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Abstract

We propose the design of a privacy-preserving-
personalization middleware that enables the end-
user to avail of personalized services without
disclosing sensitive profile information to the
content/service-provider or any third party for
that matter. Our solution relies on a dis-
tributed infrastructure comprising local clients
running on end-user devices and a set of mid-
dleware nodes that could be collaboratively do-
nated by few end-users or hosted by multiple
non-colluding third parties.

The key idea is to locally compute the user’s
profile on the device, locally determine the inter-
est group of the user wherein an interest-group
will comprise users with similar interest, and
anonymously aggregate the collective behaviour
of the members of the interest group at some
middleware node to generate recommendations
for the group members. In addition, our sys-
tem is also open for third party content and rec-
ommendation injection without leaking the users
privacy.

1 Introduction

A broad class of applications such as Stumble-
Upon [25] (or iGoogle [18]) URL recommen-
dations, Foursquare [14] check-in recommenda-
tions, Netflix [21] movie recommendations, or
IPTV content recommender systems suffer from
the dilemma of having the user disclose sensi-
tive profile information in order to benefit from
personalized content/services. As of today, users

have no option but to trust the content/service-
provider with their sensitive profile information
in return of the personalized content/services
they seek.

Typical centralized recommender systems rely
on one of the two main types of recommen-
dations: content-based and collaborative filter-
ing. The general content-based technique ex-
ploits content metadata (categories and tags)
and based on the user’s content consumption
history builds a profile of the user in terms of
weights associated with different categories and
tags. Having built the profile of a user, items
whose content metadata matches the tags and
categories that have high weights are recom-
mended. The general collaborative filtering pro-
cedure for content recommendation can be de-
scribed as follows: 1/ compute clusters of similar
users based on their history, 2/ compute the pop-
ularity curve of items within each cluster, and
3/ recommend to each user the most popular
items within his cluster that are not present in
his own history. As compared to content-based
recommendations, collaborative filtering enable
users to discover new types of content they may
like and that they never consumed before nor
expressed any explicit interest in them. How-
ever these approaches require having access to
the users’ profiles to take advantage from each
other’s experiences.

We would ideally like to have a privacy
preserving personalization system that enables
the end-user to benefit from a personaliza-
tion/recommendation service without disclosing
their preferences (i.e. user profile) to the con-
tent/service provider. Although there has been
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some prior work towards this goal, prior sys-
tems suffer from several limitations (as detailed
in Section4) which prevent them from being de-
ployed globally and adopted widely by the end-
users.

We will now describe some desired properties
of an ideal privacy-preserving-personalization
system.

• Generic middleware for wide range of
applications: The solution should support
wide gamut of potential applications varying
from Telco-based IPTV content personaliza-
tion, Web-based personalization like iGoogle
URL recommendations, and mobile-based
LBS (Locality-based services) personaliza-
tion like Foursquare check-in recommenda-
tions etc. Thereby, the design should be
in the form of a middleware, where dif-
ferent recommendation applications poten-
tially running on different types of end-user
devices (e.g. mobile phones, PCs, or Set-
Top-Box) can plug-in.

• Hybrid recommender system: Given
the obvious advantages of both content-
based and collaborative filtering recom-
mendations, we target a hybrid recom-
mender system which benefits from both
content semantics/metadata (content-based
approach) and from the experience of other
users (collaborative filtering approach).

• Seamless Operation of Content-
providers: The design should enable
’seamless’ (i.e. without requiring explicit
cooperation) interaction with external
content/service providers to receive ap-
propriate recommendations generated by
proprietary recommendation algorithms
that have be developed and fine-tuned by
content/service-providers like for example
Google. Thereby, the ideal system should
not require the content-provider to change
fundamentally its APIs/interfaces, and
additionally can work without having to in-
vest in replicating sophisticated state-of-art
recommendation algorithms developed by
content-providers.

