
De-anonymizing D4D Datasets

Kumar Sharad1 and George Danezis2

1 University of Cambridge Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

Kumar.Sharad@cl.cam.ac.uk
2 Microsoft Research

21 Station Road, Cambridge CB1 2FB, UK
gdane@microsoft.com

Abstract. Recent research on de-anonymizing datasets of anonymized
personal records has not deterred organizations from releasing personal
data, often with ingenuous attempts at defeating de-anonymization. Study-
ing such techniques provides scientific evidence as to why anonymization
of high dimensional databases is hard and throws light on what kinds of
techniques to avoid. We study how to de-anonymize datasets released as
a part of Data for Development (D4D) challenge [12]. We show that the
anonymization strategy used is weak and allows an attacker to re-identify
and link records efficiently, we also suggest some measures to make such
attacks harder.

1 Introduction

As we continue to digitize our lives it is becoming progressively easier to doc-
ument our behavior. In today’s world each of us have bank transaction histo-
ries, call detail records, shopping histories, etc. maintained by various parties.
Researchers such as sociologists and data scientists are specially interested in
studying such data. Consequently, such data is released by organizations to con-
duct scientific studies.

However, this presents the problem of privacy intrusion of individuals. Orga-
nizations releasing private data attempt to solve this problem by anonymizing
the data and to make re-identification of data impossible. The question whether
anonymization is sufficient for privacy has seen active debate recently, with stud-
ies suggesting approaches to anonymize and de-anonymize data. Often sensitive
data is released for research which leads to privacy breaches of various kinds.
Research has shown repeatedly that anonymizing feature rich data is extremely
hard and in practice such attempts do not work, some examples of such work
are [11, 9, 10, 15, 2] and [7]. Techniques have also been developed to protect
anonymized data, some such examples are [4, 16] and [14]. However, Dwork
and Naor [3] have shown that preserving privacy of an individual whose data is
released cannot be achieved in general.

Social networks are a very good example of high dimensional databases and
they have information densely packed into them. At the same time it is very



challenging to anonymize them while still maintaining the usefulness of the data.
Often anonymization techniques make assumptions about the side-information
that do not hold. Organizations have released social network databases and tech-
niques developed have been successful in defeating the anonymization strategies
employed [11, 9, 10].

Due to the challenges faced in protecting privacy in the case of social network
data release, one needs to carefully study any such scheme which attempts to
protect privacy, since in general it is not possible. In this paper we evaluate such
a scheme on behalf of a mobile network operator (Orange). In July 2012 Orange
introduced the Data for Development (D4D) challenge [12] as an open data
challenge to encourage research teams around the world to analyze datasets
of anonymous call patterns collected at Orange’s Ivory Coast subsidiary. The
motivation behind this challenge was to help address the questions regarding
development in novel ways. The mobile network operator wanted to ensure that
the data being released does not jeopardize the privacy of the individuals even
after proper anonymization procedures being deployed. To evaluate this attempt
a preliminary dataset was made available to us after signing an appropriate
non-disclosure agreement. We examined the datasets and advised the mobile
network operator accordingly. After considering our suggestions the datasets
were modified prior to release. The details of the datasets made available to us
can be found in section 4.

In total four datasets were released for analysis, in this paper we study the
Dataset 4 – motivation behind releasing this dataset was to allow researchers
to study social interactions by analyzing communication graphs. This dataset
contains the communication sub-graphs of about 8300 randomly selected sub-
scribers, referred to as egos. The sub-graphs provide all the communications
between the egos and their contacts up to 2 degrees of separation, the data also
includes the number of calls between two users in a ego network and the duration
of each call. Communication between the users has been divided into periods of
two weeks spanning 150 days.

The individuals were assigned random identifiers which remain same for all
the time slots. However, to obfuscate the interactions between ego nets the com-
mon members of the ego-graphs of two different customers were provided unique
identifiers, i.e. if an individual was a part of ego networks of two different egos
then he had a different identifier in each one of them.

