
Building a Wrapper for Fine-Grained Private Group
Messaging on Twitter

Indrajeet Singh1, Michael Butkiewicz1, Harsha V. Madhyastha1,
Srikanth V. Krishnamurthy1, Sateesh Addepalli2

1 University of California, Riverside 2 Cisco Systems

Abstract

User privacy has been an increasingly growing concern in online social networks (OSNs). While
most OSNs today provide some form of privacy controls so that their users can protect their shared
content from other users, these controls are typically not sufficiently expressive and/or do not provide
fine-grained protection of information. In this paper, we consider the introduction of a new privacy
control—group messaging on Twitter, with users having fine-grained control over who can see their
messages. Specifically, we demonstrate that such a privacy control can be offered to users of Twitter
today without having to wait for Twitter to make changes to its system. We do so by designing and
implementing Twitsper, a wrapper around Twitter that enables private group communication among
existing Twitter users while preserving Twitter’s commercial interests. Our evaluation shows that our
implementation of Twitsper imposes minimal server-side bandwidth requirements and incurs low
client-side energy consumption. Our Twitsper client for Android-based devices has been downloaded
by over 1000 users and its utility has been noted by several media articles.

1 Introduction

OSNs have gained immense popularity in the last few years since they allow users to easily share information
with their contacts and even discover others of similar interests based on information they share. However,
not all shared content is meant to be public; users often need to ensure that the information they share
is accessible to only a select group of people. Though legal frameworks can help limit with whom OSN
providers can share user data, users are at the mercy of controls provided by the OSN to protect from other
users the content they share. In the absence of effective controls, users concerned about the privacy of
their information are likely to connect with fewer users, share less information, or even avoid joining OSNs
altogether.

Previous proposals to address these privacy concerns on existing OSNs either (a) jeopardize the com-
mercial interests of OSN providers [30, 24] if these solutions are widely adopted and thus, are likely to be
disallowed, or (b) require users, who are currently accustomed to free access to OSNs, to pay for improved
privacy [26, 37, 4]. On the other hand, though new OSNs have been developed with privacy explicitly in
mind [15, 7], these OSNs have seen limited adoption because users are virtually “locked in" to OSNs on
which they have already invested significant time and energy to build social relationships. Consequently,
users have, in many cases today, raised privacy-related concerns in the media; though OSNs have introduced
new privacy controls in response to these concerns (e.g., Facebook friend lists, Facebook groups, Google+
circles), such controls do not provide sufficiently fine-grained protection.

In light of this, we consider the privacy shortcomings on Twitter, one of the most popular OSNs to-
day [16]. Twitter offers two kinds of privacy controls to users—a user can either share a message with all
of her followers or with one of her followers; there is no way for a user on Twitter to post a tweet such

that it is visible to only a subset of her followers. In this paper, we fill this gap by providing fine-grained
controls to Twitter users, enabling them to conduct private group communication. Importantly, we provide
this fine-grained privacy control to Twitter users by implementing a wrapper that builds on Twitter’s existing
API, without having to wait for Twitter to make any changes to its service.

As our primary contribution, we design and implement Twitsper—a wrapper around Twitter that
provides the option of private group communication for users, without requiring them to migrate to a new
OSN. Unlike other solutions for group communication on Twitter [8, 18, 21], Twitsper ensures that
Twitter’s commercial interests are preserved and that users do not need to trust Twitsperwith their private
information. Further, in contrast to private group communication on other OSNs (e.g., Facebook, Google+),
in which a reply/comment on information shared with a select group is typically visible to all recipients of
the original posting, Twitsper strictly enforces privacy requirements as per a user’s social connections
(all messages posted by a user are visible only to the user’s followers).

When designing Twitsper, we considered various choices for facilitating the controls that we desire;
surprisingly, a simple approach seemed to be the best fit for fulfilling all our objectives. Thus, our imple-
mentation of Twitsper is based on this simple design which combines a Twitter client (that retains much
of the control logic) with a server that maintains minimal state. Our evaluation demonstrates that this simple
design does achieve the best tradeoffs between several factors such as backward compatibility, availability,
client-side energy consumption, and server-side resource requirements.

Overall, our implementation of Twitsper is proof that users can be provided fine-grained privacy
controls on existing OSNs, without waiting for OSN providers to make changes to their platform. Our
client-side implementation of Twitsper for Android phones has been downloaded by over 1000 users and
several articles in the media have acknowledged its utility in improving privacy and reducing information
overload on Twitter [20, 14, 19].

2 Related work

Characterizing privacy leakage in OSNs: Krishnamurthy and Willis characterize the information that
users reveal on OSNs [31] and how this information leaks [32] to other entities on the web (such as social
application providers and advertising agencies). Our thesis is that ensuring OSN providers do not leak user
information requires legal measures that mandate appropriate controls. It is not in the commercial interests
of OSN providers to support systems that hide information from them. Therefore, we focus on enabling
users to protect their information from other undesired users, rather than from OSN providers.