• Profile Anonymization with ’Unlinka-
bility’: The design should obviously break
the association of the user from his pro-
file. In addition, even if the profile is
anonymized, no one node should be able
to see the complete profile, which we claim
is prone to sophisticated linkability at-
tacks wherein one can infer the mapping of
pseudonym to user based on the profile de-
tails. Therefore we strive for unlinkability
as well, which is achieved by ensuring that
any single node can see only a small slice of
the entire profile.

• Trust No One: Our design is aimed at en-
suring that we do no trust any single-entity
with all our sensitive information. Secondly,
our system should be designed to be able to
work under small scale collusion attacks.

• Comparable Performance: Last but not
the least, the system should provide rec-
ommendation quality that is comparable or
only slightly inferior to that of centralized
recommender systems, at the cost of slight
increase in overheads like communication
costs or infrastructure costs.

We will next describe the design of our pro-
posed P3 (i.e. acronym for privacy-preserving-
personalization) system which is intended to
meet the design goals mentioned above.

The rest of the paper is outlined as follows -
Section 2 describes the design of the P3 system,
Section 3 describes the detailed realization of the
design, Section 4 contrasts our P3 system with
prior works, and finally we conclude in the Sec-
tion 5.

2 Design of the P3 Architec-
ture

In this section we will highlight the key con-
tribution of the work in terms of showing how
different functional blocks can be interconnected
to meet the goals of the privacy-preserving-
personalization architecture.
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Figure 1: Functional Blocks of our Privacy-
Preserving-Personalization Middleware

In order to protect the user privacy we pro-
pose to execute the steps of a centralized recom-
mender system in a privacy-preserving way by
using a distributed infrastructure comprising of
P3 local clients running on end-user devices and
a set of P3 middleware nodes hosted by multi-
ple non-colluding entities. Models like that of
Virtual Individual Servers (VIS) [6] or TOR [13]
which employ end-users running nodes locally or
in the cloud computing platforms (e.g. Amazon)
could be envisioned. Note that we only require
a small fraction of users to act as volunteers to
host these nodes, and incentive mechanisms can
be provided to such users. Alternatively, one
could also imagine multiple third-parties like dif-
ferent cloud computing providers (e.g. Amazon,
Google, Microsoft) together hosting the P3 mid-
dleware nodes.

The key idea is to build users’ profiles lo-
cally on their personal devices, to identify the
interest-group that a user is associated with lo-
cally wherein an interest-group will comprise
users with similar interest, and anonymously ag-
gregate the collective behaviour of the members
of the interest-group to do both types of rec-
ommendation - collaborative filtering as well as
content-based.

The core contribution of the work revolves
around the idea of how the different func-

tional blocks described in Figure 1 can be
combined in order to realize the goals of
our privacy-preserving-personalization middle-
ware. Although our proposed realizations of each
functional block as described in Section 3 exist
in some adapted form in prior state-of-art, the
key contribution of our work lies in how the in-
terconnection of the functional blocks enables us
to realize our desired goal. While referring to
Figure 1, we will now describe the role of each
functional block and how they interconnect.

STEP 1 (’Local Profile Computation’
block in Figure 1): First, each user client col-
lects the local traces of users’ activities in the tar-
geted service domain. These traces are analyzed
and compacted in such a way that they represent
the user profile, i.e. the user preferences in terms
of items or in terms of item categories. Such a
local profile can for example be represented as a
set of <key, value> pairs, as it is described in
Section 3. The P3 middleware can provide the
personalization service to any external applica-
tion for which such a local profile is available.

STEP 2 (’Local Computation of Interest
Group IDs’ block in Figure 1): Then, each
local client determines its user’s interest group
by considering only the local profile data and
some globally available information (e.g. a con-
cept taxonomy, a term vocabulary, or seeds for
generating random vectors). Note that this can
be done without sending out the local profile to
any external entity by using techniques like LSH
(Local Sensitivity Hashing) [16] as described in
the Section 3.

STEP 3 (’Anonymous aggregation of
group member profiles’ block in Figure 1):
At the next step, we aggregate anonymously all
the group member profiles corresponding to a
particular interest group at a dedicated middle-
ware node which we call the Group-wise aggre-
gator. All the data related to a given group are
collected in a single Group-wise aggregator.