It is not obvious how this dataset can be exploited to compromise privacy but
due to the unique nature of social networks and interactions between the mem-
bers we show how this dataset could be a major concern for privacy protection.
We present a detailed analysis in section 3.

2 The Problem

The anonymization strategy for Dataset 4 tries to disconnect the ego nets pub-
lished so as to conceal the overall graph structure. The knowledge of graph topol-
ogy can cause severe privacy breach even if only a few nodes are re-identified



as rest of the structure can be ascertained from the topology itself. We see that
graph topology alone is not a big threat but once the full graph is known a stan-
dard technique can be used to re-identify. Before attempting to de-anonymize
Dataset 4 we need to formally describe the problem. We study the problem at
hand using an example, the given dataset contains the communication of all the
individuals in the ego net graph of an user upto the depth of 2. To illustrate this
we use Figure 1 and Figure 2 which are ego nets extracted from a real world
social network. These ego nets are centred at the red node, orange nodes denote
1-hop nodes and blue nodes denote 2-hop nodes.

Fig. 1: The ego net G0

In this example some nodes are common between graphs G0 and G1, on
constructing node induced graph of the common nodes we discover that they
interact in intricate ways as shown in Figure 3. Using this example we wish
to illustrate the problem and motivate a solution. Dataset 4 gives us access to
thousands of ego graphs whose labels have been anonymized and are unique
across ego nets for different egos, due to this the links between various ego nets
have been lost. The statistical properties of social graphs indicate that they tend
to be heavily clustered and hence there will be pairs like (G0, G1) which have
significant overlap compared to the size of the ego nets.

It can be already seen at this point that even if we know that a pair of graphs
have overlapping nodes it is not clear how we can map such nodes when the
identifiers have been scrambled. All we have at this point is the graph topology
and the weights of directed edges. This information can we used to assign an
edge weight to every interaction between the nodes, we can say that node A



Fig. 2: The ego net G1

Fig. 3: Sub-graph common to both G0 and G1



makes x calls to node B that last for a total duration of time y then the weight
of the edge between the nodes is (x, y).

Essentially, we are looking for sub-graphs of G0 and G1 which are isomorphic
and are largest such sub-graphs. If we can find significant overlap between two
graphs then the larger the matching sub-graph the higher the likelihood that
the match is true. Finding isomorphic graphs of sizes 2 or 3 nodes which are
common to any given pair of graphs is quite probable. Finding a false positive
large match between ego nets of a social network is extremely rare.

Ideally we would like to map all the common anonymized nodes across pairs
like (G0, G1) and reconstruct the union of graphs G0 and G1. In this simple
example such a graph would look like the one shown in Figure 4, again the red
nodes denote the center nodes, the orange nodes are at 1-hop distance and the
blue nodes are at 2-hop distance. We can extend this approach further to many
sub-graphs namely G0, G1, . . . , Gn of which several pairs have overlapping nodes
then by combining them together we can recover the entire graph from which the
sub-graphs were extracted. In the remainder of the paper we investigate how to
re-link the ego nets to reveal the structure of the graph and exploit it to divulge
identities.

Fig. 4: The complete graph G

3 Proposed Solution

Pedarsani and Grossglauser [13] have shown that it is feasible to de-anonymize a
target network by using the structural similarity of a known auxiliary network,



we build on their work to develop our attack. Section 2 highlights the problem
that needs to be solved to map anonymized nodes across ego nets. One possible
approach is finding sub-graphs which are common between a pair of ego nets.
Additionally this sub-graph should be the largest such graph. This is referred
to as the maximum common subgraph-isomorphism problem and is known to
be NP-hard in general, even if one were to assume that we have an instance of
the problem that can be solved efficiently it would still be too computationally
expensive to launch an attack. Hence we need to explore other approaches to
solve this problem.

3.1 Intuition

Our approach involves dividing the problem into parts and solving them individ-
ually. We have a 2-hop network of each ego at our disposal. If two graphs have
nodes in common then they can be classified under three categories, namely

(a) Both nodes are at a distance of 1-hop from the center.
(b) One node is at a distance of 1-hop while the other node is at a distance of

2-hop from the center.
(c) Both nodes are at a distance of 2-hop from the center.

