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Abstract. The goal of Private Information Retrieval (PIR) is the ability to query
a database successfully without the operator of the database server discovering
which record(s) of the database the querier is interested in. There are two main
classes of PIR protocols: those that provide privacy guarantees based on the com-
putational limitations of servers (CPIR) and those that rely on multiple servers not
colluding for privacy (IT-PIR). These two classes have different advantages and
disadvantages that make them more or less attractive to designers of PIR-enabled
privacy enhancing technologies.
We present a hybrid PIR protocol that combines two PIR protocols, one from
each of these classes. Our protocol inherits many positive aspects of both classes
and mitigates some of the negative aspects. For example, our hybrid protocol
maintains partial privacy when the security assumptions of one of the component
protocols is broken, mitigating the privacy loss in such an event. We have imple-
mented our protocol as an extension of the Percy++ library so that it combines a
PIR protocol by Aguilar Melchor and Gaborit with one by Goldberg. We show
that our hybrid protocol uses less communication than either of these compo-
nent protocols and that our scheme is particularly beneficial when the number of
records in a database is large compared to the size of the records. This situation
arises in applications such as TLS certificate verification, anonymous communi-
cations systems, private LDAP lookups, and others.

1 Introduction

One major goal of privacy enhancing technologies (PETs) is to give control over the
dissemination of personal information to the users that the information pertains to. PETs
rely on underlying primitives to provide a guarantee of privacy to users; these are gen-
erally primitives from fields such as cryptography and information theory. Many PETs
protocols use the former, relying on assumptions about the infeasibility of solving a
specific problem with a limited amount of computing resources. The advantage of the
latter (information theory) approach, on the other hand, is that it provides the guarantee
that no amount of computing resources will allow an adversary to discover the user’s
private information. However, using information-theoretic primitives instead of cryp-
tographic ones requires some alternative assumption to support the protocol’s privacy
guarantees. An assumption used in many PETs, including mix networks [9], secret shar-
ing [29], onion routing [13] and some voting protocols [5,25], is that no more than some
threshold of agents are colluding against the user to discover the private information.



1.1 Private Information Retrieval

Private Information Retrieval (PIR) is a PET that allows a user to query a database for
some records without letting the operator of the database server learn anything about
the query or the retrieved records. The most trivial form of PIR is for the client to down-
load the entire database from the server and do the query herself. This is private because
the user has not revealed any information about which record she is interested in, yet
she still retrieves the record by finding it in the content of the entire database. In a 2007
study, Sion and Carbunar concluded that no single-server PIR protocol would likely out-
perform this trivial download PIR protocol [30]. However, more recent work has shown
that there are indeed non-trivial PIR protocols that perform better than downloading
the entire database [23]. PIR has applications in many privacy-sensitive applications,
including patent databases [3], domain name registration [22], anonymous email [27],
anonymous communication networks [21], and electronic commerce [17].

As a PET, a PIR protocol gets its privacy guarantees from its underlying primi-
tives. One class of PIR protocols, called computational PIR (CPIR) encodes the query
in such a way that the database server can serve records, while learning nothing about
the queries or retrieved records. These privacy guarantees are based on the assumption
that some problem is hard or impossible to solve given a limit on computational power.
Olumofin and Goldberg [23] showed in 2011 that it is possible for a CPIR protocol to
outperform the trivial download protocol. In particular, they showed using empirical
results that the CPIR protocol by Aguilar Melchor and Gaborit [2] is faster than trivial
download when using typical network connections. One advantage of many CPIR pro-
tocols is the ability to use recursion to reduce the communication costs. This technique
is illustrated by Aguilar Melchor and Gaborit with their CPIR protocol [2].

The other class of PIR protocols, called information-theoretic PIR (IT-PIR) does
not rely on the assumption that a cryptographic primitive is hard to solve with limited
computing resources. In 1995, Chor et al. showed that non-trivial IT-PIR is impossible
when there is only a single database server [8]. To combat this result, they designed a
multi-server IT-PIR protocol that guarantees privacy as long as not all of the servers
are colluding together against the user. Several IT-PIR protocols have since been pro-
posed [4, 14, 16, 17] that use similar non-collusion assumptions. Olumofin and Gold-
berg [23] also showed that a number of these multi-server IT-PIR protocols perform
better than the trivial download PIR.

There are five contributing factors to the speed of a PIR query for a particular pro-
tocol:

1. the time for the client to generate a private query;
2. the communication time required to send the query to the server(s);
3. the time for the server(s) to apply the query to the database;
4. the communication time required for the response from the server to the client; and
5. the time for the client to decode the response(s).

Over time, proposed PIR protocols have incrementally improved some or all of these
time factors. This paper begins by comparing two PIR protocols, one from each of these
two classes. We analyze the costs of the five factors listed above for these protocols in
an attempt to improve their performance.



