaging (PCSA) in [5].
Each element is first mapped to one of the sketches by using a uniformly distributed
hash function h2, and is then added to this (and only this) sketch. In the following, we
will use this variant. If m sketches are used with PCSA, then the estimate for the total
number of distinct items added is given by C = m ·2∑m

i=1 Zi/m/ϕ , where Zi is the number
of leading 1-bits in the i-th sketch. One can identify a PCSA set with an m×w matrix,
where each row is a standard FM sketch. For a sufficiently large number of elements,
PCSA yields a standard error of approximately 0.78/

√
m [5]. Increasing m thus results

in a higher estimation accuracy.
Multiple FM sketches (and likewise PCSA matrices) can be merged to obtain the

total number of distinct elements added to at least one of them by a simple bit-wise
OR. Observe that combining the FM sketch with all elements of a multiset A and the
FM sketch with all elements of another, possibly overlapping multiset B using bit-wise
OR produces an FM sketch that is identical to the sketch of multiset A∪B. Elements
present in both A and B will not be counted twice, since the respective bit will always
have value 1 in both sketches. This duplicate insensitivity trait allows us to perform
distributed user counting.

2.2 Applying FM sketches for user counting

Now let us look at how we could apply FM sketches to distributed user counting.
Each service entry point might maintain a PCSA matrix with pre-configured dimen-
sions m×w. m and w as well as the hash functions h1,h2 are agreed on by the service
operators in advance. When a user with ID u contacts the service at one of the entry
points, u is hashed into the sketch matrix and the respective bit is set locally. Clearly,
if the same user contacts the entry point more than once, the user will not be counted
again, since the respective bit is already set. By evaluating the sketch generated by a
single entry point, we therefore obtain an estimate for the number of distinct users who
contacted the respective mirror.



If the sketch matrices from multiple service entry points are collected and merged
by a bit-wise logical OR, this results in a sketch for the total number of distinct users
contacting at least one of the respective service entry points. The users are therefore
counted in a duplicate insensitive way.

In the specific use case of Tor, the counting operation could be performed at the
directory mirrors. As already argued in [6], this is a reasonable design, because each
Tor user contacts at least one mirror during bootstrapping.

Since the user IDs are not exchanged directly, and typically many different user IDs
are mapped to the same bit, one might expect that the sketch does not reveal much infor-
mation about which specific users contacted the service. This conclusion is treacherous,
though. Recall that hash function h1, which selects the column in the sketch, is geomet-
rically distributed. Consequently, there are relatively few user IDs mapped to bits more
towards the right hand side of the sketch. If an attacker observes such a bit being set,
then it becomes suddenly very likely that a specific user has indeed been present in the
system. In the extreme case, an attacker knows for sure that only one single out of all
possible user IDs maps to a specific location in the sketch; if this bit is set to one, the
attacker can be sure that the user has contacted the service.

3 Privacy-Aware User Counting

In order to improve on the worst case behavior, we propose a perturbation technique.
Specifically, a service entry point will proceed just as discussed above and enable bits
according to the hash coordinates of the locally observed user IDs. In addition, though,
each bit in the sketch matrix will be set to one with a fixed, configured probability r.
While randomness has been used before in privacy-aware data bases, e. g. in [1, 4, 8],
existing approaches do not allow to obtain the statistics we are interested in.

By adding these randomly switched on bits, we add an additional source of “vague-
ness”: The attacker cannot make a definite decision whether a set bit has been set by
a corresponding user or whether it has been switched on at random. The fact that we
switch additional bits on uniformly at random has two important implications. First,
we set bits on the right hand side in our sketch with non-negligible probability, where,
as discussed above, an attacker is otherwise able to gain very substantial knowledge.
Second, when it comes to extracting estimates for the number of distinct users, the uni-
form distribution of the randomly set bits will allow us to separate their effects from the
geometrically distributed bits introduced by “real” users.

We now analyze this intuitive explanation of our approach and contrast it with the
naive user counting. Subsequently, we give a short note on how accurate estimates can
still be obtained. The question that we consider is how “sure” can an attacker be that a
specific user has contacted the service. This is expressed by the a-posteriori probability
of the user being there, after the information from the sketch is known. A probability
of one means that the user has contacted the service for sure, a probability of, e. g., 0.5
means that it is equally likely that the user has or hasn’t been there.

Clearly, this a-posteriori probability for the presence of a given user depends on
the attacker’s a-priori knowledge: how certain has the attacker been about the user be-
ing active before taking the information in the sketch into account? If the attacker, for
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Fig. 1. Privacy evaluation: knowledge gain (m = 8, n = 1000).

whatever reason, has been 99.9% sure that the user has been active, then the a-posteriori
probability will be at least 99.9%, as the attacker will not “lose” knowledge by looking
at the sketch. We therefore always look at the a-posteriori knowledge depending on the
attackers a-priori knowledge. The smaller the difference between the attacker’s a-priori
and a-posteriori knowledge, the less information an attacker can gain.

We are now interested in the probability P(u | (i, j),r) that the user has used the
service after the attacker has learned that bit (i, j) is set. Here, (i, j) denotes u’s position
in the sketch. r is our perturbation probability; consequently, r = 0 corresponds to the
naive case without perturbation. In order to determine the a-posteriori probability, we
start from the probability that a specific bit is set given that there was a total of n users
and given u’s a-priori probability P(u) of being present. Following the definition of FM
sketches in Sec. 2.1, this is P((i, j) | n,r) = 1−

(
1−1/(m ·2 j)

)n · (1−P(u)) · (1− r).
We then apply Bayes’ theorem [2] and obtain

P(u | (i, j),r) =
P(u)

1−
(

1− 1
m·2 j

)n
· (1−P(u)) · (1− r)

. (1)

One can see that the a-posteriori probability depends on several parameters, includ-
ing j, n, m, r, and P(u). In particular, the equation supports our intuition that bits to the
right, to which a lower number of users are mapped, are more problematic: the higher
the column index j, the more information an attacker gains if the bit is actually set.

Since our aim must be to protect the privacy of all users, we have to take the worst
case into account. This can be done by taking the limit of the a-posteriori probability
for j→ ∞. This limit is given by

lim
j→∞

P(u | (i, j),r) =
P(u)

P(u)+ r− r ·P(u) . (2)

Observe that for r = 0 the limit turns out to be equal one for P(u) > 0. However, for
r > 0 the a-posteriori probability does no longer converge to 1; there is a significant
remaining uncertainty for an attacker even for large j. Consequently, we achieved our
aim of mitigating the worst case. This relation is shown in Figure 1 with and without
perturbation for varying j.

Now, the question arises how to still calculate accurate results despite the randomly
added bits. Using the standard FM sketch evaluation formula above would lead to mas-



sive estimation errors, since the additional bits may increase the length of the initial
sequence of ones in a sketch.

In [7], a related problem occurred. Even though the reasons for the perturbations
and the problem setting are in fact quite different, the problem can be tackled with
similar means. In short, the constant ϕ in Flajolet and Martin’s estimation formula
can be adapted according to the probability r. Along similar lines as in [7], the new
constant ϕr can be obtained from ϕr = limn→∞(2E[Z|n,r]/n), where E[Z | n,r] is the
(easily derived) expected value of Z for n distinct elements and additional bits switched
on uniformly at random with probability r. If ϕr is used in the role of ϕ , the estimation
error is compensated. For a deeper understanding we refer to [7].

4 Conclusion

We presented a methodology to count users based on their observed user IDs in a dis-
tributed and privacy-preserving manner. The algorithmic properties of FM sketches pro-
vide a way to deal with duplicate occurrences of user IDs, due to users contacting mul-
tiple times the same and/or different service entry points.

However this naive approach has severe shortcomings with respect to user privacy,
at least in the worst case. We showed that this can be overcome by a perturbation tech-
nique that sets additional bits to one uniformly at random. In order to still calculate de-
cent estimations by our modified FM sketches, we showed how the evaluation method-
ology can be adjusted. With respect to the specific use case of Tor user counting, our
proposed method could be applied to estimate the number of Tor users at high accuracy,
without compromising anonymity.
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Abstract

We propose the design of a privacy-preserving-
personalization middleware that enables the end-
user to avail of personalized services without
disclosing sensitive profile information to the
content/service-provider or any third party for
that matter. Our solution relies on a dis-
tributed infrastructure comprising local clients
running on end-user devices and a set of mid-
dleware nodes that could be collaboratively do-
nated by few end-users or hosted by multiple
non-colluding third parties.

The key idea is to locally compute the user’s
profile on the device, locally determine the inter-
est group of the user wherein an interest-group
will comprise users with similar interest, and
anonymously aggregate the collective behaviour
of the members of the interest group at some
middleware node to generate recommendations
for the group members. In addition, our sys-
tem is also open for third party content and rec-
ommendation injection without leaking the users
privacy.

1 Introduction

A broad class of applications such as Stumble-
Upon [25] (or iGoogle [18]) URL recommen-
dations, Foursquare [14] check-in recommenda-
tions, Netflix [21] movie recommendations, or
IPTV content recommender systems suffer from
the dilemma of having the user disclose sensi-
tive profile information in order to benefit from
personalized content/services. As of today, users

have no option but to trust the content/service-
provider with their sensitive profile information
in return of the personalized content/services
they seek.

Typical centralized recommender systems rely
on one of the two main types of recommen-
dations: content-based and collaborative filter-
ing. The general content-based technique ex-
ploits content metadata (categories and tags)
and based on the user’s content consumption
history builds a profile of the user in terms of
weights associated with different categories and
tags. Having built the profile of a user, items
whose content metadata matches the tags and
categories that have high weights are recom-
mended. The general collaborative filtering pro-
cedure for content recommendation can be de-
scribed as follows: 1/ compute clusters of similar
users based on their history, 2/ compute the pop-
ularity curve of items within each cluster, and
3/ recommend to each user the most popular
items within his cluster that are not present in
his own history. As compared to content-based
recommendations, collaborative filtering enable
users to discover new types of content they may
like and that they never consumed before nor
expressed any explicit interest in them. How-
ever these approaches require having access to
the users’ profiles to take advantage from each
other’s experiences.

We would ideally like to have a privacy
preserving personalization system that enables
the end-user to benefit from a personaliza-
tion/recommendation service without disclosing
their preferences (i.e. user profile) to the con-
tent/service provider. Although there has been
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some prior work towards this goal, prior sys-
tems suffer from several limitations (as detailed
in Section4) which prevent them from being de-
ployed globally and adopted widely by the end-
users.
We will now describe some desired properties

of an ideal privacy-preserving-personalization
system.

• Generic middleware for wide range of
applications: The solution should support
wide gamut of potential applications varying
from Telco-based IPTV content personaliza-
tion, Web-based personalization like iGoogle
URL recommendations, and mobile-based
LBS (Locality-based services) personaliza-
tion like Foursquare check-in recommenda-
tions etc. Thereby, the design should be
in the form of a middleware, where dif-
ferent recommendation applications poten-
tially running on different types of end-user
devices (e.g. mobile phones, PCs, or Set-
Top-Box) can plug-in.

• Hybrid recommender system: Given
the obvious advantages of both content-
based and collaborative filtering recom-
mendations, we target a hybrid recom-
mender system which benefits from both
content semantics/metadata (content-based
approach) and from the experience of other
users (collaborative filtering approach).

• Seamless Operation of Content-
providers: The design should enable
’seamless’ (i.e. without requiring explicit
cooperation) interaction with external
content/service providers to receive ap-
propriate recommendations generated by
proprietary recommendation algorithms
that have be developed and fine-tuned by
content/service-providers like for example
Google. Thereby, the ideal system should
not require the content-provider to change
fundamentally its APIs/interfaces, and
additionally can work without having to in-
vest in replicating sophisticated state-of-art
recommendation algorithms developed by
content-providers.

• Profile Anonymization with ’Unlinka-
bility’: The design should obviously break
the association of the user from his pro-
file. In addition, even if the profile is
anonymized, no one node should be able
to see the complete profile, which we claim
is prone to sophisticated linkability at-
tacks wherein one can infer the mapping of
pseudonym to user based on the profile de-
tails. Therefore we strive for unlinkability
as well, which is achieved by ensuring that
any single node can see only a small slice of
the entire profile.

• Trust No One: Our design is aimed at en-
suring that we do no trust any single-entity
with all our sensitive information. Secondly,
our system should be designed to be able to
work under small scale collusion attacks.

• Comparable Performance: Last but not
the least, the system should provide rec-
ommendation quality that is comparable or
only slightly inferior to that of centralized
recommender systems, at the cost of slight
increase in overheads like communication
costs or infrastructure costs.

We will next describe the design of our pro-
posed P3 (i.e. acronym for privacy-preserving-
personalization) system which is intended to
meet the design goals mentioned above.

The rest of the paper is outlined as follows -
Section 2 describes the design of the P3 system,
Section 3 describes the detailed realization of the
design, Section 4 contrasts our P3 system with
prior works, and finally we conclude in the Sec-
tion 5.

2 Design of the P3 Architec-
ture

In this section we will highlight the key con-
tribution of the work in terms of showing how
different functional blocks can be interconnected
to meet the goals of the privacy-preserving-
personalization architecture.
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Figure 1: Functional Blocks of our Privacy-
Preserving-Personalization Middleware

In order to protect the user privacy we pro-
pose to execute the steps of a centralized recom-
mender system in a privacy-preserving way by
using a distributed infrastructure comprising of
P3 local clients running on end-user devices and
a set of P3 middleware nodes hosted by multi-
ple non-colluding entities. Models like that of
Virtual Individual Servers (VIS) [6] or TOR [13]
which employ end-users running nodes locally or
in the cloud computing platforms (e.g. Amazon)
could be envisioned. Note that we only require
a small fraction of users to act as volunteers to
host these nodes, and incentive mechanisms can
be provided to such users. Alternatively, one
could also imagine multiple third-parties like dif-
ferent cloud computing providers (e.g. Amazon,
Google, Microsoft) together hosting the P3 mid-
dleware nodes.

The key idea is to build users’ profiles lo-
cally on their personal devices, to identify the
interest-group that a user is associated with lo-
cally wherein an interest-group will comprise
users with similar interest, and anonymously ag-
gregate the collective behaviour of the members
of the interest-group to do both types of rec-
ommendation - collaborative filtering as well as
content-based.

The core contribution of the work revolves
around the idea of how the different func-

tional blocks described in Figure 1 can be
combined in order to realize the goals of
our privacy-preserving-personalization middle-
ware. Although our proposed realizations of each
functional block as described in Section 3 exist
in some adapted form in prior state-of-art, the
key contribution of our work lies in how the in-
terconnection of the functional blocks enables us
to realize our desired goal. While referring to
Figure 1, we will now describe the role of each
functional block and how they interconnect.
STEP 1 (’Local Profile Computation’

block in Figure 1): First, each user client col-
lects the local traces of users’ activities in the tar-
geted service domain. These traces are analyzed
and compacted in such a way that they represent
the user profile, i.e. the user preferences in terms
of items or in terms of item categories. Such a
local profile can for example be represented as a
set of <key, value> pairs, as it is described in
Section 3. The P3 middleware can provide the
personalization service to any external applica-
tion for which such a local profile is available.
STEP 2 (’Local Computation of Interest

Group IDs’ block in Figure 1): Then, each
local client determines its user’s interest group
by considering only the local profile data and
some globally available information (e.g. a con-
cept taxonomy, a term vocabulary, or seeds for
generating random vectors). Note that this can
be done without sending out the local profile to
any external entity by using techniques like LSH
(Local Sensitivity Hashing) [16] as described in
the Section 3.
STEP 3 (’Anonymous aggregation of

group member profiles’ block in Figure 1):
At the next step, we aggregate anonymously all
the group member profiles corresponding to a
particular interest group at a dedicated middle-
ware node which we call the Group-wise aggre-
gator. All the data related to a given group are
collected in a single Group-wise aggregator.
STEP 4 (’Construction of group-wise

item popularity curves’ in Figure 1): Using
collected group members’ profiles, the Group-
wise aggregator will generate a set of potential
recommendations for the interest group based
on the aggregate statistics of the already con-
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sumed content by the group members. In par-
ticular, the Group-wise aggregator can compute
the top-K popular items of the group and regard
these as the collaborative-filtering recommenda-
tions for the group.

STEP 5 (’External content injection
module’ in Figure 1): The Group-wise ag-
gregator can communicate the categories/tags
corresponding to the top-K items to the exter-
nal content provider to get content-based rec-
ommendations corresponding to the interests of
the group. In fact, it can also seamlessly inter-
act with the external content provider by posing
as an end-user who consumes the top-K popu-
lar items of the interest group and get recom-
mendations generated as per the proprietary rec-
ommendation algorithm running at the content
provider.

STEP 6 (’Anonymous Publish/Lookup
of group recommendations’ in Figure 1):
The generated recommendations at the Group-
wise aggregator, which are a combination of
the internal collaborative-filtering recommenda-
tions and the external recommendations, can be
looked up anonymously by the group members
or alternatively published to the group members
anonymously.

STEP 7 (’Local recommendation selec-
tion’ in Figure 1): Finally, the list of recom-
mendations is filtered out on each user device, by
removing already consumed content, and used to
make recommendations for the end user.

