Implementation of Privacy-Friendly Aggregation
for the Smart Grid

Benessa Defend and Klaus Kursawe

European Network for Cyber Security
Prinses Beatrixlaan 800, 2595 BN The Hague, Netherlands
{benessa.defend, klaus.kursawe}@encs.eu
https://www.encs.eu

Abstract. Inrecent years a number of protocols have been suggested to-
wards privacy-preserving aggregation of smart meter data, allowing elec-
tricity network operators to perform a large part of grid maintenance and
administrative operations without having to touch any privacy-sensitive
data. In light of upcoming European legislation, this approach has gained
quite some attention. However, to allow such protocols to have a chance
to make it into a real system, it is vital to add credibility by demon-
strating that the approach scales, is reasonably robust, and can be inte-
grated into the existing and planned smart metering chains. This paper
presents results from integration and scalability tests performed on 100
DLMS/COSEM smart meters in collaboration with a meter manufac-
turer and a Dutch utility. We outline the lessons learned and choices
that had to be made to allow the protocols to run in a real system, as
well as some privacy challenges that cannot be covered by this technol-

ogy.

1 Introduction

The introduction of smart grids promises big returns for energy efficiency and
cost savings, but at the risk of consumer privacy. Privacy concerns have already
caused pushback that has greatly delayed smart grid deployment and increased
costs [1]. While there is not definitive agreement on what the use cases are for
smart meter data — this can vary from country to country, and even differ within
one organization — there are cases where grid companies need access to some level
of consumption data in order to do load balancing, power maintenance, distri-
bution automation, incident monitoring, and other grid maintenance functions.
Access to this data will allow grid companies to run the grid more efficiently and
react to modern trends such as local generation and the potential large-scale de-
ployment of electric vehicles. In many of those use cases, aggregate consumption
data gives the grid companies all the information they need to better monitor
and maintain the grid without requiring individual readings that might infringe
on consumers’ privacy.

Using modern privacy preserving protocols, many of the privacy concerns
can be mitigated, while providing the network operators with all of the data

2 Implementation of Privacy-Friendly Aggregation for the Smart Grid

they need for grid operations, potentially with even higher data quality. The
most prominent class of protocols in this respect are aggregation protocols, in
which the aggregate sum of a number of meter readings is computed without
revealing the readings themselves. This is done by homomorphic encryption, i.e.,
encrypting the readings in a way that the encrypted ciphertexts can be added
up, and the sum of ciphertexts — and only the sum— can then be deciphered
to show the sum of the plaintexts. This approach, where applicable, is superior
to collecting data and then restricting access to it (which creates a security
problem as well, and has failed numerous times in the past) or anonymizing the
smart grid data, which has also been shown to be insufficient [2]. To go one
step further and make this technology applicable for a real roll-out, it is vital to
show these advantages, demonstrate how aggregation protocols can be used in
a real setting, and validate applicability, performance, and robustness. To this
end, we implemented two protocols from Kursawe, Danezis, and Kohlweiss [3]
on a real smart meter platform, and chose one of the protocols for a larger scale
test involving 100 smart meters with one original head-end system.

1.1 Related Work

Although multiple publications [4-9] have presented aggregation protocols for
smart meters, they provide only a theoretical analysis of performance and com-
munication overhead. Rottondi et al. [10] and Li et al. [11] implemented smart
meter aggregation protocols as a software simulations. Molina-Markham et al. [12]
tested the performance of a microcontroller similar to ones used in smart me-
ters for computing certified meter readings used for Zero-Knowledge Proofs in
privacy-preserving billing protocols. To our knowledge, our work is the first to
present results from integration and scalability tests performed on actual en-
ergy meters. Danezis et al. [13] presented protocols towards privacy preserving
billing, as well as computing other functions on data generated by an individual
meter. An implementation of this protocol on a smart meter has been done in
conjunction with the aggregation protocols in the first implementation, though
it has not been included in the scalability test.

2 Aggregation Protocol and Requirements

2.1 Smart Meter Restrictions

The most obvious restriction is the meter hardware. Meters are rolled out by the
millions, and there is high pressure to deliver cheap solutions. Thus, a typical
smart meter does not have a wealth of resources left in terms of computing
power, flash memory for program code, and RAM. However, the meters we used
for experiments were capable of standard public key operations in reasonable
time, so if the protocols do not become too complex or require handling 4000
bit RSA keys, this is a solvable issue.

