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Abstract

In this paper, we propose a new privacy-preserving smart coupon delivery system called PiCoDa.
Like prior work on private behavioral targeted advertising, PiCoDa protects user data by performing
targeting on the end-user’s device. However, PiCoDa makes two more guarantees: it verifies a user’s
eligibility for a coupon, and it protects the vendor’s privacy by not revealing the targeting strategy.

To accommodate the constraints of different targeting strategies, PiCoDa provides two targeting
protocols that tradeoff user privacy and vendor privacy in different ways. We show how both designs
meet requirements for user privacy, vendor protection, and robustness. In addition, we present simulation
results of the protocols using realistic parameters to further validate the efficiency and effectiveness of
PiCoDa.

1 Introduction
In recent years, online advertising has come to rely more heavily on behavioral targeting.Behavioral target-
ing allows vendors to provide more relevant messages by using indicators of interest from historical data
about a user. From the user’s perspective, better targeting is beneficial as it leads to more personalized
service and less exposure to information that is not of interest to them. Particularly interesting is how be-
havioral targeting incorporate not just web data, but physical contextual data like location, time of day, and
proximity to other individuals [9].

However, despite the incentives to both vendors and users, the current practice of behavioral targeting
raises great privacy concerns among users [15]. In order to target accurately, vendors need to know adequate
information about users, such as their demographics, geographic locations, purchase behaviors, browser and
internet search histories. However, collecting such information is usually in conflict with user privacy.
Enabling accurate behavioral targeting without compromising user privacy is a challenging problem.

In this paper, we propose a new privacy-preserving smart coupon delivery architecture called PiCoDa.
Instead of doing the behavioral matching for coupon requirements on the vendor side, we propose to perform
it on the user device. This allows a vendor to deliver targeted coupons while users keep full control of their
behavioral data, which never leaves the user’s device. Shifting the behavioral targeting computations to
the client device is not a new idea and has been recently applied to the context of personalized search [16]
and online advertising [12, 7, 6, 3]. However, targeted coupon delivery poses additional challenges beyond
those demanded by targeted advertising. Shifting the computations for behavioral matching to the user’s
device alone is insufficient to protect both users and vendors. First, coupons must be delivered only to the
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Figure 1: An Exemplary Architecture of Activity-based Targeting

eligible users to prevent coupon exploits. The simpler strategy of pushing down all the coupons in clear and
asking the user’s device to select ones the user is eligible for does not work well. It exposes the coupons to
malicious users who are trying to get discounts they may not have qualified for. Second, a targeting system
should ensure that non-eligible users learn nothing about the vendor’s targeting strategy (i.e., the coupon’s
eligibility requirements) beyond their non-eligibility.

Given the complexity of the vendor’s targeting strategy, we present two different operating modes for
PiCoDa. The first is a non-interactive design that guarantees that behavioral data never leaves a user’s device
during the coupon targeting process. However, as discussed later in the paper, the non-interactive protocol
is only suitable when the vendor’s targeting strategy for a coupon is difficult to guess, i.e., its entropy is at
least 80 bits. When the vendor’s targeting strategy is not hard to guess, we propose a three-round interactive
protocol between a PiCoDa server and a user device. In this case, some information about the user’s data
does leave the client device, but in an indecipherable form that is useless without later cooperation, which the
user only provides when they redeem the coupon. We show later in the paper that both designs provide user
privacy, vendor protection, and system robustness. Our simulation results with realistic parameter selections
further validate the efficiency and effectiveness of our designs.

The rest of the paper is organized as follows. Section 2 introduces the system model, threat model, and
our design goals. Then we provide the detailed description of PiCoDa in Section 3. Section 4 gives the
security analysis, followed by Section 5, which reports simulation results. Section 6 overviews the related
work, followed by our conclusions in Section 7.

2 Problem Statement
2.1 System Model

We consider PiCoDa, the privacy-preserving smart coupon delivery architecture, involves two different en-
tities, as illustrated in Fig. 1: the user, who wants to enjoy personalized coupon delivery service while
releasing as little as possible private personal data, and the vendor, who wants to provide accurate user
targeting via behavior analysis while protecting itself from coupon exploitation attacks. In addition, we
also assume a consumer database in our architecture, which provides proprietary background information
(possibly coarse-grained) of consumers to help vendors conduct better targeting services.

The user has a mobile device, which maintains the personal information locally on the device. For
simplicity, we assume the user’s behaviorial data can be represented as a vector where each entry can be
either an integer or real number, denoting representative statistics of different kinds of user behavior over a
certain amount of time. For example, these elements in the vector could represent statistics of URL streams
in the browsing history, or the number of times specific websites have been visited. The integers could also
represent location traces, such as the number of times of different geo-locations that have been visited. The
user local data changes over time, and provides the most recent targeting information for vendors.



The vendor, who maintains a PiCoDa server for coupon targeting, usually learns some information (e.g.,
name, mailing address, etc.) about users when they enroll in a loyalty or a coupon delivery program. They
may also have a user disclosed profile or can contact commercial consumer databases to learn more (e.g.,
gender, ethnicity, marital status etc.) about their users. We assume such coarse-grained information is static
or changes slowly in practice. By combining the static background information and its proprietary behav-
ioral targeting models, a vendor can effectively create the eligibility requirements expressed as targeting
strategy for a coupon and only those users that are eligible for the requirements will receive the coupons.

