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Abstract. Contrary to many other approaches to security and privacy in the cloud, we
are interested in the problem of hiding behavioral information of users consuming their
cloud resources, e.g. CPU time or storage space, from the cloud provider. More precisely,
we are looking for solutions that allow users to purchase a contingent of resources from
a cloud provider and to anonymously consume their resources till their limit is reached
(in case of storage they can also reclaim these resources back anonymously). We present
a definition of such anonymous yet authorized and bounded cloud resource schemes along
with an instantiation based on Camenisch-Lysyanskaya signatures. Then, we extend the
scheme to another scheme providing even more privacy for users (by even hiding the
issued resource bound during interactions and thus providing full anonymity to users)
and provide some useful extensions for both schemes. We also underpin the practical effi-
ciency of our schemes by means of experimental results obtained from an implementation.
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1 Introduction

Cloud computing is an emerging paradigm, but some significant attention remains justifiably
focused on addressing security and privacy concerns. Reasons are among others that customers
have to trust the security mechanisms and configuration of the cloud provider and the cloud
provider itself. Recently, different cryptographic solutions to improve privacy have been pro-
posed, which mainly focus on private storage, private computations and private service usage.

Storing data encrypted seems to be sine qua non in many cloud storage settings, since cloud
providers, having access to the storage infrastructure, can neither be considered as fully trust-
worthy nor are resistant to attacks. Kamara and Lauter [26] propose several architectures for
cryptographic cloud storage and provide a sound overview of recent non-standard cryptographic
primitives like searchable encryption and attribute-based encryption, which are valuable tools
in this context. Other issues are data privacy and verifiability when outsourcing data and per-
forming computations on these data using the cloud as computation infrastructure. The recent
introduction of fully homomorphic encryption [24] is a promising concept for performing arbi-
trary computation on encrypted data. However, up to now these concepts are far from being
practical [25]. Another interesting issue from a privacy perspective is to hide user’s usage behav-
ior (access patterns and frequencies) when accessing services, e.g. cloud storage services. More
precisely, users may not want the cloud provider to learn how often they use a service or which
resources they access, i.e. they want to have anonymous and unlinkable access. Nevertheless,
cloud providers can be assumed to have access restricted to authorized users and additionally
users may want to enforce (attribute-based) access control policies. There are quite different
existing approaches to realize this, e.g. one can employ anonymous credential systems [4] or
oblivious transfer [8, 9].

In this paper we introduce an additional aspect which may be valuable when moving to-
wards privacy friendly cloud computing and seems to be valuable when used in conjunction
with the aforementioned approaches. In particular, we focus on the anonymous yet authorized
and bounded use of cloud resources like CPU time (e.g. CPU per hour) or storage space. Al-
though we illustrate our concept by means of the resource storage space in this paper, one may
use this approach for arbitrary resources.



Our contribution. We consider a setting where users should be able to register and obtain a
resource bound (limit) from a cloud provider (CP) in form of a partially blindly signed token.
This token includes an identifier, the already consumed resources and the limit, wheres the limit
in fact is the only value signed in clear. This limit determines how much of a resource, e.g.
CPU time, storage space, a user is allowed to consume. Then, users should be able to consume
their resources in an anonymous and unlinkable yet authorized fashion. For instance, if a user
wants to consume l resources, he has to convince the CP that he possesses a signed token with
a valid identifier (double-spending protection) and that his consumed resources (including l) do
not exceed his bound. If this holds, the anonymous user is allowed to consume the resources
and obtains an updated signature for a token corresponding to a new identifier and updated
consumed resources. Note, due to the anonymity and unlinkability properties, the CP is unable
to track how much a user has already consumed, however, can be sure that he solely consumes
what he has been granted. Furthermore, when the resource represents storage space a user may
also reclaim resources when he deletes data, whereas these actions should also be anonymous
and unlinkable.

We for the first time consider this problem and provide a definition for the concept of anony-
mous yet authorized and bounded cloud resource schemes. Furthermore, we present an efficient
instantiation of such schemes. Then, we extend the scheme to another scheme providing even
more privacy for users (by even hiding the issued resource bound during interactions) and pro-
vide some useful extensions for both schemes. Our schemes are obtained using recent signature
schemes due to Camenisch and Lysyanskaya [12, 13] along with efficient zero-knowledge proofs
for proving properties of signed messages. We note that many of the approaches discussed subse-
quently employ similar features of CL signatures as our approach does. But the signer controlled
interactive update of signed messages discussed in Section 4.1, which is an important function-
ality behind our protocols, seems to be novel. Furthermore, we note that we base our concrete
scheme on groups of known order and the essential ingredient is the pairing based CL signature
scheme [13]. We want to emphasize that one could as well base the construction on hidden order
groups. Then, one can use the strong RSA based CL signature [12], Fujisaki-Okamoto commit-
ments [23] and the range proof proposed by Boudot [7]. But within our construction we achieve
much shorter proofs and signatures.
Related work. Pairing based CL signatures [13] and it’s strong RSA based pendant [12] are
useful to construct various privacy enhancing cryptographic protocols. Among them are anony-
mous credential systems and group signatures [13] as well as privacy protecting multi-coupon
systems [16, 18], anonymous subscriptions [6], electronic toll pricing [5], e-cash systems [11] and
n-times anonymous authentication schemes [10] based on compact e-cash or unclonable group
identification schemes [21] which achieve similar goals as in [10]. To solve our problem, the most
straightforward solutions seems e-cash, i.e. CP issues k coins to a user and a user can use one
coin per resource unit. However, to achieve a suitable granularity this induces a large amount
of “small valued coins” which makes this approach impractical. The same holds for compact
e-cash schemes [11], where a user can withdraw a wallet of 2l coins at a time and thus the
withdrawal procedure is much more efficient. However, in compact e-cash coins from the wallet
can only be spend one by one and the above problem still exists. In divisible e-cash [15, 3], which
allows a user to withdraw a wallet of value 2l in a single withdraw protocol, spending a value
2m for m ≤ l can be realized more efficient than repeating the spending 2m times. However, in
the former solution even for a moderate value of l = 10 the spending of a single coin requires
800 exponentiations which makes it very expensive. The latter approach is more efficient, but
statistical, meaning that users can spend more money than what they withdraw.