We have the complete neighborhood graph of nodes falling in the category
(a), whereas, the nodes falling in category (b) and (c) have at least a part of their
neighborhood information deleted because of being paired with a 2-hop node.
Hence, it should be easier to re-identify nodes which fall under the category (a)
as compared to nodes which fall under the categories (b) and (c).

As mentioned earlier, due to problem being NP-hard in general we exploit
the structure of the problem that allows for an efficient solution. It is important
to note that our techniques make use of structural properties of social graphs,
and they are only applicable to other problems if similar properties are present.
Pursuing this argument further, we utilize the degree distribution of nodes of
social networks which tend to be clustered and follow the power-law [6]. This
indicates that if one were to observe the neighborhood of a particular 1-hop node
and list the degree of all its neighbors then it is fairly unlikely that another node
of the graph will exhibit the same distribution, provided the node degree is not
extremely low. This approach is detailed in section 3.2.

For the nodes which fall under the categories (b) and (c) this approach will
not work because portions of the neighborhood of the 2-hop nodes have been
deleted. We take a different approach to match such nodes. Broadly speaking,
the attack works by assigning a match score to each pair of nodes, finally pairs
are selected in such a way that maximizes the entire score thus generating a
final mapping. Our attack builds on the de-anonymization of nodes falling under
category (a) and assumes that a pair of graphs have some 1-hop nodes common.
We discuss the details in section 3.3.



3.2 Matching 1-hop Nodes

As outlined earlier we de-anonymize the common 1-hop nodes between two
graphs by observing their 1-hop neighbourhood degree distribution. We pro-
ceed by scanning the 1-hop neighbourhood of a particular node and collecting
the node degrees. These are then sorted in a list and we treat it as a signature
of that particular 1-hop node. After collecting the signatures of all the 1-hop
nodes of a pair of graphs we proceed to match the signatures between graphs.
If a match is found then we consider the corresponding nodes to be same. The
key thing to note here is that we have the complete 1-hop neighbourhood of
a particular 1-hop node and this makes it possible to implement this attack.
Social network graphs represent real people and their behaviours, hence, finding
exactly same degree distribution of two nodes with sufficiently high number of
neighbours is highly unlikely. Algorithm 1 illustrates our attack.

Algorithm 1 Matching 1-hop nodes between two ego nets

Input: Ego nets G0 and G1

Output: Mapping between 1-hop nodes of G0 and G1

1: function graph center(G)
2: return the ego of the graph

3: function signature(G)
4: center ← graph center(G)
5: List all the neighbours of center in ego neighbours
6: for node in ego neighbours do
7: Create 1-hop graph centred at node called G temp
8: for all nodes in G temp do
9: Append degree in list node sig

10: Append node sig keyed by node in dictionary G dict

11: Invert G dict keying nodes by signature
12: return G dict

13: G0 sig ← signature(G0)
14: G1 sig ← signature(G1)

15: for signature in G0 sig keys do
16: if G1 sig contains signature then
17: Map signature value of G0 sig and G1 sig in list mapping

18: Output mapping

Dataset 4 also gave us access to frequency and the duration of calls between the
users. This can be used to relate them using edge weights as shown in section
2, thus creating a weighted graph. Having edge weights in the graph allows us
to improve the efficiency of the algorithm by first determining the common edge



weights between the 1-hop nodes of the two ego nets and then computing the
signature of only those nodes which are connected by edges with these weights.
The improvement depends upon the ratio of the total edges present in 1-hop
graph to the unique edge weights present.