Our main contribution is a novel hybrid PIR protocol that incorporates aspects
of both classes, including the recursive property of single-server CPIR and the low
communication and computation costs of IT-PIR. Our protocol has lower costs, while
incorporating the positive properties of both classes.

Our protocol is particularly well suited for databases that consist of a large number
of relatively small records. As a practical example of where PIR over databases of this
shape would be beneficial, consider the problem of determining the validity of TLS
web server certificates. A web client, on receiving a TLS certificate from a server, must
check to see whether the certificate is revoked, typically with the Online Certificate Sta-
tus Protocol (OCSP) [26], or with the recently proposed Certificate Transparency (CT)
Protocol [20]. However, doing these lookups will reveal the site the client is visiting to
the OCSP or CT servers. PIR has been proposed [18] as a way for clients to privately de-
termine the validity of these certificates. Other applications of PIR over databases of this
shape could include sensor network data retrieval [31], private LDAP lookups [28], and
efficient retrieval of network information in anonymous communications systems [21].

1.2 Notation

For clarity, we will use the following notation throughout the paper:

– D denotes the database.
– Di denotes the ith record of the database D.
– n is the number of records in the database.
– s is the size of each record in bits.
– i0 is the index of the database record that a client wants to retrieve.

Additional notation will be introduced in Sections 2.1, 3.1 and 4.1 to support the proto-
cols presented in those sections.

2 Computational PIR

One class of PIR contains all protocols that assume that the server(s) are computation-
ally bounded to make their privacy guarantees. These protocols generally show that
breaking the security of their system would require an adversary to solve a problem that
is believed to be hard. These types of assumptions are often used in cryptography, secu-
rity and privacy; for example, the RSA public-key cryptosystem assumes that factoring
large numbers is hard when an adversary has limited resources.

Computational PIR was first introduced by Chor and Gilboa in 1997 [7]. They
showed that weakening the adversary to a computationally bounded entity improves the
communication costs of PIR. Their work was soon followed by a protocol by Kushile-
vitz and Ostrovsky [19] that used the same computationally bounded adversary in their
model, but did not require multiple servers as previous CPIR protocols did.

One advantage of single-server CPIR protocols is that they can be used recursively
to improve the communication cost of PIR. This idea was introduced by Kushilevitz
and Ostrovsky in addition to their new single-server CPIR protocol [19]. To do this,



we evenly split our database into a set of virtual records, each one containing an equal
number of the actual records. The client then queries the server for a particular virtual
record, but instead of returning the result to the client, the server holds on to it. The
result of the first query is treated as a virtual database containing smaller virtual records.
The client then queries for one of the virtual records of this virtual database. The scheme
continues in this fashion until we are left with the response for a single (actual) record,
which is sent to the client. This idea will be further explored in the next section.

2.1 Aguilar Melchor and Gaborit’s Protocol

Without being faster than the trivial download protocol for modest-sized databases, a
PIR protocol is not very useful. The main problem with the CPIR protocols already
discussed is that they do not generally perform queries faster than the trivial protocol.
In 2007, Aguilar Melchor and Gaborit introduced a lattice-based single-server CPIR
scheme with promising results [2]; we denote this protocol as AG07. In 2011, Olu-
mofin and Goldberg [23] empirically showed that this protocol outperforms the trivial
protocol, thus suggesting that CPIR may indeed be practical.

The idea behind their protocol is to add noise to the query in a way that the server
cannot discover which record the client is interested in, but with the secret information
that the client has, she can remove the noise from the server’s response.

Notation: For this protocol we add the following notation:

– Each record in the database is encoded as an L × N matrix of wAG-bit words,
where N is a security parameter and L =

⌈
s

wAG·N

⌉
.

– q ≈ 22·wAG is the hard noise constant.
– p ≈ 23·wAG is the prime modulus of the field used for arithmetic. All matrices in the

protocol are over Zp; the entries in the above database record matrices just happen
to have relatively small values (< 2wAG ) in Zp.

Aguilar Melchor and Gaborit [2] suggest the values wAG = 20, N = 50, q = 240,
and p = 260 + 325 for the above parameters.

Protocol: A client wants to retrieve record i0 from the database. For each database
record, she generates two matrices, one that has been made noisy and one that has not.
For the query matrices corresponding to record i0 she adds hard noise (relatively large
disturbances) and for the others she adds soft noise (small disturbances). The privacy
guarantees for this protocol assume that the server can not distinguish between query
matrices with hard noise and soft noise.

When the client sends the query to the server, the amount of communication (in
bits) is 6N2wAG · n.

To process the query, each record in the database is represented as an L × N ma-
trix whose terms are words of size wAG bits. When the server receives the query, it
multiplies each database record Di by the corresponding query matrix Mi and adds the
results to get R.



The server sends the response R back to the client. The amount of communication
(in bits) for this step is six times the size of each record, or 6s.

Finally, when the client receives the response, she removes the soft noise to reveal
the database record Di0 that she requested.

For more details on this protocol, see the extended version of this paper [11, Ap-
pendix A].