Multi-coupons [16, 18] represent a collection of coupons (or coins or tokens) which is issued
in a single withdraw protocol and every single coupon of the MC can be spend in an anonymous
and unlinkable fashion. But in our scenario, they suffer from the same problem as e-cash.

Recently, Camenisch et al. proposed an interesting protocol for unlinkable priced oblivious
transfer with rechargeable wallets [9]. This does not exactly fit our scenario but could be mapped
to it. However, [9] do not provide an efficiency analysis in their work and their protocols seem
to be quite costly. Their rechargeable wallets are an interesting feature and such an idea is also
supported by our second scheme.



2 Definition

Below, we present a description of the problem along with a model of anonymous yet authorized
and bounded cloud resource scheme. We note, that we do not provide formal security arguments
for the presented schemes in this extended abstracts, but they are presented in the full version.

2.1 Problem Description and Motivation

In our setting we have a cloud provider (CP) and a set of users U . Our main goal is that users
are able to purchase a contingent of resources (we focus on storage space here) and CP does not
learn anything about the resource consumption behavior of users. In particular, users can store
data at the CP as long as there are still resources from their contingent available. The CP is in
any interaction with the user convinced that a user is allowed to consume (or reclaim) resources
and cannot identify the user nor link any of the user’s actions. Clearly, if the resource is storage
space and the data objects contain information on the user then this may break the anonymity
property. Nevertheless, then we can assume that data is encrypted which seems to be sine qua
non in many cloud storage settings.

Our main motivation is that it is very likely that only a few large cloud providers will
own large portions of the infrastructure of the future Internet. Thus, these cloud providers will
eventually be able to link data and information about resource consumption behavior of their
consumers (users) allowing them to build extensive dossiers. Since for many enterprises such
a transparency can be too intrusive or problematic if these information are available to their
competitors we want to hide these information from cloud providers. As for instance argued in
[19], activity patterns may constitute confidential business information and if divulged could
lead to reverse-engineering of customer base, revenue size, and the like.

2.2 Definition of the Scheme

An anonymous yet authorized and bounded cloud resource scheme is a tuple (ProviderSetup,
ObtainLimit, Consume, Reclaim) of polynomial time algorithms or protocols between users U

and cloud provider CP respectively:

– ProviderSetup. On input a security parameter k, this algorithms outputs a key pair sk and
pk of a suitable signature scheme and an empty blacklist BL (for double-spending detection).

– ObtainLimit. In this protocol a user u wants to obtain a token t for a resource limit of L

units from the CP. The user’s output is a token t with corresponding signature σt issued
by CP. The token contains the limit L and the actually consumed resources s (wheres both
may be represented by a single value L′ := L− s). The output of CP is a transcript TOL of
the protocol.

– Consume. In this protocol user u wants to consume l units from his remaining resources. The
user shows value t.id of a token t and convinces the CP that he holds a valid signature σt

for token t. If the token was not already spend (t.id is not contained in BL), the signature
is valid and there are still enough resources left, i.e. s′ + l ≤ L (or L′ − l ≥ 0), then the
user’s output is accept and an updated token t′ for resource limit L and actually consumed
resources s′ + l (or L′ − l) with an updated signature σt′ from CP. Otherwise the user’s
output is reject. The output of CP is a transcript TC .

– Reclaim. In this protocol user u wants to reclaim l units, e.g. he wants to delete some data of
size l. The protocol is exactly the same as the Consume protocol. Except for the accept case
the updated token t′ contains s′ − l (or L′ + l) as the actually consumed resources and the
transcript is denoted as TR. We emphasize that u needs to prove by some means that he is
allowed to reclaim l resources, e.g. when deleting some data, the user needs prove knowledge
of some secret associated with the data during the integration. Otherwise, users could simply
run arbitrary many Reclaim protocols to illicitly reclaim resources and indirectly improve
their actual resource limit.



3 Preliminaries

An essential ingredient for our construction are honest-verifier zero-knowledge proofs of knowl-
edge (Σ-protocols). We use the notation from [14], i.e. a proof of knowledge of a discrete log-
arithm x = logg y to the base g will be denoted as PK{(α) : y = gα}, whereas Greek letters
always denote values whose knowledge will be proven. We note, that compositions of single Σ-
protocols using conjunctions and disjunctions can be efficiently realized [20]. Furthermore, the
non-interactive version of a (composed) proof obtained by applying the Fiat-Shamir transform
[22] is denoted as a signature of knowledge or SPK for short.