Privacy controls offered by OSNs: Google+ and Facebook permit any user to share content with a
circle or friend list comprising a subset of the user’s friends. However, anyone who comments on the shared
content has no control; the comment will be visible to all those with whom the original content was shared.
Even worse, on Facebook, if Alice comments on a friend Bob’s post, Bob’s post becomes visible to Alice’s
friend Charlie even if Bob had originally not shared the post with Charlie. Facebook also enables users
to form groups; any information shared with a group is not visible to users outside the group. However, a
member of the group has to necessarily share content with all other members of a group, even if some of
them are not her friends. Twitter, on the other hand, enables users to restrict sharing of their messages either
to only all of their followers (by setting their account to private mode) or to exactly one of their followers
(by means of a Direct Message), but not to a proper subset. We extend Twitter’s privacy model to permit
private group communication, ensuring that the privacy of a user’s reply to a message shared with a group
is in keeping with the user’s social connections.

Distributed social networks: Several proposals to improve user privacy on OSNs have focused on
de-centralizing OSNs (e.g., Vis-a-Vis [37], DiSo [4], and PeerSoN [26]). These systems require a user to
store her data on a personal device or in the cloud, thus removing the need for the user to trust a central

Category %
Consider privacy a concern 77
Would like to control who

70
sees information they post
Declined follower requests

50
owing to privacy concerns

Table 1: Results of survey about privacy shortcomings on Twitter.

OSN provider. However, users have put in tremendous effort in building their social connections on today’s
OSNs [5, 16]; rebuilding these connections on a new OSN is not easy. Thus, unlike these prior efforts, we
build a backward-compatible privacy wrapper on Twitter.

Improving privacy in existing OSNs: With Lockr [38], the OSN hosting a user’s content is unaware
of with whom a user is sharing content; Lockr instead manages content sharing. Other systems allow users
to share encrypted content, either by posting the encrypted content directly on OSNs [30, 24, 25] or via out-
of-band servers [12]. Users can share the decryption keys with a select subset of their connections (friends).
Hummingbird [27] is a variant of Twitter in which the OSN supports the posting of encrypted content in such
a manner that preserves user privacy. Narayanan et al. [34] ensure users can keep the location information
that they divulge on OSNs private via private proximity testing. All of these techniques either prevent OSN
providers from interpreting user content, or hide users’ social connections from OSNs. Since neither is in
the commercial interests of OSN providers, these solutions are not sustainable if widely adopted. In contrast,
we respect the interests of OSN providers while exporting privacy controls to users.

Group communication: Like Twitsper, listserv [29] enables communication between groups of
users. However, unlike with Twitsper, group communications on listserv lack a social structure and
listserv was never designed with privacy in mind. Prior implementations of group messaging on Twitter,
such as GroupTweet [8], Tweetworks [18], and Twitter Groups [21], have either not focused on privacy—
they require users to trust them with their private information—or require users to join groups outside their
existing social relationships on Twitter.

3 Motivating User Survey

While privacy concerns with OSNs have received significant coverage [31, 32], the media has mostly fo-
cused on leakage of user information on OSNs to third-parties such as application providers and advertising
agencies. Our motivation is the need for a more basic version of privacy on OSNs—protecting content con-
tributed by a user from other users on the OSN, which has began to receive some attention [10]. To gauge
the perceived need amongst users for this form of privacy, we conducted an IRB approved user study across
78 users of Twitter 1. Our survey questioned the participants about the need they see for privacy on Twitter,
the measures they have taken to protect their privacy, and the controls they would like to see introduced to
improve privacy. Table 1 summarizes the survey results. More than three-fourths of the survey participants
are concerned about the privacy of the information they post on Twitter, and an almost equal fraction would
like to have better control over who sees their content. Further, rather tellingly, half the survey takers have at
least once rejected requests to connect on Twitter in order to protect their privacy. These numbers motivate
the necessity of enabling users on Twitter to privately exchange messages with a subset of their followers,
specifically allowing them to choose which subset to share a message with on a per-message basis.

1Participants consisted of staff and students at UCR.

Proposal Backward Preserves No Added
Compatible Commercial Trust

Interests Required
Distributed OSNs × × X

Encryption X × X
Separating content providers

X × ×from social connections
Existing systems for group

X X ×messaging on Twitter
Twitsper X X X

Table 2: Comparison of Twitsper with previous proposals for improving user privacy on OSNs.

4 System design goals

Given the need for enabling private group messaging on Twitter, we next design Twitsper to provide
fine-grained privacy controls to Twitter users. Our over-arching objective in developing Twitsper is to
offer these controls to users without having to wait for Twitter to make any changes to their service. Our
design for Twitsper is guided by three primary goals.

Backward compatible: Rather than developing a new OSN designed with better user controls in mind
(e.g., proposals for distributed OSNs [37, 26, 4]) we want our solution to be compatible with Twitter. This
goal stems from the fact that Twitter already has an extremely large user base—over 100 million active
users [22]. Since the value of a network grows quadratically with the growth in the number of users on
it (the network effect [33]), Twitter users have huge value locked in to the service. To extract equal value
from an alternate social network, users will not only need to re-add all of their social connections, but will
further require all of their social contacts to also shift to the new service. Therefore, we seek to provide
better privacy controls to users by developing a wrapper around Twitter, eliminating the burden on users of
migrating to a new OSN and thus maximizing the chances of widespread adoption of Twitsper.