3 Realization of the P3 Func-
tional Blocks

Bellow we give more details on the realization
of the functional blocks introduced in the pre-
vious section. We map these functions on dif-
ferent types of components of a distributed sys-
tem which host the P3 middleware. Figure 2 de-
scribes one possible realization of the functional
blocks.

3.1 Local profile computation

Component type: P3 local client running on end-
user’s device

We consider two possible realizations for this
phase; of closed and open systems (in terms of
consumed content space) respectively. We de-
scribe how these types of systems or applications
allow the construction of local profiles in terms of
<key, value> pairs, where keys are either items
(item references) or item categories (tags, taxon-
omy concepts, etc.) while the values represent
the interest level (e.g. on a 0 to 1 scale).

(a) Example of <key, value> construction in
a closed-system: content provider portal, e.g.
VoD portal. Each content item is explicitly as-
sociated with its metadata provided by the con-
tent provider. These metadata include the ti-
tle and/or the artists and/or genres and/or key-
words/tags, etc. The user consumptions are then
mapped to these metadata terms and reflect user
interests; each user consumption itself is a set of
<key, value> elements where key is the meta-
data term and value is the interest towards that
term. The aggregation of these consumption sets
over the time allows to infer user interests in the
form of <key, value> elements [1]. In this case,
no additional global information is necessary for
local profiling other than the metadata provided
by the portal.

(b) Example of <key, value> construction in
an open system: web browsing. In this case, the
content items are web pages and their unique
identifiers are the URLs. In addition, each web
page visited by the user can be processed to find
additional metadata characterizing its content.
Such metadata can be either specified explic-
itly under the HTML ’title’ tag or meta tags
’keyword’ and ’description’, or discovered im-
plicitly, by parsing the source text of the web
page content. In any case, after the extrac-
tion of these metadata an additional normaliza-
tion is needed to incorporate some readjustments
wherein common tags are given lower rates akin
to IDF (Inverse Document Frequency) analogy.
The normalization procedure can be based on
some global tag popularity that can be retrieved
for instance from Google Analytics.
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Figure 2: A realization of the functional blocks on different components of the P3 Middleware

Note that in both examples keys can represent
unique identifiers such as the content title as well
as other types of metadata such as genres or tags
which characterize more than one content. The
advantage of mixing both unique identifiers and
categories is that the framework allows applying
hybrid types of recommendation algorithms us-
ing both collaborative filtering (exploiting only
the unique item identifiers) and content-based
recommendations (exploiting the content cate-
gories). Optionally, to avoid mixing different
types of keys, the <key, value> data structure
can be replaced by <item-category, item-list,
value> where item-category stands for keys that
represent categories and item-list stands for key
that represent unique identifiers content items
the consumption of which contributed to infer-
ring user interest in the given item-category.

Note that in both cases of closed and open sys-
tems keys that represent item categories can be
mapped onto a common ontology, a taxonomy
or flat vocabulary terms. This will also ensure
semantic uniformity between different local pro-
files and also between different applications re-
questing the personalization service from the P3
middleware [2]. The mapping dictionaries then
should be available locally at each local client.

Note that such a semantic uniformity facilitates
the local clustering described in the next session.

3.2 Local computation of global
Interest-Group IDs

Component type: P3 local client running on end-
user’s device

The objective of this phase is the local compu-
tation of user interest groups (clusters), i.e. each
local client determines its user’s interest group
by considering only the local profile data and
some globally available information (e.g. a con-
cept taxonomy, a term vocabulary, or seeds for
generating identical random vectors). The global
information is shared among all the clients inde-
pendently of their local profile content; by map-
ping the local profiles onto this global informa-
tion space one can determine the interest-groups
as clusters characterized by commonly shared
terms. So, two distinct user profiles that map (lo-
cally) to the same cluster discriminator will make
part of the same interest-group without the need
for explicit pair wise comparison between these
two local data entities.

Two examples of such local interest-group
computation can be given.

Page 5



(a) Example using Local Sensitivity Hashing
(LSH) techniques: an approach to compute all
the similarities between all users in a compu-
tationally efficient way is given by LSH tech-
niques [16]. This approach is commonly used
to solve nearest neighbor and clustering prob-
lems in case of high dimensional spaces, where
the ’Curse of dimensionality’ makes an exhaus-
tive search unfeasible 1. The basic idea behind
LSH is that two similar objects will hash to the
same value with high probability, the value out-
putted by the hash functions could be used as
the ’label’ of a cluster (or cluster id) to which
the two objects belong. The output of several
hash functions could be concatenated in order to
reduce the probability of errors.

Google is using MapReduce and LSH to run
a collaborative filtering algorithm that generates
recommendations for users of Google News [12].
Here, we suggest to apply a similar approach in
order to compute user similarities by using only
local processing at each end-user client.

Each user client executes the appropriate LSH
algorithm depending on the chosen distance met-
rics, e.g. Charikar offers a solution to implement
cosine similarity using LSH [8], and similarly can
use the MinHash algorithm [9, 10] to implement
set similarity using the Jaccard coefficient.

The LSH code obtained from the local pro-
file data gives the cluster identifier(s), cluster id,
which are statistically identical for similar users.
One can generate several LSH codes and con-
catenate them for the same user to reduce false
positives. At the same time, in order to catch
several aspects of user’s consumption patterns
we can hash each user to a number of clusters
(as suggested in [12]).

Finally, note that in an open system described
in the previous section, the LSH will be com-
puted by using only the keys representing item-
categories. Note that privacy is not compromised
in this process as all the computation is done lo-
cally.

(b) Example using semantics-based clustering:
Each local client can identify the top-K item-
categories within the local profile. This list will

1http://en.wikipedia.org/wiki/Curse of dimensionality

be considered as cluster descriptor of the interest
group to which the given user belongs to. As an
extension to this approach, one can also consider
different subsets of top-K categories of size m,
m < K, so that the given user is affiliated to
more than one cluster.

3.3 Anonymous aggregation of group-
member profiles

Component type: P3 Middleware nodes

To compute the item popularity curve within
each interest group, one needs to collect in a sin-
gle place all the local profiles belonging to the
same cluster. Doing this directly would however
violate the user privacy because the local profile
of each member user could be distinguished dur-
ing the data transfer. To allow anonymous aggre-
gation of profiles, we divide this process in two
steps: (1) collecting partial profile data via an
anonymization network like TOR [13] (i.e. Onion
Routers [24]) at arbitrarily chosen P3 middle-
ware nodes (called Profile-slice collectors) that
participate in a DHT [11] (i.e. Distributed-Hash-
Table), and (2) aggregating the information on
a per cluster basis at the P3 middleware node
(called Group-wise aggregator) which is the DHT
node responsible for storing/computing informa-
tion related to the corresponding cluster. Such a
DHT node is chosen using the DHTs key-based-
routing (KBR) primitive with the cluster id as
the key.

The role of the anonymization network is
to hide the identity of the end-users from the
Profile-slice collectors. The goal of slicing the
profile into small segments is to ensure ’unlink-
ability’ such that even after anonymization, no
middleware node sees enough of the profile to
be able to intelligently infer the identity of the
profile owner from the profile contents.

Below we provide more details on the two-step
aggregation mechanism.

(1) Profile slice collection: At this step, each
user client slices the local profile into segments
s1, , sn composed of one or more <key, value>
elements each. The profile slicing mechanism
should be intelligent to ensure that no profile-
segment by itself contains enough profile content
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items that can be pieced together to infer the
identity of the individual even after anonymiza-
tion. By slicing to small-enough segments (with
the limit being single item per segment), the
probability of intelligent inference attacks on a
profile segment reduces. However, one can de-
sign a profile slicing mechanism that minimizes
the number of segments to reduce communica-
tion overhead while still ensuring safeguard from
intelligent inference attacks.
Then, each segment together with the users

cluster identifier(s), i.e. < si, cluster id> are
sent via an anonymization network like TOR to
different profile slice collectors. A typical 3-hop
onion-routing path [24] can be established with
the end-user encrypting the < si, cluster id> in-
formation with the public-key of the exit node
of the onion-routing path, and the exit-node de-
crypting the information and relaying it to the
profile slice collector. The end-user periodically
chooses a different random set of DHT nodes to
act as its set of Profile-slice collectors. Thus, dif-
ferent parts of the local profile will be delivered
to different profile slice collectors, and none of
them will have a full view of the local profile of
any user.
Its worth noting that in scenarios where the

end-user clients device is well-provisioned (e.g.
IPTV set-top-box) to be a member of the DHT
itself, the TOR-based anonymization network
could be optionally replaced by a DHT-based
anonymization mechanism like AP3 [20]. In this
case, the client nodes generate a new hash code
Hi for each pair < si, cluster id> and select a
DHT node as a profile slice collector using Hi

as the DHTs KBR key, and send the profile-slice
anonymously using AP3 to this profile slice col-
lector.
(2) Group-wise aggregation: At this step, each

profile slice collector forwards a given data ele-
ment < si, cluster id> to a Group-wise aggre-
gator selected with a DHTs KBR mechanism
by using the cluster id as the hash code or key.
As a result, all the data elements related to a
given cluster will be collected in the same phys-
ical node. Note that each DHT node could be
responsible for several clusters; this will depend
on the number of clusters generated and the total

number of DHT nodes.

Its worth mentioning here that one can explore
other complex alternatives for anonymous aggre-
gation like Anonygator [23] which in addition to
some of the desired properties mentioned above
can give additional protocol properties like resis-
tance to data pollution by malicious end-users
and more scalable aggregation using multi-trees.
Similarly, a system like that proposed by Apple-
baum et al [3] doing cryptographic-based aggre-
gation of <key, value> pairs, can be used for
stronger privacy guarantees under collusion at-
tacks as well as additional properties like ’key-
word privacy’ where we can ensure that the
Group-wise aggregator can only know the top-K
items of the interest group instead of the entire
group’s consumption.

3.4 Construction of group-wise item
popularity curves

Component type: Group-wise aggregator

The group aggregator responsible for the given
cluster concocts all the <key, value> elements
belonging to its members. This allows computing
the item popularity curve of each cluster, or in
other words, each recommendation peer will se-
lect the top-K items for the given interest group.
The top-K items could either be items, categories
or tags. These top-K items serve as the group
recommendations generated by the collaborative
filtering approach. Additionally, they also reflect
the primary interests of the group members in
terms of items, categories or tags.

3.5 External content injection

Component type: External content injection
module

This module is optional; it connects group-
wise aggregators to external content and ad
providers to push external content sources like
targeted ads or third-party content recommen-
dations. To achieve this functionality, the group-
wise aggregators can either explicitly pull recom-
mendations on behalf of its group; or alterna-
tively can interact ’seamlessly’ with the external
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providers without requiring any special coopera-
tion from the external provider.

In the first type of interaction (i.e. explicit),
the group-wise aggregators can communicate the
primary interest of the group in terms of cate-
gories and tags corresponding to the top-K items
of the interest group to the external content
provider to get content-based recommendations.
The latter can return a list of contents/ads to
be injected in the respective Top-K list. This
external module will make its suggestions in cor-
respondence with the interest group.

In the second type of interaction (i.e. seam-
less), the group-wise aggregator can seamlessly
interact with the external content provider by
posing as an end-user who consumes the top-K
popular items of the interest group or for that
matter the entire consumption list of its group
members as its own consumption. The external
content provider profiles the group-wise aggre-
gator just as it profiles any other end-user, and
generates recommendations (by any type of spe-
cific recommendation algorithm) for the group-
wise aggregator, which in reality represents the
interests of the group members.

3.6 Anonymous group Publish and
Lookup of group recommenda-
tions

Component type: P3 Middleware nodes

The recommendations generated at the group-
wise aggregator can be made available to the
group members either via a PULL-based ap-
proach (i.e. lookup) or via a PUSH-based ap-
proach (i.e. publish). As in the aggregation
mechanism, such a lookup or publish must be
anonymous as well. We will describe two realiza-
tions below via the anonymous lookup and the
anonymous publish-subscribe mechanism.

(a) Anonymous Lookup: In this operation, the
end-user’s P3 client issues a DHT-lookup [11] by
using the cluster id as the hash code or key. How-
ever such a DHT lookup is done over a typical 3-
hop onion-routing path [24], with the cluster id
encrypted with the public-key of the exit node
of the onion-routing path, and the exit-node de-
crypting the cluster id, issuing a DHT-lookup

with cluster id as the DHTs KBR key, encrypt-
ing the returned results of the DHT-lookup (i.e.
the recommendations) with the symmetric key
that is provided by the end-user. The encrypted
recommendations are sent back on the reverse
path and the end-user’s P3 client finally decrypt-
ing the recommendations. Note that privacy
is preserved in the lookup mechanism, because
the only node that knows the identity of the
end-user is the entry-node of the onion-routing
path, which however can neither know the end-
user’s group association (i.e. due to encrypted
cluster id) or the group’s recommendations (en-
crypted recommendations). Its worth noting
that in scenarios where the end-user client’s de-
vice is well-provisioned (e.g. IPTV set-top-box)
to be a member of the DHT itself, the TOR-
based anonymization network could be option-
ally replaced by DHT-based anonymization sys-
tem using AP3 [20].
(b) Anonymous Publish: Alternative to the

above PULL-based anonymous lookup mecha-
nism, one can employ a more complex PUSH-
based anonymous publish-subscribe mechanism,
wherein newly generated recommendations at
the group-wise aggregator are published to the
group members anonymously, i.e. ensuring that
no P3 middleware node including the group-wise
aggregator knows the identity of the group mem-
bers. This can be done using anonymous chan-
nels that allow an end-user to specify a kind of
mailbox-address for its intended messages as the
channel address without divulging their identity.
When a node wishes to construct an anonymous
channel, it first picks a random id, as the ad-
dress of the channel. Messages sent to this chan-
nel id are then forwarded anonymously back to
the receiver, and nodes who send messages to the
channel are unaware who is the actual recipient.
Thus, if an end-user wishes to join the publish-
subscribe group corresponding to cluster id, it
first creates an anonymous channel and then in-
cludes the address of the channel in the anony-
mously routed group-subscription request to the
group-wise aggregator. The channel ids corre-
sponding to different group members that the
group-wise aggregator receives is maintained as
the group state. Generated recommendations at
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the group-wise aggregator can then be sent to the
channel ids corresponding to its group members.
Both TOR [13] as well as AP3 [20] allow the cre-
ation of anonymous channels. As in the case of
anonymous lookups, depending on whether the
end-user’s P3 client is provisioned enough to run
a DHT node locally, we use either an AP3 or
TOR based realization of anonymous channels.

3.7 Local recommendation selection

Component type: P3 local client running on end-
user’s device
On the reception of group recommendations

corresponding to the user’s interest group(s), the
user’s client compares them with the local profile;
by making a simple extraction operation one can
filter out the items already consumed by the user
in the past and obtain the recommendation list
from merging the remaining items in the top-K
lists provided by each cluster the user in affiliated
to. In the case, where targeted ads have been
injected in top-K lists a specific behaviour can
be adopted by the user client depending on the
user’s preferences. On two extremes, all the ads
could be filtered out or all the ads could be kept
in the list which will allow repeated visualization
of the same ad over the time).

4 Related Work

In this section, we will categorize the related
work according to high level functionalities
provided by prior state-of-art, and contrast their
functionality with that of our P3 system.

Privacy preserving local content-based
recommender systems: A few works like Ad-
nostic [26] and Privad [17] employ a local profil-
ing algorithm that categorizes the user into au-
dience segment(s) based on the observed brows-
ing and content consumption history. The
content-provider broadcasts all ads/content to
each user, together with specification of the in-
tended audience-segment corresponding to each
ad/content. The local content-filtering algo-
rithm however only displays ads/content corre-
sponding to the user’s audience-segment.

To reduce the bandwidth costs resulting from
broadcast of all content/ads, systems like Pri-
vad [17] anonymously subscribe the user to
high-level interest categories via an anonymiz-
ing proxy that is assumed to not collude with
the content-provider, receive content/ads for this
high level category, and do fine-filtering of rele-
vant content/ads locally.
Such systems however face the challenge of be-

ing able to develop an algorithm that can run
on end-user’s device with recommendation qual-
ity comparable to proprietary recommendation
algorithms developed by centralized content-
providers like Google etc. In addition, these
systems only provide content-based recommen-
dations and are unable to provide collaborative
filtering recommendations since there is no way
to know other top-rated items liked by users with
similar interests.
In contrast, P3 enables both content-based as

well as collaborative filtering recommendations,
is more scalable, has greater resistance against
collusion attacks, and also does not have to rely
on replicating proprietary personalization algo-
rithms on the local device.
Another very recent work Re-Priv [15] relies

on doing local profiling in the browser. How-
ever, after having done the local profiling it
relies on users to give explicit permissions to
service/content providers to utilize the meta-
profile computed locally to push personalized
content. Their privacy benefits come from the
fact that the browsed urls need not be revealed
but only the synthesised meta interests can be
provided to the content provider. In contrary,
our approach is aimed to even hide the high
level interests from the service/content provider.