3.1 Bilinear Maps

Let G and Gt be two groups of prime order p, let g be a generator of G and e : G × G → Gt a
bilinear map between these two groups. The map e must satisfy the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.
3. Computable: There is an efficient algorithm to compute e(u, v) for any u, v ∈ G.

Though the group operation in G is in general an additive one, we express both groups using
multiplicative notation. This notion is commonly used, since Gt is always multiplicative and it
is more easy to capture the sense of cryptographic protocols.

3.2 Pedersen Commitments

Pedersen commitments [30] represent a widely used commitment scheme working in any group G

of prime order p. Let g, h be random generators of G, whereas logg h is unknown. To commit to
a value s ∈ Zp, one chooses r ∈R Zp and computes C(s, r) = gshr, which unconditionally hides
s as long as r is unknown. To open the commitment, one simply publishes (s, r, C(s, r)) and one
verifies whether gshr = C(s, r) holds. For simplicity, we often write C(s) for a commitment to
s instead of C(s, r). We note that the Pedersen commitment inherits an additive homomorphic
property, i.e. given two commitments C(s1, r1) = gs1hr1 and C(s2, r2) = gs2hr2 then one is able
to compute C(s1 + s2, r1 + r2) = C(s1, r1) · C(s2, r2) without either knowing any of the hidden
values s1 or s2. Furthermore, note that a proof of knowledge PK{(α, β) : C = gαhβ} of the
ability to open a Pedersen commitment can be realized using a proof of knowledge of a DL
representation of C with respect to the elements g and h [28].

3.3 Range Proofs

An elegant proof that a number hidden within a Pedersen commitment lies in an interval [a, b] in
the setting of prime order groups was presented in [27]. Although this proof might be impractical
in general, since it requires O(log b) single bit-proofs, it is efficient for the application that we
have in mind due to small values of b. The basic idea is to consider for a number x ∈ [0, b] its
binary representation x = x02

0 +x12
1 + . . .+xk−12

k−1, whereas xi ∈ {0, 1}, 0 ≤ i < k. Thereby,
k = [log2 b] + 1 represents the number of digits, which are necessary to represent every number
within [0, b]. Now, in essence one proves that the binary representation of x lies within the
interval [0, 2k − 1]. This can be done by committing to each xi using an Okamoto commitment
[29] (essentially a Pedersen bit commitment) along with a proof that this commitment hides
either 0 or 1 and demonstrating that for commitments to x and all xi’s it holds that x =
x02

0 +x12
1 + . . .+xk−12

k−1. The concrete range proof is a Σ-protocol for a proof of knowledge

PK{(α0, . . . , αk−1) :
k−1∧

i=0

(Ci = hαi ∨ Cig
−1 = hαi)}

or PK{(α, β) : C = gαhβ ∧ (0 ≤ α ≤ b)} for short.



3.4 Camenisch-Lysyanskaya Signature Scheme

Camenisch and Lysyanskaya have proposed a signature scheme in [13] which satisfies the usual
correctness and unforgeability properties of digital signatures and is provably secure under the
LRSW assumption for groups with bilinear maps, which implies that the DLP is hard (cf. [13]).
We present the CL signature scheme below:
Key Generation. Let G and Gt be groups of prime order p and e : G × G → Gt a bilinear
map. Choose x, y, z1, . . . , zl ∈R Zp. The private key is sk = (x, y, {zi}) and the public key is
pk = (X,Y, {Zi}, e, g, G, Gt, p), whereas X = gx, Y = gy and Zi = gzi .
Signing. On input message (m0, . . . ,ml), sk and pk, choose a ∈R G, compute Ai = azi , b = ay,

Bi = (Ai)
y and c = ax+xym0

∏l
i=1 A

xymi

i . Output the signature σ = (a, {Ai}, b, {Bi}, c).
Verification. On input of (m0, . . . ,ml), pk and σ = (a, {Ai}, b, {Bi}, c) check whether

– Ai’s are formed correct: e(a, Zi) = e(g,Ai)
– b and Bi’s are formed correct: e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi)

– c is formed correct: e(X, a) · e(X, b)m0
∏l

i=1 e(X,Bi)
mi = e(g, c)

What makes this signature scheme particularly attractive is that it allows a receiver to ob-
tain a signature on committed messages (using Pedersen commitments), while the messages are
information-theoretically hidden from the signer (messages here means elements of the mes-
sage tuple). Additionally, the receiver can randomize a CL signature such that the resulting
signature is unlinkable to the original signature. Furthermore, receivers can use efficient zero-
knowledge proofs to prove knowledge of a signature on committed messages. We will elaborate
on the aforementioned functionalities more detailed in Section 4.1 and will show how to extend
this functionality to interactive updates of signatures, the signed commitments and messages
respectively.

4 Scheme

In this section we present our scheme along with an optional modification in order to increase
the privacy in some settings even further. We start with the presentation of an important
observation of CL signatures which is central to our constructions. Then, we first give a high
level description followed by a detailed description of the schemes. Additionally, we present an
performance evaluation of a prototypical implementation which supports the efficiency of the
schemes. Finally, we present some extensions as well as system issues.