Preserves commercial interests: A key requirement for Twitsper is that it should not be detrimental
to the commercial interests of Twitter. For example, though a user can exchange encrypted messages on
Twitter to ensure that she shares her content only with those with whom she shares the encryption keys,
this prevents Twitter from interpreting the content hosted on its service. Since Twitter is a commercial
for-profit entity and offers its service for free, it is essential that Twitter be able to interpret content shared
by its users. Twitter needs this information for several purposes: to show users relevant advertisements,
to recommend applications of interest to the user, and to suggest others of similar interest with whom the
user can connect. Though revealing user-contributed content to Twitter opens the possibility of this data
leaking to third-parties (either with or without the knowledge of the provider), user content can be insured
against such leakage via legal frameworks (e.g., enforcement of privacy policies [23]) or via information
flow control [39]. On the other hand, protecting a user’s content from other users requires enabling the user
with better controls—our focus in building Twitsper.

No added trust: In attempting to give users better controls without waiting for Twitter to change, we
want to ensure that users do not have another entity to trust in Twitsper; users already have to trust Twitter
with their information. Increasing the number of entities that users need to trust is likely to deter adoption
since users would fear the potentially greater opportunity for their information to leak to third-parties. There-
fore, we seek to ensure that users do not need to share with Twitsper’s servers any information they want
to protect, such as their content or their login credentials. Tools such as TaintDroid [28] can be used to
verify that Twitsper’s client application does not leak such information to Twitsper’s servers. We de-
sign Twitsper for the setting where Twitsper’s servers are not malicious by nature, but are inquisitive
listeners; this attacker model is similar to that used in prior work (e.g., [35]).

Table 2 compares our proposal with previous solutions for improving user privacy on OSNs. Unlike

API call Function

PrivSend(msg, group) Send msg to all
users specified in group

isPriv?(msg) Determine if msg
is a private message

PrivReply(msg, orig_msg)

Send msg to all
of the user’s followers
who received orig_msg

Figure 1: Twitsper’s API beyond normal Twitter
functionality.

Twitsper App
on user device

Twitsper
Server

Login Credentials
+

Content

User
Controls Twitter

Servers

Figure 2: System architecture.

proposals for distributed OSNs, Twitsper enables users to reuse their social connections on Twitter, and
unlike calls for exchange of encrypted content, we respect Twitter’s commercial interests. Moreover, we
introduce user controls via Twitsper without adding another entity for users to trust, unlike proposals
such as Lockr [38], which call for the separation of social connections from content providers. Lastly, in
contrast to prior implementations of group messaging on Twitter such as GroupTweet [8], Tweetworks [18]
and Twitter Groups [21], we ensure that Twitter is privy to private conversations but Twitsper is not.

5 Twitsper design

Next, we present an overview of Twitsper’s design. We consider various architectural alternatives and
discuss the pros and cons with each. Our design objectives guide the choice of the architecture that presents
the best trade-off. As mentioned earlier, surprisingly, a fairly straightforward simple approach seems to
yield the best trade-offs and is thus, used as the basic building block in Twitsper.

Basic definitions: First, we define a few terms related to Twitter and briefly explain the Twitter eco-
sphere.

• Tweet: A tweet is the basic mode of communication on Twitter. When a user posts a tweet, that message
is posted on the user’s Twitter page (i.e., http://twitter.com/username), and is seen on the timeline of
everyone following the user.

• Direct Message: A direct message is a one-to-one private tweet from one user to a specific second user,
and is possible only if the latter follows the former.

• @ Reply: A user can use a @reply message to reply to another user’s tweet; this message will also appear
on the timeline of anyone following both users.

• Twitter page: Every user’s Twitter page (http://twitter.com/username) contains all tweets and @reply
messages posted by the user. By default, this page is visible to anyone, even those not registered on
Twitter. If a user sets her Twitter account to be private, all messages on her page are visible to any of the
users following her account.

• Timeline: A user’s timeline is the aggregation of all tweets, direct messages, and @reply messages (sorted
in chronological order) visible to that user. In addition to her timeline, note that a user can view any tweet
or @reply message posted by any user that she follows by visiting that user’s Twitter page.

Interface: Our primary goal is to extend Twitter’s privacy model. In addition to sharing messages with
all followers or precisely one follower, we seek to enable users to privately share messages with a subset of
their followers. To do so, we extend Twitter’s API with the additional functionality shown in Table 1.

First, the PrivSend API call allows users to post private messages that can be seen by one or more mem-
bers in the user’s network, who are specifically chosen to be the recipients of such a message. However,
simply enabling a message to be shared with a group of users is insufficient. To enable richer communica-

Design Twitter’s No Easily Same Always Linkable
interests added scales text avai- to orig

preserved trust size lable message
Supporting server X X X X X ×

Embed lists X X X × X ×
Encryption × X X X × X

Community pages × × × X × ×
Dual accounts × X X X X X(No longer possible)

Table 3: Comparison of architectural choices.

tion, it is necessary that recipients of a message (shared with a group) be able to reply back to the group.
In the case of discussions that need not be kept private, a user may choose to make her reply public so that
others with similar interests can discover her. However, when Nina responds to a private message from Jack,
it is unlikely that Nina will wish to share her reply with all the original target recipients of Jack’s message
since many of them may be “unconnected" to her. Nina will likely choose to instead restrict the visibility
of her reply to those among the recipients of the original message whom she has approved as her followers.
Therefore, the PrivReply API call enables replies to private messages, while preserving social connections
currently established on Twitter via follower-followee relationships. Finally, the isPriv? API call is neces-
sary to determine if a received message is one to which a user can reply with PrivReply. Hereafter, we refer
to the messages exchanged with the PrivSend and PrivReply calls as whispers.