STEP 4 (’Construction of group-wise
item popularity curves’ in Figure 1): Using
collected group members’ profiles, the Group-
wise aggregator will generate a set of potential
recommendations for the interest group based
on the aggregate statistics of the already con-
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sumed content by the group members. In par-
ticular, the Group-wise aggregator can compute
the top-K popular items of the group and regard
these as the collaborative-filtering recommenda-
tions for the group.

STEP 5 (’External content injection
module’ in Figure 1): The Group-wise ag-
gregator can communicate the categories/tags
corresponding to the top-K items to the exter-
nal content provider to get content-based rec-
ommendations corresponding to the interests of
the group. In fact, it can also seamlessly inter-
act with the external content provider by posing
as an end-user who consumes the top-K popu-
lar items of the interest group and get recom-
mendations generated as per the proprietary rec-
ommendation algorithm running at the content
provider.

STEP 6 (’Anonymous Publish/Lookup
of group recommendations’ in Figure 1):
The generated recommendations at the Group-
wise aggregator, which are a combination of
the internal collaborative-filtering recommenda-
tions and the external recommendations, can be
looked up anonymously by the group members
or alternatively published to the group members
anonymously.

STEP 7 (’Local recommendation selec-
tion’ in Figure 1): Finally, the list of recom-
mendations is filtered out on each user device, by
removing already consumed content, and used to
make recommendations for the end user.

3 Realization of the P3 Func-
tional Blocks

Bellow we give more details on the realization
of the functional blocks introduced in the pre-
vious section. We map these functions on dif-
ferent types of components of a distributed sys-
tem which host the P3 middleware. Figure 2 de-
scribes one possible realization of the functional
blocks.

3.1 Local profile computation

Component type: P3 local client running on end-
user’s device

We consider two possible realizations for this
phase; of closed and open systems (in terms of
consumed content space) respectively. We de-
scribe how these types of systems or applications
allow the construction of local profiles in terms of
<key, value> pairs, where keys are either items
(item references) or item categories (tags, taxon-
omy concepts, etc.) while the values represent
the interest level (e.g. on a 0 to 1 scale).

(a) Example of <key, value> construction in
a closed-system: content provider portal, e.g.
VoD portal. Each content item is explicitly as-
sociated with its metadata provided by the con-
tent provider. These metadata include the ti-
tle and/or the artists and/or genres and/or key-
words/tags, etc. The user consumptions are then
mapped to these metadata terms and reflect user
interests; each user consumption itself is a set of
<key, value> elements where key is the meta-
data term and value is the interest towards that
term. The aggregation of these consumption sets
over the time allows to infer user interests in the
form of <key, value> elements [1]. In this case,
no additional global information is necessary for
local profiling other than the metadata provided
by the portal.

(b) Example of <key, value> construction in
an open system: web browsing. In this case, the
content items are web pages and their unique
identifiers are the URLs. In addition, each web
page visited by the user can be processed to find
additional metadata characterizing its content.
Such metadata can be either specified explic-
itly under the HTML ’title’ tag or meta tags
’keyword’ and ’description’, or discovered im-
plicitly, by parsing the source text of the web
page content. In any case, after the extrac-
tion of these metadata an additional normaliza-
tion is needed to incorporate some readjustments
wherein common tags are given lower rates akin
to IDF (Inverse Document Frequency) analogy.
The normalization procedure can be based on
some global tag popularity that can be retrieved
for instance from Google Analytics.
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Figure 2: A realization of the functional blocks on different components of the P3 Middleware

Note that in both examples keys can represent
unique identifiers such as the content title as well
as other types of metadata such as genres or tags
which characterize more than one content. The
advantage of mixing both unique identifiers and
categories is that the framework allows applying
hybrid types of recommendation algorithms us-
ing both collaborative filtering (exploiting only
the unique item identifiers) and content-based
recommendations (exploiting the content cate-
gories). Optionally, to avoid mixing different
types of keys, the <key, value> data structure
can be replaced by <item-category, item-list,
value> where item-category stands for keys that
represent categories and item-list stands for key
that represent unique identifiers content items
the consumption of which contributed to infer-
ring user interest in the given item-category.