Implementation of Privacy-Friendly Aggregation for the Smart Grid 3

Bandwidth. There are different communication architectures in the smart
meter area, primarily wireless (CDMA, ZigBee, GPRS) or power line communi-
cation. Depending on the actual technology used, as well as external factors (such
as line noise), bandwidth can be extremely low, to the point of being measured
in bits per second. Thus, protocols need to be careful about the communication
overhead they add in terms of the number and size of messages.

Protocol Integration. The most surprising impact from our perspective
was the requirement to make the protocol intergratable into existing standards.
Communication protocols do tend to have maximum message lengths, and not
all protocols allow for easy message fragmentation. A more mundane factor is
compatibility with existing protocols and message handling. The protocol we
chose to use does not change the message format of a smart meter reading
since the encrypted values do not increase the length. This did come at the cost
of flexibility, as this protocol is the least adaptable one, but allows very easy
integration into the existing implementations on the meter, as well as into the
message handling on the back-end side.

The other issue is the higher level workflow, e.g., do meters push data or is
it pulled, who initiates a readout, and when and where is the data needed. This
can, for example, cause synchronization issues if meters are triggered by local
events and do not participate all at the same time. A meter that misses such an
event will render the output of all other meters unusable, and - as the protocols
need some form of readout identifier - it has to be assured that local events do
not affect sequence numbers for other readings.

Security Architecture. In an ideal world, all smart meters would be imple-
mented in a very secure way, and attacks through the standard implementation
backdoors would be prohibitively difficult. In the real world, however, we can
expect some meter implementations to have implementation weaknesses and for
meters to have a sizeable risk of attack. One way to mitigate some of this risk
is to constrain meter communication. In the Dutch Smart Meter Requirements
(DSMR), for example, communication to local devices is done through a data
diode to prevent any attacks originating from those devices. With this architec-
ture in mind, a meter should definitely not be allowed to communicate directly
with any other meter; a mesh network of meters immediately poses the risk of
malware spreading between meters. This restriction also means that, ideally, a
privacy protocol should require the meter to communicate only with its head-
end, and avoid any direct communication between two meters. In the real world,
the final verdict on this architecture is still out. Some communication protocols
require meters to act as intermediate repeaters, which allow some communica-
tion between meters. Also, the idea of the meter as the hub of the “Internet of
things” in a huge mesh network is still promoted, which aims for the opposite
architecture.

Explaining the Protocol. For the industry to pick up a new cryptographic
protocol, it is vital to be able to explain it in a way decision makers understand,
and to build a business case around it. Worse, we did get a conflict with Gentry’s
fully homomorphic encryption scheme, which had just hit major newspapers

4 Implementation of Privacy-Friendly Aggregation for the Smart Grid

before our protocols were introduced. Thus, the people that had heard about
homomorphic encryption immediately associated gigabytes of key material with
it, and considered the entire idea to be far from practical use for now. In getting
our experiments to run, we have spent significantly more time on marketing
than on the actual tests. The first breakthrough came when we could explain
the protocols using Lego bricks; the second one was when we could demonstrate
that there are use cases where using privacy enhancing technologies is more
beneficial than any alternative approach.

Standardization. Finally, for a protocol to actually be used, it does have
to be standardized in some form and ideally become part of a larger standard.
This adds a political aspect to the protocol design. Any patented technology is
frowned upon (though they do routinely find their ways into standards), and
the technology needs to provide a high level of stability and inspire trust. Im-
plementers of the standard dislike the idea that some researcher came up with
a slightly cooler protocol that now needs to be added too, new use cases that
were forgotten in the initial standard, or a wealth of options that inhibit in-
teroperability. This part is the hardest from a researcher point of view; while
work is ongoing on improving the protocols, it is also important to stop in time
and standardize a pragmatic and working solution. Otherwise, we will have the
perfect protocol on paper in ten years, but hundreds of millions of meters with
no PET protocols in the field.