It is important to note that, since our goal is to build a wrapper around Twitter, rather than build a new
OSN with these privacy controls, this extended API has to build upon Twitter’s existing API for exchanging
messages. Though Twitter’s API may evolve over time, we rely here on simple API calls—to post a tweet
to all followers and to post a Direct Message to a particular follower—that are unlikely to be pruned from
Twitter’s API. Also note that, in some cases, multiple rounds of replies to private messages can result in the
lack of context for some messages for some recipients, since all recipients of the original whisper may not
be connected with each other. In the trade-off between privacy and ensuring context, we choose the former
in designing Twitsper.

Architectural choices: Next, we discuss various architectural possibilities that we considered for
Twitsper’s design, to support the interface described above. While it may be easy for Twitter to ex-
tend their interface to support private group messaging, we note that Twitter has not yet done so in spite of
the need for this amongst its users. Therefore, our focus is in designing Twitsper to offer this privacy
control to users without having to wait for Twitter to make this change.

Using a supporting server: The simplest architecture that one can consider for Twitsper is to have
clients send a whisper to a group of users by sending a Direct Message to each of those users. To enable
replies, a supporting server can maintain the list of the original recipients of a whisper; when a client sends a
whisper, it can send the identifiers of the Direct Messages and the list of recipients to the supporting server.
Thus, a user can query this supporting server to check if a received Direct Message corresponds to a whisper.
When the user chooses to reply to a whisper, the user’s client can retrieve the list of recipients of the original
whisper from the server, locally compute the intersection between those recipients and the user’s followers,
and then send Direct Messages to all those in the intersection.

If the supporting server is unavailable, users can continue to use Twitter as before, except that the meta-
data necessary to execute the isPriv? and PrivReply API calls cannot be retrieved from the server. However,
the client software can be modified to allow a recipient to obtain relevant mappings (list of recipients of
a whisper) from the original sender. Another option is to have the client embed the list of recipients of a
whisper in every Direct Message sent out as part of a whisper. However, given Twitter’s 140 character limit
per Direct Message, this can be a significant imposition, reducing the permissible length of the message
content.

This design places much of the onus on the client and may result in significant energy consumption for
the typical use case of Twitter access from smart phones. On the flip side, in this architecture, the content
posted by a user is never exposed to the supporting server i.e., privacy from Twitsper’s server is preserved.
The server is simply a facilitator of group communications across a private group and only maintains meta
data related to whispers. Further, Twitter is able to see users’ postings and thus its commercial interests
are protected. We note that the alternative of the client sending messages to the supporting server for
retransmission to the recipients is not an option, since this would require users to trust the supporting server
with the content of their messages.

This design however does have some shortcomings. Twitter lacks sufficient context to recognize that the
set of Direct Messages shared to send a whisper constitute a single message rather than a local trending topic.
Similarly, Twitter cannot link replies with the original message, since all of this state is now maintained at
the supporting server.

Using encryption to hide content: To address the shortcoming in the previous architecture of being
unable to link replies to the original whispers, in our next candidate architecture, clients post whispers just
as they would a public message (tweet) but encrypt it with a group key which is only shared with a select
group of users (who are the intended recipients of the message). This reduces the privacy problem to a key
exchange problem for group communications. An out-of-band key exchange is possible.

However, since only intended recipients can decrypt a tweet, Twitter’s commercial interests are com-
promised. Furthermore, filtering of encrypted postings not intended for them is necessary at the recipient’s
side; if not, a user’s Twitter client will display indecipherable noise from these postings. In other words,
the approach is not backward compatible with Twitter. Note here that if these issues are resolved, e.g., by
sharing encryption keys with Twitter, encryption can be used with any of the other architectural choices
considered here to enhance privacy.

Using community pages to support anonymity: Alternatively, one may try to achieve anonymity and
privacy by obfuscation. Clients post tweets to a obfuscation server, which in turn re-posts messages on
behalf of users to a common “community” account on Twitter. Except for the server, no one else is aware of
which message maps to which user. When a user queries the obfuscation server for her timeline, the server
returns a timeline that consists of messages from her original timeline augmented with messages meant
for that user from the “community” page. The obfuscation prevents the exposure of private messages to
undesired users. Since the “community" page is hosted on Twitter, the shortcoming of the encryption-based
architecture is readily addressed—Twitter has access to all information unlike in the case of encryption. An
approach similar to this was explored in [36].

However, this architecture has several drawbacks. First, Twitter cannot associate messages with spe-
cific users; this precludes Twitter from profiling users for targeted advertisements and such. Second, all
users need to trust the obfuscation server with the contents of their messages. Finally, since the architec-
ture is likely to heavily load the server (due to the scale), the viability of the design in practice becomes
questionable. When the server is unavailable, no private messages can be sent or received.