Note that in both cases of closed and open sys-
tems keys that represent item categories can be
mapped onto a common ontology, a taxonomy
or flat vocabulary terms. This will also ensure
semantic uniformity between different local pro-
files and also between different applications re-
questing the personalization service from the P3
middleware [2]. The mapping dictionaries then
should be available locally at each local client.

Note that such a semantic uniformity facilitates
the local clustering described in the next session.

3.2 Local computation of global
Interest-Group IDs

Component type: P3 local client running on end-
user’s device

The objective of this phase is the local compu-
tation of user interest groups (clusters), i.e. each
local client determines its user’s interest group
by considering only the local profile data and
some globally available information (e.g. a con-
cept taxonomy, a term vocabulary, or seeds for
generating identical random vectors). The global
information is shared among all the clients inde-
pendently of their local profile content; by map-
ping the local profiles onto this global informa-
tion space one can determine the interest-groups
as clusters characterized by commonly shared
terms. So, two distinct user profiles that map (lo-
cally) to the same cluster discriminator will make
part of the same interest-group without the need
for explicit pair wise comparison between these
two local data entities.

Two examples of such local interest-group
computation can be given.
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(a) Example using Local Sensitivity Hashing
(LSH) techniques: an approach to compute all
the similarities between all users in a compu-
tationally efficient way is given by LSH tech-
niques [16]. This approach is commonly used
to solve nearest neighbor and clustering prob-
lems in case of high dimensional spaces, where
the ’Curse of dimensionality’ makes an exhaus-
tive search unfeasible 1. The basic idea behind
LSH is that two similar objects will hash to the
same value with high probability, the value out-
putted by the hash functions could be used as
the ’label’ of a cluster (or cluster id) to which
the two objects belong. The output of several
hash functions could be concatenated in order to
reduce the probability of errors.

Google is using MapReduce and LSH to run
a collaborative filtering algorithm that generates
recommendations for users of Google News [12].
Here, we suggest to apply a similar approach in
order to compute user similarities by using only
local processing at each end-user client.

Each user client executes the appropriate LSH
algorithm depending on the chosen distance met-
rics, e.g. Charikar offers a solution to implement
cosine similarity using LSH [8], and similarly can
use the MinHash algorithm [9, 10] to implement
set similarity using the Jaccard coefficient.

The LSH code obtained from the local pro-
file data gives the cluster identifier(s), cluster id,
which are statistically identical for similar users.
One can generate several LSH codes and con-
catenate them for the same user to reduce false
positives. At the same time, in order to catch
several aspects of user’s consumption patterns
we can hash each user to a number of clusters
(as suggested in [12]).

Finally, note that in an open system described
in the previous section, the LSH will be com-
puted by using only the keys representing item-
categories. Note that privacy is not compromised
in this process as all the computation is done lo-
cally.

(b) Example using semantics-based clustering:
Each local client can identify the top-K item-
categories within the local profile. This list will

1http://en.wikipedia.org/wiki/Curse of dimensionality

be considered as cluster descriptor of the interest
group to which the given user belongs to. As an
extension to this approach, one can also consider
different subsets of top-K categories of size m,
m < K, so that the given user is affiliated to
more than one cluster.

3.3 Anonymous aggregation of group-
member profiles

Component type: P3 Middleware nodes
To compute the item popularity curve within

each interest group, one needs to collect in a sin-
gle place all the local profiles belonging to the
same cluster. Doing this directly would however
violate the user privacy because the local profile
of each member user could be distinguished dur-
ing the data transfer. To allow anonymous aggre-
gation of profiles, we divide this process in two
steps: (1) collecting partial profile data via an
anonymization network like TOR [13] (i.e. Onion
Routers [24]) at arbitrarily chosen P3 middle-
ware nodes (called Profile-slice collectors) that
participate in a DHT [11] (i.e. Distributed-Hash-
Table), and (2) aggregating the information on
a per cluster basis at the P3 middleware node
(called Group-wise aggregator) which is the DHT
node responsible for storing/computing informa-
tion related to the corresponding cluster. Such a
DHT node is chosen using the DHTs key-based-
routing (KBR) primitive with the cluster id as
the key.