4.1 Interactive Update of Signed Messages

As already noted, CL signatures allow signing of committed messages (using Pedersen commit-
ments), while the signer does not learn anything about them. Assume that the signer holds a pri-
vate key sk = (x, y, z) and publishes the corresponding public key pk = (X,Y,Z, e, g, G, Gt, p).
Blind signing. If a receiver wants to obtain a blind signature for message m, he chooses
r ∈R Zp, computes a commitment C = gmZr and sends C along with a signature of knowledge
SPK{(α, β) : C = gαZβ} to the signer (the ability to open the commitment is necessary for
the security of the scheme, cf. [13]). If the verification of the proof holds, the signer computes
a signature σ = (a,A, b,B, c) for the commitment C by choosing k ∈R Zp, setting a = gk and
computing σ = (a, az, ay, ayz, axCkxy) and sends σ to the receiver.
Verification. In order to show the signature to a verifier, the receiver randomizes the signature
by choosing r, r′ ∈R Zp and computing σ′ = (a′, A′, b′, B′, c′) as σ′ = (ar, Ar, br, Br, crr

′

) and sends
σ′ with the message m along with a signature of knowledge SPK{(γ, δ) : vγ

σ = vvδ
r} to the ver-

ifier. Therefore, both need to compute vσ = e(c′, g), v = e(X, a′) · e(X, b′)m and vr = e(X,B′).
The verifier checks the proof and checks whether A′ as well as b′ and B′ were correctly formed.
Note, that the proof can be conducted by means of a standard DL-representation proof [17],
which can easily be seen by rewriting the proof as SPK{(γ, δ) : v = vγ

σ(v−1
r )δ}.

Remark. Observe, that we can realize a concept which is similar to partially blind signatures.
However, in contrast to existing partially blind signature schemes [1], where the signer can in-
tegrate some common agreed upon information in the signature, here, the signer arithmetically



adds a message to the “blinded message” (hidden in the commitment). Therefore, during the
signing, the signer simply updates the commitment to C ′ = CgmS and uses C ′ instead of C

during signing. The receiver then obtains a signature for message m + mS , whereas mS is de-
termined by the signer and m is hidden from the signer.
Update. The interesting and from our point of view novel part is that a signer can use a some-
what related idea to “update” a randomized signature without showing the message. Assume
that a receiver holds a randomized signature σ′ for message (m′, r) whereas m′ = m + mS

and wants the signer to update the signature such that it represents a signature for message
(m′ + m′

S , r + 1). Since showing m′, as within the signature above, would destroy the unlinka-
bility due to both messages are known, the receiver can solely prove that he knows the message
in zero knowledge and both can then interactively update the signature. Therefore in the ver-
ification the receiver provides a signature of knowledge SPK{(α, β, γ) : vα

σ = vv
β
m′vγ

r } to the
verifier, whereas vσ = e(g, c′), v = e(g, a′), vm′ = e(g, b′) and vr = e(g,B′), which convinces
the signer that the receiver possesses a valid signature for unknown message (m′, r). Then, for
the update, i.e. to add m′

S it is sufficient for the signer to compute C̃m′+m′
S

= a′m′
S A′ and

send it to the receiver. The receiver computes Cm′+m′
S

= (C̃m′+m′
S
)r

′

and provides a signa-

ture of knowledge SPK{(α, β, γ) : vα
σ = vv

β
m′vγ

r ∧ C̃m′+m′
S

= (Cm′+m′
S
)α}. Note that this

proof convinces the signer that the receiver has randomized the commitment of the signer using
the same random factor (r′) as within the randomization of the signature. Then, the signer
computes the updated signature σ′′ = (ar̃, A′̃r, b′̃r, B ′̃r, (c′(Cm′+m′

S
)xy)r̃) for r̃ ∈ Zp and gives

σ′′ = (a′′, A′′, b′′, B′′, c̃′′) to the receiver. The receiver sets c′′ = (c̃′′)r
′−1

and now holds a valid
signature for message (m′ + m′

S , r + 1) which he can in turn randomize. Therefore, observer
that in the signature tuple only the last element actually includes the messages and we have
c′ = crr

′

= (axC ′kxy)rr
′

= (ax+xy(m′+zr))rr
′

and (Cm′+m′
S
)xy = (axy(m′

S+z))r. By taking these

results together we have a well formed signature component c′′ = (ax+xy(m′+m′
S+z(r+1)))rr

′

. The
remaining elements of the signature are easy to verify for correctness.
Remark. This functionality can easily be extended to signatures on arbitrary tuples of mes-
sages, will be a building block for our scheme and may also be of independent interest. Note that
issuing a new signature in every step without revealing the hidden messages would not work
and thus we use this “update functionality”.

4.2 High Level Description of the First Scheme

Before presenting the detailed protocols, we provide a high level description. The aim of our
construction is to let the user solely prove in each Consume protocol that enough storage space
is available. In this setting, the user does not provide any useful information about the actual
consumed space to the verifier, but the verifier learns only the fact that the user is still allowed
to consume storage space.

ProviderSetup. The cloud provider generates a key-pair (sk, pk) for the CL signature scheme,
publishes pk, initializes an empty blacklist BL and fixes a set L = {L1, . . . , Ln} of space limits.

ObtainLimit. A user chooses a limit L ∈ L and obtains a CL signature σt for a token
t = (C(id), C(s), L), whereas the initially consumed storage space is set to be s = 1.