Using dual accounts: In our last candidate architecture, every user maintains two accounts. The first
is the user’s existing account, and a second private account is used for sending whispers. Since a Direct
Message from one user to another is possible only if they are connected, links between these private accounts
are dynamically created so as to allow a private message to propagate only to the desired users. However,
Twitter has been quite clear that an application that creates significant fluctuation in links between users will
be considered detrimental to the Twitter ecosphere [1], thus discouraging the dynamic creation and deletion
of associations between private accounts. Further, a supporting server that has the relevant credentials of all
users is necessary to setup and authorize follower-followee links between accounts dynamically; requiring
users to trust their OSN login credentials with a supporting server is undesirable.

A different method for facilitating selective sharing of information is to use an @reply from these private
accounts. However, as of mid-2009, Twitter discontinued the “capability” of @reply messages between

(a) List selection (b) A user’s timeline

Figure 3: Twitsper on Android OS

User Device

Twitsper App

Middleware Twitsper
Server

1. Forward
User
Input

2. Post

3. Ack

4. Relay
Mappings

Twitter
Server

0. User
Input

Figure 4: Steps for posting a whisper

disconnected users after concluding that less than 1% of the users found this feature useful and that it
contributes to spam messages [13]. Thus, @reply messages posted from these disconnected private accounts
will not be visible to intended recipients. Other problems with this architectural choice are that Twitter is
unable to associate private messages with the normal accounts of users and responding to private messages
is a challenge.

Figure 3 summarizes the comparison of the various architectural choices with respect to our design goals.
While no solution satisfies all desirable properties, we see that the use of a supporting server presents the best
trade-off in terms of simplicity and satisfying our goals. Therefore, we choose this to be the architectural
choice for implementing Twitsper, whose architecture is as shown in Figure 2.

6 Implementation

In this section, we describe our implementation of the Twitsper client and server. Given the popularity
of mobile Twitter clients, we implement our client on the Android OS [2, 3].

Generic implementation details. Normal tweets (public) and Direct Messages are sent with the Twitsper
client as with any other Twitter client today. We implement whispers using Direct Messages as described
before. Recall that direct messaging is a one-to-one messaging primitive provided by Twitter. Mappings
from Direct Messages to whispers are maintained on our Twitsper server.

Twitsper’s whisper messages are always sent to a group of selected users. The client handles group
creation by creating a list of users on Twitter. This list can either be public (its group members are viewable
by any user of Twitter) or private for viewing only by its creator. The client sends a Direct Message via
Twitter to each group member and gathers the message IDs returned by Twitter. These IDs and the Twitter
list ID are then sent to the Twitsper server. The server creates and stores a mapping of the message IDs
to the IDs of the group members.

When a Twitsper client receives a Direct Message, it queries the Twitsper server to check whether
the message is a whisper or a standard Direct Message. If the server finds a mapping from the message ID
to a list of users, this indicates that the message corresponds to a whisper. The server reports its finding to
the client. A key feature of our system is that since whispers are sent as Direct Messages, whispers can still
be received and viewed by legacy users of Twitter who have not adopted Twitsper; such users cannot
however reply to whispers.

Twitsper allows a whisper recipient to reply not only to the sender, but also to a subset of the original
group receiving the whisper. This subset is simply the intersection of the original group and the followers of

the responding user. Thus, it respects the social relations established by users. A whisper recipient’s client is
provided with the list ID corresponding to the group, and the client can then retrieve the user IDs on that list
from Twitter if the original whisper sender made the list public. If the list is private, the recipient’s response
can only be received by the original sender. In the future, we plan to permit Twitsper users to modify
the list associated with a particular whisper in order to enable inclusion of new users in the private group
communication or removal of recipients of the original whisper from future replies.

Server implementation details: Our server is equipped with an Intel quad-core Nehalem processor,
24 GB of RAM, and one 7200 RPM 1 TB hard disk drive. The Twitsper server is implemented as a
multi-threaded Java program. The main thread accepts incoming connections and assigns a worker thread,
chosen from a thread pool, to service each valid API call. The server stores whisper mappings in a MySQL
database. In order to ensure that writing to the database does not become a bottleneck we have multiple
connections to the database; we observed that without this, the server performance was affected. These
connections are used by worker threads in a round-robin schedule. Note that our server does not store any
personal information or credentials of any user. The flow of information in case of a tweet (public) or a direct
message remains unchanged. Only in the case of a whisper does the use of our system become necessary.
The contents of a whisper are never sent to our server; only unique message IDs for the consequent Direct
Messages (along with a list ID) are sent. This ensures that the server can never “overhear” conversations
between users unless it has either a user’s password,which with Twitsper is never transmitted to the
server.

Client implementation details: Our client was written for Android OS v1.6 and was tested on the
Android emulator as well as on three types of Android phones (Android G1 dev, Motorola Droid X, and
HTC Hero). We use the freely available twitter4j package to access the Twitter API. The client is also
multi-threaded and separates the UI (user-interface) thread from the processing, the network, and disk I/O
threads. This ensures a seamless experience to the user without causing the screen to “freeze” when the client
is performing disk or network I/O. We profiled the power consumption of our implementation to identify
inefficiencies and iteratively improved the relevant code. These iterative refinements helped us decrease the
dependence on the network by caching frequently retrieved user profile images, while maintaining a thread
pool rather than the fork and forget model adopted by most open source implementations of other Twitter
clients, so as to not over-commit resources.

When the Twitsper server is unavailable, we cache whisper mappings on the client and piggyback
this data with future interactions with the server. On the other hand, recipients of whispers interpret them as
Direct Messages and cannot reply back to the group until the server is again reachable. In future versions
of Twitsper, we will enable recipients to directly query the client of the original sender if Twitsper’s
server is unavailable.