3.3 Matching the non-1-hop Nodes

To match the nodes which fall in the category (b) and (c) we build on the progress
made in section 3.2. It is observed that a pair of social network graphs that have
1-hop nodes in common tend to have a significant number of 2-hop nodes in
common as well. We cannot follow an approach similar to mapping 1-hop nodes
to map the 2-hop nodes since major portion of their neighbourhood might be
missing, hence using it as a basis to identify the nodes will give erroneous results.
However, we must make use of the progress made in mapping 1-hop nodes to
achieve success.
We assume at the outset that the pair of ego nets whose 2-hop nodes we are
trying to map already have common 1-hop nodes, these nodes can be identified
by using Algorithm 1. After this step we compute the neighbor match as a cosine
distance between a particular pair of 2-hop nodes of G0 and G1 by observing
which of the common 1-hop nodes they are connected to. If the distance is 1 then
we proceed to compute the signature match. The signature is defined similarly as
we did in the case of 1-hop nodes except with one difference – whereas earlier we
considered the full degree of each of the node neighbors here the degree of a node
is represented as a tuple of in and out degrees. This is done to compute a more
accurate signature match, earlier we had the complete neighborhood graph so to
identify two nodes as being the same all we needed to do was to look for exact
signature matches, however, we cannot afford to do this here hence we compute
a cosine distance between signatures. Thus representing the signature by using
a tuple of in and out degree is more accurate than adding them up and gives
a higher confidence in computed distance between signatures. The final match
is computed as the average of neighbor match and signature match, this match
score is used as the edge weight of a bipartite graph whose nodes are the nodes
of G0 and G1 respectively. Once we finish populating the bipartite graph we
use the Munkres assignment algorithm [8] to find the optimal mapping between
nodes of the bipartite graph that maximizes the sum of edge weights.
We only do these computations for nodes that have a significantly high degree.
For low degree nodes have little information available to de-anonymize them with
high confidence. For our experiments we consider nodes with degree greater than
10. Algorithm 2 in appendix A illustrates our attack. This algorithm can also
be improved by considering the edge weights of the entire graph and then using
them as discussed in section 3.2.

3.4 Results

We analysed our algorithms by running them on the EU email communica-
tion network taken from the Stanford Large Network Dataset Collection [5]. We



recreated a dataset similar to the Dataset 4 by extracting egonets as done in
the original scheme. The data was treated as anonymized before running the
algorithm, subsequently the results were compared based on the ground truth.
Although, the data used for evaluating our algorithms does not represent call
records, still being a social network it has similar properties and represents hu-
man behavior.
Our analysis indicates that Algorithm 1 is highly effective in re-identifying almost
all the 1-hop nodes common between a pair of egonets with success percentage
of over 98. The approach works very well even on nodes of low degree, however,
nodes which are completely stranded with just 2 or 3 neighbors could not be
identified due to sparsity of information but very few such nodes exist in a 1-hop
graph.
The results of Algorithm 2 are illustrated in Table 1. Algorithm 2 was also quite
successful with good success percentage in most cases. However, the success
rate drops if we try to de-anonymise more nodes. As mentioned earlier we have
considered nodes which have degree greater than 10 in our analysis this gives us
good rates of in most cases but we pay the penalty of losing over 70% of nodes
in most cases. It is typical of social networks to have many nodes of lower degree
and our approach works only in cases where degree is over 10. It seems likely
that the cost of identifying nodes with degree lower than 10 could be exponential
in the size of the nodes. Also, our solution obtains mixed results in cases where
the graph contains high percentage of nodes of degree less than 10. The value in
brackets in the last two rows of the Table 1 show how the percentages improve
when nodes of degree greater than 20 and 12 are selected respectively. This
indicates that excluding nodes at a predetermined cutoff could lead to overlap
of nodes on either side of the cutoff, for instance there could be certain nodes
which have a degree of k−1 in one ego net and k+1 in another ego net, however
excluding all nodes below degree k eliminates the possibility of a good match
and introduces errors. On the other hand, if all nodes are allowed then the ones
which have low degree obscure the true picture. A methodology to pick up the
node degrees appropriately remains to be found.