Consume. Assume that the user holds a token signature pair t = ((C(id), C(s), L), σt). Note,
that id (the token-id) and s were signed as commitments and thus the signer is not aware of
these values. When a user wants to integrate a data object d, the user computes C(id′) for the
new token, randomizes the signature σt to σ′

t and proves that σ′
t is a valid signature for id and

L (by revealing these two elements) and an unknown value s that satisfies (s + |d|) ∈ [0, L]
or equivalently s ∈ [0, L − |d|], i.e. when integrating the new data object d the user needs to
prove that after adding of |d| space units at most L storage space will be consumed. If id is
not contained in BL and this proof succeeds, the signature will be updated to a signature for
C(id + id′), C(s + |d|) and L. Consequently, the provider adds id to BL and the user obtains
an updated signature for a token t′ = (C(id + id′), C(s + |d|), L). Otherwise, the cloud provider



will reject the integration of a new data object.

Reclaim. Assume that the user holds a token signature pair t = ((C(id), C(s), L), σt). When
a user wants to delete a data object d, as above, the user computes C(id′) for the new token,
randomizes the signature σt to σ′

t and proves that he is allowed to delete d and that σ′
t is a

valid signature for id and L (by revealing these two elements). If id is not contained in BL and
the signature is valid, the user obtains a signature for a token t′ = (C(id + id′), C(s − |d|), L).
Otherwise, the cloud provider will reject to delete d.

4.3 Detailed Description of the First Scheme

Subsequently, we provide a more detailed description of our protocols providing the technical
details.
ProviderSetup: The cloud provider generates a key-pair for the CL signature scheme to sign
tokens of the form t = (id, s, L). More precisely, the cloud provider signs tokens of the form
t = (id, rid, s, rs, L), but we usually omit the randomizers for the ease of presentation. Conse-
quently, the cloud provider obtains the private key sk = (x, y, z1, z2, z3, z4) and publishes the
public key pk = (X,Y,Z1, Z2, Z3, Z4, e, g, G, Gt, p). Furthermore, he initializes an empty black-
list BL and fixes a set L = {L1, . . . , Ln} of limits that can be obtained by users.

ObtainLimit: A user registers with the cloud provider and obtains a space limit Li ∈ L
(we do not fix any concrete protocol for this task here since no anonymity is required). After
the user has registered and both have agreed on the value Li (which we denote as L below for
simplicity), they proceed as depicted in Protocol 1.

1. The user chooses a token-identifier id ∈R {0, 1}lid and randomizers rid, rs ∈R Zp for the commitments and we let

the user start with value s = 1. Then, he computes the commitments Cid = gidZ
rid
1 and Cs = Zs

2Zrs
3 and sends

them along with a signature of knowledge

SPK{(α, β, γ) : Cid = g
α

Z
β
1 ∧ Cs = Z2Z

γ
3 } (1)

to prove the ability to open the commitments, whereas the second part in the proof also convinces the cloud
provider that s = 1.

2. If the verification of the signature of knowledge in (1) holds, the cloud provider computes a CL signature for

(Cid, Cs, L) as follows: He chooses k ∈R Zp, computes a = gk, b = ay , Ai = azi , Bi = Ay
i for 1 ≤ i ≤ 4 and

c = ax(CidCsZL
4 )kxy and sends σ = (a, {Ai}, b, {Bi}, c) to the user.

3. The user verifies whether the signature is valid and if this holds the user is in possession of a valid signature
σ for a token t = (id, s, L), whereas the cloud provider is not aware of id and knows that s = 1. Furthermore,
the user locally randomizes the signature σ to σ′ = (a′, {A′

i}, b′, {B′
i}, c′) by choosing r, r

′ ∈ Zp and computing

σ′ = (ar, {Ar

i}, br, {Br

i}, crr
′
).

Remark. All further actions are fully anonymous and in practice also unlinkable, since we can assume that one limit
will be issued to a quite large number of users (and the limit is the only information that could potentially be used for
linking)!

Prot. 1: The ObtainLimit protocol.

Consume: A user holds a randomized signature σ′ = (a′, {A′
i}, b

′, {B′
i}, c

′) for a token t =
(id, s, L) and wants to integrate a data object d. The protocol to integrate a data object and
obtain a new token is depicted in Protocol 2.



1. The user sends the randomized signature σ′, the “visible part” (id, L) of the token t and a data object d along
with a signature of knowledge

SPK{(α, β, γ, δ) : v
α
σ = vv

β
rid

v
γ
s v

δ
rs

∧ (0 ≤ γ ≤ 2
lL−l|d| − 1)} (2)

for the validity of the randomized signature containing a proof that still enough space is available to the cloud
provider. It must be noted, that the presentation of the proof in (2) represents a shorthand notation for the
signature of knowledge

SPK{(α, β, γ, δ, ǫ, ǫ1, . . . , ǫk, ζ, ζ1, . . . , ζk) : v = v
α
σ (v

−1
rid

)
β
(v

−1
s )

γ
(v

−1
rs

)
δ
∧

C = g
β

Z
′ζ
1 ∧

C =

k∏

i=1

(g
ǫiZ

′ζi
1 )

2i−1
∧

k∧

i=1

(Ci = Z
ζi
1 ∨ Cig

−1
= Z

′ζi
1 )}

Essentially, besides the DL-representation proof for the validity of the randomized signature, we use an additional
commitment C = gsZ′r

1 to the value s with a new randomizer r computed as

r = r12
0

+ r22
1

+ . . . + rk2
k−1

MOD p

for ri’s chosen uniformly at random from Zp and the single commitments for the range proof are Ci = gsiZ
′ri
1 . It

also must be mentioned, that k represents lL − l|d|, the binary length of L − |d|. Furthermore, note that in case of
s = 1, i.e. in the first execution of the Consume protocol, it would not be necessary to provide a range proof. However,
when performing a range proof, the initial Consume protocol is indistinguishable from other protocol executions and
thus provides stronger privacy guarantees.