The privacy of this protocol relies on the assumption that the Hidden Lattice Prob-
lem and the Differential Hidden Lattice Problem are hard to solve by computationally
bounded adversaries [2]. Aguilar Melchor and Gaborit use related problems in coding
theory to justify these assumptions.

Recursive AG07: As stated above, this CPIR protocol can be performed recursively to
improve the communication cost of the scheme. We get optimal communication for a
given recursive depth d if we split our database into d

√
n virtual records at each iteration.

For example, if we have a database with 125 records and we are performing this
recursive protocol with depth 3, in the first iteration we separate the database into
3
√
125 = 5 virtual records, each containing 25 actual records. This client will query

the server for the virtual record that her wanted record belongs to, but instead of send-
ing the result R1 back to the client, the server will hold onto it. In the second iteration,
we split up the result R1 from the first iteration into 5 virtual records, each containing
the encoding of 5 actual records. The client will query the server for the virtual record
that contains her desired record and again the server holds onto the result R2. Finally,
for the last iteration, the server will split the result R2 from the second iteration into 5
virtual records, each containing the encoding of one actual record. The client queries
the server for the record that she is interested in and server sends the result R3 of this
last iteration to the client. The client must then perform the decoding algorithm 3 times,
once for each iteration, to recover the database record.

In general, this improves the client-to-server communication cost to 6N2wAG · d
√
n

bits. However, each iteration of the protocol increases the size of the result by a factor
of 6. This makes the server-to-client communication cost 6ds bits. Thus, it is important
to find the appropriate recursive depth to balance out this decrease in client-to-server
communication and the increase in server-to-client communication.

Advantages and Disadvantages: One advantage of this protocol is that it only requires
a single server. As shown later in Section 3, multi-server protocols generally assume that
some threshold of the servers are not colluding. CPIR protocols, however, remain secure
even if all servers (or the one server in the single-server case) are trying to discover the
client’s private query.

The AG07 protocol also has the advantage that it can be used recursively, with
a relatively low compounding overhead factor (6). As shown above, we can use this
property to significantly improve the communication cost incurred by the protocol.

The main disadvantage of this scheme is that the security is based on lattice prob-
lems that are not well understood. Because of this, some clients may not completely
trust the privacy of their queries. As stated by Aguilar Melchor et al. in a subsequent



paper [1] and by Olumofin and Goldberg [23], the protocol resists known lattice-based
attacks, but the protocol and its privacy assumptions are new and may not be secure.

Another disadvantage of the AG07 protocol is that it is considerably slower than
many IT-PIR schemes [23]. This is due to the amount of computation involved in encod-
ing the queries and because the server is performing a matrix-by-matrix multiplication
(as compared to a vector-by-matrix multiplication used by some IT-PIR schemes).

3 Information-Theoretic PIR

The other class of PIR protocols, information-theoretic PIR (IT-PIR), includes all PIR
schemes whose privacy guarantees hold no matter how computationally powerful and
adversarial the server(s) may be. In 1995, Chor et al. [6] showed that any single-server
IT-PIR scheme must have communication cost at least that of the trivial protocol. To
avoid this problem, they developed IT-PIR protocols that used multiple servers. Since
then, a variety of multiple-server IT-PIR schemes have been formulated [4, 14, 16, 17],
making improvements on Chor et al.’s protocols. One of these improvements is robust-
ness—the ability to retrieve the correct database records even when some of the servers
are down or return incorrect or malicious responses.

An advantage to multiple-server IT-PIR is that it generally incurs smaller commu-
nication and computation costs. Like CPIR protocols, multiple-server IT-PIR protocols
also need to make some assumptions to guarantee privacy; a commonly used assump-
tion is that at most some threshold of the servers are colluding to discover the contents
of a client’s query.

3.1 Goldberg’s Protocol

In 2007, Goldberg introduced a multiple-server IT-PIR protocol that was both efficient
and provided for greater robustness than previous schemes. The idea is to use Shamir se-
cret sharing [29] to split the client’s query across multiple servers, and error-correcting
codes to combine the responses. We denote this protocol by G07.

Notation: For this protocol we add the following notation:

– The database is laid out as an n ×m matrix of wG-bit words. Each record is one
row of this matrix, and m =

⌈
s
wG

⌉
.

– ` is the number of servers.
– k is the number of servers that respond to the query.
– t is the privacy level—no coalition of t or fewer servers can learn the query.
– v is the number of Byzantine servers—these are servers that may give incorrect

responses.
– F is the field used for arithmetic (|F| ≥ 2wG ). All vectors and matrices in the

protocol are over F.

Typically, wG = 8, F = GF (28), and records are an integer number of bytes, so
that s is a multiple of 8, and m · wG = s exactly.



Protocol: To query the server for record i0, a client creates the elementary vector ei0
with a 1 in the i0th place, and 0 everywhere else. She then creates ` Shamir secret shares
v1, . . . ,v` for ei0 in the field F.