Table 1 Results of Algorithm 2

G0 size (nodes) G1 size (nodes) common
nodes

re-identification
%

Success %

316 503 171 21.64 84.09
2629 2998 307 47.88 96.07
6567 5570 3692 14.65 74.72
8685 5096 1504 36.04 90.48
11690 9264 4325 11.49 (11.12) 69.9 (75.04)
49707 80601 29518 3.98 (3.34) 56.45 (76.37)



4 Dataset Details

As a part of the D4D challenge the mobile network operator released four
datasets of anonymized call data records to be studied by researchers. The data
sets contained the anonymized call detail records extracted from the customer
base, spanning a period of 150 days from 1st December, 2011 to 28th April,
2012. The datasets contain the records of individuals of Ivory Coast which has
a population of 20 million out of which close to 15 million [1] people use mobile
phones. The mobile network operator has 5 million subscribers in Ivory Coast
and controls a significant chunk of the market. We take a deeper look at the
structure of the datasets and the information provided.

• Dataset 1 - The first dataset contains the antenna-to-antenna details of
the aggregate communications between the cell towers. For every pair of cell
towers in Ivory Coast the number of calls and total communication time
was provided. The calls were grouped by hourly basis and showed which
cell tower initiated the call. Each cell tower was assigned an identifier and
the GPS co-ordinates of each tower was also provided. This dataset spans
the entire duration of 150 days.

• Dataset 2 - This dataset provides the cell tower identifiers used by a group
of randomly chosen active users to make phone calls and send texts. The data
is timestamped and a particular group of users was observed for a period of
2 weeks. At the end of the two week period a fresh sample of active users
was drawn at random, each sample contains 10% of the subscriber base and
data for 10 such random samples has been provided.
The phone numbers in each sample are scrambled and assigned random
identifiers to protect privacy. It is readily apparent that an individual can be
tracked using this dataset as it allows us to build a profile by approximating
the geographic location of the user by observing the cell tower being used
during a call. By aggregating the entire call history we can obtain a move-
ment profile which reveals the user’s behavior pattern. It must be noted that
just obtaining the geographic location of the cell tower being used by the
user does not give away his location as the tower chosen for communication
depends upon several factors like the topology of surrounding towers, traffic,
time of the day, etc. Also due to the fact that only parts of Ivory Coast are
well developed the network infrastructure and population tends to be clus-
tered, hence there could be many people who correspond to the same antenna
location. These details alone are not sufficient for identification, however, as
shown by Narayanan and Shmatikov [11] when such data is collated with
auxiliary information then this could lead to re-identification. If we are able
to identify only a few individuals then this could lead to a snowballing effect
and we can compromise more and more people by observing interactions
between people already identified and the ones that are anonymous.
The mobile network operator wanted to provide long term observation data
of users as well as high spatial resolution trajectories of individuals due to



the interesting scientific properties such data tends to have. However, the
privacy of the individuals needed to be protected along with facilitating
scientific study. The solution employed to make identification harder was
to publish one dataset with high spatial resolution data for a limited
period of time – referred to as Dataset 2 and another dataset for the entire
observation period but with reduced spatial resolution – referred to as
Dataset 3 which we describe next.

• Dataset 3 - This dataset is similar to the Dataset 2 apart from the fact
that it documents only 1% of the subscriber base, however, the observation
period lasts the entire span of 150 days. One further difference between
Dataset 2 and Dataset 3 is that, to reduce the spatial resolution, instead of
providing the cell tower identifiers only the identifier of the sub-prefecture
of antenna location is provided. Sub-prefectures are geographical regions of
Ivory coast and there are 255 such regions in the country. GPS co-ordinates
of the geographic centres of all the sub-prefectures have also been provided.

5 Related Work

In this paper we have concentrated on analyzing the Dataset 4, however, for
the sake of completeness we find it necessary to mention a few words about the
privacy afforded to the users by the strategy chosen to anonymize the other three
datasets. Bearing in mind that proper anonymization of high dimensional data
is a very hard task, below we discuss the pitfalls and contentious issues that such
anonymization raises.

• There is little scope of privacy breach being caused by Dataset 1 alone
since it contains no personally identifiable information about the users. It
could be used to study traffic patterns during the entire period but reveals
no information pertaining to the users.