Privacy-preserving collaborative filter-
ing: Collaborative Filtering (CF) approaches
present big privacy issues since they need to
gather all users consumptions on a centralized
server. Anonymizing users’ profile (i.e via as-
signing pseudonyms) before sending them to a
centralized server is prone to ’linkability’ attacks
where the real identity of the pseudonym can be
inferred based on complete profile details (e.g.
AOL scandal in 2006).
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Solutions to preserve user’s privacy in a CF
system, propose to compute local aggregations of
individual profiles for/by a community of users.
The computed ’aggregate’ is public and doesnt
expose individual users profiles (e.g. Canny et
al [7]). The aggregate is calculated iteratively
by only adding vectors of user profile. Homo-
morphic encryption is used to allow sums of en-
crypted vectors to be computed and decrypted
without exposing individual data. This work is
however focused on a peer-to-peer framework,
supposes that the majority of users are honest
and states that the community should ideally
know each other!
Another solution proposed by Polat et al [22]

is to use randomized perturbation techniques to
disguise the real user’s consumption before send-
ing them to the server. The server applies then
a CF algorithm (SVD-based) on the disguised
profiles and builds a matrix. To get a predic-
tion for an item, the user sends a query to the
server that computes a certain scalar product us-
ing the matrix and sends it back to the user.
The latter computes the real prediction of the
user likes/dislikes of the item using a particular
formula involving the real private user profile.
Authors indicate that the accuracy of their sys-
tem is good but could be improved if more ag-
gregate information about the user is disclosed
along with the disguised data (i.e. knowing the
real user preferences allows to generate more ac-
curate recommendations).
Other approaches like that of Berkvosky et

al [4] try to combine the obfuscation of a part of
the user profile with the distribution of users pro-
files between multiple repositories to offer a CF
system preserving user privacy while not ham-
pering system accuracy. They studied what in-
formation of the user profile should not be hidden
to continue having accurate recommendations.
However, even though the generated recommen-
dations were accurate, their results showed that
a CF system working with real users’ profiles (i.e.
without any obfuscation) always provide better
accuracy.
In summary, prior privacy-preserving col-

laborative filtering solutions either rely on
heavyweight computations employing crypto-

graphic operations or rely on degradation of
recommendation quality by introducing pertur-
bations in the users actual profile. In contrast,
the collaborative-filtering approach of P3 is
much more lightweight and works without re-
quiring random perturbations to the user profile.

Collaborative personalized applications
via anonymous peering with like-minded
peers: In addition to collaborative-filtering
recommendations, some Web2.0 applications
like personalized web-search [19] could benefit
from connecting the end-user with like-minded
users with similar interests. The Gossple [5]
system enables every end-user to be associated
with a network of anonymous ’like-minded’
acquaintances, and shows how applications
like the personalized query-expansion can be
built using Gossple. To achieve anonymization,
Gossple uses a gossip-on-behalf approach where
each node n is associated with a proxy P that
gossips profile information on its behalf. The
end-user’s identity is hidden from P , by using
an encrypted two-hop communication akin to
onion-routing [24] wherein the end-user relays
its profile information to P via an intermediate
proxy that cannot decrypt the profile infor-
mation. Although one could imagine using
the Gossple substrate for designing a privacy
preserving collaborative filtering application, the
drawback of the Gossple’s anonymous peering
approach is that in order to know which two
users are similar the complete set of consumed
items (i.e. complete profile) consumed by the
other user (although pseudonymized) is known
to the other user. This is open to linkability at-
tacks, wherein the pseudonym to user mapping
can be inferred by sophisticated attacks that
can intelligently infer the possible user based on
the overall set of items consumed by him.

Scalable Collaborative Filtering: The
Google-News personalization system [12] inves-
tigates how the scalability can be achieved in
a recommender system that needs to deal with
high item churn and large set of users. Their
first technique to get scalability is the use of
model-based algorithms for collaborative filter-
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ing wherein the user is mapped to one (or more)
cluster(s) of ’like-minded’ users using techniques
like MinHash [9, 10] (an LSH [16] scheme for
set-similarity using the Jaccard coefficient) and
PLSI, and only the item-ratings of cluster mem-
bers (instead of the entire set of users) is used
to calculate the recommendation. Their sec-
ond technique to get scalability is to develop
MapReduce-friendly versions of the MinHash
and the PLSI algorithms. In contrast to our
P3 system, their system is a centralized system
which assumes access to all the user’s consump-
tion history, and uses a MapReduce framework
to scalably generate the recommendations. Al-
though their PLSI algorithm cannot be trivially
applied to our P3 setting because of the need
of several global item consumption statistics, we
observed that the MinHash algorithm can how-
ever be used to do local computation of clus-
ter ids as proposed in the realization of Step 2
of our P3 system.

5 Conclusion

We have proposed the design and realization of
P3 system, a privacy-preserving-personalization
middleware that enables the end-users to partic-
ipate in a wide range of recommendation-based
services, without privacy concerns of revelation
of their sensitive profile information. We are cur-
rently in the process of evaluating P3’s perfor-
mance in terms of recommendation quality and
overheads, and contrasting it with that of cen-
tralized recommender systems.
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Abstract. This paper examines profiling basic demographic informa-
tion (gender and age) from the gameplay of 1040 World of Warcraft
(WoW) players. The authors develop two monitoring systems to track
the players, one based on in-game observation and the other on a data
source provided by the operators of the game. We describe and extract
four feature sets, each from different assumptions regarding the type and
amount of data available to an adversary: 1) a one-time snapshot of each
character, 2) a series of snapshots from which we extract features for
character progression, 3) a mapping of players to characters that allows
us to extract higher level features over all the characters belonging to a
player and 4) a superset of the previous three sets.
We show that one can predict gender and age (within ±5 years) for 53%
of players using machine learning and one can predict gender and age
(within ±1 year) for over 11% of participants solely based on the features
monitored by our systems.

1 Introduction

Video games continue to increase in popularity, evolving from a niche hobby
into a massively popular activity pursued by millions. In 2009, marketing survey
group NPD found that 63% of their survey respondents had played a video
game in the last six months while only 53% had been to the movies, laying to
rest any doubt that video games have achieved widespread appeal[1]. Massively
Multiplayer Online Games (MMOG) are one of the fastest growing segments of
the video game market. These games allow millions of people to simultaneously
play the same game over an internet connection.

This paper examines whether one can profile online gameplayers solely based
on how they choose to play a game. Online profiling of this sort has a variety
of applications. Knowing a player’s demographic characteristics could allow a
company to display advertisements that are more likely to be meaningful or
interest to an individual. Knowing demographic details about a player may even
enable companies to personalize the game world to that player, making the
experience more engaging. Profiling is of particular interest to “social gaming”
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companies whose tend to have a high churn rate and who may not know anything
about their players aside from their style of play.

To determine if it is possible to extract demographic characteristics from
gameplay, we observe 1040 individuals on the world’s most popular MMOG,
World of Warcraft [2]. We examine how well one can predict a person’s real
world (RW) demographic characteristics based on features extracted from their
in-game behavior. We show that one can reliably predict a player’s gender and
age based on the features extracted in this paper, finding that one can predict
gender and age (within ±1 year) for over 11% of our players. With a wider age
range (±5 years), one can predict gender and age for nearly 53% of players.

As a second contribution, we investigate whether knowing the mapping be-
tween players and characters (which player plays each character) improves de-
mographic prediction. Many MMOG players choose to play multiple characters,
one “main” character and several “alts”. Determining the mapping from players
to characters is difficult. We use the ground truth mapping from our players and
extract additional features that treat all the characters played by a single player
as one entity. Statistical testing confirms that the mapping improves predictions
of gender but does not improve predictions of age by a statistically significant
amount.

We extract hundreds of features from the players’ combat, exploration, achieve-
ment and social gameplay, divide the features into sets based on the type of ob-
servation (one-time character-based, continual progression-based, player-based
or a combined superset of the previous three) required to generate each set, and
show that one can accurately predict demographic characteristics for the ma-
jority of characters using classifiers or regression models from gameplay data.
Models trained on our feature sets predict gender with an F-Measure and ROC
AUC up to 0.9. SVM-based regression models trained on our feature sets pre-
dict age within ±5.0-5.5 years (Mean Absolute Error from actual age). Before
proceeding, we describe Blizzard’s World of Warcraft.

1.1 The World of Warcraft

Our participants play what is currently the most popular MMOG in the world,
Blizzard’s World of Warcraft (WoW).3 Due to its popularity, we assume most
readers are familiar with basic MMOG mechanics and limit the length of our
description. WoW has an active subscriber base of at least 11.5 million users
(the last time Blizzard acknowledged a subscription figure in 2008[3]. Current
subscriber numbers are estimated at 14-15 million users.). WoW is set in the
fictional land of Azeroth, where various races battle for survival. Each WoW
player creates one or more in-game alter-egos known as a character. The player
selects a race aligned with one of two factions, the Horde or the Alliance, each
made up of different races (e.g. elves or orcs).

3 An expansion to World of Warcraft, Cataclysm, will be released after the publication
of this paper and make portions of our description outdated.
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The character must also select their class: Druid, Hunter, Mage, Paladin,
Priest, Rogue, Shaman, Warlock or Warrior. This decision is the first step toward
determining if the character is a Tank, Healer, melee DPS, or ranged DPS.
Players often create more than one character: one “main” character and several
“alts”. These “alt” characters allow the player an alternative gaming experience
(via race, class or role).

The players earn money and experience by completing quests and killing
mobs (non-player controlled characters). When the player gains a set amount
of experience, they level up. Player levels are currently capped at 80. Money
is used to purchase equipment to improve the character’s skills. One can play
most of the game’s content by oneself but to access the best equipment and
most challenging game content, players need to form groups with others. These
groups are formalized as guilds. Guilds also provide an in-game social network
for players and can range in size from 1 to several hundred members.

In addition to combating mobs, a player may also fight other players (PvP).
PvP can happen in a variety of settings, from large-scale fights during raids on
the opposing faction or in battlegrounds, to duels and arena combat. Certain
servers are designated PvP servers, allowing a player to attack opposing faction
members at any time. Other servers are specified as Player vs Environment
(PvE), imposing restrictions on PvP.

The rest of the paper is organized as follows. First, we review previous re-
search, followed by a description of our participants and a detailed discussion
of the systems that monitor their play. We then discuss extracted features. The
features are described in more detail in Section 4. This is followed by an evalua-
tion of how well we predict demographic characteristics from these features. We
discuss implications in Section 7 before concluding with future work.

2 Related work

This paper focuses on extracting demographic variables via gameplay profil-
ing and so we highlight related work that involves this sort of prediction. Hu
et al attempted to predict demographics such as gender and age by using a
Bayesian framework based on webpage click-through data [4]. In a very large
study, Singla and Richardson observe that associates in social networks (even
friends of friends) tend to have similar interests and personal characteristics and
the strength of that relationship is correlated with their level of similarity [5].
ItemSpider, by Tsukamoto et al, is a social network centered around books. The
authors found that people with similar characteristics were interested in similar
types of books [6].

In 2007, Jones et al studied anonymized query logs and showed that with
a series of classifiers one could map queries to gender, age and location of the
user. They had a real-world acquaintance of a target user attempt to identify
the target in an anonymized data set and found that personal information often
enabled identification [7].
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Another subset of this work has focused on predicting demographic data
based on linguistic features in electronic media, including Herring’s study of
gender in electronic communication [8] and Koppel’s work on determining the
gender (and age) of a text’s author or of bloggers [9, 10]. Linguistic features
were not available to us in this study but could be incorporated to improve
performance.

While there has been a large amount of social science and HCI research on
online games, there is a dearth of research on demographic profiling from online
gameplay. Examples of this type of work include studies by Ducheneaut et al [11],
Yee et al[12, 13], Bessiere et al [14], Nardi and Harris [15] and Williams et al [16],
among others. In a related vein, Grimes and Bartolacci examined the potential
for using Second Life as a platform to teach profiling online behavior [17].

Finally, Nokelainen et al provides an example of how the demographic predic-
tions can be used to personalize their experience by building a Bayesian model
of a user based on a questionnaire they fill out [18].

3 Methodology

We established the ground truth for our predictions of gender and age by recruit-
ing a large group of World of Warcraft players and monitoring their gameplay
for a period of 6 months from April 5th, 2010 through October 5th, 2010. We now
describe our participants and the recruitment process before giving an overview
of the two tools developed to monitor their play. Then, Section 4 describes the
various features we were able to extract based on our monitoring tools.

3.1 Participant details

We recruited 1,040 WoW participants, 533 participants from the United States,
512 from Hong Kong or Taiwan. The participants were recruited on forums
dedicated to WoW, by publishing an article on the proposed study on popular
gaming sites (e.g., WoW.com), through word-of-mouth, and via mailing lists
collected during previous studies of online gamers. Participants completed a
basic demographic survey as well as listing up to 6 WoW characters they were
actively playing. Hong Kong and Taiwanese recruitment was done by scholars
residing in these countries, with recruitment materials and surveys translated
into appropriate dialects of Chinese. 26.25% of the participants were female.
Our participants ranged in age from 18-65. The average age of our sample was
27.04 years old with a standard deviation of 8.22 years. Hong Kong/Taiwan
participants were more concentrated in their early twenties, with fewer players
over thirty. In contrast, over 41.70% of US players were 31 years of age or older.

The 1,040 participants played 3,862 characters during the course of our study,
an average of 3.73 characters per participant (stdev=2.15). 2,034 (52.66%) of
these characters were aligned with the Alliance. 1,988 (51.48%) of the characters
were female. As one would expect from a mature game (WoW is over 6 years
old), a large number of the characters in our study, 69%, have reached the highest
level possible. Figure 1 plots the age and level distributions.
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Fig. 1. The age distribution for our participants is plotted on the left and the level
distribution for their characters on the right.

3.2 Monitoring participants

The data collection system monitored two sources of data. We conducted in-
game monitoring based on a system described by Ducheneaut et al [11]. This
system tracked characters on any of the 249 US servers or 31 Hong Kong/Taiwan
servers. The software managed 12 WoW robots, each running in a separate
virtual machine on one of two Quad Core Mac Pros. The robots log into the game,
issued a /who query for the characters they were currently tracking and noted if
they were online, collecting in-game location data for each character as well as
for their online guildmates. This enables us track with whom our participants are
playing, similarly to [12]. The robots cycled through the characters in roughly
45 minute intervals.

A second data collection system consists of a web scraper to gather character
information from the WoW Armory [19] in the form of large XML files. The
Armory is a Blizzard-provided service that supplies detailed information for all
WoW characters over level 10. The Armory includes everything from generic
information about a character’s race and class to minutiae such as the number
of monsters killed, the number and type of deaths and kills, the achievements
the character has earned and information about the equipment currently in use.
A character’s armory entry is updated once per day if that character was active
the previous day.

We process the output of both monitoring tools and extract the features
described in the next section into a SQL database. A negligible percentage of
the data was discarded due to network transfer errors. Heavy load on specific
servers had a negligible impact on our in-game collection as well.

4 Feature extraction

Given the data sources detailed in the previous section, we extract a total of
435 features. We divide the features into four levels based on the information
required to extract them.
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– Character-based features are features one could extract given a broad knowl-
edge of a character’s gameplay at a single point in time.

– Progression-based features are features one could extract given temporal
knowledge, that is, a series of character snapshots over a period of time.

– Player-based features are features one could extract given character-based
features and a mapping between characters and participants/players to en-
able the extraction of “higher level” features for each participant.

– Combined features are a superset of the other three feature sets.

The following sections provide detailed descriptions of the features included in
each set. We extract too many features to provide a detailed description of all
features in this paper. A list of all our features is available at:
http://www.cs.uiowa.edu/ plikaris/WoWfeats.txt.

4.1 Character-based Features

We extract a set of 246 features for each character from a one-time snapshot of
the most recent data for each character taken on October 6th, 2010. We divide
the features into categories and summarize the features in each category below.

General features A character’s race, class, gender, guild, level, faction, base
stats (such as strength or spirit), their professions skill and how they choose to
allocate their talent points (after leveling, players can allocate talent points to
increase their abilities).

This category also includes miscellaneous information such as how many
mounts (rideable NPCs) and pets the character owns, their reputation with
various non-player factions and how often they roll greed or need (when a group
of characters encounter a valuable object, they “roll” to determine who receives
it. The player with the highest roll keeps the object. If a character needs an
object, they choose “need”, otherwise they select “greed”. Need rolls are always
higher than “greed” rolls). (total features: 75).

Achievement features WoW grants achievements for completing certain game
objectives, such as exploring areas or defeating certain bosses. Achievements cat-
egories include: General, Dungeons, Exploring, Feats, Professions, PvP, Quests,
Reputation and World Events. We track the number of achievements each char-
acter has completed in each of the above categories. We also create a binary
complete/incomplete feature for difficult-to-complete specific achievements (to-
tal features: 79.

Combat features Combat features include combat-related statistics such as
the biggest hit received or dealt by each character. This section also includes
the number of deaths the player has experienced (e.g. the number deaths from
other players, from NPCs, from falling, from fire, etc) as well as the number
of monsters killed. We also track the number of other players killed, and how
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often the character uses PvP-specific features of the game, such as the arena
or battlegrounds. The final piece of information in this category is the value of
the character’s equipment for each piece of gear they had equipped at the time
(total features: 86).

Emotive features We observe the number of times a player hugs, waves, cheers,
lols, facepalms, or violins in game. Other emotes are not tracked in the Armory
(total features: 6).