Each server is then sent one of these shares. The communication cost from the client
to each server is then n · wG bits.

The server simply multiplies their query vector vj by the database D to get a re-
sponse vector rj, and sends it back to the client. This makes the communication cost
from each server to the client mwG = s bits.

In this protocol, we assume that some number of servers k ≤ ` respond to the
query. Even if k 6= `, meaning that not all servers responded, the client may still be
able to recover the database record. This is because the use of Shamir secret sharing
in the query makes the server responses Shamir secret shares for the database record
Di0 . This implies that the client only needs k > t of the responses (where t < `) to
successfully recover the record.

Similarly, we also do not need to assume that all of the servers are behaving cor-
rectly. The client can treat the responses as Reed-Solomon error correction codewords
and use a Reed-Solomon decoding algorithm to recover the database record Di0 . As
shown by Devet et al. [12], the client can decode the database record in polynomial
time as long as the number of Byzantine servers v is bounded by v < k − t − 1. They
also show that this bound is the optimal bound on the number of tolerable Byzantine
servers.

The Shamir secret shares are generated from a degree-t polynomial where t < k. By
the properties of Shamir secret sharing, any coalition of at most t servers will not gain
any information about the secret ei0 . However, if at least t + 1 of the servers collude,
they will be able to discover ei0 ; that is, the query is information-theoretically private
assuming that at most t servers are allowed to collude. We note that there is a trade off
between the level of robustness and the privacy level—the client can chose a value of t
to provide the wanted privacy up to and including t = ` − 1 (all but one of the servers
colluding), but then there is no robustness.

For more details on this protocol, see the extended version of this paper [11, Ap-
pendix B].

Advantages and Disadvantages: As discussed above, the main advantage of the G07
protocol over other protocols is that is it robust and can handle missing and/or incor-
rect server responses. This allows us to combat some stronger adversarial servers that
maliciously alter their responses in an attempt to block the client from recovering the
database record. We note that the AG07 single-server CPIR scheme has no robustness
since there is only one server and missing or incorrect responses from that server can
not be overcome.

The G07 protocol has low communication cost and computation time. It is also
very simple to implement on the server side. A series of works since 2011 have shown
that Goldberg’s protocol is faster than the trivial protocol [23] and have added im-
provements to the performance by using distribution of computation [10] and advanced
error-correction algorithms [12].



This protocol sacrifices some level of privacy to gain robustness. Because of this
we need to assume that there is no collusion between some number of servers. In some
settings, it is unclear how this requirement can be enforced or detected. This uncertainty
may make this protocol less desirable than others with different privacy guarantees.

Adaptation for Hybrid Security: When he introduced his IT-PIR scheme in 2007 [16],
Goldberg proposed an extension to create a scheme whose privacy relied on a hybrid
of information-theoretic and computational primitives. This extended scheme provides
information-theoretic protection of the query as long as no more than t servers collude,
but retains computational protection when any number of the servers collude.

This is accomplished by encrypting the query with an additive homomorphic cryp-
tosystem—G07 used the Pailler cryptosystem. The client will encrypt the query before
it is sent to the servers. When the servers receive the query, they multiply it by the
database, but use the homomorphic property. In the case of the Pailler cryptosystem,
the server would use multiplication in the place of addition and exponentiation in the
place of scalar multiplication. The response that the client receives is decrypted before
the regular G07 decoding operations are performed.

Though this hybrid scheme relies on two assumptions for privacy (the information-
theoretic assumption that no more than t servers collude and the assumption that ad-
versaries do not have the computational resources to break the additive homomorphic
cryptosystem used), as long as one of them holds, the protocol still guarantees perfect
privacy of the query.

This added protection comes at an extreme cost, however: the hybrid version of G07
is 3–4 orders of magnitude slower [16] than the pure information-theoretic version. In
the next section, we will introduce a new approach to hybrid PIR that combines the
benefits of CPIR and IT-PIR without the overhead of previous proposals.

4 Hybrid PIR

In this work, we propose a hybrid protocol that combines a multiple-server IT-PIR pro-
tocol with a single-server CPIR protocol. Our goal is to incorporate the positive aspects
of each protocol into our hybrid protocol, while mitigating the negative aspects of each.
In particular, we want to join the low communication and computation cost of multiple-
server IT-PIR schemes with the recursion of single-server CPIR schemes to improve
the communication cost of PIR queries relative to both classes of protocols.

Our scheme will use a recursive depth of d as in the AG07 CPIR scheme. However,
the first layer of recursion will be performed using the chosen multiple-server IT-PIR
protocol. On each server, the remainder of the recursive steps will be done on the result
of each previous step using the chosen recursive single-server CPIR scheme.

4.1 Notation

Our hybrid protocol will use the notation outlined in Sections 1.2, 2.1, and 3.1 as well
as:



– Ψ is the multiple-server IT-PIR protocol being used.
– Φ is the single-server recursive CPIR protocol being used.
– γu is the number of virtual records that the database is split into for the uth step of

recursion of the hybrid scheme. It is required that n ≤
d∏

u=1

γu.