2. The cloud provider checks whether id /∈ BL. If id is not blacklisted, the cloud provider verifies the validity of the
signature for the part (id, L) of the token t. Therefore, the cloud provider locally computes the values

vσ = e(g, c
′
), vrid

= e(X, B
′
1), vs = e(X, B

′
2), vrs = e(X, B

′
3) and

v = e(X, a
′
) · e(X, b

′
)
id

· e(X, B
′
4)

L

from pk, (id, L) and σ′ and verifies the signature of knowledge (2) Additionally, he checks whether the A′
i’s as well

as b′ and B′
i’s are correctly formed.

3. A positive verification convinces the cloud provider that enough storage space is available to integrate d and a
signature for an updated token t′ can be computed in cooperation with the user as follows: Firstly, we need an
observation regarding the signature σ′. Note, that the only element of the signature that depends on the message
is c′, which can be rewritten as

c
′
= (a

x+xy(id+z1rid+z2s+z3rs+z4L)
)
rr
′

= (a
x+xyid

A
xyrid
1 A

xys
2 A

xyrs
3 A

xyL
4 )

rr
′

and in order to update a signature for the id-part (to construct a new id for the new token) it is sufficient to
update a and A1. To update the s-part, which amounts to update the currently consumed space, it is sufficient
to update A2 and A3. The latter update needs to be computed by the cloud provider to be sure that the correct
value |d| is integrated and the former one needs to be computed by the user to prevent the cloud provider from

learning the new token identifier. Hence, the cloud provider computes C̃s+|d| = A
′|d|
2 A′

3 and sends C̃s+|d| to the
user, who verifies whether |d| has been used to update the commitment. The user in turn chooses a new identifier

and randomizer id′, rid′ ∈R Zp, computes Cid+id′ = (a′id′
A

′r
id′

1 )r
′
, Cs+|d| = (C̃s+|d|)

v = (A
′|d|
2 A′

3)
r
′

and sends
(Cid+id′ , Cs+|d|) along with a signature of knowledge:

SPK{(ǫ, ζ, η, φ, ι, κ) : Cid+id′ = a
′ǫ

A
′ζ
1 ∧

C̃s+|d| = (Cs+|d|)
η

∧ v = v
η
σ(v

−1
rid

)
φ
(v

−1
s )

ι
(v

−1
rs

)
κ
}

to the cloud provider. Note, that the user additionally to the knowledge of the ability to open the commitments
proves that he has randomized the commitment C̃s+|d| to a commitment Cs+|d| using the same randomization

factor (r′) as used to randomize the signature σ without revealing this value. After positive verification of this
signature of knowledge, the cloud provider chooses r̃ ∈R Zp and computes an updated signature

σ
′′

= (a
′̃r
, {A

′̃r
i }, b

′̃r
, {B

′̃r
i }, (c

′
(Cid+id′Cs+|d|)

xy
)
r̃
) (3)

and sends this updated signature σ′′ = (a′′, {A′′
i }, b′′, {B′′

i }, c̃′′) to the user. The user sets c′′ = (c̃′′)r
′−1

and
obtains a valid signature for a token t′ = (id + id′, s + |d|, L) or more precisely a token t′ = (id + id′, rid + rid′ , s +
|d|, rs + 1, L), which he verifies for correctness (in Appendix A we show that σ′′ is indeed a valid signature).
Consequently, the user can randomize σ′′ and run a new Consume protocol for a data object d′ with token t′ =
(id + id′, s + |d|, L).

Prot. 2: The Consume protocol.

Reclaim: Reclaiming resources, i.e. deleting a data object, is achieved by a slight adaption
of the Consume protocol. In step 1, instead of the SPK (2) the user provides the subsequent



signature of knowledge (the proofs that enough space is available is not necessary)

SPK{(α, β, γ, δ) : vα
σ = vvβ

rid
vγ

s vδ
rs
}

And in step 3, the cloud provider computes C̃s−|d| = A
′p−|d|
2 A′

3 instead of C̃s+|d| = A
′|d|
2 A′

3.

Remark. As we have already mentioned, a cloud provider should only perform a Reclaim

protocol if the user is able to prove the possession of the data object d (and we may assume that
only owners delete their data objects). It is not the focus of this paper to provide a solution to
this task. However, a quite straightforward solution would be to commit to some secret value
for every data object and the cloud provider requires a user to open the commitment or prove
knowledge that he is able to open the commitment to delete a data object. This problem is
somewhat similar to what Halevi et al. recently denoted as proofs of ownership (PoWs) [32].
However, their focus although also in the cloud storage setting is (client-side) deduplication,
i.e. storing exactly the same file only once thus avoiding unnecessary copies of repeating data.
This is usually achieved by sending a hash of a file and the cloud checks if this hash is already
registered. In order to avoid security problems in this setting, they employ PoWs which require
users to prove that a user actually holds a file. This is somewhat similar but diametric to proofs
of data possession (PDPs) [2] and proofs of retrievability (PORs) [31] respectively.