We also color code tweets, Direct Messages and whispers, while maintaining a simple and interactive
UI. Example screen shots from our Twitsper client are shown in Figure 3. Our client application is freely
available on the Android market, and to date, our Twitsper Android application has been downloaded by
over 1000 users.

7 Evaluation

Next we present our evaluation of Twitsper. For the purposes of benchmarking, we also implement a
version of Twitsper wherein a client posts a whisper by transmitting the message to the Twitsper
server, which in turn posts Direct Messages to all the recipients on the client’s behalf. Though, as previously
acknowledged, this design clearly violates our design goal of users not having to trust Twitsper’s server,
we use this thin client model (TCM) (we refer to our default implementation as the fat client model or
Twitsper itself) as a benchmark to compare against. One primary motivation for using TCM as a point of

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

Average Write Times Per Msg(ms)

512 threads, group size 16
1024 threads, group size 16

(a) DB write time

 0.95
 0.955
 0.96

 0.965
 0.97

 0.975
 0.98

 0.985
 0.99

 0.995
 1

 1 10 100

C
D

F

Average Read Times Per Msg(ms)

512 threads, group size 16
1024 threads, group size 16

(b) DB read time

Figure 5: Database performance

0

20

40

60

80

100

120

 2 4 8 16 32

A
v
g
.
%

 S
e
rv

e
r

C
P

U
 U

ti
l.

Group Size

Twitsper: 16 clients
Twitsper: 128 clients
TCM: 16 clients
TCM: 128 clients

(a) CPU utilization

 32

 64

 128

 256

 512

 1024

 2 4 8 16 32

T
im

e
 (

m
s
)

Group Size

TCM: 16 clients
TCM: 128 clients

Twitsper: 16 clients
Twitsper: 128 clients

(b) Service time per client

Figure 6: Server Metrics

comparison is that it can reduce the power consumption on phones (since battery drainage is a key issue on
these devices). We also compare Twitsper’s energy consumption on a smart phone with that of a popular
Twitter client to demonstrate its energy thriftiness.

Server-side results: First, we stress test our server by increasing the rate of connections it has to handle.
In this experiment, we use one or more clients to establish connections and send dummy metadata to our
server. All clients and the server were on the same local network and thus, network bandwidth was not the
constraining factor. We monitored CPU utilization, disk I/O, and network bandwidth with Ganglia [6] and
iostat to detect bottlenecks. We vary the target group size of whispers as well as the number of simultaneous
connections to the server.

Disk. In Figure 5b, we plot the time taken by each thread to read information relevant to a message from
the database (we preloaded the database with 10 million entries to emulate server state after widespread
adoption); Figure 5a depicts the CDFs of the write times to the database. We see that as the number of
clients increase, so do the database write times, but not the read times. Thus, as the system scales, the
bottleneck is likely going to be the I/O for writing to the disk.

CPU. Next, we compare the server performance of TCM and Twitsper. We will refer to the version of
the server which works in tandem with Twitsper, and handles only whisper metadata, as the Twitsper
server. The TCM server must, in addition, handle the actual sending of whispers to their recipients. It is to
be expected that the overhead of the TCM server would increase the computational power needed to service
each client. Figures 6a and 6b show the average CPU utilization and user service time, respectively, for each
server version. We see in Figure 6a that the Twitsper server has a higher CPU utilization than the TCM
server. This is because the TCM server spends more idle time (Figure 6b) while servicing each client since
it needs to wait on communications with Twitter. So even though more CPU resources are being spent per
client with the TCM server, the average CPU utilization is lower.

Another interesting feature noted from these graphs is that certain increases in group size cause the server
to more than double its service time. These sharp increases in service time in Figure 6b have corresponding
drops in CPU utilization in Figure 6a. This is due to our server’s disk writes being the throughput bottleneck.
Since in each test we either double the number of client connections or the group size, we would expect a
CPU bottleneck to manifest itself with drastic service time increases (of≈ 200%). Instead, the data points to
a disk write bottleneck where the client must wait for an acknowledgment of the server database’s successful
write. We verify with iostat that our hard drive is used at 100% utilization during these periods. We are
currently investigating the effect of adding more disks.

Network. Figure 9a shows the number of bytes in and out with the TCM and Twitsper servers for a
single client connection. Each line in Figure 9a represents a single client sending one whisper message to
a group size which is varied (x-axis). We see that increasing the group size does not cause a large increase
in the received bytes as compared to the case with only 2 group members. This illustrates that the overhead
increase with recipient group size (which causes either the receipt of more message IDs with the Twitsper
server or the receipt of more recipient user IDs with the TCM server) is very minor when compared to the

Interface Twitsper Other
LCD 13325 10127
CPU 755 1281
3G 4812 8232

Figure 7: Total power consumption (mJ)

 1.9

 1.92

 1.94

 1.96

 1.98

 2

 2.02

 2.04

 2.06

 1 2 4 8 16 32

En
er

gy
 s

pe
nt

 p
er

 d
ay

 (J
)

Group Size

Twitsper (f=0.25)
TCM (f=0.25)

Twitsper (f=0.1)
TCM (f=0.1)

Figure 8: Client power consumption

resources consumed by the SSL connection between the client and the server. The only additional overhead
with the TCM server is the transfer of the actual whisper messages from the client; this manifests as the
constant offset between these two curves. Since the Twitsper server has to only send a confirmation to
the user that its whisper meta data was received correctly, the bytes out is independent of the recipient group
size. In contrast, the burden of having to send whispers to each recipient (as a separate Direct Message) is
on the TCM server. Increasing group size (x-axis) increases the number of Direct Messages sent to Twitter
and this quickly results in an overshoot of the single client SSL connection overhead.