– δu is the number of actual records in each virtual record at the uth step of recursion
of the hybrid scheme. If the database does not evenly split, dummy records are
appended to the end of the database to make each virtual record the same size.

– πu is the index of the virtual record that the client’s desired actual record i0 is in at
the uth step of recursion.

We outline how to optimally choose the values for γu and δu in Section 5.1.

4.2 Protocol

Our protocol is generalized to use the implementer’s choice of inner protocols. We use
Ψ to denote the multiple-server IT-PIR inner protocol and use Φ to denote the single-
server recursive CPIR inner protocol. We use this notation because our protocol is very
well suited for a modular implementation. That is, an implementation of this scheme
could easily swap inner protocols for other suitable protocols.

Algorithm 4.1 outlines how to generate a query for this protocol. To query the
database servers, the client must determine the index πu of the virtual record that her
desired record i0 is contained in, at each step u of the recursion. She then creates a
multiple-server IT-PIR Ψ -query for index π1 and sends each server its part of the query.
Then for each remaining recursive step u ∈ {2, . . . , d}, she creates single-server CPIR
Φ-queries for index πu and sends this same query to each of the servers.

Algorithm 4.2 outlines the server-side computations for this protocol. In each re-
cursive step u, the server splits the database into γu virtual records, each containing δu
actual records. For the first step, the server uses the IT-PIR Ψ server computation algo-
rithm. For the remainder of the steps, the server uses the CPIR Φ server computation
algorithm. The result of the last recursive step is sent back to the client.

We note that we can somewhat improve the performance of this scheme by start-
ing the server-side computations for each recursive step before reading the queries for
subsequent recursive steps, thus overlapping computation and communication.

Algorithm 4.1 Hybrid Query Generation
Input: Desired record index: i0

1: For each recursive step u ∈ {1, . . . , d} find the index of the virtual record πu that record i0
belongs to.

2: Generate a multiple-server Ψ -query Q1 for index π1 and send each server its part of the
query.

3: for u = 2 → d do
4: Generate a single-server Φ-query Qu for index πu and send each server a copy of the

query.



Algorithm 4.2 Hybrid Server Computation
Input: Query from client: Q1, . . . , Qd

1: Split the database D into D(1), a virtual database of γ1 consecutive virtual records, each
containing δ1 actual records.

2: Apply the Ψ -queryQ1 to databaseD(1) using the Ψ server computation algorithm. The result
is R1 which will be used as the database for the next recursive step.

3: for u = 2 → d do
4: Split the result Ru−1 into D(u), a virtual database of γu consecutive virtual records, each

containing the encoding of δu actual records

5: Apply the Φ-query Qu to database D(u) using the Φ server computation algorithm to get
result Ru.

6: Send the final result Rd to the client.

Algorithm 4.3 Hybrid Response Decoding

Input: Responses from the servers: X(d)
1 , . . . , X

(d)
k

1: for u = d→ 2 do
2: for j = 1 → k do
3: Decode X(u)

j from server j using the Φ single-server decoding algorithm to get result

X
(u−1)
j .

4: Decode X(1)
1 , . . . , X

(1)
k simultaneously using the Ψ multiple-server decoding algorithm to

recover the database record Di0 .

When the client receives the servers’ responses, she applies the corresponding de-
coding algorithms using the information stored during query generation in reverse order.
That is, she first uses the information from query Qd to decode the received responses.
Treating the results of that decoding as virtual responses themselves, she uses infor-
mation from Qd−1 to decode those, and so on until she uses information from Q1 to
decode the final step. This yields the desired record. The procedure for decoding server
responses for this protocol is outlined in Algorithm 4.3. We note that for all but the
last step of decoding, the result from each server must be decoded separately using the
single-server decoding algorithm for protocol Φ. In the last step of decoding, all server
results are decoded simultaneously using the multiple-server decoding algorithm for
protocol Ψ .

5 Analytical Evaluation

This evaluation of the hybrid scheme uses the G07 IT-PIR scheme for Ψ and the AG07
CPIR scheme for Φ.

5.1 Communication

The communication cost of the response from the server to the client is simply

Cdown = 6d−1s.



If we combine the communication costs for the queries at each recursive step, we
get the following total cost for the query (in bits) from the client to each server:

Cup = γ1wG +

d∑
u=2

(
6N2wAG · γu

)
.

To optimize Cup, we first find the optimal choices for the γu values for any given d.
After the first recursive step the result will encode δ1 = d nγ1 e records. We can

optimize the CPIR query sizes by splitting the database at each remaining step into
γu = (d−1)

√
δ1 virtual records. The cost becomes:

Cup = γ1wG +

d∑
u=2

(
6N2wAG ·

(
n

γ1

) 1
d−1

)
= γ1wG + (d− 1) · 6N2wAG ·

(
n
γ1

) 1
d−1

.