2.2 Behavior Encoding

A vendor may use many different criteria for deciding whether to deliver a particular user a coupon. For
example, a vendor may want to reach loyal customers. This is partially reflected by how frequently the
user has visited the vendor’s store over the past month. Loyalty may also be measured by the user’s past
purchasing behavior. Or, the vendor may want to reach new potential customers. This might be inferred
from visitors to a competitor’s store. Vendors may wish to filter prospective coupon recipients according to
the probability of the coupon increasing the recipient’s future loyalty. This might be informed by a record of
coupon deliveries in the past. Finally, physical constraints or inconvenience factors may also be considered.
It does not make sense to send a user in New York a coupon redeemable only at California.

In order to accurately answer above questions, vendors must start from the user’s behavior raw data and
generate/estimate an eligibility strategy w. In order to be effective, w must be expressive enough to reflect
vendor’s strategies. In mobile domain, we consider features from four different types of user behavior:
browsing history, geographic traces, purchasing information, and message/contact information. For each
coupon, frequency and feature counts might be aggregated over several weeks, while the targeting window
could cover a shorter period of a few days.

Fig. 2 gives a more detailed list of features that might be used in a typical targeting scenario. A vendor
chooses the features and values of the features they wish to target, and assembles them into a vector. For
example, to target users that visited the vendor’s website at least twice in the past five days, had visited the
vendor’s retail store three times in the past 10 days, and had made four purchases in the past month, the
vector w might be encoded as (2, 3, 4) for features (w1, w2, w3) where w1 is number website visits in the
past five days, w2 is the number of retail store visits in the past 10 days, and w3 indicates the number of
purchases in the past month. In our current system, we restrict criteria to approximate or exact equality
matching.

2.3 Security Threats and Design Goals

We consider the protection in the PiCoDa architecture design from both user and vendor sides. Both the
user’s local behavioral information and vendor’s targeting strategy (i.e., the proprietary algorithms utilizing
the user’s up-to-date behavioral data, purchased or collected static data about users and eligibility require-
ments of a particular coupon) should be protected. In other words, the system should satisfy the following
properties:

• User data privacy. Our design aims to guarantee that no user behavioral data is revealed to the
vendor during the targeted coupon delivery unless the coupon is redeemed. In case the vendor’s
targeting strategy is complicated and hard to guess, our design further aims to achieve an ideal case in
which the communication between user’s device and a PiCoDa server is one way: from server to user
device.

• Vendor protection. The vendor’s coupons and its delivery strategy should be protected from non-
eligible users during the coupon delivery process. That is, from the information pushed down to user
devices, a user either learns he is eligible for a coupon or learns nothing beyond his non-eligibility for
that particular coupon.



TARGETING
CRITERIA EXAMPLE METRIC

Browsing History
overall interest Fraction of queries in vendor’s campaigned product line over all queries in past month
recent interest Total number of relevant search queries in the last 5 days
recent interest Total number of visits to product line-relevant webpages in the last 5 days
loyalty Fraction of webpage views of vendor’s product line relative to general web activity

Geolocation Trace Features
overall interest Fraction of visits at vendor’s retail store versus all shopping stores.
overall interest Total time in hours the user has spent at vendor’s retail stores.
in-market Time in days since last visit to vendor’s retail store
recent interest Total number of visits to vendor’s retail store in the past 5 days
loyalty Fraction of visits to vendor’s retail store versus competitor retail stores

Purchasing Information
recent purchase
volume

Total number of purchases made in the last 30 days

in-market Total purchases of similar products falling into vendor’s product lines.
in-market Time since the last purchase within vendor’s product line
in-market Number of purchases of complementary products in past 2 weeks
coupon use Fraction of purchases with coupons over all purchases.

Messaging/Contact Information
recent interest Fraction of messages containing keywords related to vendor’s product line category in

past 5 days
in-market The number of the user’s recent contacts that have purchased within the vendor’s product

line

Figure 2: Example features for coupon targeting. This list is by no means exclusive or complete. Additional
features may be used for improved targeting.

• Robustness. The system design should guarantee robust delivery of coupons to eligible users. More-
over, it should prevent users from faking the behavioral data to collect coupons in any illegitimate
manner. However, this is an ambitious design goal in the presence of collusion attacks where eli-
gible users share information with non-eligible users. Against such attacks, we propose a series of
alternatives to decrease the marginal gain of a coupon, thus discouraging users from arbitrarily trying
different behavioral data to maliciously collect and redistribute coupons.

In short, our goal is to enable vendors to deliver behaviorally targeted coupons without accessing any user
sensitive information and protect themselves from disclosing any valuable data and against coupon exploita-
tion attacks in the process. However, it is important to note that we do not attempt to protect user’s privacy
when he actually redeems a coupon due to two reasons: (1) Users willing to redeem the coupon inevitably
reveal their eligibility for the coupon at the point of redemption. (2) Vendors need to utilize users’ feedback,
in terms of the coupon redemption results, to evaluate and improve their targeting strategies.

3 PiCoDa Protocols
In this section,we first discuss expressing coupon eligibility requirements based on the user’s behavioral
model and the vendor’s strategy. Then, we present the details of two PiCoDa protocols for non-interactive
and interactive operation.