4.2 Progression-based features

156 features are extracted from observations of the character’s progression over
the 6 month period of observation. For each character-based feature that changes
over the period of observation, we tracked its rate of change. For instance, the
average number of deaths per session played, the increase in equipment value
per session played, or the number of hugs per session played. Included in this
data set are features such as the percentage of time the character plays on each
week day and during which part of the day the character is most active. We omit
character-based binary features because completion is a yes/no proposition. An
example would be achievements. Progression-based includes the rate of achieve-
ment completion in each category but not completion of specific achievements
(total features: 114).

The social network data is inherently temporal because it requires multiple
observations to establish the network. We calculate a large variety of standard
social network analysis metrics including network size, transitivity, centrality,
betweenness and clustering metrics for each character. This category also in-
cludes information about the variance in racial, class and level balances in the
participant’s social network (total features: 42).

4.3 Player-based Features

We extracted 33 features at the participant level by analyzing all characters
played by a single participant as a group. These are features that are unavail-
able unless one knows a mapping from players to characters. They include: the
percentage of characters of a given gender for each participant and the percent-
age of characters belonging to each faction for each participant. Other features
include the amount of time a participant spends playing each role (melee DPS,
ranged DPS, tank and healer).

We also compare the participant’s focus in the game relative to other charac-
ters. That is, does the player spend more time on PvP or exploring? How much
questing do they do relative to other participants? To answer these questions,
we divide the participant’s into quintiles depending on how many achievements
they have completed in comparison to other participants.
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4.4 Combined Features

This feature set is a combination of the other three feature sets. We include it to
estimate the maximal predictive performance given all information available in
this study. To generate Combined, we attached the progression-based features to
the character-based features and added the corresponding player-based features
for each character.

5 Predicting Real-World Demographics

This section evaluates the accuracy with which one can predict demographic
characteristics (gender or age) based on the four feature sets described in the pre-
vious section (character-based, progression-based, player-based and Combined).

With the character-based and progression-based feature sets, we make a pre-
diction for each of the 3,826 characters for which we have both character-based
and progression-based features. With the player-based feature set, the under-
lying assumption is that we know the mapping from characters to participants
and thus, we make our prediction for each of the 1,040 participants. Combined,
a super-set composed of all three feature sets makes a prediction for each of the
characters.

We adopt different data mining strategies for predicting gender (a discrete
variable) and age (a continuous variable). For gender, we repeatedly trained a
C4.5 classifier on each feature set with randomly selected training data. We ex-
perimented with other classifiers, including an SVM (Platt’s Sequential Minimal
Optimization (SMO) [20], an Radial Basis Function (RBF) kernel, varied com-
plexity and gamma), but no classifier substantially outperformed the others.
Some previous research binned people into age groups [4]. Instead, we opt to
treat age as a continuous variable and to train a regression model to predict age
directly. We experimented with several regression models including: linear re-
gression, Partial Least Squares and a Multilayer Perceptron and regression from
an SVM model. None outperformed the SVM regression model. We elected to
use an SVM regression model [21] to directly estimate each character’s (or par-
ticipant’s) age. We used the classifiers as implemented in the Machine Learning
Toolkit, Weka [22]

5.1 Description of experiments

We develop two research questions that correspond to the contributions claimed
in the introduction:

1. How reliably can we predict gender and age for each character or participant?
(RQ1)

2. Which feature set yields the best performance for each demographic charac-
teristic? Does player-based outperform character-based? (RQ2)

To addresses these questions, we carry out two experiments.
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Experiment 1: training/test split To address RQ1, we examine the average
performance of a model given varying percentages of data reserved for training.
We reserve a set amount of data for training a model to predict either gen-
der or age. The amount varies from 10% to 90%. We repeat this evaluation at
each percentage split multiple times, randomly selecting the training data to
improve robustness. We evaluate gender using F-measure and Receiver Operat-
ing Characteristic Area Under the Curve (ROC AUC) and age using Pearson’s
correlation coefficient, Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE). This experiment addresses RQ1 by reporting performance metrics
of how well we can predict each characteristic given set amounts of training data.

Experiment 2: differences in feature set performance To investigate RQ2,
we select a set amount of training data (50% for gender, 80% for age) and increase
the number of repetitions with randomly selected training data. We report the
differences in performance and perform an ANOVA in order to confirm that
there are statistically significant differences in performance. We note that we
are able to perform sufficient repetitions that statistically significant differences
become the norm rather than the exception.

5.2 Predicting Gender

This section investigates how reliably we can predict gender for each of our
feature sets. We address RQ1 (how reliably we can predict gender) and RQ2
(differences in performance between feature sets) using a C4.5 classifier and the
two experiment described in the previous section.

Experiment 1: training/testing splits We computed the F-measure and
AUC for a C4.5 classifier trained on increasing amounts of data (from 10% of
all instances up to 90%). At each percentage split, we randomly selected the
training instances each time and using the remaining data to train the classifier,
repeating the evaluation twenty times to reduce the effect of random selection
on performance. The a priori class distribution was preserved in the training
and test sets.

Figure 2 plots the results of this experiment. Combined outperformed the
individual feature sets when at least 30% of the data was reserved for training.
Progression-based underperformed the other feature sets. Character-based and
player-based performed roughly similarly according to AUC but player-based
dominates character-based when one considers only F-measure.

Classifiers trained on character-based, progression-based and player-based
feature sets show limited improvement as the amount of training data increases.
This suggests one can predict gender based on the ground truth for a relatively
small number of characters. The stable performance with small amounts of train-
ing data alleviates concerns that we are overfitting the data.
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Fig. 2. Average F-measure and AUC of gender for feature sets with varying percentages
of data used to train a C4.5 classifier. Training data was randomly selected for each
split and the process repeated 20 times.

Experiment 2: differences in feature set performance To ensure we are
looking at meaningful differences in performance between feature sets (RQ2), We
repeated our random selection of 50% of instances as training data 100 times to
be sure of the ordering among feature sets. We preserved the class distribution
in both the training and test sets. Table 1 presents the average precision, recall
(F-measure is the harmonic mean of precision and recall) and AUC for a C4.5
classifier trained using 50% training data for each of the feature sets and the
Combined superset.

The player-based feature set performed better than the character-based and
progression-based feature sets. We note that the player-based and character-
based AUCs were within approximately standard deviation of one another while
the difference in F1 Measure was more pronounced. The progression-based fea-
ture set performed poorly, suggesting that in isolation this feature set is the
least useful for predicting gender. Of course, we only observed character pro-
gression over a six month period and the majority of our characters were mature
characters.

Feature set Precision Recall ROC AUC

Combined 0.871 (0.016) 0.871 (0.016) 0.843 (0.028)

Participant 0.826 (0.015) 0.829 (0.014) 0.775 (0.045)

Character 0.775 (0.011) 0.767 (0.011) 0.746 (0.026)

Progression 0.646 (0.015) 0.647 (0.017) 0.602 (0.022)

Table 1. C4.5 results for gender based on 50% training data. Feature sets ordered by
decreasing AUC. Standard deviation in parenthesis.

We conducted ANOVAs using either AUC or F-measure as the dependent
variable and the feature set type as the factor. The authors emphasize that, due
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to the large number of observations, statistically significant differences between
means of the feature set types are expected rather than remarkable. For AUC,
the ANOVA confirmed that the main effect, feature set type, was significant
(F[3, 396] = 1038.074, p < 0.001). Post hoc tests using Tukey HSD showed that
the feature sets all differed from one another (means and standard deviations in
Table 1, p < 0.001). These results suggest that the ordering observed in Table 1
is robust. An ANOVA conducted on F-measure produced very similar results
(F[3, 396] = 4583.297, p < 0.001).

We also examined the most effective features using a traditional feature evalu-
ation metric, Information Gain, to calculate the average rank of features relative
to one another across a 10-fold cross validation. Appendix A presents the rank of
the top 50 gender features, as well as the set to which each feature belongs. 46%
of the top-ranked features belong to the player-based feature set. The difference
is even greater for the top 20 features, with 90% belonging to the player-based
set. This explains why the player-based set provids better predictions of gen-
der than the character-based set. 42% of the top-ranked features belong to the
character-based set but tend to be of lower rank than the player-based features.
Only 12% of the features belong to the progression-based set.

5.3 Predicting Age

In this section we use an SVM-based regression model to predict ages. We evalu-
ate RQ1 and RQ2 similarly to gender except that we use a different model (SVM
and regression) and metrics used to do so.

We trained an SVM regression model with varying amounts of training data.
Figure 3 plots the results of the training/testing split. all four feature sets con-
tinued to improve as the amount of training data increased. With regard to
RQ1, similarly to our previous results, the progression-based feature set under-
performed in comparison to the other sets. The Combined and character-based
feature sets both produced correlation coefficients exceeding 0.5, our baseline for
a moderately strong correlation.

With 80% of data reserved for training, Combined is able to predict age
within ±5 years in terms of MAE (±6.5 RMSE), with the character-based fea-
ture set able to predict age within ±5.5 (±7.5 RMSE) years. Regression models
trained with any of the four feature sets perform better than the baseline (the
average standard deviation about the mean, depicted as the dotted line in Fig-
ure 3) except for progression-based when measured by RMSE. The standard
deviation from the average MAE and RMSE varied by over a year. The useful-
ness of predictions as wide as ±5 years is discussed in the next section.

Experiment 2: differences in feature set performance Predicting age via
regression is difficult (even for with high levels of Combined feature set reserved
for training, the MAE of our predictions is ±5 years from actual ages) and so we
reserved 80% of data for training, and used 20% for testing. Table 2 presents the
MAE, RMSE or Pearson’s correlation coefficient of an SVM regression model
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Fig. 3. From top-left, clockwise: MAE, RMSE and Pearson’s correlation coefficient of
predicted age for each feature set with varying percentages of data used to train an
SVM regression model. Lower values represent an improvement in MAE and RMSE.
The dotted line is the standard deviation of the distribution about the mean.

trained on each of the feature sets and the Combined superset. We repeated this
analysis 25 times.

With regard to RQ2, as was the case with gender, Combined performed sub-
stantially better than the other data sets and progression-based substantially
worse. The difference in performance between player-based and character-based
was well within one standard deviation of both means. While the difference in
performance between character-based and player-based was small, the devia-
tion in performance was substantially larger for player-based, with a standard
deviation of 2.85 years in terms of RMSE.

We conducted ANOVAs with RMSE and MAE as the dependent variables
and feature set type as the factor. The main effect of feature set type was signif-
icant for RMSE (F[3, 96] = 105.592, p=< 0.001) and MAE (F[3, 96]= 96.674,
p< 0.001). Post-hoc testing using Tukey HSD found that with regard to both
RMSE or MAE, there was no significant difference between character-based and
player-based (RMSE: p = 0.110, MAE: p = 0.101). Combined’s mean was signif-
icantly higher than the other three sets (p< 0.001) and progression-based was
significantly lower (p< 0.001). Means and standard deviations are in Table 2.
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Feature set Pearson’s RMSE MAE

Combined 0.691 (0.009) 6.49 (1.15) 5.01 (0.65)

Participant 0.456 (0.026) 7.35 (2.85) 5.48 (1.64)

Character 0.559 (0.010) 7.60 (1.15) 5.64 (0.751)

Progression 0.388 (0.017) 8.46 (2.02) 6.22 (1.59)

Table 2. Regression model results for age based on 80% training data. Standard de-
viation in parenthesis. Feature sets ordered by MAE performance.

Fig. 4. Probability distribution character is of age given model predicts character is
between 21-23 years old. For future predictions within 21-23 age range, we can use this
distribution to calculate probability character is of certain age.

Depending on the application, being able to predict a person’s age within ±5
years (on average) may or may not be acceptable. We note that in related work,
some age bins, particularly for older participants, have been 10 years wide and
even larger [4]. It is also possible to treat the prediction generated by a model
as a probability distribution rather than an exact value, at least given sufficient
amounts of data from previous predictions and their ground truth for a large
population of varied ages.

Figure 4 illustrates what such a distribution looks like given that the model
has predicted a character is 22±1. The figure was generated from data produced
by a model trained on the Combined feature set. We extracted the actual ages
of participants for which the model predicted the character was between 21
to 23 years old. The distribution was generated by calculating the fraction of
characters that were of each actual age. With this distribution, given that the
model predicted a new character is 22, one can determine there is a 48% chance
the individual’s actual age is 20-24 and only a 7% chance the person is 30+.

As with gender, we ranked the top 50 most predictive features for age us-
ing Information Gain (Appendix B). To use the Information Gain algorithm
available, we discretized age into three bins. Again, the feature ranking helps to
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Fig. 5. Percentage of characters with gender correct and age predicted within ±x years
of actual.

explain the relative performance of the feature sets. Unlike with gender (in which
player-based outperformed character-based), with age player-based does not out-
perform character-based. 22% of the top 50 features belonged to the player-based
set (25% in top 20). 46% of the top 50 features belonged to character-based and
32% to progression-based.

6 Predicting Multiple Demographic Characteristics

The previous section treated the prediction of gender and age in isolation. How-
ever, it could be beneficial to predict demographic characteristics in combination
with one another. Making predictions in concert, however, can potentially com-
pound the overall error rates. The purpose of this section is to estimate the
percentage of characters for which we can determine both gender and age. Since
age is continuous, we calculate the percentage of characters for whom the pre-
dicted value falls within a range of ±x years, where x ranges from one to ten.

We use the Combined feature set and randomly reserve 80% of the instances
for training. We then predict a character’s age (via SVM regression) and gender
(via C4.5 classifier) for the remaining 20% of the data. We repeat this procedure
25 times. The results of this evaluation are presented in Figure 5. For over 11%
of the participants, we can predict their gender and age within ±1 year. For 53%
of participants, our models predict gender and age within ±5 years.

7 Discussion

People typically flock to free services over pay services online. This has limited
the business models for companies who operate entirely in a digital space. One
popular model is the use of predictive analytics/ad supported services. The tech-
niques in this paper could potentially improve the effectiveness of this business
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model. Further, if a game developer can determine information about a player
based on how they play the game, it may be possible to tailor the game world
to better suit that individual, alerting them of gaming events that are likely to
be of interest or even individualizing the in-game experience to produce a more
engaging experience. Additionally, recommender systems that monitor social
gaming and utilize homophily between subjects4 to improve recommendations
could leverage the models generated in this paper to improve recommendations,
increasing user satisfaction.

As researchers, we should also explore the implications of rampant moni-
toring and mining of online activities in order to establish what it is possible
to determine from this data. Gaming is no different than any other activity we
carry out online: our digital presence constantly leaks information about who we
are in the real world. Although not the goal of this paper, profiling can be used
to identify who we are even in the absence of personally identifying information.
The furor over Blizzard’s attempt to tie gaming profiles to their people’s “real
IDs” reveal that many MMOG players are uncomfortable with efforts to link
them to their gaming personas [23].

8 Conclusion

This paper monitors 1,040 online game players and extracts a large number of
features based on how the participants play the popular MMOG, World of War-
craft. The high levels of accuracy with which we can predict gender and age
from gameplay alone suggest that profiling otherwise anonymous players may
allow companies to tailor the gaming experience to individuals. Predictions gen-
erated for gender produce an F-measure of 0.75-0.85 with 50% of data reserved
for training. A regression model for age with 80% of data reserved for train-
ing predicts actual age with MAE of 5.0-5.7 years. We correctly predict gender
and age (±5 years) for 53% of our participants. Features extracted with knowl-
edge of the character to player mapping does improve predictions of gender over
character-based features alone. This is not the case for age. One can also restate
this finding: a small number of features extracted from a player to character
mapping (33 features) produces the same level of predictive performance as a
substantially more detailed set of character-based features (289 features).

Future Work We intend to explore the prediction of less obvious demographic
variables such as level of education, income or even personality. Finally, one could
investigate how difficult it would be to estimate each feature in-game rather than
relying on Blizzard’s WoW armory. It would also be interesting to develop and
study similar feature sets for a different game to explore if these findings are
generalizable across games and genres.