We then find the value of γ1 that minimizes Cup to be:

γ1 =

(
6N2wAG
wG

(d−1)
√
n

) d−1
d

.

Therefore, at recursive step u, we split the database as follows:

γu =


(

6N2wAG

wG

(d−1)
√
n
) d−1

d

: u = 1(
n
γ1

) 1
d−1

: 2 ≤ u ≤ d

δu =

(
n

γ1

) d−u
d−1

With these values, our query communication cost simplifies to:

Cup = d
(
6N2wAG

) d−1
d d
√
wG

d
√
n.

We observe that both the query and response cost functions (Cup and Cdown) are
concave up in d. Therefore, the combined communication cost can be minimized for
some depth d. Since d is an integer, we evaluate the cost functions at each d starting at
1 and incrementing until we find a value for d such that the cost at d is less than the cost
at d+ 1. This value of d is our optimal depth.

Note that the combined cost function should ideally, if such information is avail-
able, take the bandwidths of both directions of our connection into account and that the
different directions may have different bandwidths. This is accomplished with a simple
linear weighting, such as 4Cdown+Cup if the downstream bandwidth is 4 times that of
the upstream.

Table 1 shows a comparison of the communication cost for each of the protocols in
this paper.



Table 1. A comparison of the communication costs (in bits) for the PIR protocols discussed in
this paper.

Protocol Query Cost Response Cost

AG07 [2]
(
6N2wAG

)
n 6s

Recursive AG07 [2] d
(
6N2wAG

)
d
√
n 6ds

G07 [16] `wGn `s

Our hybrid (with AG07 and G07) `d
(
6N2wAG

) d−1
d d

√
wG

d
√
n `6d−1s

If we use our hybrid protocol with a depth of d = 1, then we are simply using the
G07 protocol (with no CPIR component) and so will clearly have the same amount of
communication as the G07 protocol. Since we choose the value of d that minimizes
the communication cost for our hybrid protocol, we only use d > 1 if doing so results
in a lower communication cost. Hence when we use a depth of d > 1, we will have
a lower communication cost than the G07 scheme. Therefore, our hybrid scheme will
not have a higher communication cost than G07 for any depth. For typical values of
the parameters, we find that for 1 KB records, we will select d > 1 (and so strictly
outperform G07) whenever n > 160, 000. For 10 KB records, we see an improvement
for n > 240, 000.

Comparing the formulas in Table 1, we see that the upstream cost of our hybrid
protocol is no worse than that of Recursive AG07 when `d ≤ 6N2wAG

wG
(= 37500 for

the recommended parameters), and similarly for the downstream cost when ` ≤ 6. For
many reasonable PIR setups, these inequalities are easily satisfied. Even if they are not,
however, the computational savings of our scheme over Recursive AG07 (see below)
more than makes up for the difference. A slight complication in the analysis arises
in cases in which the optimal recursive depth d differs between the Recursive AG07
scheme and our hybrid scheme; however, we will see in Section 6 that our scheme
nonetheless outperforms the Recursive AG07 scheme.

5.2 Computation

Unlike our analysis of communication, we do not have simple expressions for our com-
putation costs. In this section we reason about the computational cost of our protocol
compared to others; in Section 6.2, below, we directly measure the computation costs of
our scheme using empirical experimentation. The key observation, however, is that the
slower CPIR protocol is being performed over a much smaller database than the orig-
inal. The protocol effectively consists of IT-PIR over the whole database of n records,
followed by recursive CPIR over a sub-database of δ1 records.

Query Encoding: AG07 is expensive when generating the query because it involves
matrix multiplications. However, G07 is relatively cheap because it is essentially just
generating random values and evaluating polynomials. We expect the hybrid scheme
will be better than AG07 for this step because it replaces one iteration with the cheap



G07 scheme encoding. Our hybrid scheme may also be faster in this stage than G07
because of the addition of recursion. As when recursion is added to the AG07 protocol,
we change the request from one large (size n) query into dmuch smaller (size a constant
multiple of d

√
n) queries.

Server Computation: The AG07 scheme is also expensive compared to the G07
scheme for server-side computation. This is because AG07 uses matrix-by-matrix mul-
tiplication for the bulk of its work, whereas G07 uses vector-by-matrix multiplication.
Our hybrid scheme will use the relatively cheap server computation of G07 for the first
iteration where the database is its full size. The subsequent iterations will use a much
smaller subset of the database, so using AG07’s server computation will not add much
additional expense.

Response Decoding: The last recursive step of decoding for our hybrid scheme will
take the same amount of computation as the G07 scheme. Since we have d− 1 steps of
AG07 decoding as well, our hybrid protocol will not outperform G07 in the decoding
step. Our hybrid protocol will also need to do any AG07 decoding once for every server
at every recursive step. However, the response being decoded at each recursive step is
smaller than that of the recursive AG07 protocol by a factor of 6 in our hybrid scheme.
Therefore, when d > 1, the decoding for our hybrid protocol will be comparable to that
of recursive AG07.