4.4 A Modified Scheme (Scheme 2) Providing Even more Privacy for Users

In order to increase privacy further, it may be desirable that the initially issued limit L is hidden
from the CP during Consume or Reclaim protocols. We, however, note that if the number of
initial tokens associated to CP-defined limits in L is huge, the respective anonymity sets may be
of reasonable size for practical application and this adaption may not be necessary. Nevertheless,
we provide an adaption of our protocols which removes the necessity to include L, does only
include the available amount of resources (denoted as s) and hides this value s from the CP
during any further interactions. We present the modification below:
ProviderSetup. Now, tokens are of the form t = (id, rid, s, rs) and thus the private key is
sk = (x, y, z1, z2, z3) and the public key is pk = (X,Y,Z1, Z2, Z3, e, g, G, Gt, p).
ObtainLimit. The user computes commitments Cid = gidZrid

1 and Cs = Zrs

3 and provides

SPK{(α, β, γ) : Cid = gαZ
β
1 ∧Cs = Z

γ
3 }. The element c of the signature is now computed by the

CP as c = ax(CidCsZ
L
2 )kxy and the user can randomize this signature for token t = (id, rid, L, rs)

as usual.
Consume. Here the user only provides id of the actual token and a signature of knowledge

SPK{(α, β, γ, δ) : vα
σ = vvβ

rid
vγ

s vδ
rs

∧ (2l|d| − 1 ≤ γ ≤ 2lL − 1)}

In this setting L does not represent a user-specific limit but the maximum of all issued limits,
whereas this proof convinces the CP that enough resources to integrate d are still available
(note that the local computations of the CP for the verification of the signature in step 2 have
to be adapted, which is however straightforward). In step 3, the update of the signature remains
identical to the first scheme with the exception that the CP computes the commitment as

C̃s−|d| = A
′p−|d|
2 A′

3, which updates the remaining resources, e.g. in the first run of the Consume

protocol to s := L − |d|.
Reclaim. The reclaim protocol remains identical to the first scheme with the exception that

C̃s+|d| = A
′|d|
2 A′

3.

4.5 Performance Evaluation

In this section we provide a performance evaluation of our first scheme. We have implemented the
user’s and the cloud provider’s parts of the protocols in Java using the jPBC1 library version 1.2.0
written by Angelo De Caro. This library provides a Java porting of as well as a Java wrapper

1 http://libeccio.dia.unisa.it/projects/jpbc/



for the Pairing-Based Cryptography Library (PBC)2 developed by Ben Lynn in C. In particular,
we have used the Java PBC wrapper which calls the PBC C library and is significantly faster
than the pure Java implementation. All our experiments were performed on an Intel Core 2 duo
running at 2.6 GHz with 3GB RAM on Linux Ubuntu 10.10.

As the cryptographic setting we have chosen a symmetric pairing e : G×G → Gt constructed
on the supersingular elliptic curve y2 = x3+x over a prime field Fq where |q| = 512 bits and q ≡ 3
(mod 4). The group G represents a subgroup of E(Fq) of order r = 160 bits. The embedding
degree is k = 2 and thus Gt is a subgroup of Fq2 and with our choice of the parameters we
obtain a DL security of 1024 bit. For the non-interactive proofs of knowledge we have used the
SHA-256 hash function.
Experiments. Our setting for the experiments is as follows: For the computational performance
we have taken the average over 100 experiments, with limits L = 10i, i = 3, . . . , 9 each. Thereby,
within every of the 100 experiments per limit, the user has conducted 10 Consume as well as 10
Reclaim operations with |d| sampled uniformly at random from [1, 10i−2]. Figure 1 presents the
performance of the ObtainLimit, the Consume and the Reclaim protocols from a computational
and bandwidth perspective, whereas point compression for elements in G is used to reduce the
bandwidth consumption. As one can see, all protocols are highly efficient from the user’s as
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Fig. 1. Experimental results from a Java implementation of our first scheme.

well as the cloud provider’s perspective, both in the computational effort and the bandwdith
consumption. This holds, although the code has not been optimized for performance and pre-
computations have not been used. Hence, our evaluation shows that from the efficiency point of
view our protocols are entirely practical.

4.6 Extensions and System Issues

Below, we present two extensions of our schemes which seem to be valuable when deploying
them for practical applications.
Limited validity. One could rightly argue that in a large scale cloud the double spending
detection of token identifiers using a database (blacklist) does not scale well. In order to overcome
this limitation, we can extend our schemes such that a resource limit associated to a token only
has a limited validity. Then, before the validity ends a user has to provide the actual token, i.e.
the identifier and the available resources (either s and L or solely s in the second scheme) along
with the corresponding signature. Then the user runs a new ObtainLimit protocol with the CP.
Note that in case of the first scheme users should not end up with a new limit L which is very
likely to be unique and thus users should take one of the predefined limits. We now sketch how