• The Dataset 2 provides the call details of individuals round the clock
in each sample. As discussed earlier just by observing the antennas used
during communication we cannot obtain the geographic location. But our
estimate can be substantially improved by looking at the communication
patterns during odd hours for instance during the night, during such
periods due to low network traffic chances of an user communicating
via the closest tower is significantly higher, also during such hours most
people are at their homes. If we observe the call patterns during night
and collate it with call patterns during the rest of the day we can de-
crease the search space for pinpointing an individual. Therefore, to remove
this advantage we believe that it is best not to reveal call data for odd hours.

• In Dataset 2 we observed that some users who exhibit extremely high call
volume were communicating using cell towers located in areas that have



a very sparse population, for instance villages. Their coarse location can
be estimated by observing the most frequently used antenna and in many
cases such users used only one antenna. Also places like villages tend to
have only a single antenna in their vicinity which makes it even easier to
guess the location. The population of Ivory Coast does not have a strong
online presence hence it is not possible to identify such people using freely
available data online. However, a resident of the area can easily identify such
users because in many cases there are only a few candidates in a particular
area who can generate such high traffic. Additionally, upon identification
(at least with some surety) if this individual can be persuaded sell his
call history then this can be combined with the dataset to mount very
potent attacks which can de-anonymize a large number of people and cause
significant breach of privacy.

• For Dataset 2, in general it is possible to identify the group of users to which
a particular high volume customer belongs using the local information like
addressees of businesses and co-relating it with traffic information.

• It is also possible to identify an individual in Dataset 2 by using his
movement records and a pre-existing location profile. This attack was
presented by Mulder et al. [7]. The authors show that they were able to
identify around 80% of the users using their approach.

• A given sample of Dataset 2 contains 10% of the users and 10 such samples
are drawn for the entire period of 150 days. So the probability of an
individual to appear in a particular dataset is 0.1, conversely the probability
that the individual is not present in a given dataset is 0.9. In general it
can be stated that N × p−n people are common across any n samples
where N is the total size of subscriber base and p is the probability that
an individual would be picked at random in a dataset. Thus calculating
the probability that a person is present in atleast one of the datasets
= 1− (0.9)10 = 0.6513. This implies that Dataset 2 contains the records of
over 65% of the subscriber base which means that every second user’s data
has been published.

• Dataset 3 contains just 1% of the subscriber base and provides spatial reso-
lution only up to the sub-prefecture level, hence it is hard to obtain details
like coarse location of high volume users and learn from call patterns during
the night since we would never be able to go beyond the resolution of sub-
prefectures. On the flip side compromising an individual in this dataset has
rich rewards since we will obtain the call history for the entire duration.



6 Conclusion and Future Work

In this paper we have shown how nodes of ego nets can be re-identified using
graph topology. There is further scope to amplify these attacks and use them to
construct an even more serious privacy breach. Though we have partially solved
the problem of re-identification, aspects of it remain unsolved and further inves-
tigation is required. The techniques presented in this paper are only pertinent to
Dataset 4 and cannot be extended to other datasets. Studying possible privacy
breaches caused by other datasets requires a fresh approach. We conclude with a
discussion on important considerations for data release and the challenges that
lie ahead.
We have shown that releasing a 2-hop ego net allowed us to re-identify almost all
the 1-hop nodes. In general if a n-hop network is released then all the (n−1)-hop
nodes can be re-identified with high probability using the technique presented.
Releasing graph data and preserving privacy is an inherently difficult problem
due to the enormous amount of information encoded in the graph. To make it
harder for the attackers to cause privacy breach methods have been suggested to
manipulate graphs. For example in [11] Narayanan and Shmatikov have shown a
plausible way of inserting edges in graphs which make attacks harder but preserve
the overall graph properties. Future work could evaluate how such strategies
impact the success of proposed algorithms, which in turn can be used to refine
the attacks.
As seen in previous sections it is possible to re-identify certain class of nodes. Our
solution relies on the existence of common 1-hop neighbors. We have found it
hard to re-identify nodes when two ego nets have only 2-hop neighbors common,
in this scenario our de-anonymization techniques do not work. Of course due the
properties of social networks one could attempt to solve this by finding maximum
common subgraph-isomorphism between ego nets but this is extremely expensive
even for graphs of moderate sizes and is not practical.
Recovering the entire graph remains a challenge as well because firstly, we do
not have full confidence in the mapping generated and secondly, we do not have
a mapping for all nodes. This introduces inaccuracies while reconstructing the
entire graph. However, a sparse representation of the original graph can be con-
structed by considering the mapping between 1-hop ego nets. Additionally, as
discussed in section 3.4 choosing a cut-off appropriately to remove nodes of low
degrees is not very clear as it varies depending upon the properties of the ego
net. Despite these challenges one should not consider such data anonymization
techniques to safeguard the privacy of individuals.