2.2 Protocol Choice

In the early stage of the experiment, three protocols were implemented ' on a
smart meter: a Diffie-Hellman-based protocol [3] , a “Dining-Cryptographers”
based low-overhead protocol [3], and a billing protocol [13]. All protocols per-
formed well and extremely efficiently, and even the public key operations could
be performed almost instantly. The Diffie-Hellman-based privacy aggregation
(DiPA) protocol had the advantage that a meter only needs a single key to be
part of an arbitrary number of groups. The price of this is some computational
overhead on the meter (namely, one elliptic curve operation), some overhead
on the receivers side (brute-forcing through a few hundred values), and an in-
creased message size, as the encrypted messages now are composed of one or
several points on an elliptic curve. The low-overhead privacy aggregation (LoPA)
protocol uses simple additions on the meter with specially-generated keys. The
price is that each meter needs a shared key with every other meter, which limits
both the number of meters in one group and the number of groups to available
memory. (In the actual protocol implementation another limit was imposed by
message size — the key distribution was done in one message, which limited the
number of groups to 27.) The billing protocol integrated well with DiPA and
put similar requirements on the meters.

L' A large amount of this implementation has been done by George Danezis from
Microsoft Research.

Implementation of Privacy-Friendly Aggregation for the Smart Grid 5

The prime argument for the protocol choice in the end was the ease of inte-
gration. LoPA does not change the size of the measurement (as it is encrypted by
just an additive temporary key), so no change needed to be made to the protocol
stack on the measurement; two additional messages needed to be defined to im-
plement the key distribution, but not for the measurement part. Similarly, on the
head-end no additional functionality is required for the decryption part — as de-
cryption is simply adding up the encrypted values, integration is comparatively
easy.

While our first round of interviews with industry concluded that the protocol
has sufficient flexibility to handle their use cases, the critical limit is the number
of groups. If aggregation is used for a number of independent use cases, e.g.,
fraud detection (which aggregates over all meters attached to one substation),
energy markets (which aggregates over meters belonging to a specific retailer),
prediction of renewables (which aggregates only over local producers), the num-
ber of parallel groups might go beyond the limit that the protocol can handle
given the available memory. Also, functionality added to the meter in the future
through software updates might cut into available memory, limiting the group
sizes even further. For the implementation discussed in Section 3, the firmware
limited each meter to one group at a time; changes to the firmware can allow
one meter to be in multiple groups simultaneously.

For now the billing protocol has not been implemented in the scalability
test for similar reasons; while it has shown to be efficient, fitting it into the
DLMS/COSEM stack would have required some major changes. In addition,
though the protocol is extremely versatile, we were struggling to find a strong
use case to use as a vehicle to promote the protocol, and some homework on the
integration of this technology into the legal framework is still ongoing. Finally,
while a test on aggregation protocols is meaningful once one actually aggregates,
the billing protocol runs largely independently on every meter, so a large-scale
test for this kind of protocol is not strictly necessary.

3 Experiments

Two types of tests were performed on the meters: the component test and the
system test. The component tests measure performance of the LoPA protocol
directly on the meter, excluding overhead from the network and communication
with the head-end system. The system tests measure performance of the LoPA
protocol including overhead from the head-end system and the network.

3.1 Component Test Lab Setup

The meter component tests were performed on the Elster AS300 meters with
firmware version 8.11.1. The communication protocol used is the DLMS/COSEM
stack, which is a widely-used industry standard. The tests measure values from
the RS-485 interface under normal operation, including DLMS set/get. The
equipment can measure time with millisecond granularity.

6 Implementation of Privacy-Friendly Aggregation for the Smart Grid

3.2 Component Test Descriptions

Tests C1-C5 were performed for a) 1 group of 3 meters and b) 1 group of 50
meters.

Test C1: Create a new key pair Measures the time required to create a new
public-private key pair for one meter.

Test C2: Read public key Measures the time required to read out the me-
ter’s public key from storage.

Test C3: Create a new group key for all meters Measures the time to cre-
ate a new group key for all meters in the group with the list sent via DLMS.
It includes the time to calculate and save the shared secret.

Test C4: Create a new group key for one meter Measures the time to cre-
ate a new group key for one meter in the group, including the time to cal-
culate and save the shared secret.

Test C5: Encrypt one value Measures the time to encrypt one meter con-
sumption reading.

Test C6: CPU Usage Measures the percentage of the CPU that is used for
a) 1 meter with LoPA disabled and b) for 50 meters with LoPA enabled.
Test C7: LoPA Components - EEPROM Amount of EEPROM required

by LoPA components (keys, etc.) in bytes.