The role of the anonymization network is
to hide the identity of the end-users from the
Profile-slice collectors. The goal of slicing the
profile into small segments is to ensure ’unlink-
ability’ such that even after anonymization, no
middleware node sees enough of the profile to
be able to intelligently infer the identity of the
profile owner from the profile contents.

Below we provide more details on the two-step
aggregation mechanism.

(1) Profile slice collection: At this step, each
user client slices the local profile into segments
s1, , sn composed of one or more <key, value>
elements each. The profile slicing mechanism
should be intelligent to ensure that no profile-
segment by itself contains enough profile content
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items that can be pieced together to infer the
identity of the individual even after anonymiza-
tion. By slicing to small-enough segments (with
the limit being single item per segment), the
probability of intelligent inference attacks on a
profile segment reduces. However, one can de-
sign a profile slicing mechanism that minimizes
the number of segments to reduce communica-
tion overhead while still ensuring safeguard from
intelligent inference attacks.

Then, each segment together with the users
cluster identifier(s), i.e. < si, cluster id> are
sent via an anonymization network like TOR to
different profile slice collectors. A typical 3-hop
onion-routing path [24] can be established with
the end-user encrypting the < si, cluster id> in-
formation with the public-key of the exit node
of the onion-routing path, and the exit-node de-
crypting the information and relaying it to the
profile slice collector. The end-user periodically
chooses a different random set of DHT nodes to
act as its set of Profile-slice collectors. Thus, dif-
ferent parts of the local profile will be delivered
to different profile slice collectors, and none of
them will have a full view of the local profile of
any user.

Its worth noting that in scenarios where the
end-user clients device is well-provisioned (e.g.
IPTV set-top-box) to be a member of the DHT
itself, the TOR-based anonymization network
could be optionally replaced by a DHT-based
anonymization mechanism like AP3 [20]. In this
case, the client nodes generate a new hash code
Hi for each pair < si, cluster id> and select a
DHT node as a profile slice collector using Hi

as the DHTs KBR key, and send the profile-slice
anonymously using AP3 to this profile slice col-
lector.

(2) Group-wise aggregation: At this step, each
profile slice collector forwards a given data ele-
ment < si, cluster id> to a Group-wise aggre-
gator selected with a DHTs KBR mechanism
by using the cluster id as the hash code or key.
As a result, all the data elements related to a
given cluster will be collected in the same phys-
ical node. Note that each DHT node could be
responsible for several clusters; this will depend
on the number of clusters generated and the total

number of DHT nodes.
Its worth mentioning here that one can explore

other complex alternatives for anonymous aggre-
gation like Anonygator [23] which in addition to
some of the desired properties mentioned above
can give additional protocol properties like resis-
tance to data pollution by malicious end-users
and more scalable aggregation using multi-trees.
Similarly, a system like that proposed by Apple-
baum et al [3] doing cryptographic-based aggre-
gation of <key, value> pairs, can be used for
stronger privacy guarantees under collusion at-
tacks as well as additional properties like ’key-
word privacy’ where we can ensure that the
Group-wise aggregator can only know the top-K
items of the interest group instead of the entire
group’s consumption.

3.4 Construction of group-wise item
popularity curves

Component type: Group-wise aggregator
The group aggregator responsible for the given

cluster concocts all the <key, value> elements
belonging to its members. This allows computing
the item popularity curve of each cluster, or in
other words, each recommendation peer will se-
lect the top-K items for the given interest group.
The top-K items could either be items, categories
or tags. These top-K items serve as the group
recommendations generated by the collaborative
filtering approach. Additionally, they also reflect
the primary interests of the group members in
terms of items, categories or tags.