4 Roughly defined as the tendency for individuals to associate with individuals who
are similar to them.
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A Top 50 features for gender

Rank Feature Set Rank Feature Set
1 perc male chars Player 26 defenses armor Player
2 fem male diff Player 27 stat armor Player
3 num male Player 28 isolates Progression
4 num female Player 29 melee expertise Player
5 char gender Character 30 heal recd Character
6 perc tank Player 31 arena played Player
7 perc alliance Player 32 blows bg Character
8 fewest achievs Player 33 prime role Player
9 rel hugs Player 34 hon kills world Character

10 melee main dps Character 35 hon kills total Character
11 perc range dps Player 36 total dmg dealt Character
12 respecs Character 37 duels won Character
13 perc melee dps Player 38 equip epic items Character
14 rel pvp Player 39 hon kills pvp Character
15 hord alli diff Player 40 central close Progression
16 stat str Character 41 char class Character
17 hit recd Player 42 num hugs Character
18 achiev sum pvp Player 43 duels lost Character
19 total dmg recd Player 44 stat spi Character
20 total heal recd Player 45 melee off dps Character
21 most achievs Player 46 deaths raiddung Character
22 melee power base Character 47 transitivity Progression
23 t total heal recd Progression 48 defenses dodge Character
24 t total dmg recd Progression 49 achiev tab pvp total Character
25 stat stamina Player 50 t duels won Progression

Table 3. Most useful features for predictions of gender, as ranked by Information Gain,
average rank across 10-fold cross validation.
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B Top 50 features for age

Rank Feature Set Rank Feature Set
1 perc melee dps Player 26 achiev tab pvp total Character
2 duels lost Character 27 arenas played Character
3 duels won Character 28 t dung lk 25 bosses Progression
4 perc bg wins Character 29 dung 5play entered Character
5 t duels won Progression 30 rel pvp Player
6 t duels lost Progression 31 arenas won Character
7 need rolls Character 32 t hon kills pvp Progression
8 perc need Character 33 arenas played Character
9 respecs Character 34 achiev sum pvp Character

10 t summons Progression 35 summons Character
11 most achievs Player 36 avg lvl Player
12 num daysPlayed month Player 37 deaths other players Character
13 t need rolls Progression 38 t blows bg Progression
14 fewest achievs Player 39 emblems valor Character
15 t hon kills total Progression 40 t deaths total Progression
16 CallCrusade25 PlayerRaid Character 41 LKDungeon Character
17 CallCrusade10 PlayerRaid Character 42 t dung lich 25done Progression
18 prop 80 Player 43 t deaths falling Progression
19 t total kills Progression 44 dung lich 10play done Character
20 greed need ratio Character 45 blows arena Character
21 fem male diff Player 46 achiev tab pvp Arena Character
22 t total heal recd Progression 47 t total dmg recd Progression
23 num female Player 48 deaths warsong Character
24 lvl var Player 49 t lich 25 bosses killed Progression
25 t deaths other players Progression 50 rel dungeons Player

Table 4. Most useful features for predictions of age, as ranked by Information Gain,
average rank across 10-fold cross validation.
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Abstract. The lack of privacy protection for Internet users has been
identified as a major problem in modern web browsers. Despite poten-
tially high risk of identification by typing patterns, this topic has received
little attention in both the research and general community. In this paper
we present a simple but efficient statistical detection model for construct-
ing users’ identity from their typing patterns. Extensive experiments are
conducted to justify the accuracy of our model. Using this model, online
adversaries could uncover the identity of Web users even if they are us-
ing anonymizing services. Our goal is to raise awareness of this privacy
risk to general Internet users and encourage countermeasures in future
implementations of anonymous browsing techniques.

Keywords: Typing Pattern, Biometric, Privacy, Identity

1 Introduction

Among all the information, the personal information of users is being sought by
several third parties, such as advertisers and identity thieves. Even the simple act
of browsing inadvertently leaks a variety of information to the Internet. First,
HTTP cookies stored on the user’s computer can provide unique identifying
information about the user. Fortunately, most browsers allow user to delete
cookies, and a privacy-conscious user might choose to do so after every browsing
session. Second, the user’s IP can be used to infer user’s location up to several
hundred-kilometer accuracy [5]. A web proxy can provide a simple anonymizing
service, but to defend against more sophisticated network surveillance or traffic
analysis, the Tor network1 needs to be utilized.

In spite of all these mitigation strategies, Eckersley was still able to uniquely
identify the majority of visitors to his website [3]. This technique, called “Browser
Fingerprinting”, uses HTTP header values and other information made avail-
able to Javascript. One possible workaround suggested is to activate the pri-
vate browsing mode offered by most modern browsers, effectively blocking some
information from being sent out. Recent research by Aggarwal et al. [1], how-
ever, showed several shortcomings of private browsing mode implementations on

1 http://www.torproject.org
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four major browsers. Furthermore, Fioravanti [4] demonstrated that even if the
browser spoofed the User-Agent and DOM information, intricate details about a
browser’s scripting environment were already sufficient to identify a user. Some
browser vendors have taken positive steps to address this issue; Mozilla has an-
nounced plans to close some information leakage to prevent fingerprinting [10].
It has to be noted that at least in the case of Mozilla, some types of informa-
tion leakage will not be closed due to its potential to provide an enhanced user
experience (e.g. timezone).

The above works focused on the information leakage coming from technology
and its implementation, but we would like to explore leakage coming from the
user him/herself. This can be compared to employing social engineering tactics
to attack a cryptosystem instead of directly attacking its implementation. We
foresee the rise of this kind of attacks in the near future, as attackers try to find
other ways to de-anonymize a user. Also, it has the advantage of being harder
to prevent: browser vendors could easily fix their browsers to close loopholes,
but they cannot “fix” their users. Some studies, such as [11], have indicated that
user education might be the most effective way to address social engineering.

To be more specific, we are looking at users’ typing pattern as the side-
channel information we want to exploit. Internet activities require users to do a
significant amount of typing, from entering his/her username and password in a
login screen, typing to answer chat messages, to editing an article on Wikipedia.
To improve user experience, many Web 2.0 websites immediately transmit any
key strokes entered by the user directly to the website (e.g., Google Instant). Al-
ternatively, a website could use Javascript to measure a user’s keystroke timings
while the user is filling in a form. These measurements will be sent to the website
at the same time when the form data is submitted. We hypothesize that typ-
ing pattern analysis can reveal a user’s identity to some extent. Combined with
information gained from other leakage sources, it can potentially de-anonymize
a user completely, regardless of the usage of private browsing mode, web prox-
ies, or other anonymizing networks. In this study, we verify that such weakness
exists, hence bringing attention to the security and privacy community.

1.1 Related Work

Using typing patterns to detect a unique user has been studied for a long time.
The Allies in World War II developed a technique based on Morse code to distin-
guish their real operators from those pretending to be on their side [13]. This kind
of techniques have been more formally researched since the 1980s, as mentioned
in the comprehensive survey article by Peacock et al. [12]. Monrose and Rubin [9],
for example, studied the keystroke dynamics, or typing rhythm pattern, as a bio-
metric for authentication. Their classifiers were able to authenticate a user with
an accuracy of 83.22% to 92.14%. Clarke and Furnell [2] further extended au-
thentication using keystroke analysis to mobile devices. Though, mobile devices
have inherently different usage patterns from normal computer keyboards; for
example, phone numbers are frequently typed in, and some devices (including
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the one used in their experiment) require users to press a key several times to
produce a character.

In another study, Song et al. [14] were able to develop a Hidden Markov Chain
Model based on inter-keystroke timings of users’ typing during an SSH session
to recover a significant amount of information on their passwords. Leggett and
Williams [8] also performed an experimental evaluation of keystroke authentica-
tion utilizing various kinds of filters. However, most of the above researches re-
quire the user to type several pairs of characters repeatedly (30-40 times in [14]).
In [8], users were asked to enter the same prose twice, the first one for profile
creation, and the second one for testing. This approach might work in the case
of authentication as the user must type the same pair of username and pass-
word every time, but it is unrealistic in the context of general Internet usage. To
post the same paragraph on two different forums, for instance, a user could just
post a URL referring to the first forum, or even simpler, copy-paste the whole
paragraph content.

Various aspects of a user’s typing pattern can be used for analysis, such
as: digraph, trigraph, and tetragraph latencies (interval between two, three, and
four successive characters) [8], overall typing speed, error frequency, and key-hold
time [7]. We primarily use digraph latency information in our model, however it
can be extended to consider the other aspects mentioned earlier. The problem
of how best to aggregate information from different aspects is out of the scope
of this paper, and we leave it for future work.

1.2 Contributions

Compared to previous studies, which focused on authentication, our study puts
typing pattern analysis in a different light: to identify a user in the otherwise
anonymous context of the Internet. The problems of authentication and iden-
tification are closely related, but they are not the same. In the authentication
setting, the system typically knows which user is trying to authenticate, for ex-
ample by means of a username. Also, the user is actively trying to pass the
authentication in order to get some privileges reserved only for authenticated
users. Contrast this with our identification scenario: the users are not aware
that they are being profiled, and the system is trying to uncover who they are
by searching over a set of known typing patterns.

With this paper, we make the following contributions: first, we show that
keystroke dynamics can be easily harvested on webpages without the user being
any wiser about such activity. Next, we devise a model in order to demonstrate
that analysis of some keystroke dynamic features can identify a user with high
accuracy rate. Finally, by analysing the method by which we collected the typing
patterns, we are also able to outline several countermeasures to mitigate the
problem.

This paper is organized as following: we will briefly describe the threat model,
followed by an introduction to our statistical model for analyzing and detecting
the typing dynamics of different users in Sect. 2. Our experiments and results
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are presented in Sect. 3. We propose several mitigation strategies to the problem
in Sect. 4. Finally, in Sect. 5 we give our conclusions and future directions.

2 Our Model

To verify our hypothesis, we started by exploring techniques for detecting typing
patterns based on the time difference between two keystrokes (digraph latency).

2.1 Threat Model

In our setting, the typing pattern of each user is the main asset of interest to
attackers. However, constructing a unique pattern for each individual requires
a significant amount of sample data. In order to achieve it, the attacker could
be a single powerful attacker who has frequent access to users typing on the
Internet, such as a search engine or an email service provider. A collaboration
effort among a group of attackers is also possible if each individual attacker
knows the identity of the user. For example, advertisers might be willing to buy
partial typing patterns of users from different sources and then combine them
to use against anonymous browsing sessions.

2.2 System Model

The threat that we demonstrate in this paper is unlikely to affect all Internet
users. In particular, it is unlikely to affect people who care about privacy to a
great degree and who already, for example, use Tor for all their browsing or who
have Javascript disabled in their browser. Instead, the threat mainly concerns
the (probably larger) set of people who care about their privacy while brows-
ing the web, but are willing to trade off privacy for usability and performance.
For example, these users have their browsers accept cookies and have Javascript
enabled since otherwise many web sites simply would not work. On the other
hand, these users have their browser delete all cookies at the end of a browsing
session. Also, they may use Tor in cases where it is really important to remain
anonymous (e.g., while entering a particularly sensitive Google search query),
but they do not use Tor for their everyday web surfing due to performance rea-
sons. They also use their browser’s private browsing mode (or an extension of it
since current implementations have been shown to be vulnerable, cite paper that
we talked about) to prevent a website from learning their detailed browser/OS
fingerprint. Finally, they use an ISP that employs NAT to assign the same IP
address to multiple users, which makes it difficult for a website to track a par-
ticular user based on IP address. (If NAT is not available, the users could use a
simple proxy instead.) Due to these measures, in particular due to the last one,
a user can arguably expect to remain anonymous among dozens or maybe even
hundreds of users, for example, while making a Google query.2 Unfortunately,
as we demonstrate in this paper, this expectation is overly optimistic.

2 Of course, this assumes that the user does not log in to Google. Otherwise, all bets
are off.
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2.3 Notations and Definitions

We introduce several notations in our model:

– X - a set of observations of a user’s typing timestamps
– TX [a][b] - the list of observed digraph latencies, or the time difference in

milliseconds, between two characters a and b.
For example, TX [‘e’][‘r’] =< 69, 75, 85, 90, 94 > means that in observation
X , the user typed the pair (‘e’,‘r’) five times.

– DX = {(a, b)|length(TX[a][b]) ≥ β} - the dimension, or set of character
pairs in observation X with no less than β data points. The value β is the
Minimum Data Points (MDP) parameter of our model, which controls the
minimum number of observations required for a character pair in order to
be included in our calculation. We set β = 5 for now, and we will discuss
the effect of this parameter in Sect. 3.5.
For example, given TX [‘e’][‘r’] =< 69, 75, 85, 90, 94 >,
TX [‘a’][‘n’] =< 94, 94, 101, 132, 146 >, TX [‘i’][‘t’] =< 87, 89, 101, 134 >,
TX [‘e’][‘s’] =< 75, 79, 83, 89, 93, 99 >, then DX = {(‘a’,‘n’), (‘e’,‘r’), (‘e’,‘s’)}

– DX,Y = Dx ∩Dy - The shared dimension between observation X and obser-
vation Y , where the observations might be made on the same or a different
person.
For example, given DX = {(‘a’,‘n’), (‘e’,‘r’), (‘e’,‘s’)} and
DY = {(‘a’,‘r’), (‘e’,‘r’), (‘e’,‘s’), (‘o’,‘n’)}, then DX,Y = {(‘e’,‘r’), (‘e’,‘s’)}

– ‖P‖ - The size of a collection P (can be a set or a list)

2.4 The Detection Model

In our model, we rely on the Kolmogorov-Smirnov test (K-S test) to determine
if two observations X and Y belong to a same user. We define KS(P, Q) to be
the probability that P and Q are samples from the same distribution based on
the Kolmogorov-Smirnov test. In our setting, we make an assumption that the
latency between every character pair is independent of those of other pairs. This
assumption allows us to approximate the likelihood that X and Y are sample
data from one user as:

∏

(a,b)∈DX,Y

KS(TX [a][b], TY [a][b]) (1)

However, this score has several problems. First of all, notice that KS(P, Q) is a
probability, thus its value has the range [0,1]. It is therefore theoretically possible
for the value to be 0, especially if ‖TX [a][b]‖ or ‖TY [a][b]‖ for some pair (a, b)
is relatively small. Unfortunately, the overall product will then be 0, regardless
of the values of the KS() function for other pairs in DX,Y . We need to limit
the effect of a mismatch, so that it does not penalize our likelihood function too
much. We do this by introducing the Minimum Sampling Correlation (MSC)
parameter α. Hence our likelihood function L(X, Y ) is defined as follows:

L(X, Y ) =
∏

(a,b)∈DX,Y

max(KS(TX [a][b], TY [a][b]), α) (2)
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where 0 ≤ α ≤ 1. While α can be as high as 1, it is worth mentioning that
normally we do not want α to be too high such that it is too forgiving on
matching failures. In our experiments, we set α = 0.001 unless noted otherwise.

The second problem stems from the fact that the sizes of X and Y are not
equal and different pairs of (X, Y ) potentially have different shared dimensions.
Since KS(TX [a][b], TY [a][b]) is in the range [0, 1], the more terms you multiply
together, the smaller the value becomes. Consequently, L(X, Y ) then becomes
predominated by ‖DX,Y ‖ rather than the amount of information they share.
In order to solve these problems, we introduce a new improved similarity score
function:

score(X, Y ) =
log(L(X, Y ))

‖DX,Y ‖ (3)

The range of the similarity score is heavily influenced by the KS(P, Q) values.
The highest possible score is 0, which occurs when all KS(P, Q) return 1 (i.e.
P and Q are sampled from the same distribution based on the K-S test). On
the other end, the lowest possible score occurs when all KS(P, Q) return 0 (i.e.
P and Q have no chance of being sampled from the same distribution based
on the K-S test). When this happens, L(X, Y ) will evaluate to α‖DX,Y ‖, and in
consequence, score(X, Y ) = log(α).

We can then conclude that the value of score(X, Y ) has the range of [log(α), 0]
(from ‘totally different’ to ‘exactly the same’). Note that when α = 0, the range
of the similarity score will be (−∞, 0].

3 Experiment

We seek to answer the following questions:
1. Can we accurately match each user’s typing pattern to his/her profile?
2. Can we accurately identify a new user whose typing pattern does not exist in
our set of profiles?
3. Can we accurately match typing patterns of a user collected at different times?
4. What are the effects of parameters Minimum Sampling Correlation (MSC)
and Minimum Data Points (MDP) on our model?

3.1 Experiment Setup

We recruited 36 participants through mailing lists and personal invitations. All
participants are frequent Internet users. The participants were asked to visit a
website we set up to collect typing patterns3. All experiments were conducted
exclusively through this online website, and participants could view full infor-
mation about the study before agreeing to take part.

In the experiment, each participant was asked to retype a randomly selected
sequence of English words from a database of 1340 words. These words were

3 This study has received approval from the Office of Research Ethics at University of
Waterloo (ORE# 16814)
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chosen from the top 1000 Internet search terms as ranked in [6]. We used Internet
search terms as our basis because we felt that those words would be more likely
to be familiar to the participants. Some words that we found to be unfamiliar
or inappropriate were also filtered out. While typing, the timestamp of each
keystroke was collected by means of Javascript. Once the Enter key was pressed
to signify completion, the timing data was sent to our website together with the
actual text typed by the participant.

This setup mimics exactly how we imagine our attacker to be. The user types
some texts in an innocent-looking textbox, and without his/her knowledge, the
typing pattern is collected and sent out as part of the form submission data.
There is no additional round of communication involved to avoid rousing users’
suspicion, although with AJAX becoming more popular nowadays, users might
be led to believe the extra communication is part of the interactivity system to
provide better customer experience. Ironically, in our putative scenario the extra
communication is actually for a completely opposite purpose.

There were two different phases in our study. There was no difference in the
conduct of the experiment between the two phases; only the amount of data
gathered differed. For the first phase, each participant was asked to do 20 trials,
each consisted of entering 50 characters on average. 28 participants took part in
the first phase.

We invited 13 participants to take part in the second phase, 5 of whom took
part in the first phase. This phase was conducted several days after the first
phase on a different website URL. The task given was exactly the same as in the
first phase, but there were 50 stages, consisting of entering 100 characters each.
Therefore, for each participant, we collected approximately five times as much
data from the second phase as from the first one.