3.1 Coupon Eligibility Requirement

Following existing literature on behavior targeting (e.g., [11, 3]), we use vectors to represent both vendor
side targeting strategy and user side behavioral model. As defined above, the vendor’s targeting strategy
is represented by an n-dimensional vector w = (w1, w2, . . . , wn). Each user’s behavioral model, which
contains a series of features from the daily behavior events collected by the mobile device, is also denoted
by an n-dimensional vector x = (x1, x2, . . . , xn). The targeting process thus depends on the eligibility
test between the vendor’s strategy w and the user’s model x, and we assume w and x are from the same
n-dimensional space. Based on different encodings of the user’s behavior and the vendor’s strategy, the
eligibility of a coupon is determined by the following three cases:

1. Entries in w approximately match entries in x — in this case, vendors rely on a series of predictive
features to distribute coupons. Those features are numerical values computed from user’s daily be-
havior stream. How close w and x are is measured by certain distance metrics, such as Euclidean
distance and/or cosine distance [8], depending on the different application scenarios.

2. Entries in w exactly match entries in x — in this case, vendors rely on a series of deterministic rules
to distribute coupons. For example, the vendor may ignore other entries in w but only care about
whether the user has been to a certain local retail store or has been the vendor’s loyalty program
member to offer him a coupon. Since these rules are usually encoded as discrete binary or categorical
values, distance based similarity measurement might no longer be meaningful.

3. Hybrid of case (1) and (2).

For distance based eligibility testing, various data preprocessing techniques, such as min-max normaliza-
tion [8], can be applied to the derived model vector w and x. For presentation simplicity, we assume these
preprocessing steps are appropriately coordinated between a PiCoDa server and a user device before any
coupon delivery takes place.

As discussed in the following sections, our eligibility test only guarantees that the users getting a coupon
are eligible for it. However, by design, it is possible for a subset of eligible users not to get a coupon.
We argue that small number of false negatives are acceptable to vendors. As long as the number of false
positives, i.e., non-eligible users getting a coupon, is negligible, we consider vendor’s interest not to be
violated. The rest of this section shows how we leverage these assumptions in the design of PiCoDa.

3.2 Protocol 1: Privacy-preserving Non-interactive Coupon Targeting

In non-interactive protocol, the PiCoDa server pushes down the targeting strategy in a protected form to the
user, who then performs a blind matching with local behavioral model to determine his eligibility status for
a coupon. Such a design has the benefit that nothing leaves the user’s device before the user actually gets a
coupon. An assumption in the non-interactive targeting design is that the vendor’s targeting strategy must
be hard to guess, i.e., its entropy should be at least 80bits, to be secure against brute-force guessing attacks.
Otherwise, a malicious user can find a behavioral model that matches vendor’s strategy by trial and error.

Compared to having rules that dictates exact match on few variables, high entropy requirement for
targeting strategy can be more easily met if w contains many predictive features with numerical values.
Thus, we focus on the first case of eligibility test, where a user’s eligibility for a coupon is determined
by measuring the similarity between the vendor’s targeting strategy w and the user’s behavioral model
x. As noted previously, the eligibility test has to happen at the user’s device for user data privacy and
better scalability.However, the targeting strategy w cannot be pushed down to the user device in clear as
it would violate two of previously mentioned design goals: vendor protection and robustness. To achieve
the challenging goal of privacy-preserving non-interactive coupon targeting, we use locality sensitive hash
functions to implement private similarity tests.



Locality Sensitive Hashing. Locality-sensitive hashing (LSH) denotes the method to perform probabilis-
tic dimension reduction of high-dimensional data [1]. Its key idea is to hash the input data points (using
specially-designed locality-sensitive hash functions), such that for similar data points (close to each other),
the collision probability is much higher than for those that are far away. For different distance metrics, the
family of LSH is defined differently [1]. For presentation simplicity, we take the LSH defined over cosine
distance as an example in our targeting scheme description, though LSH for other distance metrics, such as
Euclidean distance [5] or Hamming distance [1] etc., can also be used.

The cosine distance metric can be represented by the angle between two vectors w and x, Θ(w,x) =
cos−1( w·x

||w||·||x||).
For this distance measure, Charikar [4] gives the following LSH family F . By drawing each compo-

nent of an n-dimensional random vector r from the Gaussian distribution N (0, 1) independently, the hash
function fr(·) computed over an n-dimensional vector q is given by:

fr(q) =

{
1 if r · q ≥ 0
0 if r · q ≤ 0

This construction divides the entire input space of the dataset by the hyperplane represented by the vector r;
two vectors lying on the same side of the hyperplane defined by r hash to the same value. The likelihood of
two vectors w and x hashing to the same LSH value depends on their cosine similarity, i.e.,

p = Pr[fr(w) = fr(x)] = 1− Θ(w,x)
π

. (1)

As using one hash function fr from the family F does not give accurate enough results for the locality
sensitive hash, in practice, it is suggested to use a set of K hash functions fr1 , . . . , frK , and the final hash
value is obtained by concatenating their output. This K-bit LSH function, denoted as F (·), maps an n-
dimensional vector x into a K-bit string.

Non-interactive Protocol for Approximate Matching. However, due to the locality sensitivity, where
similar vectors will be hashed together, LSH no longer has the one-way property of a cryptographic function.
In other words, it is possible for adversaries to infer information on the pre-image of LSH from the locality
sensitive hash values. To enhance the security strength, we propose to apply a cryptographic hash function,
like SHA1, to the locality sensitive hash values, before the targeting.