3.5 External content injection

Component type: External content injection
module

This module is optional; it connects group-
wise aggregators to external content and ad
providers to push external content sources like
targeted ads or third-party content recommen-
dations. To achieve this functionality, the group-
wise aggregators can either explicitly pull recom-
mendations on behalf of its group; or alterna-
tively can interact ’seamlessly’ with the external
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providers without requiring any special coopera-
tion from the external provider.

In the first type of interaction (i.e. explicit),
the group-wise aggregators can communicate the
primary interest of the group in terms of cate-
gories and tags corresponding to the top-K items
of the interest group to the external content
provider to get content-based recommendations.
The latter can return a list of contents/ads to
be injected in the respective Top-K list. This
external module will make its suggestions in cor-
respondence with the interest group.

In the second type of interaction (i.e. seam-
less), the group-wise aggregator can seamlessly
interact with the external content provider by
posing as an end-user who consumes the top-K
popular items of the interest group or for that
matter the entire consumption list of its group
members as its own consumption. The external
content provider profiles the group-wise aggre-
gator just as it profiles any other end-user, and
generates recommendations (by any type of spe-
cific recommendation algorithm) for the group-
wise aggregator, which in reality represents the
interests of the group members.

3.6 Anonymous group Publish and
Lookup of group recommenda-
tions

Component type: P3 Middleware nodes
The recommendations generated at the group-

wise aggregator can be made available to the
group members either via a PULL-based ap-
proach (i.e. lookup) or via a PUSH-based ap-
proach (i.e. publish). As in the aggregation
mechanism, such a lookup or publish must be
anonymous as well. We will describe two realiza-
tions below via the anonymous lookup and the
anonymous publish-subscribe mechanism.

(a) Anonymous Lookup: In this operation, the
end-user’s P3 client issues a DHT-lookup [11] by
using the cluster id as the hash code or key. How-
ever such a DHT lookup is done over a typical 3-
hop onion-routing path [24], with the cluster id
encrypted with the public-key of the exit node
of the onion-routing path, and the exit-node de-
crypting the cluster id, issuing a DHT-lookup

with cluster id as the DHTs KBR key, encrypt-
ing the returned results of the DHT-lookup (i.e.
the recommendations) with the symmetric key
that is provided by the end-user. The encrypted
recommendations are sent back on the reverse
path and the end-user’s P3 client finally decrypt-
ing the recommendations. Note that privacy
is preserved in the lookup mechanism, because
the only node that knows the identity of the
end-user is the entry-node of the onion-routing
path, which however can neither know the end-
user’s group association (i.e. due to encrypted
cluster id) or the group’s recommendations (en-
crypted recommendations). Its worth noting
that in scenarios where the end-user client’s de-
vice is well-provisioned (e.g. IPTV set-top-box)
to be a member of the DHT itself, the TOR-
based anonymization network could be option-
ally replaced by DHT-based anonymization sys-
tem using AP3 [20].

(b) Anonymous Publish: Alternative to the
above PULL-based anonymous lookup mecha-
nism, one can employ a more complex PUSH-
based anonymous publish-subscribe mechanism,
wherein newly generated recommendations at
the group-wise aggregator are published to the
group members anonymously, i.e. ensuring that
no P3 middleware node including the group-wise
aggregator knows the identity of the group mem-
bers. This can be done using anonymous chan-
nels that allow an end-user to specify a kind of
mailbox-address for its intended messages as the
channel address without divulging their identity.
When a node wishes to construct an anonymous
channel, it first picks a random id, as the ad-
dress of the channel. Messages sent to this chan-
nel id are then forwarded anonymously back to
the receiver, and nodes who send messages to the
channel are unaware who is the actual recipient.
Thus, if an end-user wishes to join the publish-
subscribe group corresponding to cluster id, it
first creates an anonymous channel and then in-
cludes the address of the channel in the anony-
mously routed group-subscription request to the
group-wise aggregator. The channel ids corre-
sponding to different group members that the
group-wise aggregator receives is maintained as
the group state. Generated recommendations at
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the group-wise aggregator can then be sent to the
channel ids corresponding to its group members.
Both TOR [13] as well as AP3 [20] allow the cre-
ation of anonymous channels. As in the case of
anonymous lookups, depending on whether the
end-user’s P3 client is provisioned enough to run
a DHT node locally, we use either an AP3 or
TOR based realization of anonymous channels.