Test C8: Encrypted Load Profile - EEPROM Amount of EEPROM re-
quired by the encrypted load profile in bytes.

Test C9: Encrypted Load Profile Capture Objects - EEPROM Amount
of EEPROM required by the encrypted load profile capture objects in bytes.

Test C10: Free Space - EEPROM Amount of free space left in EEPROM.

Test C11: Code Size without LoPA - Flash ROM Amount of flash ROM
required by the code without LoPA.

Test C12: Code Size with LoPA - Flash ROM Amount of flash ROM re-
quired by the code with LoPA.

Test C13: RAM Required without LoPA Amount of RAM required with-
out LoPA.

Test C14: RAM Required with LoPA Amount of RAM required with LoPA,
including the increased stack requirement, RAM required by the objects, etc.

3.3 System Test Lab Setup

The system test environment consists of the following main hardware and soft-
ware components:

100 Elster AS300 DLMS/COSEM Meters, Version 8.11.1
Energy ICT EIServer 8.11.9 Head-End System

— Digi PortServer TS 4 MEI

Wireshark Network Protocol Analyzer, Version 1.8.4

EIServer can only measure time with a granularity of seconds. To get data in
milliseconds, Wireshark network traffic captures were correlated with EIServer

Implementation of Privacy-Friendly Aggregation for the Smart Grid 7

data logfiles. The meter and firmware version are the same as the meter used
in the component tests described in Section 3.1. Meter firmware version 8.11.1
records electricity consumption values in 15-minute intervals.

As discussed in Section 2.2, the head-end system transmits all of the aggre-
gation group keys in one message. This message size is 4000 bytes, which limits
the number of meters per group to 27. Thus, for the system tests we used 2
groups of 25 meters to approximate 1 group of 50 meters.

3.4 System Test Descriptions

For each test time is measured from the start of the command to the success-
ful completion of the command in the head-end system. The number of bytes
transmitted between the head-end system and the meters is also measured. The
meters communicate with the head-end system via the serial line. Tests S1-542
were performed for a) 1 group of 3 meters, b) 1 group of 25 meters, ¢) 2 groups
of 25 meters, and d) 10 groups of 10 meters.

Test S1: Create new key pairs Measures the time required to create a new
public-private key pair for all meters in the group.

Test S2: Read public keys Measures the time required for the head-end sys-
tem to read the public key for each meter in the group.

Test S3: Create a new group key for all meters Measures the time to cre-
ate a new group key for all meters in the group.

Test S4: Read encrypted consumption values Measures the time required
to read the encrypted consumption values from the meter registers for 6 15-
minute intervals for all meters in the group.?

4 Results

4.1 Component Tests

Table 1 shows the results of the component tests directly on the meter for per-
formance and CPU usage. In addition to recording consumption values, an in-
terrupt is triggered every second to execute regular tasks on the meter. These
tasks need anywhere between 300—400 ms to complete on this meter, thus con-
suming around 31% of the CPU. For a healthy meter, the tasks executed every
second should never exceed 1000 ms, or the meter will consider the next second
as a “missed/lost” second. While the meter will not skip any tasks that were
scheduled to take place in the “lost” interval, functions like threshold monitoring
will not happen in real time.

2 Due to the setup of the head-end system software, it is only possible to perform
Tests S1-S3 for an entire group of meters, not for an individual meter. This differs
from the component tests in which it is possible to measure the values for just one
meter.

3 Through firmware changes it is possible to record meter readings at a higher fre-
quency, e.g., every 5 minutes.

8 Implementation of Privacy-Friendly Aggregation for the Smart Grid

Test C1 shows that the average time to create the public-private key pair for
one meter does not significantly increase from a group of 3 meters to a group
of 50 meters. In Test C2, the average time to read the public key is ~1 ms.*
The size of the meter’s public key is 64 bytes and the LoPA-encrypted value is
4 bytes. Thus, reading 16 PET encrypted values would also take ~1 ms.

As shown in Test C3, in creating the group keys for 50 meters, each meter
receives 49 keys and the total average time required is 9100 ms. In theory, disre-
garding network delays and signal quality, the group keys can be updated every
10 seconds for 50 meters in a group.