For clarity, we will use the following convention to refer to our participants.
Participants who took part in the first phase are each assigned a unique number
from 1-28. Those taking part in the second phase are each assigned a unique
character from A-L. For the five participants who did both phases, we will use
numbers to refer to their typing pattern collected during the first phase, and
characters to refer to their typing patterns collected from the second phase. The
number-to-character pairings for those five are: {(22, A), (19, B), (18, C), (9,
D), (2, J)}.

3.2 Model Accuracy

We would like to answer the first question posed regarding the accuracy of our
model. We created a custom-made Java application to digest the typing tim-
ing information and compute the similarity score between two typing timing
patterns. The Java Statistical Classes (JSC) library4 is used to conduct the
Kolmogorov-Smirnov test. We then conducted 5-fold validation on the data ob-
tained from the second phase of the experiment. Unfortunately, we found that
data from one participant was corrupted, therefore we could only work with the

4 http://www.jsc.nildram.co.uk/
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remaining 12. The validation showed that our model gave the highest similarity
score to the participant from whom the training set was built. All 5 validation
runs return similar results, and one of them is depicted in Fig. 1.

In Fig. 1, the triangles denote the best similarity score for each participant’s
data, while the bars represent the range of other similarity scores. It can be seen
from the figure that there is a significant difference in the similarity score between
the best match (µ=-0.85, σ=0.17) and the other candidates (µ=-3.90, σ=1.09).
The difference is still significant even when we compare it only against the next
best match (µ=-2.19, σ=0.45). The lowest similarity score achieved for a correct
match is -1.06 for participant G, but the next best match scored nearly thrice
at -3.10. The highest similarity score for an incorrect match is -1.63 between
participant B and D, but then the correct match for participant B scored only
half of it at -0.83. Overall across the board, our model can easily distinguish
a correct match from the incorrect one. We realize that the difference in score
might be less significant on a bigger scale involving thousands of participants,
resulting in several close matches. Other traditional detection methodologies (e.g.
IP address, browser’s User-Agent, etc) can then be used to refine the results to
reveal the actual user.

Fig. 1. Similarity scores for 12 second phase participants. A score closer to 0 means a
better match. The triangles indicate the best score, while the bars represent the range
of other scores for each participant. The top of the bar, therefore, can be seen as the
next-best score. We can see a significant difference between the best and the next-best
score across all participants.
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3.3 New User Identification

We are then interested in knowing if our model could identify a new user whose
typing pattern has never been profiled before. We cannot simply take the highest
similarity score as our “correct” match: this could be an entirely new user. In
reality the importance of this capability really depends on the adversary and
his/her goal for user identification in the first place. An adversary whose goal
is to track the activity of a group of anonymous users in a forum, for example,
needs to be able to accurately distinguish those users from other website visitors.
However, if the goal is just to show advertisements tailored for a specific user, it
will not matter as much. Any advertisement can be shown to the new user, so
it does not make a difference whether it was tailored or picked at random.

The problem of new user identification can be seen as a classification prob-
lem with two classes: existing users, and new users. For simplicity, we used the
similarity score as the only feature considered, and performed the classification
based only on whether the score exceeds a threshold value τ . For the purpose of
our experiment, we selected the threshold value by empirical observation from
the previous experiment. We chose the mid-point between the lowest similarity
score for a correct match (-1.06) and the highest similarity score for an incorrect
match (-1.63), yielding a threshold value τ = -1.345. We admit that this may
not be the best threshold selection method, but given the limited data points
we have, we choose to leave threshold selection analysis as future work.

We started by creating profiles for the 12 participants of the second phase
study, using random selection of 4000 out of 5000 character data. The reason for
this is because we wanted to make the similarity score comparable to the ones in
Fig. 1. Recall that in each iteration of 5-fold cross validation, four-fifths of the
data set is used as training set to validate the remaining one-fifth.

Afterwards, the typing patterns collected from the first phase were compared
against the 12 profiles. Note that only 23 out of 28 typing patterns were used for
this experiment, because the remaining 5 were also participants of the second
phase, thus they are not new users. The best similarity score for 10 of the 23
new users are shown in Table 1 ordered by the scores. The remaining 13 have
worse best score than the lowest shown in the table, and we purposely omit
them for clarity. As can be seen from the table, not even the largest score passes
the threshold value τ and our model correctly identifies all new users. In other
words, there were no false-positives during our experiment.

3.4 Matching Typing Pattern Collected at Different Times

Another point which comes to mind is to see if a user’s typing pattern is iden-
tifiable over time. We acknowledge that there will be variance when a user uses
different input methods (e.g. keyboard vs. stylus) or even when different key-
board layouts are used. These aspects warrant a further detailed study on its
own, but for now we would like to focus on something much more fundamental.
That is, given a set of user profiles obtained from an observation, can we still
correlate a user’s typing pattern observed at a different time to his/her profile?
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Table 1. Best similarity scores for 10 new users

Participant ID Best Match Similarity Score

21 D -1.62

12 J -1.66

5 F -1.76

27 D -1.83

14 E -1.90

16 L -1.93

15 G -2.08

25 H -2.14

4 D -2.17

7 J -2.18

To answer this question, we used the data of five users who did both phases of
the experiment. We started with the 12 profiles we had created for the previous
experiment. Recall that we also had data of those five users from the first phase,
and this data was never considered in the creation of the profiles. We emphasize
that there were several days of gap between the first and the second phase.
From there, we wanted to see if our model could match those five users to their
corresponding profiles.

We found that we could successfully match 4 out of 5 users to their profile,
while the remaining one was detected to be a new user based on the threshold τ
we set earlier. This result is shown in Table 2. One participant specifically told
us that she did not think we could correlate her typing pattern because she was
very tired and made a lot of mistakes in the second phase, but it turned out we
could still match her correctly.

We also investigated the only participant whose typing pattern failed to be
matched to his profile. His typing pattern similarity score of -1.655 was quite
good but still below the threshold. We manually checked the data we gathered
from this participant, and we were surprised to find that there were noticeably a
lot of typing errors made in his second phase experiment. This could be because
of the length of the experiment, or perhaps the participant tried to induce some
noise into the data. Nevertheless, we are encouraged by the fact that our model
could identify 4 out of the 5 participants, and even the one with a large number of
errors still got relatively good similarity score albeit it was below the threshold.

3.5 Effect of Model Parameters

Our similarity score model depends on two important parameters: the Minimum
Sampling Correlation α, and the Minimum Data Points β. We initially set each
parameter to a value that we estimated to be “sufficiently useful” to fulfill its
intended purpose. In this subsection, we strive to explore the effect of these values
on the accuracy of our model. We refer a discussion of the threshold parameter
τ to future work. Recall that the threshold τ is used by our simple classifier to
differentiate between new users and existing users. A more elaborate classifier,
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Table 2. Classification results for the 5 users who did both phases, using their first
phase data against their second phase data

Participant Best Similarity New User/ Correct?
ID Match Score Existing?

9 D -0.699 Existing Yes

22 A -1.182 Existing Yes

19 B -1.190 Existing Yes

18 C -1.206 Existing Yes

2 J -1.655 New No

though, may take more features into account, such as the dimensionality used to
produce the score, or the history of the similarity score from previous matches.

As we have discussed in Sect. 2.4, we introduce the MSC parameter α to limit
the effect of a mismatch on one dimension to the other dimensions. Also, α has
the side effect of providing the lower limit of the similarity score function. When
α is 0, score(X, Y ) may evaluate to −∞ which may not always be suitable for
plotting or further processing. Table 3 shows the similarity score values between
selected pairs when α is 0.001 and 0. Introducing MSC also allows us to deduce
some information which would have been lost otherwise. Had we set α = 0, we
could only say that participant 28’s typing pattern does not match profile E and
G. However, setting α = 0.001 reveals that participant 28’s typing pattern is
significantly closer to E than to G.

Table 3. Effects of MSC value α on similarity scores between selected pairs

Participant ID Profile ID Similarity Score
α = 0.001 α = 0

E -4.45 −∞
3 F -5.71 −∞

G -3.10 -3.64

E -3.66 -4.69
8 F -3.30 -4.05

G -4.91 −∞
E -3.84 −∞

28 F -2.18 -2.35
G -5.50 −∞

Our model also depends on the MDP parameter value β, which filters out
dimensions containing too few data to be useful. Some pairs of characters occur
very infrequently in words, and inevitably they cannot be considered for pro-
cessing. In particular, the Kolmogorov-Smirnov test may not be meaningful if
there are too few data to compare. We now would like to see if varying β will
have an impact on accuracy. For the purpose of this experiment, we use data
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from the 12 participants of the second phase. We performed 5-fold validation for
different values of β, and the result is depicted in Fig. 2.

With the profiles from 12 participants, we can see that the precision starts
to drop between β values of 12 and 15. It deteriorates rapidly with only around
75% accuracy for β=20, and 35% for β=25. We then look at the number of
dimensions being used to calculate the similarity score. We can clearly see that
the number of dimensions being considered starts with 250 for β=1, then drops
nearly half when we increase β to 2, and only around 20 for β=10. This shows
that a big portion of the dimensions have only few data points. In spite of this,
the distribution of samples from other dimensions is still enough to accurately
identify a user’s typing pattern. Only when there are too few dimensions to
explore does the model start to be inaccurate (there are only 12 dimensions
considered for β=12).

Fig. 2. The effect of MDP parameter β on average ‖DX,Y ‖ and overall accuracy. In-
creasing β past a certain point brings down accuracy considerably.

4 Countermeasures

We have shown through experiments that users’ typing pattern can be efficiently
collected and used to identify the user again. Fortunately, the user is not com-
pletely defenseless. We have identified several ways using which the risk can be
mitigated.

First, a user might simply alter his/her typing pattern, or introduce random
noise as one participant in the second phase might have done. That particular
participant was able to marginally avoid our detection, but more noise is required
to completely avoid detection. This may be difficult to do in all circumstances,
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but the user only needs to do this when he/she needs anonymity with respect
to the content of the text. Another variation of this is to combine keystrokes
with cursor movements. For example, a user can write a word omitting several
middle characters, then use the mouse and/or arrow keys to go to the middle of
the word and fill in the remaining characters. This method, however, is very time
consuming and may not be very applicable if the user needs to write a whole lot
of texts.

Disabling Javascript can certainly beat our data collection system, but web-
sites have grown from simple content providers to become a platform. AJAX
plays a big role for increased interactivity on websites, and more and more ap-
plications are delivered over the Internet as a webpage. Therefore, we felt that
this approach is not feasible.

The simplest and perhaps the most effective way is for the user to write the
texts with a separate program, such as a text editor, and then paste the text
into the browser window. Assuming that there is no keylogger or spyware on the
user’s computer collecting the typing pattern, this method is foolproof. However,
this requires that the user knows that he wants to protect his anonymity before
he even started writing. If the user has written half-way in the browser, then
writes the other remaining half in a text editor, the collected timing information
might still reveal the user’s identity.

Modern browsers becoming more open and offering more ways for customiza-
tion provides another countermeasure. We could develop a Firefox extension that
automatically scrambles the timing of keystrokes as user enters the text. The
copy-and-paste approach can also be employed – when the user clicks on a text
box, the extension could overlay another textbox on top of it. Once focus moves
to another element, the text is pasted into the actual textbox below, and the
overlay is removed. This way, it will be almost seamless to the user.

5 Conclusions

Broadly, our paper made the following contributions: First, we analyzed the feasi-
bility of identifying web users by their typing patterns. Based on the Kolmogorov-
Smirnov test, we constructed a new statistical detection model, and used it to
measure the similarity between the keystroke dynamics of two web users.

Additionally, we demonstrated the accuracy of our detection model by con-
ducting an extensive set of experiments with real typing statistics of 35 par-
ticipants. The participants were asked to type several English sentences on our
website at their normal typing speed. Our detection model was able to accu-
rately identify both existing users and new users. The results confirmed our
initial hypothesis that we could use typing pattern as a mean to de-anonymize a
user. These findings further suggested the existence of yet another side-channel
attack to privacy on the Internet. Several countermeasures to this problem were
also proposed and discussed.
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6 Future Work

At the current stage, we have done a pilot test for our model with a small num-
ber of participants. We are conducting a larger-scale experiment with hundreds
of participants. We are also examining other aspects of typing patterns, espe-
cially the trigraph latency and key-hold time. While we used digraph latency
for our experiments, a combination with other aspects might produce higher
identification accuracy.

There are also several directions for future works. First of all, in the current
implementation, we use the Kolmogorov-Smirnov test to calculate the probabil-
ity that two typing patterns belong to a same person. It would be interesting
to apply other methods, such as Hidden Markov Models or Support Vector Ma-
chines to calculate the similarity score. Second, even though our detection model
is able to detect accurately a user whose typing profile has been collected before,
it still has to rely on a good choice of threshold τ to detect a new user. In our
experiments, we were able to heuristically pick a value for τ based on empirical
observations and use it to separate new users from existing users. However, we
feel it is desirable to have a more structured and elaborate approach to distin-
guish the two.

It would be interesting to use our detection model in practical applications,
such as authentication or theft prevention. For example, it could be developed
as a security software running on background. If an unauthorized user tries to
use the computer, his typing patterns could reveal his identity, hence logging out
the session. It could also be developed into an optional plugin to email accounts,
where illegal access by a third party could be prevented.
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Abstract

We present early work investigating a one-way delay-tolerant commu-
nications channel which affords its users perfect unobservability at the
price of a limited bitrate. We suggest an unrealizable protocol, Psychic
Routing, against which we can compare the performance of concrete Delay-
Tolerant Networking routing schemes. We then use Psychic Routing to
evaluate the performance of routing in our perfectly unobservable channel.

1 Introduction
Today’s social networking sites provide users with fast, convenient access to
shared user experiences, but they also share private information more widely
that users may intend [3, 4]. We have previously described the Footlights social
networking system, albiet under a different name [1], which seeks to provide
users with a service whose availability and performance are even higher than
today’s services, but which does not blatantly violate user privacy.

However, whatever the good intentions of the authors, such a system pro-
vides an opportunity for service providers to link users to encrypted data and,
from there, to each other. In order to subvert such detection, going beyond
privacy and into the realm of providing anonymity properties, Footlights will
also provide users with a low-bitrate communications channel that is perfectly
unobservable: even a global adversary is unable to determine whether or not
the channel is being used, despite detecting all communications in the network.

This system relies on users constructing a Delay Tolerant Network (DTN) [7]
and forwarding a certain amount of traffic on others’ behalf. Routing in such a
network is very difficult, so we have attempted to define the criteria of success
via the concept of Psychic Routing, an unrealizable protocol which provides
us with something that we believe is currently missing from the literature: an
unattainable upper limit, à la Shannon limit, with which we can compare new
protocols.
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In this early work, we explore the concept of Psychic Routing and its rele-
vance to routing in private DTNs.

2 Footlights and Perfect Unobservability
In order to put users in control of their private information, we have proposed
an architecture for a privacy-enabling social networking system [1]. This sys-
tem, called Footlights1, provides confidentiality and integrity properties through
cryptography, while relying on centralised infrastructure such as Content Deliv-
ery Networks for availability.

In this system, private data is stored as fixed-length encrypted blocks in
a centralised, highly-available store. Blocks are content-addressed—therefore
immutable—as in the Venti archival store [16], and are organized in a directed
acyclic graph, as in the Git version control system [15]. Explicit linkages between
blocks are revealed only by plaintext, so the presence of ubiquitous encryption
will prevent services from intentionally and explicitly revealing user data to data
miners [4] or the world at large [3]. We have mitigated the most obvious privacy
attacks that affect real-world systems today but, in anonymity terms, our use of
a centralised block store has introduced a global adversary [5] into the system.

We pessimistically assume that our block-oriented communications substrate—
which in practice will be based on a CDN and backing store from a service
provider like Amazon—is able to uniquely identify every user of the system by
the IP address that they connect from. Thus, the operator of the block store
can identify who has uploaded any particular encrypted block as well as who
is downloading it. Given this assumption, we can safely model our system as
a set of one-way messages: if Alice stores a 4 kB block that is later read by
Bob, that is effectively the same as Alice sending Bob a 4 kB message through a
medium that is being observed by a global adversary; this duality is illustrated
in Figure 1. If Bob then stores a block of his own on the server, which is later
read by Carol, the adversary can observe that Alice has talked to Bob and Bob
has talked to Carol, but the contents of those messages are only known to the
communicants.

It is worth noting that, in such a system, the graph of users (nodes) and
messages (edges) may be disjointed: Alice, Bob and Carol may form a clique
that does not communicate with the rest of the user population. The system
can observe such communication patterns, but the presence or absence of cliques
does not change any of the analysis that follows.

For the sake of plausible deniability2, we use blocks which can take on a
1So named because, like a strip of theatrical footlights, it helps users to define the interfaces

between themselves and their diverse audiences, à la Goffman [10]. The name “Footlights” is
also traditionally associated with a Cambridge comedy troupe, although our project has no
affiliation with said ensemble.