3.7 Local recommendation selection

Component type: P3 local client running on end-
user’s device

On the reception of group recommendations
corresponding to the user’s interest group(s), the
user’s client compares them with the local profile;
by making a simple extraction operation one can
filter out the items already consumed by the user
in the past and obtain the recommendation list
from merging the remaining items in the top-K
lists provided by each cluster the user in affiliated
to. In the case, where targeted ads have been
injected in top-K lists a specific behaviour can
be adopted by the user client depending on the
user’s preferences. On two extremes, all the ads
could be filtered out or all the ads could be kept
in the list which will allow repeated visualization
of the same ad over the time).

4 Related Work

In this section, we will categorize the related
work according to high level functionalities
provided by prior state-of-art, and contrast their
functionality with that of our P3 system.

Privacy preserving local content-based
recommender systems: A few works like Ad-
nostic [26] and Privad [17] employ a local profil-
ing algorithm that categorizes the user into au-
dience segment(s) based on the observed brows-
ing and content consumption history. The
content-provider broadcasts all ads/content to
each user, together with specification of the in-
tended audience-segment corresponding to each
ad/content. The local content-filtering algo-
rithm however only displays ads/content corre-
sponding to the user’s audience-segment.

To reduce the bandwidth costs resulting from
broadcast of all content/ads, systems like Pri-
vad [17] anonymously subscribe the user to
high-level interest categories via an anonymiz-
ing proxy that is assumed to not collude with
the content-provider, receive content/ads for this
high level category, and do fine-filtering of rele-
vant content/ads locally.

Such systems however face the challenge of be-
ing able to develop an algorithm that can run
on end-user’s device with recommendation qual-
ity comparable to proprietary recommendation
algorithms developed by centralized content-
providers like Google etc. In addition, these
systems only provide content-based recommen-
dations and are unable to provide collaborative
filtering recommendations since there is no way
to know other top-rated items liked by users with
similar interests.

In contrast, P3 enables both content-based as
well as collaborative filtering recommendations,
is more scalable, has greater resistance against
collusion attacks, and also does not have to rely
on replicating proprietary personalization algo-
rithms on the local device.

Another very recent work Re-Priv [15] relies
on doing local profiling in the browser. How-
ever, after having done the local profiling it
relies on users to give explicit permissions to
service/content providers to utilize the meta-
profile computed locally to push personalized
content. Their privacy benefits come from the
fact that the browsed urls need not be revealed
but only the synthesised meta interests can be
provided to the content provider. In contrary,
our approach is aimed to even hide the high
level interests from the service/content provider.

Privacy-preserving collaborative filter-
ing: Collaborative Filtering (CF) approaches
present big privacy issues since they need to
gather all users consumptions on a centralized
server. Anonymizing users’ profile (i.e via as-
signing pseudonyms) before sending them to a
centralized server is prone to ’linkability’ attacks
where the real identity of the pseudonym can be
inferred based on complete profile details (e.g.
AOL scandal in 2006).
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Solutions to preserve user’s privacy in a CF
system, propose to compute local aggregations of
individual profiles for/by a community of users.
The computed ’aggregate’ is public and doesnt
expose individual users profiles (e.g. Canny et
al [7]). The aggregate is calculated iteratively
by only adding vectors of user profile. Homo-
morphic encryption is used to allow sums of en-
crypted vectors to be computed and decrypted
without exposing individual data. This work is
however focused on a peer-to-peer framework,
supposes that the majority of users are honest
and states that the community should ideally
know each other!