Specifically, instead of pushing down the value of F (w) and asking the user to compare F (w) ?= F (x),
the PiCoDa server can push down h(F (w)) and F (·) to the user. The user computes F (x) and tests if

h(F (w)) ?= h(F (w)). If the test matches, the user is potentially eligible for a coupon to redeem. If not,
then due to the one way property of h(·), the user will learn nothing about the F (w) from the received
hash values. The non-interactive protocol between the PiCoDa server and the user is as follows. We let
φ(·) denote a pseudorandom function, Enc(·) denote a semantically secure encryption function, and Sig(·)
denote some secure digital signature scheme.

1. The PiCoDa server sends down to the user:
h(F (w)), Enckey(coupon||UID||nonce|| Sign), and F (·). Here coupon denotes the actual content
of coupon, UID specifies the user, nonce is a fresh random number per hash value pushed down.
Also key = φ(F (w)), Sign = Sigvendor(coupon||UID||nonce).

2. The user tests his behavioral data and checks if h(F (x)) ?= h(F (w)). If yes, the user continues to
plug F (x) into φ(·) to get the trapdoor key, and further open the encrypted coupon. If no match,
the user learns nothing beyond the fact of his non-eligibility, due to the assumption that w is hard to
guess.



3. During redemption, the validity of a coupon can be checked by verifying the signature, Sign, and the
UID of the redeeming user.

Parameter Selection. Because F (w) outputs K-bit string, we have to ensure K is sufficiently large, e.g.
K = 80, such that it is not feasible for malicious users to enumerate. However, larger K value would also
reduce the probability of two similar points hashing together (see Eq. (1)), due to the fact that p > pK for
any 0 < p < 1 and K > 1. Since the success of the eligibility test depends on the similarity of the two
vectors w and x, setting large K might result in less or even no successful matches.

Following the methodology in LSH community [1], to maintain the correctness of the high probability
matching, one approach is to push down a set ofL independent concatenated LSH functionsF1(·), . . . , FL(·),
and ask the user to find if any of the L hash values matches his own result. Note that the probability for the
user to find any match among the L hash values is at least 1 − (1 − pK)L, where p is determined by the
similarity of w and x via Eq. (1). Clearly, by increasing L, we increase the value of 1− (1−pK)L, and thus
maintain the high probability matching for true positive of the eligibility test. By increasing K, we decrease
the value of 1−(1−pK)L, and thus suppress the low probability matching for the false positive. As a result,
choosing large K and L amplifies the gap between the true positive and false positive of the eligibility test.
However, the side-effect is the extra computation burden at the user side.

In practice, because only the seed used to randomly sample the vectors for function F (·) needs to be
sent, the bandwidth for transmitting multiple LSH functions is not a concern. To avoid intensive computation
cost for the eligibility test, the PiCoDa server can distribute the L hash values over a certain targeting time
window instead of in one batch. For example, it can push down 10 different hash values on the same targeting
vector w with 10 randomly different LSH functions every day to one user in a 2-week time window to reach
the requirement of L = 140. If the user behavioral model matches any of those hash values, an eligible
coupon is to be delivered. Otherwise, after this targeting time-window, the PiCoDa server can start a new
cycle and push down hash values based on some different targeting strategy.

Remark. When the PiCoDa server pushes down h(Fi(w)) to each user each time, where i = 1, . . . , L, it
must ensure that every Fi(w) are at least have 1 bit difference. As a result, it can ensure key = φ(Fi(x))
is only usable for that specific user with UID and the specific coupon with noncei. Since Fi(·) are defined
by random vectors, even for the same w, making each Fi(w) different should not be difficult to achieve in
practice. For ease of presentation, we defer the security analysis to Section 4.

3.3 Protocol 2: Privacy-preserving Interactive Coupon Targeting

As discussed in Section 3.1, there are cases in which the vendor’s strategy is deterministic instead of approx-
imate. For example, the vendor may only care about whether the user has been to a certain local retail store
to distribute him a coupon. Further, such deterministic rules are usually not complicated, i.e., do not have
high enough entropy. This may be the result of that vendors don’t care about certain entries in strategy w
or because in certain scenarios only a few entries matter for the targeting purposes. Thus, directly pushing
down the hash values h(w) (due to deterministic match, we don’t need LSH any more) to users for local
matching no longer works, as simple guessing attacks via enumeration on value of w = (w1, w2, . . . , wn)
become feasible.

To cover this case, we propose a design by making certain relaxations of our stringent constraints. That
is, our protocol now requires users and the PiCoDa server to interact during the coupon delivery session.
But we still ensure that the vendor’s strategy is protected against non-eligible users, and users behavioral
data is not revealed to the vendor unless they choose to redeem the coupon (if they are eligible).

Assuming the vendor only cares about m entries in w with index I = (i1, i2, . . . , im). In the following,
we adopt techniques from “Password-authenticated key agreement” [2] as a base for our protocol design.
Let G denotes a finite cyclic group with generator g. This group could be Z∗P where P is a large prime



with 1024 bits. Both g, P and hash function h(·) are public. The interactive protocol of PiCoDa operates as
follows:

1. The PiCoDa server picks random values r, a ∈ Z∗P , computes Hv = h(wi1 ||wi2 . . . wim ||r) and ga

mod P , and sends {EncHv(ga), r, I} to the user.