Bibliography

[1] Central Intelligence Agency. CIA - The World Factbook. https://www.

cia.gov/library/publications/the-world-factbook/geos/iv.html,
2012.

[2] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art
thou r3579x?: anonymized social networks, hidden patterns, and structural
steganography. In Proceedings of the 16th international conference on World
Wide Web, pages 181–190. ACM, 2007.

[3] C. Dwork and M. Naor. On the difficulties of disclosure prevention in
statistical databases or the case for differential privacy. Journal of Privacy
and Confidentiality, 2(1):8, 2008.

[4] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp
Weis. Resisting structural re-identification in anonymized social networks.
Proc. VLDB Endow., 1(1):102–114, August 2008. ISSN 2150-8097. URL
http://dl.acm.org/citation.cfm?id=1453856.1453873.

[5] J. Leskovec, J. Kleinberg, and C. Faloutsos. EU email communication net-
work. http://snap.stanford.edu/data/email-EuAll.html, 2007.

[6] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and analysis of online social
networks. In IMC ’07: Proceedings of the 7th ACM SIGCOMM confer-
ence on Internet measurement, pages 29–42, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-908-1. doi: 10.1145/1298306.1298311. URL
http://portal.acm.org/citation.cfm?id=1298306.1298311.

[7] Yoni De Mulder, George Danezis, Lejla Batina, and Bart Preneel. Identifica-
tion via location-profiling in GSM networks. In Vijay Atluri and Marianne
Winslett, editors, WPES, pages 23–32. ACM, 2008. ISBN 978-1-60558-289-
4. URL http://dblp.uni-trier.de/db/conf/wpes/wpes2008.html#

MulderDBP08;http://doi.acm.org/10.1145/1456403.1456409;http:

//www.bibsonomy.org/bibtex/2987cab548042306901fe5719aa38f374/

dblp.
[8] James R. Munkres. Algorithms for the Assignment and Transportation

Problems. Journal of the Society for Industrial and Applied Mathematics,
5(1):32–38, March 1957.

[9] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse
datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on,
pages 111–125. IEEE, 2008.

[10] A. Narayanan, E. Shi, and B.I.P. Rubinstein. Link prediction by de-
anonymization: How we won the kaggle social network challenge. In Neu-
ral Networks (IJCNN), The 2011 International Joint Conference on, pages
1825–1834. IEEE, 2011.

[11] Arvind Narayanan and Vitaly Shmatikov. How To Break Anonymity of the
Netflix Prize Dataset. CoRR, abs/cs/0610105, 2006. URL http://dblp.

uni-trier.de/db/journals/corr/corr0610.html#abs-cs-0610105.



[12] Orange. D4D Challenge. http://www.d4d.orange.com, 2012.

[13] P. Pedarsani and M. Grossglauser. On the privacy of anonymized net-
works. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1235–1243. ACM, 2011.

[14] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B.Y. Zhao. Sharing graphs
using differentially private graph models. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, pages 81–98.
ACM, 2011.

[15] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel.
A practical attack to de-anonymize social network users. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages 223–238. IEEE, 2010.

[16] B. Zhou and J. Pei. Preserving privacy in social networks against neighbor-
hood attacks. In Data Engineering, 2008. ICDE 2008. IEEE 24th Interna-
tional Conference on, pages 506–515. IEEE, 2008.