2 http://crypto.stanford.edu/pbc/



this adaption for the first scheme looks like (for the second one it is analogous): The keys of
the CP are adapted such that the public key is pk = (X,Y,Z1, Z2, Z3, Z4, Z5, Z6, e, g, G, Gt, p).
Token are augmented by elements (V, rV ) which represent the validity period, e.g. an encoding
in Unix time. In the ObtainLimit protocol the user additionally computes ZrV

6 (and proves
knowledge of this DL) and the c part of the signature is adapted to c = ax(CidCsZ

L
4 ZV

5 ZrV

6 )
whereas the CP here integrates the validity V . The remainig ideas stay the same with exception
that in the Consume protocol, the SPK needs to be adapted to

SPK{(α, β, γ, δ, ǫ, ζ) : vα
σ = vvβ

rid
vγ

s vδ
rs

vǫ
V vζ

rV
∧

(0 ≤ γ ≤ 2lL−l|d| − 1) ∧ (2ltime − 1 ≤ ǫ ≤ 2lp − 1)}

whereas p represents the maximum validity period and time the representation of the actual
date and time (in the Reclaim we only need the second range proof). For the update of the

signature and the token respectively, the user has additionally to compute CV = (A′
5A

′r′
V

6 )r
′

and
augment the prove of knowledge in step 3 of Protocol 2 to

SPK{(ζ, η, φ, ι, κ, λ, µ, ν, ξ) : Cid+id′ = a′ζA
′η
1 ∧ CV = A

′φ
5 A′ι

6 ∧

C̃s+|d| = (Cs+|d|)
φ ∧ v = vφ

σ(v−1
rid

)κ(v−1
s )λ(v−1

rs
)µ(v−1

V )ν(v−1
rV

)ξ}

Note that these modifications do influence the overall performance of the Consume protocol
approximately by a factor of two, which though performs very good in practice when compared
with our experimental results.
Elasticity. Clouds extremely benefit from users being able to request resources “on the fly”. In
our first scheme this can only be achieved by means of requesting additional tokens, i.e. running
additional ObtainLimt protocols for the required resource, and users have then to manage a list
of tokens. Although this seems to be an issue which can be handled in practical applications,
the second scheme (modification to hide the limit L) allows for such updates. Therefore we can
simply use the Reclaim protocol of Section 4.4 (we may denote it as Recharge in this case),
whereas |d| is simply replaced by the amount of resources to be extended.

5 Conclusion

In this paper we have investigated the problem of anonymous yet authorized and bounded use
of cloud resources, which means that users should be able to register and obtain a resource
limit from a cloud provider such that this limit determines how much of a resource, e.g. CPU
time, storage space, a user is allowed to consume. Then, users should be able to consume (or
reclaim) their resources in an anonymous and unlinkable fashion, but the ability of users to
consume resources should be constrained by their issued limit. We have presented a scheme,
it’s modification providing even more privacy, have presented extensions valuable for practical
application and have supported the efficiency of the proposed scheme by a performance analysis
based on a prototypical implementation. Concluding we present anonymity revocation as an
open problem and then we briefly discuss future work.

Anonymity revocation. It is not clear to us how anonymity revocation could be suitably
realized in this setting. We argue that it does not seem to be meaningful to use identity escrow
within every transaction, i.e. to employ techniques known from group signatures (which could
though be realized using CL signatures). It is absolutely not clear who would have the power to
perform anonymity revocation. In contrast, if at all, it seems more suitable to employ techniques
like used within e-cash [11] or (n-times) anonymous authentication [11, 21]. Mapped to our
scenario this would mean that the identity of an anonymous user is solely revealed if the user
tries to consume more resources than allowed (although this is prevented by the protocols).
However, it is not clear to us how to achieve this, since in the aforementioned approaches spend
protocols or authentications are atomic and in our setting we do not know in advance how often
a user will consume or reclaim resources. We leave this functionality as an open problem for
future work.



In order to gain more insights into system issues and to gather experience on limitations in
practical use we are working on the integration of our schemes with the full functionality (all
extensions) into the Eucalyptus cloud3 using Amazon’s S3 storage service to.
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A Correctness of Update and Randomization in Consume

We need to show, that σ′′ = (a′′, {A′′
i }, b

′′, {B′′
i }, c

′′) is a valid signature for t′ = (id + id′, rid +
rid′ , s+ |d|, rs +1, L). Therefore, we firstly take a closer look at the signature component c′′ and
then show that the signature verification for σ′′ works and consequently σ′′ represents a valid
CL signature.

Regarding the component c′′, observe that we have

c = a
x
(CidCsZ

L
4 )

kxy
= a

x
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as well as
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Thus, by taking these results together we obtain

c
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′
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xy
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)
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and we can write all components of σ′′ similar to c′′. More precisely, we can represent the remaining components as
(ar̃r, {Ar̃r

i }, br̃r, {B r̃r

i }). Now, it remains to show that the verification relations for signature σ′′ work. Recall, therefore we
need to show that the A′′

i ’s, b′′, B′′
i ’s and c′′ are formed correctly:

– A′′
i ’s need to satisfy e(a′′, Zi) = e(g, A′′

i ): This can easily be verified, since

e(a
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, g
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– b needs to satisfy e(a′′, Y ) = e(g, b′′): This holds, since
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– B′′
i ’s need to satisfy e(A′′
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i ): This holds, since
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which holds, since by rewriting the left hand side and using bilinearity we obtain
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