Figures 9b and 9c show the bandwidth consumed at the server as the number of bytes in and out per
second. In Figure 9b, we see that the Twitsper server does not experience a reduction in transmission
rate until it hits 128 clients and a group size of 16. At this point, we hit a disk bottleneck in writing client
message metadata to our database. For the TCM server, we see a rate reduction even in the 16 clients case as
we increase the group size; this is due to the latency incurred in the message exchange with Twitter. We hit a
similar hard disk bottleneck at 128 concurrent client connections with the TCM server, as similar metadata
needs to be stored with both server setups.

Comparing Twitsper and TCM clients: While Twitsper offers higher CPU utilization as well as
lower bandwidth requirements, the power consumption at the client is a key factor in ensuring adoption of
the service. To evaluate its client side power performance, we measure the amount of energy needed to make
a single post with Twitsper to Twitter and to send a message to our server. We use the PowerTutor [11]
application to measure the power consumed at the client. We made 100 posts back to back and measure the
average energy consumed.

Figure 8 compares TCM and Twitsper based on the power consumed on a phone. The figure shows
the energy consumption per day on an Android phone, for an average Twitter user who sends 10 messages
per day and has 200 followers [9]. Our experiments suggest that the best implementation depends on the
fraction of a user’s messages that are private (denoted by f) and the typical size of a list to which private
messages are posted. The energy consumption with Twitsper is significantly greater than that with the
TCM client when f is large or the group sizes are big. However, since we expect private postings to con-
stitute a small fraction of all information sharing and that such communication will typically be restricted
to small groups, energy consumption overhead with Twitsper is minimal. Even in the scenarios where
client-side energy consumption increases, the energy consumed is still within reason, e.g., the energy con-
sumed per client across various scenarios is within the range of 1.9 J to 2.5 J, which is less than 0.005% of
the energy capacity of typical batteries (10 KJ, as shown in [11]). Further, as we show next, the majority of
the energy consumed in practice is by the user’s interaction with the phone’s display, whereas the energy we
consider here is only that required to simply send messages, and does not include displaying and drawing
graphics on the screen.

Comparison with another popular Twitter client: We next compare the power consumption of
Twitsper with that of a popular Twitter client (TweetCaster[17]), which supports the default privacy
options on Twitter. We begin the test after both clients had been initialized and had run for 15 seconds. We
then send a message from each of the clients and refresh the home screen; there was at least one update to the

512 B

2 KB

8 KB

32 KB

128 KB

 2 4 8 16 32 64 128

S
e
r
v
e
r
 I
O

 (
B

y
te

s
)

Group Size

Bytes Out per TCM
Bytes In per TCM

Bytes In per Twitsper
Bytes Out per Twitsper

(a) Bytes in/out per client

8 KB

32 KB

128 KB

512 KB

2 MB

8 MB

32 MB

 2 4 8 16 32

S
e
r
v
e
r
 B

y
te

s
/S

e
c
 I
n

Group Size

16 TCM
128 TCM

16 Twitsper
128 Twitsper

(b) Incoming bandwidth

8 KB

32 KB

128 KB

512 KB

2 MB

8 MB

32 MB

 2 4 8 16 32

S
e
r
v
e
r
 B

y
te

s
/S

e
c
 O

u
t

Group Size

(c) Outgoing bandwidth

Figure 9: Network activity on server; same legend on (b) and (c)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

P
o
w

e
r
 C

o
n
s
u
m

p
ti
o
n
(
m

W
)

Time(s)

Popular Twitter Client
Twitsper

Figure 10: Comparison of
power consumption

home screen. As seen from the traces of the power consumed in Figure 10, Twitsper’s power consump-
tion is comparable. This shows that Twitsper only imposes energy requirements on the mobile device
that are comparable to other Twitter clients. We observe that there is no noticeable loss in performance since
both clients were made to carry out the same tasks functionally.

In the above test, even though the screen was kept on for as little a time as possible (less than 10% of the
total time) the LCD accounted for close to 50% of the aggregate energy consumed, as seen from Figure 7.
Referring the reader back to Figure 8, we see that as the group size increases there is only a marginal
increase in the energy consumption associated with the sending of messages. Even if 25% of the messages
are whispers and the average group size is 32 (which we believe is quite large), the energy consumed only
increases from 1.92 J (for a single tweet) to 2.05 J—an increase of less than 15%; given that the LCD power
consumption dominates, this is not a significant energy cost.

8 Conclusions

Today, for users locked in to hugely popular OSNs, the primary hope for improved privacy controls is to
coerce OSN providers via the media or via organizations such as EFF and FTC. In this paper, to achieve
privacy without explicit OSN support, we design and implement Twitsper to enable fine-grained private
group messaging on Twitter, while ensuring that Twitter’s commercial interests are preserved. By building
Twitsper as a wrapper around Twitter, we show that it is possible to offer better privacy controls on
existing OSNs without waiting for the OSN provider to do so.