2. The user picks {xi} vis I and computes
Hx = h(xi1 ||xi2 . . . xim ||r). He picks a random b ∈ Z∗P , computes gb mod P , and sends EncHx(gb)
to the PiCoDa server.

3. The PiCoDa server uses Hv to decrypt EncHx(gb) and gets decrypted value V. It then sends
EncVa(coupon||UID||noncei||Signi) to the user.

4. The user uses Hx to decrypt EncHv(ga) and gets decrypted value X. He then uses Xb to decrypt
EncVa(coupon||UID||noncei||Signi).

Note that in step (3) and (4), after decryption, we have V = gb and X = ga if and only if Hv = Hx.
Otherwise, both V and X are just some indistinguishable random values. In step (4), when Hx = Hv, it’s
easy to know Xb = Va = gab. And the eligible user gets the coupon in the final step. In the meanwhile,
this eligible user knows his xi for i ∈ I equals vendor’s corresponding wi. However, when Hx 6= Hv,
non-eligible users still know nothing about vendor’s strategy. The detailed security analysis in Section 4.

Remark. To prevent users faking their behavioral data –by colliding with eligible users who received the
coupon before them–, PiCoDa server may collect commitments from user devices to their behavior vectors
(e.g., h(xi||i||UID||nonce)) and require them to open the commitments while redeeming a coupon (e.g.,
by revealing the nonce). Alternatively, PiCoDa server may run the first 2 steps of the above protocol with
all users before executing step 3 with any of them, or hide the coupon encryption key in step 3 (e.g., by
using h(Va||nonce) as the encryption key) and open it (e.g., by revealing the nonce) to all the users at the
same time. Finally, we remark that in practice, the PiCoDa server initiates this protocol with each user only
once per coupon, which practically excludes the threat of coupon exploit from malicious users by limiting
guessing and exhaustive search opportunities.

3.4 Further Discussion: Dealing with the Hybrid Case

We have discussed the vender’s approximate strategy and deterministic strategy. What if the vendor needs
both? One way to achieve that is to concatenate the two protocols. In particular, the vendor first uses the
non-interactive protocol to do the LSH based targeting. The eligible users passing the test have the choice
of whether to proceed to do the interactive protocol or not. This concatenation can be applied to the case
of tiered coupon distribution systems, where approximate matching corresponds to loose eligibility require-
ments and the vendor delivers broadly targeted coupons, like $1-off for a sports retailer. When the user
chooses to proceed for interactive protocol, it comes to a more personalized targeting. For example, such
coupons can be for only a few users that are very important and highly loyal to the vendor. Of course, with
the coupon becomes more personalized or higher-tiered, the users are willing to reveal more of themselves
(when redeeming the coupon).

Instead of doing tiered coupon delivery, the vendor might be only interested in offering coupons if
and only if both the approximate and the deterministic strategies have positive matches simultaneously. In
this case, we can put both LSH values and the deterministic rules in the cryptographic hash h(·) in the
step (1) of either the non-interactive protocol1 or the interactive protocol, the remaining of the protocols
follows directly. Take the interactive design for example. Let Hv = h(wi1 ||wi2 . . . wim ||F (w̄)||r), where
w̄ contains the n − m remaining entries of the original w seeking for approximate match. Because the

1The combined strategy of the non-interactive protocol must have an entropy larger than 80bits.



interactive protocol does not allow users/PiCoDa server to do offline guessing/enumeration attack, we no
longer need the 80-bit requirement for the LSH outputs. In other words, we only choose an appropriately
small number of LSH output bits K such that we can use L = 1 to simplify the eligibility test. The protocol
goes exactly the same as in Section 3.3 and thus is omitted.

Remark. From the ease of management point of view, the non-interactive mode of PiCoDa is easier to
operate since all the targeting hash values could be pre-generated. The PiCoDa server does not even have to
be always online as there are no interactions. For the interactive operation mode, the PiCoDa server needs
to interact with every user per coupon delivery, which can be less scalable than the non-interactive case.
However, it does give the vendor more flexibility when choosing targeting strategies. In both cases, users
maintain the full control of their behavioral data until they redeem the coupons. Non-eligible users know
nothing about the vendor’s targeting strategy.

4 Security Analysis
4.1 User Data Privacy Protection

Non-interactive Coupon Targeting. User privacy is protected in the sense that all the eligibility matching
happens at user’s mobile device and no data leaves the phone before the user redeems the coupon. However,
when a user decides to redeem the coupon, he or she must disclose to the PiCoDa server his or her eligibility
status. In this case, the vendor can learn that F (w) = F (x), where F (·) is the public locality sensitive hash
function.

Though we limit the privacy-preservation to the targeting process, it is worth further understanding on
how much the fact F (w) = F (x) reveals about x. Since we choose K = 80, which divides the whole
n-dimensional space into 280 subspaces. Thus, if there are enough reasonable points in the same subspace,
then user’s x can further be protected in a k-anonymity manner. If in the worst case there is only one point
in the subspace, then the vendor can exactly pinpoint x via x = w. However, since the user knows the
subspace as well, the user can also exactly pinpoint vendor’s w from the eligibility test, which violates
vendor’s own protection requirement. So we argue that the vendor has enough incentives not to select small
subspace so as to protect the targeting strategy w. As a result, whenever a user finds a match, his behavioral
data x sharing the same subspace with w will also be protected from that same large subspace.