Another solution proposed by Polat et al [22]
is to use randomized perturbation techniques to
disguise the real user’s consumption before send-
ing them to the server. The server applies then
a CF algorithm (SVD-based) on the disguised
profiles and builds a matrix. To get a predic-
tion for an item, the user sends a query to the
server that computes a certain scalar product us-
ing the matrix and sends it back to the user.
The latter computes the real prediction of the
user likes/dislikes of the item using a particular
formula involving the real private user profile.
Authors indicate that the accuracy of their sys-
tem is good but could be improved if more ag-
gregate information about the user is disclosed
along with the disguised data (i.e. knowing the
real user preferences allows to generate more ac-
curate recommendations).

Other approaches like that of Berkvosky et
al [4] try to combine the obfuscation of a part of
the user profile with the distribution of users pro-
files between multiple repositories to offer a CF
system preserving user privacy while not ham-
pering system accuracy. They studied what in-
formation of the user profile should not be hidden
to continue having accurate recommendations.
However, even though the generated recommen-
dations were accurate, their results showed that
a CF system working with real users’ profiles (i.e.
without any obfuscation) always provide better
accuracy.

In summary, prior privacy-preserving col-
laborative filtering solutions either rely on
heavyweight computations employing crypto-

graphic operations or rely on degradation of
recommendation quality by introducing pertur-
bations in the users actual profile. In contrast,
the collaborative-filtering approach of P3 is
much more lightweight and works without re-
quiring random perturbations to the user profile.

Collaborative personalized applications
via anonymous peering with like-minded
peers: In addition to collaborative-filtering
recommendations, some Web2.0 applications
like personalized web-search [19] could benefit
from connecting the end-user with like-minded
users with similar interests. The Gossple [5]
system enables every end-user to be associated
with a network of anonymous ’like-minded’
acquaintances, and shows how applications
like the personalized query-expansion can be
built using Gossple. To achieve anonymization,
Gossple uses a gossip-on-behalf approach where
each node n is associated with a proxy P that
gossips profile information on its behalf. The
end-user’s identity is hidden from P , by using
an encrypted two-hop communication akin to
onion-routing [24] wherein the end-user relays
its profile information to P via an intermediate
proxy that cannot decrypt the profile infor-
mation. Although one could imagine using
the Gossple substrate for designing a privacy
preserving collaborative filtering application, the
drawback of the Gossple’s anonymous peering
approach is that in order to know which two
users are similar the complete set of consumed
items (i.e. complete profile) consumed by the
other user (although pseudonymized) is known
to the other user. This is open to linkability at-
tacks, wherein the pseudonym to user mapping
can be inferred by sophisticated attacks that
can intelligently infer the possible user based on
the overall set of items consumed by him.

Scalable Collaborative Filtering: The
Google-News personalization system [12] inves-
tigates how the scalability can be achieved in
a recommender system that needs to deal with
high item churn and large set of users. Their
first technique to get scalability is the use of
model-based algorithms for collaborative filter-
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ing wherein the user is mapped to one (or more)
cluster(s) of ’like-minded’ users using techniques
like MinHash [9, 10] (an LSH [16] scheme for
set-similarity using the Jaccard coefficient) and
PLSI, and only the item-ratings of cluster mem-
bers (instead of the entire set of users) is used
to calculate the recommendation. Their sec-
ond technique to get scalability is to develop
MapReduce-friendly versions of the MinHash
and the PLSI algorithms. In contrast to our
P3 system, their system is a centralized system
which assumes access to all the user’s consump-
tion history, and uses a MapReduce framework
to scalably generate the recommendations. Al-
though their PLSI algorithm cannot be trivially
applied to our P3 setting because of the need
of several global item consumption statistics, we
observed that the MinHash algorithm can how-
ever be used to do local computation of clus-
ter ids as proposed in the realization of Step 2
of our P3 system.

5 Conclusion

We have proposed the design and realization of
P3 system, a privacy-preserving-personalization
middleware that enables the end-users to partic-
ipate in a wide range of recommendation-based
services, without privacy concerns of revelation
of their sensitive profile information. We are cur-
rently in the process of evaluating P3’s perfor-
mance in terms of recommendation quality and
overheads, and contrasting it with that of cen-
tralized recommender systems.
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