2It is important for users to be able to hide very small amounts of data in blocks that
allow the same block to be interpreted differently by different recipients. If all blocks are of a
pre-specified size, there is a place for random padding, which may be purely random, or may
in fact be ciphertext saying, “there’s more to read over here.” Further details are available in
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Figure 1: Footlights communication model.

limited number of sizes, perhaps even one fixed size of e.g. 4 kB. Because of
this, we expect to find “spare” bits in these communications which could be used
to carry covert traffic. This spare capacity can be regarded as a Delay Tolerant
Network (DTN) [7], which could be used to route data around the network
via intermediaries such that the global adversary cannot observe the hidden
communications. In the above example, Alice might use the fact that she is
sending Bob a message to also say, “Bob, the next time you talk to Carol, please
tell her something for me.” This message routing is perfectly unobservable—
from the adversary’s perspective, Alice has sent Bob one message, and Bob has
sent Carol another message, but the number, size and timing of messages is
unchanged whether the cover traffic is included or not. Only the content of
the messages will change, so assuming that we use a good cipher, zero bits of
information are conveyed by the presence or absence of covert traffic.

Having developed a DTN substrate upon which covert communications can
occur, we must consider another problem: how to route Alice’s message to Carol.

3 Psychic Routing
Delay Tolerant Networking is an umbrella term which describes a heterogeneous
collection of network types, ranging from interplanetary networks to opportunis-
tic Bluetooth contacts [7], and many routing schemes have been proposed for
these various types of DTN [19]. When communications opportunities are fully
deterministic, as in the case of the interplanetary network, models can be built
and deterministic routes selected [8, 11]. In stochastic networks, two protocols
are commonly used as benchmarks: Epidemic Routing, a form of controlled
network flooding [18] and PRoPHET, a probabilistic scheme which keeps track
of the likelihood that a node will have contact with other nodes [14].

Anderson et al. [1].
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The trouble is, when developing a routing protocol for our one-way oppor-
tunistic network, it is unclear whether “delivers 15% more data than PRoPHET”
is really very good; perhaps the existing protocols perform miserably on our
network because their assumptions (e.g. near-instantaneous two-way sharing of
routing probabilities) are not met, and thus we have no cause to celebrate being
slightly better than them. What we need is something like a Shannon limit [17],
a theoretical maximum that can never be reached, but which progressively bet-
ter routing protocols can approach more and more closely. Such a limit would
provide a real sense of both how far we’ve come and how much further we might
yet go.

We propose that such a limit can be expressed via Psychic Routing : the most
efficient routing of data that could be done today if one had full knowledge
of future events and a protocol which imposes no communication overhead.
Clearly, such a scheme is impossible to implement in practice, but a protocol
with good probabilistic estimation of future events, based on statistics of past
events, could begin to approach the upper bound imposed by Psychic Routing.

Figure 2: An example of maximal data transfer between two nodes in a DTN.

Psychic Routing does not provide general, closed-form equations like the
Shannon limit in an AWGN channel; rather, it provides an upper bound on the
pairwise performance of a routing protocol in a particular context, with partic-
ular parameters. For instance, Figure 2 shows the psychic limit for hypothetical
communication using the Footlights system from Section 2 as a communications
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substrate, between two people in the Enron e-mail corpus [12] who have been
selected at random. This is an absolute maximum: no routing scheme will be
able to transfer more data in the same time, or the same data in less time.

Psychic Routing only considers the maximum flow of data from one source
node to one sink, it only provides pairwise maxima; it is not a global network-
wide optimisation. The model can assume that e.g. some of the channel’s capac-
ity has been consumed by other traffic, but global optimisation for network-wide
properties such as “fairness” is firmly in the realm of future work.

3.1 Calculation
Figure 2 is generated by walking “backwards” from the destination node (here
denoted Bob), applying a mark to all e-mails that Bob received in the Enron
corpus. We then walk backwards from the senders of these messages, marking
all messages that could have “influenced” a message sent to Bob. We continue
walking backwards, recursively, building a set of possible routes to Bob, stopping
when we discover cycles in the graph. We then discard all routes that do not
contain Alice, and throw away any portion of a route the precedes Alice.

We then calculate a capacity of “spare” bytes—the number of bytes required
to pad the message to a fixed block size, in this case, 4 kiB—for each message
in a potential route. Each of these point-to-point messages, and associated
capacity, can be seen as an edge in a flow network ; Psychic Routing corresponds
to pushing the maximum flow [9] from source Alice to sink Bob.

More precisely, for each instant x on the X axis, there will be a specific flow
network, formed by the messages that emanated from Alice and its descendants
up to that time; and the y value for that x will be the solution of the maximum
flow problem for that flow network. The meaning of that (x, y) data point is
that, if every participant had cooperated and used the spare capacities of the
available messages in the most favourable way towards that goal, the maximum
amount of data that could have been transferred from Alice to Bob by time
x (without altering the observable pattern of messages that were to be sent,
regardless of this covert communication) would be y.

3.2 Related Work
The use of unattainable maxima as comparison points is well-established in
the communications and computer science literature. The oft-cited Shannon
limit—the most popular of which, applied to an Additive White Gaussian Noise
(AWGN) channel, is sometimes treated as synonymous with “Shannon limit”—
specifies the most error-free information transmission that is possible over a
noisy channel [17]. Real communications systems cannot reach the Shannon
limit, but it provides a useful absolute comparison point: we can say that an
error correction code comes within 0.3 dB of the Shannon limit, rather than
“10% better than code X.”

Similarly, Belady described an unimplementable page replacement algorithm
that real paging algorithms can be compared against [2]. Belady’s Min algo-
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(a) Direct messaging.

(b) Routing through exactly one intermediary (data laundering).

Figure 3: Routing capacity over two years (no contention).

rithm, much like Psychic Routing, relies on full advance knowledge of what
Virtual Memory (VM) pages will be required by the system in order to make
optimal decisions about which pages to swap out of memory. A realizable algo-
rithm such as Least-Recently-Used (LRU) that approaches the performance of
Balaly’s Min algorithm in a variety of VM workloads can be deemed appropriate
for concrete systems.

4 Measurement
In order to test the applicability of Footlights’ covert DTN to real-world traffic,
we have driven a Footlights model with data from the Enron e-mail corpus [12].
We first took a subset of the most “interesting” e-mails in the corpus3: 50,059
messages among the 50 users that communicated the most in the period 1999-

3This reduction was performed in the interest of computation time: it would simply take
too long to process all 300k e-mails in the corpus, many of which are single messages to or
from e-mail addresses outside of Enron (e.g. an invitation to one Enron employee to attend a
University graduating class reunion).
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2002. Each e-mail in the corpus was then translated into a Footlights message
with a spare capacity of 4096 − l mod 4096, where l is the length of the e-mail,
including SMTP headers.

Figure 3 shows the routing capacity of the network; it is able able to support
some limited communication. In these graphs, we see how much data Alice can
send to Bob—for all possible values of Alice and Bob—either by sending it
directly to Bob (Figure 3a) or via some intermediary (Figure 3b). The x axis
represents ranked pairings of Footlights users: pairing 0 is the “couple” with the
best routes from one to the other, pairing 1 the next best, etc., and the y axis
is how much data can be transmitted covertly between 1999 and 2002. Clearly,
the ability to communicate kilobytes of data over a period of years does not
make for a general-purpose communication system, but as a means of sharing
keys, perhaps in order to establish other channels, it could be quite useful.

Implicit in Figure 3 is the assumption that there is no contention for any
of the network resources that Alice wishes to use. This is clearly an inaccurate
assumption, but nonetheless we can see that the network is capable of bearing
some traffic—the question is how much.

Figure 4: Routing messages via Footlights in the Enron e-mail corpus.
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This question is answered in Figure 4, which shows a comparison of sim-
ulated routing performance by several routing algorithms—Psychic Routing,
PRoPHET and the “Pass-it-Along” strawman—routing data through one inter-
mediary, for pairing 0 in Figure 3b.

4.1 Psychic Routing
Psychic Routing, at the top of Figure 4, is clearly the best scheme. Using
knowledge of future communications among all participants in the network,
Alice is able to send approximately 27 kiB of data to Bob over the course of
approximately 30 months. Such a scheme is, of course, unrealizable, but it sets
our upper bound, our analog to the Shannon limit.

4.2 PRoPHET
The next graph represents the performance of the popular PRoPHET algorithm,
with some tunable parameters selected from an IETF draft [13] and some chosen
arbitrarily. We can see that almost 1.4 kiB of data does propagate from Alice to
Bob via at least one intermediary, but unlike the Psychic Routing case, most of
the transfer occurs at the end of the period of interest, rather than the beginning.
Unlike Psychic Routing, a realizable scheme like PRoPHET must expend time
and communications bits in order to propagate routing information—in this
case, probabilistic estimates of how soon each node expects to communicate
with other nodes.

In the absence of other information, we might suppose that PRoPHET’s
performance here is reasonable, and invest significant effort in tuning parameters
to improve it incrementally. Compared with Psychic Routing, however, we can
see how much further we still have to go; our time and effort might be better used
in searching for a different routing algorithm entirely which better reflects the
realities of the medium (e.g. does not assume that nodes are able to exchange
routing information in a two-way exchange).

From a privacy perspective, we might also wish to invest in a scheme which
does not require reporting accurate contact information to all peers.

4.3 Pass-it-Along
The final routing scheme depicted in Figure 4 is a straw man called “Pass-it-
Along routing.” As the name implies, when a node engaged in pass-it-along
routing receives a packets of data, it stores the data and sends it out again
attached to the next message to go out. No consideration is taken as to the
suitability of the next node to finally deliver the packet, so this strawman pro-
tocol can be regarded as a constrained form of network flooding.

The performance of this routing scheme is, as might be expected, rather poor.
It is only by chance that a fortuitous message succeeds in delivering over 1 kiB
at the last possible moment; were it not for this one message, less than 200 B
would have been delivered. Nonetheless, the comparison between Pass-it-Along
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Routing and PRoPHET is telling: if we were to only compare the two schemes,
we would say that Pass-it-Along is slower in delivering data, but under some
circumstances, it actually delivers more data, since PRoPHET must consume
some of the available channel in order to propagate routing information. It is
only by comparing to Psychic Routing, our objective upper bound, that we see
how truly atrocious the performance of Pass-it-Along Routing really is.

An interesting property of Pass-it-Along routing is that, like other flooding
protocols, no source or destination addresses need be visible to routing nodes:
they simply act as data mules, assuming that the intented recipient is able to
recognize the packets intended for her (e.g. by decrypting them with a pre-
shared key). Thus, its performance is quite poor, but it has useful privacy
properties and, in this particular case, its performance is not severely worse
than a scheme which requires all nodes to broadcast who they talk to and how
often.

5 Future Work
There is an obvious trade-off between routing efficiency and the privacy of rout-
ing nodes: in order to improve efficiency beyond network flooding, nodes need
to know about each others’ communication patterns. In source-routed systems
such as Tor [6], the sender of a packet does not reveal to whom she is speaking,
but such a system can only function because routers have been published in a
directory, and their communication graph (fully connected, over the Internet) is
implicit. IP requires that destination addresses be visible to all routers, which
themselves broadcast messages saying, “if you want to send packets to any of the
following networks, give them to me; I am connected to them.” In delay-tolerant
networks with late binding, destination addresses may not even be fixed: routers
may say, “I understand the mapping from a high-level name to a low-level one,
and will forward traffic accordingly.”

Having introduced Psychic Routing, an upper limit on the effectiveness of
DTN routing, we now wish to study this information-efficiency trade-off, and
establish a lower bound on how efficiently traffic can be routed in an unob-
servable DTN, given a certain amount of information about the communication
graph the various nodes are willing to reveal to each other.

Furthermore, Psychic Routing—as it currently stands—only considers pair-
wise optimisation of network flows. Future work might consider global optimi-
sations, and the incentives that would encourage all participants to “play by the
rules.” Even more useful might be a consideration of how local incentives—such
as sender-pays vs. a quid pro quo arrangment of packet handling—lead to global
network properties such as congestion and packet loss.
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6 Conclusion
We have introduced a new feature for the Footlights social networking sys-
tem: while providing high-speed, high-availability access to shared user data,
Footlights will also provide users with access to a low-bitrate communications
channel that is perfectly unobservable—even a global adversary will be unable
to distinguish between users conducting normal conversation and users “piggy-
backing” covert traffic on their normal messages. Such a capability allows users
to communicate indirectly, via other users, in a Delay Tolerant Network (DTN).

In order to write high-performance routing protocols for this DTN, we have
introduced the concept of Psychic Routing, a routing scheme which relies on
full knowledge of future communications in order to make routing decisions
that maximize pairwise throughput. We have shown how this scheme could
serve the role of a Shannon limit for DTN routing, rendering obsolete existing
comparisons such as “15% better than an existing scheme whose properties are
themselves understood relative to other schemes.”

We have compared the performance of the popular PRoPHET protocol with
both a straw man protocol and Psychic Routing, and have qualitatively ob-
served an inverse relationship between pairwise routing performance and the
amount of information about the network used by the protocol. In the future,
we hope to explore this relationship further in order to establish a useful lower
bound on privacy-preserving DTNs, so that users will be able to select routing
schemes that maximize performance while respecting user-specified limits on
the disclosure of contact information.
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Sleeping dogs lie on a bed of onions but wake
when mixed

Paul Syverson

Naval Research Laboratory, USA.

Abstract. We introduce and investigate sleeper attacks and explore
them in the context of anonymous communication, especially mix net-
works. Sleeper attacks can make use of the interference inherent to mix
protocols. Simply by leaving his own messages in a mix network an ad-
versary can learn about the communication of network users. Sleeper
attacks can be combined with epistemic attacks, statistical disclosure, or
other attacks to be made even more effective. We use sleeper attacks to
disprove the common belief that mix networks are necessarily more se-
cure than onion routing networks. Finally we use our results to disprove
another commonly held belief about computer security in general, that
it is always conservative to prove security against the strongest possible
adversary.

1 Introduction

Suppose Alice1 and Alice2 are known to be the two possible correspondents to
Bob, and suppose each sends a message into two basic threshold mixes, mix1

and mix2 respectively. For purposes of this example it does not matter what the
firing threshold of the mixes are.1 Assume the adversary Dorm can see Alices
send messages and can see Bob receive messages, but he cannot generally see any
mixes send or receive messages or see the mixes internal workings. Under these
circumstances, if Dorm later sees Bob receive a message from mix3 he cannot
tell which Alice sent it.

Suppose, however, that Dorm has previously left his own messages, S1 and
S2 (each to and from himself) in mix1 and mix2, respectively. If he receives
S1 but not S2, then, absent other considerations, he knows that mix1 has fired
while mix2 has not. He thus knows that Alice1 sent the message to Bob. The
information leak in this toy example is not strictly speaking a passive channel

1 For the unfamiliar reader, a threshold mix receives messages until it reaches a given
threshold at which point it fires, forwarding all of the received messages to their next
destination, which might be the ultimate receiver, a bulletin board, or another mix.
Messages are transformed by the mix and the batch of messages permuted by the
mix so that it is not feasible to match which honest messages going into the mix
match which honest messages coming out, as long as there are at least two honest
(not adversary controlled) messages. This paper assumes general familiarity with
anonymous communications research. See [13, 6] for a background survey.



since Dorm had to place his own messages in the mixes in order for it to work.
It is not, however, a typical active attack. As long as his messages are left in the
mix, it does not matter when he put them there. His active component can be
any time before, possibly long before, Alice sends her message. For this reason
we call this a sleeper attack.

In this paper we will explore sleeper attacks on anonymous communication.
We begin by describing sleeper attacks in the contexts of various types of mixes.
We also note that a weaker adversary can be more effective using sleeper attacks
in combination with other attacks than simply using those attacks by themselves.

Next we consider sleeper attacks on onion routing networks. A commonly
held belief amongst anonymous communication researchers and practitioners is
that mix networks are more secure than onion routing networks. On the other
hand onion routing networks are far more practical and usable for most users and
applications. Thus, these design alternatives are generally presented as making a
trade-off between security and practicality. For example, the original Tor design
paper [11] says that, “relay-based anonymity designs have diverged in two main
directions. Systems like Babel [15], Mixmaster [23], and Mixminion [7] have
tried to maximize anonymity at the cost of introducing comparatively large and
variable latencies. Because of this decision, these high-latency networks resist
strong global adversaries, but introduce too much lag for interactive tasks like
web browsing, Internet chat, or SSH connections.” We show that characterizing
mixes versus onion routers as only a security versus practicality trade-off is
misconstruing security: mix networks are in important ways less secure than
onion routing networks, even if they are more secure in other ways.

In previous work [28], we examined the dependence of this characterization on
unfounded trust-uniformity assumptions, on ignoring usability implications, and
on unrealistic adversary models. Herein, we go a step further. There are certainly
realistic configurations, environments, and adversaries for which mix networks
are more secure than onion routing networks. We present examples where the
opposite is true. Our examples have moderate and realistic adversaries. The
networks consist of the same number of nodes in the same configuration, just
one composed of mixes and the other composed of onion routers. Both networks
have the same number of users. By their natures usage of the networks cannot
be identical, but we will make them as comparable as possible. The capabilities
of the adversaries and their deployment is the same in both networks. We will
show that there exist such circumstances in which the onion routing network is
more secure than the comparable mix network.