If there are a significant number of Byzantine servers—those who attempt to mali-
ciously alter the result of the query—then the decoding time will be increased for the
G07 iteration of our hybrid scheme, though this increase will not be very significant
compared to the server computation of the G07 scheme [12].

5.3 Privacy

The AG07 scheme keeps the client’s query private as long as the servers are computa-
tionally bounded and as long as the Hidden Lattice Problem and the Differential Hidden
Lattice Problem are indeed hard to solve. Our hybrid scheme relies on these assump-
tions for perfect privacy.

The G07 scheme keeps the query private as long as no more than t servers are
colluding to find the contents of the query. Our hybrid scheme also relies on this non-
collusion assumption for perfect privacy.

One advantage of our hybrid scheme is that if the privacy assumptions for one of
the inner protocols is broken, then the query will still be partially private as long as we
use depth d > 1. For example, if the G07 non-collusion assumption is broken, then
the colluding servers will be able to find out a subset of the database that the desired
record is in, but they will not find out which record in that subset is the wanted one
as long as the AG07 assumptions still hold. We similarly have partial privacy if the
AG07 computational assumptions are broken and the G07 non-collusion assumptions
still hold.

This “defence in depth” is a benefit because it may dull some of the fears about using
a scheme that a user thinks does not adequately enough guarantee privacy. For example,



if someone does not feel that the non-collusion assumption is adequate enough for the
G07 scheme, they may be more comfortable using this hybrid scheme because they
know that even in the event that too many servers collude, they will still maintain some
privacy.

Unlike the hybrid protection extension to G07 (Section 3.1), our protocol does not
provide perfect privacy if one of the two privacy assumptions fails. The advantages of
using our protocol over hybrid G07 are a significant reduction in computation time and,
as will be illustrated in Section 6.1, improved communication cost.

5.4 Robustness

As stated previously, the G07 scheme has the ability to correct for servers not respond-
ing or responding incorrectly. The single-server AG07 scheme, however, does not have
any robustness.

In 2012, Devet et al. [12] observed that the G07 protocol can be slightly modified to
be able to withstand up to v < k−t−1 misbehaving servers, with no extra computation
or communication cost over the original protocol, in a typical setting where clients
aim to fetch multiple records from the database. (The original G07 bound [16] is v <
k −
√
kt when only one record is retrieved.)

An advantage of using G07 in our hybrid protocol is that our hybrid protocol re-
tains exactly the same robustness properties as that scheme: any misbehaviour will be
detected at the Ψ IT-PIR multiple-server decoding step.

6 Implementation and Empirical Evaluation

We have implemented these protocols as an extension to the Percy++ [15] library, an im-
plementation of Goldberg’s scheme from Section 3.1. We incorporated both the AG07
CPIR scheme and our hybrid scheme. Our implementation will be available in the next
release of Percy++.

The implementation of our hybrid PIR system combines the implementations of
the two inner protocols (G07 and AG07), using them as black boxes. Given all of the
other parameters, our implementation will find the optimal depth (d) and the best way
to split the database for the first (IT-PIR) iteration of the scheme (γ1) to minimize the
communication cost.

All of our multi-server queries were run on ` = 4 servers and we used t = 1
for the G07 privacy parameter. For our client machine, we used a 2.4 GHz Intel Xeon
8870, and each server machine was a 2.0 GHz Intel Xeon E5-2650. All computations
reported here were done in a single thread, so that the reported times reflect total CPU
time. However, all of the computations are almost completely parallelizable [10], and
using multiple cores would greatly reduce end-to-end latency, though not total CPU
time.

6.1 Communication

The plots in Figure 1 illustrate the amount of communication needed for our hybrid
scheme and the schemes of which it is comprised. We see that our hybrid protocol uses
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Fig. 1. Comparison of communication used by each scheme. Plot (a) shows the communication
used for queries on a 1 GB database for different database shapes. In plot (b), the record size
is fixed at 1 KB and we see the communication for different numbers of records. Non-recursive
AG07 imposes a limit of approximately 10,000 records so we do not have data points for larger
numbers of records. Error bars are present for all data points, but may be too small to see. The
datapoint labels for the Hybrid and Recursive AG07 schemes indicate the recursive depth used.

less communication than that of AG07, and no more than that of G07, verifying the
analysis in Section 5.1, above.

6.2 Computation

Figure 2 illustrates computation time involved in all three of the computational parts of
a PIR system.

Query Encoding: Our experimental results show us that the encoding time is very
much related to the size of a PIR request. This is evidenced by how similar Figure 2b is
to Figure 1b (the communication associated with the same tests). The query encoding
time for G07 is linear in the number of records. On the other hand, the query encoding
time for the AG07 scheme is dominated by the dth root of the number of records. Be-
cause of this, for larger numbers of records, the hybrid protocol encodes queries faster
than G07.