Interactive Coupon Targeting. In this case, users exchange information with the PiCoDa server. But based
on the security strength of “password-authenticated key agreement” [2], we still ensure that users have full
control of their behavioral data. First, information uploaded to the PiCoDa server in the protocol is just
some random encryption value; Second, even after the decryption, the PiCoDa server cannot tell whether
the user’s x matches the strategy w. In other words, before the coupon redemption, the PiCoDa server or
vendor learns nothing about the coupon targeting result. Thus, user data privacy is well-protected.

4.2 Vendor Protection

Non-interactive Coupon Targeting. By protecting vendor, we aim to ensure the eligibility test on user’s
device either reveals the fact to user that F (w) = F (x) or nothing about vendor’s targeting strategy w
except that F (w) 6= F (x). For the latter, due to our two-layered hash construction with large K = 80,
the user knows nothing from his unmatched eligibility test. This is because reverse-engineering h(F (w)) is
computationally infeasible, assuming w itself is hard to guess, i.e., with 80-bit entropy.

But if there is a match, then the user knows F (w) = F (x). Using the aforementioned argument where
the vendor selects a large enough subspace defined by random vectors for F (·), the vendor’s w cannot be
exactly pinpointed by a single user.

Interactive Coupon Targeting. In the interactive case, there are only a small number of rules or entries
in the targeting strategy w, or the vendor selectively cares a portion of entries in w. Thus, protecting both
the interesting entry index and the values can become important to vendor. Currently, our design does not



protect which entries are important in w. Knowing this information might give the user some advantage
to infer the actual values in w, based on other context information. However, the vendor can instruct the
PiCoDa server to initiate the protocol with each user per coupon only once, and thus each user only has one
chance to guess the correct value in vendor’s targeting strategy w. From a practical point of view, the threat
of correct guessing and other coupon exploits can be negligible. Further, following the same reasoning for
user privacy protection, we can ensure that non-eligible users know nothing about the actual values in w
from the eligibility test.

Remark. Note that neither design maintains the vendor protection against users having a match from the
eligibility test. A positive matching result inevitably reveals some information about the vendor’s strategy
to the users. Ideally the vendor would prefer not to expose the strategy at all. To mitigate the negative effect
of exposing targeting strategies to eligible users, we propose a series of alternative approaches in the next
section.

4.3 Robustness

Previous discussions show that users who are originally not eligible for a coupon learn nothing beyond the
failure of the eligibility test, and thus are not able to provide useful information to harm the system. However,
eligible users who already get the coupons might be willing to share information of their behaviors, e.g., via
blogs, or social networks to their friends. These users might give good pointers for other users to mimic the
behavior and narrow down the brute-force guessing space directly on x for w or F (w). Unfortunately, there
is no perfect solution for the vendor to defeat a user that is faking his behavior. In the following, we provide
a series of alternatives to address the problem. Our goal is to prevent or discourage users from arbitrarily
trying different behavior x to maliciously collect and redistribute coupons.

Using Trusted Computing Technology. Our first approach is to rely on trusted computing technology to
mitigate the concern of user’s faking behavior. It can be achieved via Trusted Platform Module (TPM) [14],
which offers hardware based root of trust and has already been adopted by many major laptop vendors in
the market. Physically attached to a computer, the TPM chip is accessed by software from upper layers
using a well-defined command set, through which, the TPM can facilitate cryptographic functionalities like
hardware pseudo-random number generation, key generation, signing and encryption/decryption etc. Thus,
we can use TPM’s capabilities to do code attestation and verification for the device and the application
software.

According to the latest work-in-progress specification version 2.0 of Mobile Trusted Module by the
TCG [13], TPM is expected to be soon in place on smart phones from major phone manufacturers. Assuming
users cannot temper the process running on device collecting user’s behavioral data, then users have to
actually conduct the behavior accordingly to get the coupon, like visiting the stores, or accumulating enough
purchase records. The marginal gain of coupon can thus be easily diminished by the cost of non-eligible
user’s actually mimicing/conducting those possibly non-trivia behaviors.

Commitment Based Approach. We can also ask users to commit to their behavioral data x’s periodically
or before receiving coupons. In this case, they cannot arbitrarily change their behavior to maliciously collect
coupons, even if they learn information by colluding with each others. In Section 3.3, we have outlined few
commitment based approaches for interactive targeting of PiCoDa. In the following, we demonstrate another
example via using Pedersen’s commitment [10] scheme for non-interactive targeting mode of PiCoDa.

Assume both the vendor and the user agree on some group Gq of prime order q and two generators
g, g0 for which the discrete logarithm problem is hard. Whenever the user conducts certain behaviors,
represented by some element xi in the behavioral model x, the user picks a random τi ∈ Zq and sends a
commitmentCτi(xi) = gτi0 g

xi to the PiCoDa server. Here due to the randomness of τi, xi is protected. Given
commitments Cτi(xi) for i = 1, . . . , n, the PiCoDa server could later verify the result of vector product
r · x from the LSH computation (See Section 3.2), based on the homomorphic property of the commitment



construction. Specifically, the user redeeming the coupon sends r · x together with the randomness {τi}
embedded in the commitment. The PiCoDa server verifies

∏n
i=1Cτi(xi)

ri = gr·xg
P
ri·τi

0 and thus check if
the corresponding bit of LSH output is correct.