Test C5 shows the average number of milliseconds required to encrypt one
LoPA value. Since the regular meter tasks require up to 400 ms out of every
second, around 600 ms are available for LoPA operations. Encryption of one
value for a group of 50 meters takes 96 ms, so theoretically the largest group
size is 300 meters. Every time the consumption values are recorded, the meter
would spend ~400 ms on regular tasks and 576 ms on LoPA encryption, for a
total time just below the 1000 ms limit. While it is acceptable to have 1-2 “lost”
seconds every 15 minutes (when consumption values are recorded), the meter
manufacturer recommends keeping the total timing of tasks below 1000 ms.
Considering that only about 31% of the CPU is being used, it may be possible
to change the firmware to allow, for example, a group of 600 by splitting up the
encryption tasks so that half execute in one second and the other half execute
in another second. Then the total timing of tasks per second would stay below
the 1000 ms threshold while allowing for groups larger than 300.

The results of Test C6 demonstrate the low overhead of LoPA. CPU usage
increased by only 0.09% for a LoPA-enabled meter in a group of 50 meters
compared to a meter with LoPA disabled. The CPU speed is 72 MHz, i.e., 72,000
cycles/second, and about 20,000 are spent on regular processes and 40,000 are
idle. For 300 meters in a group (the maximum), every 15 minutes (900 seconds)
about 1 second is when the CPU is being used at max. Thus, 899 seconds of
every 900 seconds the CPU is not being used at its maximum.

1 Group of 3 Meters 1 Group of 50 Meters

Test|Description (# of meters) Average Time (ms) Average Time (ms)
C1 |Create key pair (1) 124.9 126.875
C2 |Read public key (1) 1 <1
C3 |Create group keys (all) 360.8 9100
C4 |Create group key (1) 173.8 181.232653
C5 |Encrypt one value (1) 5.02381 96.708333
1 Meter - LoPA Disabled|50 Meters - LoPA Enabled

C6 [CPU Usage (1) 30.02% 30.11%

Table 1. This table shows the results of component tests C1-C6 on LoPA performance
time and CPU usage. The value in parentheses refers to the number of meters in the
group used in that test.

4 The equipment cannot measure time under 1 ms.

Implementation of Privacy-Friendly Aggregation for the Smart Grid 9

Table 2 shows the memory requirements of LoPA in EEPROM, flash ROM,
and RAM. The LoPA components and encrypted load profile information (Tests
C7-C9) only use 8174 bytes of the EEPROM, leaving 183688 bytes of free space.
Adding LoPA to the code only increases the size in flash ROM by 15608 bytes
(Tests C11-C12) and the amount of RAM required by 4784 bytes (Tests C13—
C14).

Since almost 70% of the time the processor is not being used to its capacity, a
firmware change to allow splitting of encryption tasks would support much larger
group sizes, which is then limited by memory. Since each meter’s public key is
64 bytes and there are 183,688 bytes free in memory, there could theoretically
be 2870 meters in one group or in multiple groups simultaneously.

Test|Description Memory Size in Bytes
C7 |LoPA Components EEPROM 5062
C8 |Encrypted Load Profile EEPROM 2920
C9 |Encrypted Load Profile Capture Objects EEPROM 192
C10 |Free Space EEPROM 183688
C11 |Code Size without LoPA Flash ROM 246084
C12|Code Size with LoPA Flash ROM 261692
C13 |RAM Required without LoPA RAM 48568
C14|RAM Required with LoPA RAM 53352

Table 2. This table shows the results of component tests C7-C14 on memory require-
ments with and without LoPA.

4.2 System Tests

Table 3 shows the results of the system tests that include overhead from the
serial line communication and the head-end system. Table 4 shows the number
of bytes transmitted between the head-end system and the meters during those
system tests.

Test S1 sends a message to each meter to create a new key pair and Test
S2 sends a message to each meter requesting the meter’s public key, which is
required to later send to all the meters in the group to create the aggregation
keys. These two tests each take approximately the same amount of time to
complete for a given setup.