A Appendix

Algorithm 2 Matching non-1-hop nodes between two ego nets

Input: Ego nets G0, G1 and common 1-hop nodes between them
Output: Mapping between the non-1-hop nodes of G0 and G1

1: function graph center(G)
2: return the ego of the graph

3: function signature(G, target nodes)
4: for node in target nodes do
5: Create 1-hop graph centred at node called G temp
6: for all nodes in G temp do
7: Append the tuple of in and out degrees in list node sig

8: Append node sig keyed by node in dictionary G dict

9: return G dict

10: Let 1 hop com be the list of all the common 1-hop nodes

11: Let 1hop rem 1 be the list of 1-hop nodes in G0 not present in 1 hop com
12: Let 1hop rem 2 be the list of 1-hop nodes in G1 not present in 1 hop com

13: Let neighbors 2hop 1 be a dictionary mapping each of G0’s 2-hop nodes to
their neighbours in 1 hop com

14: Let neighbors 2hop 2 be a dictionary mapping each of G1’s 2-hop nodes to
their neighbours in 1 hop com



15: Let neighbors 1hop rem 1 be a dictionary mapping each node in 1hop rem 1
to their neighbours in 1 hop com

16: Let neighbors 1hop rem 2 be a dictionary mapping each node in 1hop rem 2
to their neighbours in 1 hop com

17: Let G bipar be a bipartite graph

18: for n1 in neighbors 2hop 1 do
19: s1← neighbors 2hop 1[n1]
20: for n2 in neighbors 2hop 2 do
21: s2← neighbors 2hop 2[n2]
22: n match← cosine match of s1 and s2
23: if n match = 1 then
24: Append n1 to list node lst1
25: Append n2 to list node lst2
26: Add n match to dictionary dict match 1 keyed by (n1, n2)

27: G0 2hop sig ← signature(G0, node lst1)
28: G1 2hop sig ← signature(G1, node lst2)

29: for pair in dict match 1 do
30: n1← pair[0]
31: n2← pair[1]
32: sig1← G0 2hop sig[n1]
33: sig2← G1 2hop sig[n2]
34: sig match← cosine match between sig1 and sig2
35: if sig match > 0 then
36: n match← dict match 1[pair]
37: final match← (n match + sig match)/2
38: Insert edge (n1, n2) with weight final match in G bipar

39: for n1 in neighbors 1hop rem 1 do
40: s1← neighbors 1hop rem 1[n1]
41: for n2 in neighbors 2hop 2 do
42: s2← neighbors 2hop 2[n2]
43: n match← cosine match of s1 and s2
44: if n match = 1 then
45: Append n1 to list node lst3
46: Append n2 to list node lst4
47: Add n match to dictionary dict match 2 keyed by (n1, n2)

48: for n1 in neighbors 2hop 1 do
49: s1← neighbors 2hop 1[n1]
50: for n2 in neighbors 1hop rem 2 do
51: s2← neighbors 1hop rem 2[n2]



52: n match← cosine match of s1 and s2
53: if n match = 1 then
54: Append n1 to list node lst3
55: Append n2 to list node lst4
56: Add n match to dictionary dict match 2 keyed by (n1, n2)

57: G0 12hop sig ← signature(G0, node lst3)
58: G1 12hop sig ← signature(G1, node lst4)

59: dict final 1← G0 2hop sig + G0 12hop sig
60: dict final 2← G1 2hop sig + G1 12hop sig

61: for pair in dict match 2 do
62: n1← pair[0]
63: n2← pair[1]
64: sig1← dict final 1[n1]
65: sig2← dict final 2[n2]
66: sig match← cosine match between sig1 and sig2
67: if sig match > 0 then
68: n match← dict match 2[pair]
69: final match← (n match + sig match)/2
70: Insert edge (n1, n2) with weight final match in G bipar

71: Run Munkres assignment algorithm on G bipar and output the optimal map-
ping of nodes between G0 and G1