Compared to TPM based approach, commitment based approach requires the user to send commitments
to the PiCoDa server, which could be against the original motivation of a non-interactive targeting design.
However, commitments do not have to be done very frequently, because x values are usually aggregate
information over a certain amount of time. If the coupon targeting time-window is set to be 2 weeks, i.e., x
measures the user’s behavior over the past 2 weeks, then asking users to send non-revealing information to
the PiCoDa server once per 2 weeks can be reasonably acceptable .

Relying on External Third Parties. In practice, we can also rely on external third parties to help prevent
users from faking behaviors. The immediately available third party for the role could be the wireless carriers.
The carriers keep a track of their mobile users’s geographic locations all the time. One viable approach is
to have vendors and wireless carriers setup some service agreement such that periodically vendors can rely
on wireless carriers to verify users’ location data. Thus, all the geographic related behavior can be verified
by vendor. Specifically, when a user has received coupons from the proposed PiCoDa protocols and decides
to redeem one, he can give the permission (e.g., request with his signature) to the vendor for verifying
their geographic traces at the carrier’s. Note that because the user’s eligibility for the coupon is inevitably
revealed to the vendor at the time of redemption (see Section 2.3), the fact that the vendor verifies the user’s
behavior authenticity through external third parties is not a violation of PiCoDa’s design goals on user data
privacy protection. Considering a large potion of elements in behavioral model x might be location related,
users only need to prove or commit on other non-location related behaviors and save the computation and
bandwidth cost. Following the same intuition, other similar third parties might include: central ad-network
dealers, like Google, Yahoo! for helping verifying user’s browsing behaviors. Mobile apps platform holders
like Apple and Google could help verify user’s app-related behaviors.

Relying on Probabilistic Matching Property. Another factor we should take into consideration for discour-
aging users from faking their behaviors is the probabilistic matching. By selecting appropriate parameters
of K and L, the vendor can fine-tune the probability of the successful matching between w and x via LSH.
For example, even if w and x are quite close with each other such that the angle θ(w,x) normalized by π
is just 0.1, choosing K = 80 and L = 200 could still leads to a successful match with probability as low
as 0.043. This means for 1000 users who are potentially eligible for a coupon represented by a targeting
strategy w, the eligibility test only gives coupons to at most 43 users on average.

As mentioned in Section 3.1, having a relatively small fraction of eligible users get the coupons is
not violating vendor’s business interest. Therefore, for those users who originally do not have the correct
behavioral data and want to learn information shared by others to try their luck, the slim rate of successful
matching can be really discouraging for their motivation of collusion.

Relying on Coupon Redemption History. Each time a user redeems a coupon, the vendor knows the
user’s then behavioral model x is within a certain distance of the eligibility model w where θ(x,w) < d.
Over time, such relationship θ(x,w) < d might reveal a certain pattern. Exploring the common patterns
from those relationships can help the vendor identify the inconsistencies of user’s behavioral models in
consecutive coupon matching/redeeming sessions over a enough long time period. Another approach is to
combine the coupon redemption pattern with aforementioned commitment schemes. For example, if a user
has redeemed a 5% coupon over the past three coupon delivery cycles, and then suddenly wants to redeem
a coupon for “buy 1 with 1 free” that can be suspicious. The vendor could honor the coupon this time but
start to request the user’s behavior commitments for future eligibility verification. The more coupons a user
has redeemed, the more difficult for the user to fake things.

Remark. Due to space limitation, we do not try to enumerate a comprehensive list and believe there could
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Figure 3: User eligibility and LSH generation times in the non-interactive design, for different choices of
K and L.

be other options available as more research effort is put on the topic. We argue that putting together all the
listed alternatives or operating them in parallel, where some of them can be overlapping, could significantly
raise the bar for unfaithful users. Also, the overall effect for the proposed PiCoDa system for private coupon
targeting is much better than the current simple coupon code based ecosystems, in terms of ensuring user
data privacy, vendor protection as well as system robustness.

5 Performance Evaluation
We evaluate PiCoDa through simulation to validate the running times for realistic parameter values. Both
mechanisms of PiCoDa are implemented in C++ on a workstation with Intel Core 2 CPU running at 3.0GHz.
The OpenSSL library is used to implement cryptographic functions like SHA1 and AES etc.

In a typical targeting scenario, the vendor’s targeting strategy may cover the user’s behavior events from
domains like page views, query search results, GPS traces, purchase history, messages, and contacts. And
for the behavior events from each domain, there can be a series of measurements to be reported as features
in w and x. In our simulation, without loss of generality we set the dimensionality of user’s behavioral
model and vendor’s targeting strategy |w| = |x| = 30. The cosine distance-based similarity measurement
is used, and the hash based commitment scheme is included in the design to ensure that no user could
fake their behavioral data. Note that we only report timing performance for the protocol data. A practical
implementation will require time to transmit the coupon contents.

Non-interactive Design: In this case, we fix the cosine distance threshold between x and w at 0.985, which
means the largest tolerated angle between w and x is θ(x,w) = 18.2◦. The results for different choices
of K and L are shown in Fig. 3. Fig. 3-(a) shows the fraction of eligible users that receive a coupon after
the eligibility test. Depending on the application, this can be fine-tuned by the vendor by setting K and L
appropriately. In particular, given any fixed K ranging from 40 to 80,2 the vendor can always find some L
less than 200 such that the fraction of eligible users that do receive a coupon is more than 90%.