The most time-intensive task is creating the aggregation group keys for all
of the meters; each meter receives a message with the public keys of all the
other meters in the group. This action takes on average 16 seconds for 3 meters,
107 seconds for 25 meters, 317 seconds (~5.3 minutes) for 50 meters, and 287
seconds (~4.8 minutes) for 100 meters. Due to a smaller group size of 10 meters
per group for the 100 meter setup versus 25 meters per group in the 50 meter
setup, Test S3 took less time for 100 meters than for 50 meters. Also due to group
size and the total number of aggregation group keys transmitted, the number of
bytes increases by only 20% between the 50 meter and 100 meter setups.

10 Implementation of Privacy-Friendly Aggregation for the Smart Grid

As shown in Test S4, reading the encrypted consumption values takes about
39 seconds for 3 meters, 94 seconds for 25 meters, 274 seconds (about 4.5 min-
utes) for 50 meters, and 429 seconds (~7.2 minutes) for 100 meters. When the
head-end reads the consumption values, it reads the 6 most recent values, which
are 4 bytes each. Thus, a total of 72, 600, 1200, and 2400 bytes are read for 3,
25, 50, and 100 meters, respectively. As discussed in Section 4.1, the meter itself
takes ~1 ms to read 64 bytes. For 3 meters the meter takes ~1.1 ms, for 25
meters ~9.4 ms, for 50 meters ~18.8 ms, and for 100 meters ~37.6 ms.

1 Group of 3|1 Group of 252 Groups of 25|10 Groups of 10
Test|Description (# of meters) Time (ms) Time (ms) Time (ms) Time (ms)
S1 |Create key pairs (all) 13588.8360 33759.3447 95786.9113 147946.0895
S2 |Read public keys (all) 13642.5570| 33451.7854 92019.1679 148378.2688
S3 |Create group keys (all) 16244.3580| 107500.9829| 317488.8615 286593.5395
S4 |Read encrypted values (all)| 39025.3141| 93798.9607| 273972.2835 429223.3581

Table 3. This table shows the time results of system tests S1-S4 on performance. The
time reflects the average of 10 runs of each test. The value in parentheses refers to the
number of meters in the group used in that test.

1 Group of 3|1 Group of 252 Groups of 25|10 Groups of 10
Test|Description (# of meters) Bytes Bytes Bytes Bytes
S1 |Create key pairs (all) 60968 528443 1058428 2095841
S2 |Read public keys (all) 75504 664432 1259758 2615719
S3 |Create group keys (all) 84098 1545730 3121189 3752896
S4 |Read encrypted values (all) 289243 2518940 4999469 10024446

Table 4. This table shows the number of bytes transmitted between the head-end
system and the meters during system tests S1-S4 on performance. The number of
bytes reflects the average of 10 runs of each test. The value in parentheses refers to the
number of meters in the group used in that test.

The meter will normally spend 10 ms more than the theoretical measurements
from the component tests results given in Section 4.1 because it takes time
for the meter to process the message. Thus, the system test time, including
serial network and head-end system overhead, is approximately equal to the
following equation: SystemTestTime = ComponentTestTime+10ms+ Qverhead.
The overhead of the network and head-end system can then be approximated by
the following equation: Querhead = SystemTestTime — ComponentTestTime —
10ms. For example, the approximate overhead for creating a new group key
for 50 meters is 317488.8615 — 9100 — 10 = 308378.8615 ms, which is around
5.1 minutes. Comparing Table 1 and Table 3 shows that the LoPA protocol
operations on the meter are extremely fast, and the head-end system and serial
network introduce the most overhead.

Implementation of Privacy-Friendly Aggregation for the Smart Grid 11

5 Challenges

As with probably most new technologies, the biggest challenges stem from inte-
grating them into the existing workflow and infrastructure. Our protocol choice
and parameters were quite optimized for easy integration — other protocols can
offer more flexibility and elegance, but would require adapting the existing com-
munication infrastructure to a point that makes them hard to deploy.