Another even more broadly held belief is that it is always conservative to
assume the strongest possible adversary. This is a notion from many areas of
computer security and cryptography not just anonymous communication. We
show (with the same realistic systems and realistic adversaries) an example of
two systems in which one system is more secure against the stronger adversary
but the other is more secure against the weaker adversary.
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2 Mixing sleepers awake

“It is nought good a sleping hound to wake.”

Geoffrey Chaucer — Troilus and Criseyde

Mixes derive their security from altering the order of messages they receive
to obscure the relation of inbound to outbound messages. This is true for mix
designs from simple threshold mixes to timed dynamic pool (Cottrell) mixes
to binomial mixes. Put differently, mixes create interference between messages.
This interference puts bounds on the information leaked or rate of information
leaked to an observer of the mix [24, 25, 29, 2] But it also puts a lower bound
on information leaked to an observer. In a threshold mix with batch size n,
an adversary observing a single input to and single output from the mix has
uncertainty about whether they match that is bounded by n. A sleeper attack
can take advantage of this.

Consider a layered network of threshold mixes with a sleeper in each mix,
where there is one layer of mixes receiving inputs from senders forwarding to a
second layer of mixes that forward messages to their ultimate recipients. Suppose
the adversary observes just one message being sent into some mixes and sees just
one message being received. Suppose he learns from his sleepers which layer1
mixes fires and which do not, and then learns which of the layer2 mixes fires and
that the others do not. From this he knows the received message could not come
from the sender into any layer1 mix that did not fire. Assuming the threshold and
the distributions of messages are known, then for the observed input messages
that could match the observed received message at all he also can attach a
significantly higher probability to their matching the received message than he
could without the sleepers. This could also be combined with knowledge about
sending rates and thus the likely number of messages in a layer2 mix based on
time since last firing to infer still more.

There are three basic categories of interference that mixes can have, based
on the type of the mix. Mixes that require a number of messages to be received
to fire have mandatory interference between a message sent by the mix and
previous messages received by the mix. (This includes messages sent but not
received by the mix, for example, dummy messages.) This also applies whether
they are simple threshold mixes or use some sort of pool or other function that
relates the probability of sending a message to previously received messages.

Mixes may also be purely timed: they randomly order the messages that
they have received during a given interval and forward (some of) them (along
with any messages from the mix itself) at the end of the interval regardless
of what messages if any have been received in that interval. These mixes have
contingent interference. Messages that are available for mixing will interfere, but
if no messages are available, there is no interference with received messages. If
the mix itself generates messages, then there is interference with those.
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If a mix requires both a minimum interval of time and a minimum of received
messages in order to fire, then it still has mandatory interference between the
messages sent and previously received messages.

Stop-and-go (sg) mixes [19] forward a message that was sent at a time desig-
nated in the message regardless of other messages in the mix. Messages sent from
stop-and-go (sg) mixes have no interference at all. (We restrict interference to
that inherent in the protocol and treat as out of scope any interference from pro-
cessing time for necessary computation or transmission of messages. This scope
will also apply to onion routing networks, to which we will return below.) What
this shows us is that stop-and-go mixes are mixes in name only. Any mixing they
provide is virtual rather than inherent to their operation. For the remainder of
the paper, we will restrict usage of ‘mix’ to systems that base the ordering of
output messages at least partially on other messages the mix outputs, whether
they were received or generated by the mix.

Sleeper attacks cannot reveal anything in an sg mix network or a purely
timed mix network. For sg mixes, other messages can simply not interfere with a
sleeper. For purely time mixes, there can be interference, but anything a sleeper
attack could reveal is already known to the adversary from the mix protocol.

If a mix has any kind of pool or other function that makes the forwarding
of a message held by a mix probabilistic when the mix fires, then a sleeper
cannot determine with certainty when a message of interest was sent by the
mix. Nonetheless, as long as the adversary can keep an adequate representative
sample of sleepers in the mix, the he can learn from when sleepers are sent by the
mix the same probabilistic information about received messages in sent batches
as he could if he could observe the batches themselves emerging from the mix.

2.1 Combining the sleeper with epistemic and other attacks

“He sees you when you’re sleeping. He knows when you’re awake.”

John Frederick Coots and Haven Gillespie — “Santa Claus is
coming to town”

Epistemic attacks on anonymity were first introduced by Danezis and Clay-
ton [5]. They described a route fingerprinting attack in which an adversary knows
which nodes in an anonymity network are known to which possible senders. Us-
ing this information, an adversary observing a message on even part of a route
can use which senders would know how to construct that route to narrow down
the set of possible senders. Danezis and Syverson [9] later described route bridg-
ing, which makes use of what senders do not know about the network nodes
to determine which routes it would be impossible for some senders to construct
and again narrow down the possible senders. These attacks use an adversary’s
observation of all messages entering or leaving a mix in a single batch. By know-
ing which senders could know about all the possible combinations of the three
mixes involved in every possible route through the observed mix for that batch
he can narrow down the number of senders. If the adversary can make use of
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sleepers and patterns of mix firings, then he can conduct such attacks without
having to observe as much of the actual network. For example, if a message is
received that would require going through a mix that did not fire if it were sent
by one of the senders who otherwise match what is known about a route and
received message, then that sender is eliminated without having to be able to
directly observe the mix.

Disclosure attacks [18] and statistical disclosure attacks [4, 8] are long-term
intersection attacks to determine who is talking to whom by observing when
potential senders and receivers are present together and when they are not. The
statistical version provides answers with high probability rather than with cer-
tainty, but it is also much more efficient. The original versions, both statistical
and not, required a global passive observer. Later, Dingledine and Mathew-
son [20] showed how effective the attack could be when only part of the network
was observed by the adversary. Sleeper attacks can be added to eliminate or
support possible communication patterns by knowing which mixes fired and in
which order, again making it possible to have an equally effective attack with a
weaker adversary.

3 Sleepers and Onions

As already illustrated, there are settings where an adversary can learn informa-
tion from a sleeper attack on a mix network. To make our initial toy example
into something more real and concrete, suppose that an adversary (Dorm) is fol-
lowing a blog (Bob) and has some candidate posters to that blog (Alices) under
observation. For simplicity we will assume two Alices. Suppose the Alices are
known to use various anonymous communication systems, but for jurisdictional,
legal, or resource reasons, none of these are observable by the adversary. All he
can do is passively watch when either Alice sends or receives messages and he
can see when the blog updates with new posts. Suppose the Alices are unknown
to each other but both are relatively paranoid and relatively up on the anony-
mous communications literature. They thus each choose to use a high latency
mix network for sensitive communications. Bob only updates twice a day. But
given the high latency of the mix network, when Bob is observed to be updating
with an item of interest, Dorm is able to discern from the sending activity of the
Alices, and the pattern of mix firings he observed from his sleeper attacks that
one of the Alices could not have sent the information of interest but the other
could.

If we combine the pure sleeper attack with other information, Dorm may be
able to conduct this attack even if he cannot directly observe the Alices. For
example, if he is aware that they only know about different parts of the mix
network, then he can use this for an epistemic attack together with a sleeper
attack to make the same inference just described even if the only thing he can
observe is Bob’s public blog updates. Similarly if Dorm is aware that the Alices
trust some parts of the network more than others and are thus inclined to prefer
those parts [17], he can use this in conjunction with a sleeper attack and simply
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seeing Bob’s updates to indicate which Alice is the likely poster, or to increase
his confidence in previous suspicions.

Contrast this with onion routing networks. Assume the exact same situation
as the above except that instead of using mix networks the Alices are using
onion routing networks. In other words, assume the situation is exactly as above,
except that the network nodes are onion routers rather than mixes. And assume
that the Alices are communicating with Bob (or whoever) via an onion routing
protocol rather than a mix protocol.

If Alice1 did not use the onion routing network at all during the relevant
period until after Bob’s update appeared and Alice2 did, then Dorm would be
able to discern that Alice1 could not have posted the information. But this is
also true of a mix network for the same period, although the mix network can
obscure the period that either Alice’s messages could arrive at Bob. If we limit
to situations where both Alices used the network in the period before Bob’s
update, then the sleeper attack will provide no information about which Alice
posted the message in the case of an onion routing network and can determine
which Alice made the post in the case of a mix network. And, this remains true
if neither Alice is observed at all and a sleeper attack is combined with epistemic
or trust-based attack.

In this section we have looked at sleeper adversaries that are relatively trivial
to implement and deploy, either as capable of only sleeper attacks or in com-
bination with other simple attacks. We have examined such adversaries applied
to realistic communication settings involving anonymity networks. To compare
mix networks to onion routing networks in these environments we kept the ad-
versary capabilities exactly the same, and we kept the communicants, their use
of the networks and the network configurations virtually the same. The only
change was to have the network nodes run either an onion routing protocol or a
mixing protocol. In these identical settings the mix protocol can leak significant
information but the onion routing protocol leaks no information. We have thus
shown unequivocally that it wrong to say mix networks are more secure than
onion routing networks.

There are interference attacks that have been run against Tor [26, 14]. They
are not actually attacks on onion routing at the protocol level. Rather they are
attacks on implementations taking advantage of the time it takes to actually
process and send communication through the Tor network. They are thus out-
side the scope of this paper. But we will consider them briefly. The attacks found
by Danezis and Murdoch [26] have been shown by Evans et al. [14] to simply
not work against the current Tor network, which is much much larger than the
Tor network at the time of [26]. Evans et al. went on to explore extensions of
Danezis and Murdoch’s attacks that were feasible. They are feasible however,
only in combination with several other attacks that, while plausible, will work
only with certain types of application communication used in a particular way
rather than against Tor communication in general [14]. And they still require
sending a significant amount of traffic into the network at a constant rate, good
clocks relatively well synchronized, and numerous other assumptions. Thus even
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if we considered implementation rather than just protocol-level attacks, com-
pared with sleepers they require far more resources and assumptions, as well as
specialized settings and specific types of application communications.

4 Anonymity networks and their adversaries

Onion routing networks are similar to mix networks in some respects, but they
primarily derive their security from the unpredictability of routes and the in-
ability of an adversary to watch enough of the network to be likely to see both
ends of a connection. Though they have been combined with mixes for research
purposes (so that some form of mixing was done at onion routers) this is not
typical and currently considered to serve no useful purpose.

Security for mix networks is typically evaluated assuming a global passive ad-
versary (GPA). For a large distributed network a global adversary is very strong,
perhaps even unrealistically so. On the other hand, for a publicly accessible net-
work that does not require registered users, it is also unrealistic to assume the
adversary is not able to generate his own messages. Similarly, the original moti-
vation for having mix networks rather than communicating via single mixes was
that some mixes might be compromised [3]. It is also unrealistic to think that
an adversary compromising a mix might not try to add, drop, or alter messages
in his control if he can get away with doing so. For these reasons, many security
analyses add to the GPA the ability to send messages into the network and the
ability to create and/or manipulate messages at a compromised subset of the
mixes.

This is the adversary model against which Mixminion was designed and eval-
uated and the one we initially adopt. Against this adversary onion routing is
completely broken. Just the global passive element is enough to break onion
routing. It has been long understood and experimentally verified on the Tor
network, that a passive adversary can virtually always confirm the association
of inbound connections to and outbound connections from the network by the
timing and volume of traffic [27]. Indeed, it has been shown in simulation that
simply creating connections is enough, the correlation can be confirmed even
without sending any data [1]. For these reasons, we have said since inventing
onion routing that it guards against traffic analysis, not traffic confirmation.

Observations such as we have just made are the reason that people have
generally held that onion routing networks are less secure than mix networks.
And against the above adversary they are. However, many have noted that when
taking usability and performance into account, the size of both the network and
user base for onion routing networks is much larger than for mix networks [10].
The public Tor network is orders of magnitude bigger and has orders of mag-
nitude more users than the largest public mix networks that have existed. And
this is one of several reasons that onion routing networks may be more secure
than mix networks: it is much harder to have a realistic global adversary against
the much larger Tor network than against a Mixmaster or Mixminion network.
It is also easier for an adversary to apply all of its available resources to the few
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hundreds of Mixmaster users it detects than against the hundreds of thousands
of Tor users, if it could even observe them all [28]. Still these are somewhat
apples-and-oranges comparisons. Even if it is more realistic to do so, these ob-
servations are based on comparing very different network sizes and different sizes
of user base.

In the previous section, however, we have shown that (for the same network
configurations and size, with the same senders and receivers, and against the
same adversary) mix networks can leak important information when onion rout-
ing networks do not. But this does not imply that onion routing networks are in
general more secure than mix networks. As already noted, against an adversary
that includes a global observer, onion routing is completely broken. The source
and destination of every connection are exposed. A mix network is not com-
pletely broken against the above described adversary. Exactly what protection
it provides is complicated and cannot be determined without at least parameter-
izing the number of senders, receivers, and network nodes—also what fraction
of the network is compromised, what exactly the adversary can do at what rate,
the rate and distribution of sending messages, whether observations are one-time
or extended, and if so the dynamics of all the above, etc. Nonetheless, it is clear
that, even with all this, for many reasonable choices of parameters mix networks
provide some protection. One of the reasons a GPA is often chosen for analysis
is that it simplifies such analysis to a tractable level. But as already noted, such
a model is so unrealistic that it is not clear what we learn from using it. Though
one could perhaps create believable settings where the GPA makes sense, for no
application for anonymous communication yet published has it been plausible
to assume such an adversary. This adversary would need to be able to watch the
entire network, regardless of size, and yet cannot attempt to even slightly delay
messages, send messages of its own, or corrupt some users to send (or not) at
useful times.

The sleeper attack by itself requires a very weak adversary. He does not do
anything to the messages of other users in any way that plays a role in the
attack. (He cannot help affecting the firing rate and message ordering of mixes
by placing messages in them, and he could conduct a 1 attack—the complement
of an n− 1 attack, but in a pure sleeper attack we ignore these.) He corrupts no
nodes in the network. He can only observe sending and receiving behavior at a
few points. He needs to generate messages at a relatively low rate. (Call a sleeper
attack complete if the adversary always learns when a mix fires. For a complete
sleeper attack in a network of threshold mixes, he must send at least one message
per mix firing. For other types of mixes he can only achieve high likelihood of
a complete attack.) He does not need a clock at all. He only needs to tell the
ordering of mix firings relative to each other and any of the few transmissions he
observes. This is thus an attack that even a quite low-resource adversary should
be able to conduct easily. It is thus much more realistic than a global passive
adversary. Like the GPA, however, once some other parameter settings are given,
it should also prove tractable to analyze, although we do not explore that in this
paper. We thus have two adversaries that are subadversaries of the most powerful
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adversary we have described above. One, however, refines the powerful adversary
to something plausible, while the other refines it to something unrealistic.

We have uncovered something else in the above, however, besides a lesson
about useful versus inherently impractical adversary models. A generally ac-
cepted truth of computer security is that it is conservative to assume the most
powerful adversary. This has strong intuitive plausibility. If a system is secure
against a more powerful adversary it should remain secure against an adver-
sary with fewer capabilities or diminished capabilities. As has been shown in the
multilevel security literature, however, intuitions can be deceptive.

There are theoretical examples of multilevel-secure systems that are effec-
tively secure against a strong adversary but leak information against an adver-
sary with fewer capabilities [21, 16, 22]. The examples we have shown are mono-
tonic: they do not show better security of a given system in a given environment
against a more powerful adversary than against a strictly weaker adversary. An
adversary that is both globally observing and able to mount a sleeper attack
can learn more against a mix network than an adversary that can only mount a
sleeper attack. Similarly an adversary that is globally observing and can mount
a sleeper attack is able to learn more against an onion routing network than
one that can only mount a sleeper attack. Nonetheless, in the settings we have
described, when the adversary is both globally observing and lays sleepers the
mix network is stronger, whereas when the adversary is only able to lay sleepers
and can only make the smaller set of observations described above, the onion
routing network is stronger.

This result undermines a fundamentally held belief about computer security.
We typically assume the strongest possible adversary for at least two reasons.
One is that we assume that if the system is secure in that setting it will be secure
in weaker settings. Previous literature has explored what is needed to make
that assumption correct. The other reason for evaluating against the strongest
possible adversary is that we assume that if one system is more secure than
another against the stronger adversary, it will also be more secure than the other
against the weaker adversary. Our example shows that this is not necessarily
true. And this is not simply a point about differences in implementation that
can create different vulnerabilities in the different systems. The crossover occurs
with the protocols at the same level of abstraction; only the capabilities of the
adversary are diminished. And, if what makes the strongest possible adversary
stronger is something that is unrealistic, following the standard reasoning may
lead us to choose the system that is less secure against a more realistic adversary.

In a fuller analysis we intend to explore this with more mathematical detail
and rigor. We also intend to more fully explore the relationship between different
types of networks and sleeper adversaries, both alone and combined with other
adversaries. In [12] we discussed the security of combining messages with different
latency and security needs in what we called alpha mixing. As we have seen, any
kind of actual mixing (in other words, interference between received or generated
messages in a mix) can be vulnerable to sleeper attacks. But one of the variants
described was called timed alpha mixing, which was effectively a less restrictive
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variant of sg mixing. Like sg mixing, it is not actually mixing at all. Like basic
onion routing, neither of these forms of ‘mixing’ is vulnerable to sleeper attacks.
It will be interesting to explore the use of sg mixes or timed alpha mixes in
combination with onion routing to examine the interplay of security it provides.
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