On the other hand, K and L cannot be set arbitrarily, as high values might increase the computational
burden on the user side for each coupon targeting as shown in Fig. 3. In our simulation, to avoid the
transmission of LSH function, which is defined by a set of random vectors and can be large for large K and

2For K less than 80, we implicitly assume a hybrid case such that deterministic rules are combined with LSH output to satisfy
the 80-bit entropy requirement of the targeting strategy.



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K, the output bits of LSH

T
he

 fr
ac

tio
n 

of
 e

lig
ib

le
 u

se
rs

 to
 g

et
 a

 c
ou

po
n

 

 

cosine distance = 0.985
cosine distance = 0.95
cosine distance = 0.90

Figure 4: The eligibility fraction of interactive targeting for different choices of K.

L, only a random seed must be transmitted from the PiCoDa server to user, who then generates the LSH
function on the fly. The timing result reported in Fig. 3-(b) thus involves both LSH function generation and
LSH value computation. It can be seen that timing cost increases when either K or L is large. But even for
the largest K and L values on the graph, the computation still requires less than 1.6 seconds. As coupon
delivery does not need to happen in real time, this computational cost is likely to be acceptable in practice.

Interactive Design We also simulate the hybrid case in Section 3.4 using the interactive protocol of PiCoDa.
As we no longer have the constraint on the large number output bitsK of LSH, we can set L = 1 and choose
an appropriate K value to fine-tune the acceptable accuracy with regard to different datasets. The fraction
of eligible users that get a coupon for three different thresholds is shown in Fig. 4. Under those settings, i.e.,
K < 20, the computation cost for generating and evaluating LSH values is always less than 1 millisecond.
Also, the three-round interaction between the PiCoDa server and the user is very efficient. Each step only
involves one modular exponentiation together with AES encryption and hash operations, which takes less
than 1.5 milliseconds.

Note that although our timing results are derived from simulation on a desktop machine, it is reasonable
to expect that mobile devices will match this performance in the next few years, given the current trend of
increasing mobile device processing power. We leave the empirical study of PiCoDa with a real dataset on
mobile devices as future work.

6 Related Work
Privacy-preserving targeted behavior analysis has been explored by researchers in various forms [12, 7, 6].
Toubiana et al. proposed Adnostic [12], a browser extension that runs the behavioral profiling and targeting
algorithm on the user browser’s history database. Because the results are kept within the browser, users see
ads relevant to their interests from a group of candidate ads (they suggest 20) without leaking information
outside the browser. Adnostic uses homomorphic encryption and zero-knowledge proofs to allow the ad-
network to correctly charge the corresponding advertisers, without seeing which ads are viewed by users
(i.e., the so-called “charge per impression” model). Adnostic does not consider it a privacy breach when
users reveal their ad click history. This is similar to our PiCoDa system, as we don’t aim to protect user
privacy when the user chooses to redeem the coupon. What differentiates PiCoDa and Adnostic is the
security requirements. Adnostic only considers the user’s privacy, while our PiCoDa system further ensures
vendor protection, and enforces the eligibility test and coupon result validation for system robustness.

Guha et al. present an architecture called Privad [7], which has similar goals of Adnostic but aims to



provide better privacy guarantees of user’s local data. Specifically, Privad introduces a semi-trusted dealer
between the ad-network and user in order to anonymize the user click behavior to prevent the ad-network
from identifying the user. The report of a view/click still allows the ad-network to bill the advertisers and
pay the publishers accordingly. Though Privad provides better privacy protection than Adnostic, the utilized
anonymization mechanism also increases the cost for both performance and the click-fraud detection. As
with Adnostic, the difference between Privad and PiCoDa is that Privad does not consider vendor side
protection and does not perform the eligibility check during the ad targeting.

Fredrikson et al.’s RePriv [6] presents another in-browser approach to perform personalization without
sacrificing user privacy. Unlike Adnostic and Privad, RePriv does not hide all the user’s personal informa-
tion. Rather, RePriv shifts the privacy control to the user, i.e., it explicitly asks the user’s consent in any
transfer of sensitive local information to different service providers for personalized content. While RePriv
allows a wide range of personalized web applications to exist, shifting the control of personal information
transfer also raises usability concerns over frequent interruptions and the difficulty of specifying preferences
about personal information dissemination. PiCoDa instead adopts a different disclosure model. In particu-
lar, PiCoDa protects user data during or after the targeting process, unless the user chooses to redeem the
coupon. Other differences include the enforced eligibility test and the vendor protection in our system.

7 Concluding Remarks
In this paper, we have studied the problem of privacy-preserving coupon targeting. Our goal is to enable
vendors to deliver targeted coupons to eligible mobile users without compromising user privacy and with-
out revealing their targeting strategies. The design of PiCoDa shifts the targeting from vendor side to user
side. Specifically, for different vendor targeting strategies, we have provided two targeting protocols: a
non-interactive one and a three-round interactive one. Our security analysis shows how both meet the sys-
tem requirements of user privacy, vendor protection, and robustness. The timing performance from our
simulation with realistic parameter selections further validates the efficiency and effectiveness of PiCoDa.
Given the results, we conclude that PiCoDa extends existing work on privacy-preserving targeted advertis-
ing, which only considers user privacy but ignores vendor protection. Furthermore, we hope PiCoDa will
inspire other privacy-preserving targeting services in which both the vendor protection and user privacy
protection are demanded.
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