5.1 Non-technical limits

While ideally all meter readings would be privacy-protected, it is not feasible at
this time; too many business processes require individual meter readouts, and not
all of them could be implemented using aggregation. Realistically, the best we
can hope for is to add PETs as a more or less optional feature into the standard,
and then use it instead of individual readouts wherever applicable. We may
even conflict with other privacy approaches. For example, informed consent is
required for a third party to request a meter readout. Thus, if too few consumers
participate in this third party, there may not enough participants to aggregate
over. Another example is the privacy filter proposed by the German BSI, where
a meter gateway decides which information is allowed to pass on. In this case,
it is not possible to meaningfully implement the privacy protocol outside of the
gateway (which needs to understand what it passes on), while it is complex to
implement it within (a gateway may serve a number of meters, and needs a
rather heavyweight certification). Finally, even with a PET integrated, it is not
possible to eliminate all trust — if an operator is willing to act in a criminal way,
it is hard to prevent them from circumventing the privacy features. There are a
number of ways an operator can spy on a specific individual — they can introduce
“ghost” meters (other meters in the aggregation group that do not actually exist)
or send firmware updates that deactivate the privacy features. While protecting
against most of these attacks is in theory possible - meters can be registered by
a neutral entity, the firmware update function can be programmed and certified
to alert the user of a firmware change along with a hash of the new firmware,
etc. — those protections are unlikely to be implemented in reality. Thus, if we
assume that data operators (or third parties that can demand access) are flawed,
they might get tempted once a large dataset exists. We also assume that those
organizations are largely honest and playing by the rules.

5.2 Research Challenges

When discussing our approach with grid operators, we found a number of use
cases that are not covered by the existing protocols.

The first issue involves local overload of a power line. Once more consumers
produce energy, it is possible that a large amount of current is transferred be-
tween two households, without ever touching a substation — an example could
be that someone runs a large solar farm, while her neighbor runs a similarly
large cannabis plantation. In this case, her neighbor will consume all energy she

12 Implementation of Privacy-Friendly Aggregation for the Smart Grid

produces, which then only has to be transported between two houses. From a
grid management point of view, this poses a problem. Power lines can degrade
if they are overloaded, so the network operator does need to know if there is
any line transporting a massive amount of current. In the above setting, this can
only be detected by the two meters involved in this setting. It would thus be
useful to have a way to detect that a line is overloaded, without revealing the
exact difference between the consumptions of two meters.

A similar issue is voltage spike detection. If a meter is short circuited, it
will measure a lower voltage than its two neighbors, whereas normally it should
measure a voltage that is between its two neighbors’ measurements. In this case,
it would be good to have a protocol that can detect that such a spike exists,
without revealing the actual differences.

A current hot topic in smart metering is the concept of consumer engagement
(or energy experience). The idea is that a consumer that has a wealth of infor-
mation about their energy usage will become more energy conscious, saving up
to 8 percent of their current energy consumption. A trivial solution to this end
would be to use only devices on the consumer side to provide this information,
and thus keep all energy information localized. In many settings, however, this
approach is not feasible due to either the meter lacking a local communication
port, or the involvement of consumers that do not have access to the appropriate
devices. To this end, it would be preferable to send a detailed paper bill with all
required information (e.g., how a household consumed energy compared to its
peers) in a reasonable privacy-protecting way.

Another issue on this point that is largely ignored is domestic privacy. The
average electricity consumer is not one individual, but a household of several
people. Thus, providing the consumer with detailed energy information about
themselves is inadvertently providing them with information about other mem-
bers of the same household — for example, if one member is abroad, it might
show whether their spouse spent the nights at home or not. As the meter cannot
possibly distinguish which member of the household is the data owner, this does
pose a problem that seems rather difficult to resolve.

The final issue is a more political one. In our first implementations on a
single meter, it was shown that a more complex protocol can be implemented
on a real meter, and the private billing protocol from Danezis et al. [14] can be
integrated seamlessly and efficiently. This approach would allow for more flex-
ibility (meters can be in an arbitrary number of groups at the same time, and
privacy-preserving billing can be integrated). While it would be preferable to
have the more powerful options in a standard, the added complexity — partially
implementation complexity, but also a more difficult integration into the exist-
ing back-end and communication software — make it more difficult to get the
technology introduced into a standard.

Implementation of Privacy-Friendly Aggregation for the Smart Grid 13
6 Conclusions and Next Steps

This paper presents integration and scalability test results from the low-overhead
privacy aggregation (LoPA) protocol that was introduced by Kursawe, Danezis,
and Kohlweiss [3]. The LoPA protocol adds no significant extra costs and easily
fits within the DLMS/COSEM protocol, a widely-used, industry-standard smart
meter protocol. Scalability tests on the Elster AS300D meter show that the pro-
tocol increases the CPU usage from 30.02% to just 30.11%, the current firmware
can theoretically support up to 300 meters in one group, and encryption of 16
consumption values takes ~1 ms inside the meter.