Server Computation: As expected, Figures 2c and 2d show that the server compu-
tation time of our hybrid PIR system is very comparable to that of the G07 protocol.
The figures also show that our hybrid system performs its server computation approxi-
mately 2 orders of magnitude faster than Recursive AG07. As noted above, this time is
also highly parallelizable; the times reported in the figure use only a single thread, and
so represent total CPU time.
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Fig. 2. Comparison of the time used by the schemes at each computation step. Plots (a,c,e) show
the computation time for queries on a 1 GB database for different database shapes. In plots (b,d,f),
the record size is fixed at 1 KB and we see the computation time for different numbers of records.
Non-recursive AG07 imposes a limit of approximately 10,000 records so we do not have data
points for larger numbers of records. Error bars are present for all data points, but may be too
small to see.



Response Decoding: Figures 2e and 2f show us that when we have a depth of at
least 2 for the hybrid PIR system (i.e. we have at least one iteration of AG07) , the
decoding time approaches that of recursive AG07. This is because, unlike the server
computation where the cheap G07 computation is being done on the first iteration when
the database is large, the cheap G07 decoding is happening on the last iteration, when
the response has been reduced in size by d − 1 iterations of AG07 decoding. For this
reason, the decoding step of our hybrid PIR system is comparable to that of recursive
AG07 and not the quicker G07. Even so, we note that the time of the decoding step is
quite insignificant compared to the server computation step of a query.

6.3 Total Query Time

In Figure 3 we plot the total time for a query on our hybrid PIR system as well as
its component protocols. We show the total time for three different connection speeds
between the client and server(s). Figures 3a and 3b use a connection with 9 Mbps down-
load and 2 Mbps upload. This connection was used by Olumofin and Goldberg [23] to
represent a home user’s connection in 2010. Using the same source [24], we represent
a home user in 2014 in Canada or the U.S. with 20 Mbps download and 5 Mbps upload
in Figures 3c and 3d. Figures 3e and 3f model a connection over 100 Mbps Ethernet.

Our results show us that the total query time needed for our hybrid PIR system is
similar or better than that of G07. We also see that the total query time of recursive
AG07 is approximately 2 orders of magnitude larger than that of our system.

These plots also illustrate that our hybrid PIR system does not use much communi-
cation time. This is because the total query time of the hybrid system does not improve
much when the network capacity is increased. Contrast this with G07 when there are a
large number of records—in this case we see a significant improvement in total query
time as the network capacity increases.

7 Future Work

Parallel Server Computation We note that the bulk of the computation is on the server
side of the protocol. Devet [10] describes experiments showing that the G07 protocol is
almost completely parallelizable: usingm threads or worker processes will improve the
computation latency of G07 by a factor of m. We believe similar results are attainable
for our hybrid system and as future work we intend to implement distributed server
computation for this scheme.

AG07 using GPUs Aguilar Melchor et al. [1] demostrate how the AG07 scheme can
be made much faster by implementing the server-side computations on GPUs instead of
CPUs. Our implementation does not include this feature, but we plan on implementing
it in the future and investigating how much this will speed up our hybrid protocol.

Security of AG07 AG07’s privacy guarantees rely on the hardness of the Hidden Lat-
tice Problem and the Differential Hidden Lattice Problem, as specified by Aguilar Mel-
chor and Gaborit [2]. According to Aguilar Melchor et al. [1] and Olumofin et al. [23]
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Fig. 3. Comparison of total query time for each scheme. Plots (a,c,e) show the time used for
queries on a 1 GB database for different database shapes. In plots (b,d,f), the record size is fixed at
1 KB and we see the time for different numbers of records. Non-recursive AG07 imposes a limit
of approximately 10,000 records so we do not have data points for larger numbers of records.
Error bars are present for all data points, but may be too small to see. Connections specified as
A/B Mbps indicate A Mbps download bandwidth and B Mbps upload bandwidth.



the security of this scheme is not well understood. Future work could involve investi-
gating the security of the scheme and either developing a security proof or altering the
scheme to make it provably secure.

8 Conclusion

We introduce a hybrid Private Information Retrieval protocol that combines the low
communication and computation costs of multiple-server IT-PIR protocols with the
ability of single-server CPIR protocols to do recursion. We show that our protocol
inherits several positive aspects of both types of protocols and mitigates the negative
aspects. In particular, our protocol maintains partial privacy of client query information
if the assumptions made by one of the inner protocols is broken.

We have implemented our protocol as part of the open-source Percy++ library for
PIR, and using this implementation, demonstrated that our protocol performs as well
or better than PIR schemes by Aguilar Melchor and Gaborit and by Goldberg. Our
hybrid scheme is particularly effective when the number of records in a database is
large relative to the size of each record—a situation that arises naturally in a number of
network scenarios, including TLS certificate checking, private LDAP lookups, sensor
networks, and more.
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