Next, we plan to implement fine-grained privacy controls on other OSNs such as Facebook and Google+
as well, using a similar approach of building on the API exported by the OSN. Given the warm feedback
received by Twitsper, we hope that the adoption of Twitsper and its follow-ons for other OSNs will
persuade OSN providers themselves to offer fine-grained privacy controls to their users.

References
[1] Aggressive follower churn in spam subsection of ”the twitter rules“. http://bit.ly/a62bx1.

[2] Android operating system. http://www.android.com/.

[3] Comscore: Android is now highest-selling smartphone OS. http://bit.ly/euR4Yb.

[4] DiSo project. http://diso-project.org/.

[5] Facebook traffic reaches nearly 375 million monthly active users worldwide, led by us. http://bit.ly/c0Z3UQ.

[6] Ganglia. http://ganglia.sourceforge.net/.

http://bit.ly/a62bx1
http://www.android.com/
http://bit.ly/euR4Yb
http://diso-project.org/
http://bit.ly/c0Z3UQ
http://ganglia.sourceforge.net/

[7] Google Plus numbers belie social struggles. http://bit.ly/pPIwDr.

[8] Grouptweet. http://www.grouptweet.com/.

[9] New data on Twitter’s users and engagement. http://bit.ly/cu8P2s.

[10] Please rob me. http://www.pleaserobme.com/.

[11] Powertutor. http://bit.ly/hVaXh1.

[12] Priv(ate)ly. http://priv.ly/.

[13] Retweet this if you want non-followers replies fixed. http://bit.ly/YwLYw.

[14] Selectively tweeting via free Android application Twitsper. http://bit.ly/gas5bS.

[15] Social networks offer a way to narrow the field of friends. http://nyti.ms/j7dOsC.

[16] Tweet this milestone: Twitter passes MySpace. http://on.wsj.com/dc25gK.

[17] Tweetcaster. http://tweetcaster.com/.

[18] Tweetworks. http://www.tweetworks.com.

[19] Twitsper app for Android enhances Twitter security and privacy. http://bit.ly/avDV8l.

[20] Twitsper, group tweeting app, could change Twitter as we know it. http://huff.to/cYkGvH.

[21] Twitter Groups! http://jazzychad.net/twgroups/.

[22] Twitter reveals it has 100m active users. http://www.guardian.co.uk/technology/pda/2011/sep/08/twitter-active-users.

[23] Twitter suspends twidroyd & UberTwitter over privacy claims. http://bit.ly/hRcZ1w.

[24] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin. Persona: An online social network with
user-defined privacy. In SIGCOMM, 2009.

[25] F. Beato, M. Kohlweiss, and K. Wouters. Scramble! Your Social Network Data, volume 6794 of Lecture Notes
in Computer Science, chapter 12, pages 211–225. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[26] S. Buchegger and A. Datta. A case for P2P infrastructure for social networks - opportunities and challenges. In
6th International Conference on Wireless On-demand Network Systems and Services (WONS), 2009.

[27] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Hummingbird: Privacy at the time of Twitter. In
IEEE Symposium on Security and Privacy (S&P), 2012.

[28] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An information-
flow tracking system for realtime privacy monitoring on smartphones. In OSDI, 2010.

[29] D. A. Grier and M. Campbell. A social history of bitnet and listserv, 1985-1991. IEEE Annals of the History of
Computing, 2000.

[30] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in online social networks. In WOSN, 2008.

[31] B. Krishnamurthy and C. Willis. Characterizing privacy in online social networks. In WOSN, 2008.

[32] B. Krishnamurthy and C. Willis. On the leakage of personally identifiable information via online social networks.
In WOSN, 2009.

[33] S. J. Liebowitz and S. E. Margolis. Network externality: An uncommon tragedy. The Journal of Economic
Perspectives, 1994.

http://bit.ly/pPIwDr
http://www.grouptweet.com/
http://bit.ly/cu8P2s
http://www.pleaserobme.com/
http://bit.ly/hVaXh1
http://priv.ly/
http://bit.ly/YwLYw
http://bit.ly/gas5bS
http://nyti.ms/j7dOsC
http://on.wsj.com/dc25gK
http://tweetcaster.com/
http://www.tweetworks.com
http://bit.ly/avDV8l
http://huff.to/cYkGvH
http://jazzychad.net/twgroups/
http://www.guardian.co.uk/technology/pda/ 2011/sep/08/twitter-active-users
http://bit.ly/hRcZ1w

[34] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location privacy via private proximity
testing. In NDSS, 2011.

[35] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. VPriv: Protecting privacy in location-based vehicular services.
In USENIX Security Symposium, 2009.

[36] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web transactions. ACM TISSEC, 1998.

[37] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A. Varshavsky. Vis-ã-Vis: Privacy-preserving
online social networks via virtual individual servers. In COMSNETS, 2011.

[38] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr: Better privacy for social networks. In CoNEXT,
2009.

[39] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems with information flow control.
In NSDI, 2008.

	Introduction
	Related work
	Motivating User Survey
	System design goals
	Twitsper design
	Implementation
	Evaluation
	Conclusions