Since these experiments were done over serial line communication, one next
step is to perform experiments with meters communicating over GRPS or power
line communication (PLC). Other potential next steps are to do a field trial and
explore options for including the aggregation protocol as part of a standard for
smart meters.

Acknowledgements. We would like to thank Alliander for financing the project,
providing expert advise, and hosting the smart meter test lab. We also thank
Elster, particularly Michael John, for their support and technical expertise in
writing meter firmware and conducting the experiments. Also special thanks to
George Danezis, who contributed significantly to the first implementations of
the protocol.

References

1. Cuijpers, C., Koops, B.J.: Het Wetsvoorstel ’Slimme Meters’: Een Privacytoets op
Basis van Art (in Dutch). Technical report, Tilburg University (2008)

2. Jawurek, M., Johns, M. Riek, K.: Smart metering de-pseudonymization. In Twenty-
Seventh Annual Computer Security Applications Conference, ACSAC 2011, Or-
lando, FL, USA, 5-9 December 2011, pp. 227-236

3. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-Friendly Aggregation for the
Smart-Grid. In: 11th International Symposium on Privacy Enhancing Technologies
(PETS’11), pp. 175-191. Springer-Verlag, Berlin, Heidelberg (2011)

4. Erkin, Z., Tsudik, G.: Private Computation of Spatial and Temporal Power Con-
sumption with Smart Meters. In: Proceedings of the 10th International Conference
on Applied Cryptography and Network Security (ACNS’12), pp. 561-577. Springer-
Verlag, Berlin, Heidelberg (2012)

5. Erkin, Z., Troncoso-Pastoriza, J.R., Lagendijk, R., Pérez-Gonzélez, F.: An Overview
of Privacy-Preserving Data Aggregation in Smart Metering Systems. In: IEEE Sig-
nal Processing Magazine. IEEE (2013)

6. Garcia, F.D., Jacobs, B.: Privacy-Friendly Energy-Metering via Homomorphic En-
cryption. In: 6th Workshop on Security and Trust Management (STM). (2010)

7. Li, F., Luo, B., Liu, P.: Secure Information Aggregation for Smart Grids Using
Homomorphic Encryption. In: First IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 327-332. IEEE (2010)

14 Implementation of Privacy-Friendly Aggregation for the Smart Grid

8. Li, F., Luo, B., Liu, P.: Secure and Privacy-Preserving Information Aggregation for
Smart Grids. In: International Journal of Security and Networks, Special Issue on
Security and Privacy in Smart Grid, pp. 28-39. Inderscience Publishers, Geneva
(2011)

9. Lu, R., Liang, X., Li, X., Lin, X., Shen, X.: EPPA: An Efficient and Privacy-
Preserving Aggregation Scheme for Secure Smart Grid Communications. In: IEEE
Transactions on Parallel and Distributed Systems, pp. 1621-1631. IEEE (2012)

10. Rottondi, C., Verticale, G., Krau}, C.: Implementation of a Protocol for Secure
Distributed Aggregation of Smart Metering Data. In: International Conference on
Smart Grid Technology, Economics and Policies (SG-TEP 2012). IEEE (2012)

11. Li, D., Aung, Z., Williams, J., Sanchez, A.: Efficient Authentication Scheme for
Data Aggregation in Smart Grid with Fault Tolerance and Fault Diagnosis. In:
Proceedings of the Innovative Smart Grid Technologies (ISGT), pp. 1-8. IEEE PES
(2012)

12. Molina-Markham, A., Danezis, G., Fu, K., Shenoy, P., Irwin, D.: Designing Privacy-
Preserving Smart Meters with Low-Cost Microcontrollers. In: Proceedings of the
16th International Conference on Financial Cryptography and Data Security (FC
’12), pp. 239-253. Springer, Berlin, Heidelberg (2012)

13. Danezis, G., Kohlweiss, M., Rial, A.: Differentially Private Billing with Rebates.
Technical report MSR-TR-2011-10, Microsoft Research (2011)

14. Rial, A., Danezis, G.: Privacy-Preserving Smart Metering. Technical report MSR-
TR-2010-150, Microsoft Research (2010)

