
Forward-Secure Distributed Encryption⋆

Wouter Lueks1, Jaap-Henk Hoepman1, and Klaus Kursawe2

1 Radboud University Nijmegen, Nijmegen, The Netherlands

{lueks,jhh}@cs.ru.nl
2 The European Network for Cyber Security, The Hague, The Netherlands

klaus.kursawe@ecns.eu

Abstract. Distributed encryption is a cryptographic primitive that implements

revocable privacy. The primitive allows a recipient of a message to decrypt it only

if enough senders encrypted that same message. We present a new distributed

encryption scheme that is simpler than the previous solution by Hoepman and

Galindo—in particular it does not rely on pairings—and that satisfies stronger se-

curity requirements. Moreover, we show how to achieve key evolution, which is

necessary to ensure scalability in many practical applications, and prove that the

resulting scheme is forward secure. Finally, we present a provably secure batched

distributed encryption scheme that is much more efficient for small plaintext do-

mains, but that requires more storage.

1 Introduction

Revocable privacy [6,14] has been proposed as a means for balancing security and pri-

vacy. A system implements revocable privacy if “the architecture of the system guaran-

tees that personal data is revealed only if a predefined rule has been violated” [6]. For

an in-depth discussion of the complex interactions between security and privacy, and

the value of revocable privacy therein we refer to [6].

The distributed encryption scheme proposed by Hoepman and Galindo [7] is a prim-

itive that can be used to implement revocable privacy. In particular it can be used to

implement the rule “if a person or an object generates more than k events, its identity

should be revealed.” To do so, senders in the distributed encryption scheme encrypt

the corresponding identity for every event that occurs. The scheme guarantees that the

recipient of these ciphertexts can recover the identity only if it can combine k cipher-

text shares, i.e., encryptions, of the same message created by different senders. We

refer to [9] for other applications, but for the purpose of this paper we will examine the

following two in more detail:

1. Consider the notarized sale of valuable objects like houses. Objects that change

hands frequently may indicate fraud or money laundering and may therefore be

⋆ This research is supported by the research program Sentinels as project ‘Revocable Privacy’

(10532). Sentinels is being financed by Technology Foundation STW, the Netherlands Orga-

nization for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

This research is conducted within the Privacy and Identity Lab (PI.lab) and funded by SIDN.nl

(http://www.sidn.nl).

http://www.sidn.nl

suspicious. A distributed encryption scheme can be used to identify the suspicious

sales, while learning nothing about the others. To do so, every notary encrypts a

record of every transaction under the distributed encryption scheme and submits

the ciphertext share to a central authority. The authority can then recover only the

details of the suspicious objects.

2. A distributed encryption scheme can enforce speed limits in a privacy-friendly man-

ner as follows. Place automatic number plate recognition (ANPR) systems at the

start and end of a stretch of highway, like in the SPECS system [13]. Suppose that

a car is speeding if it takes at most t seconds to traverse this stretch. The ANPR

systems generate ciphertext shares for every passing car. The system restarts after

time t, so speeding cars generate two shares instead of one. They can be detected

with a distributed encryption scheme with two senders and threshold one. To re-

liably detect speeding cars, the detection system needs to run multiple, staggered

instances of the distributed encryption scheme. The higher the number of parallel

instances, the better the accuracy. See Sect. 7 for the details.

The second application is especially challenging: the time frames are short and the

number of observations is high. In this paper we propose two new schemes that can

deal with these situations much more efficiently than the distributed encryption scheme

by Hoepman and Galindo [7].

In the speed-limiting application, two-way interaction between the cars and ANPR

systems is infeasible: adding communication facilities to cars would be costly. There-

fore, distributed encryption schemes should be non-interactive to offer privacy in these

situations. Techniques based on k-times anonymous credentials [2] and threshold en-

cryption schemes—see [7] for a detailed discussion—are thus not appropriate. Also,

when using a distributed encryption scheme the senders can immediately encrypt their

observations. Storing a plaintext copy, as would be needed for a secure multi-party com-

putation between the senders, is therefore not necessary. We see this as an advantage.

The non-interactivity does imply, however, that the senders have to be trusted, and that

framing is possible otherwise.

Our first contribution is a simpler distributed encryption scheme that does not use

pairings, and satisfies stronger security requirements than the original scheme by Hoep-

man and Galindo [7]. We present this scheme in Sect. 4. We extend it with a non-trivial

key-evolution method [5] to forward-securely [8] generate as many keys as necessary

while keeping the key-size constant, see Sect. 5. The ability to restart the system with

fresh keys is important in almost all applications, including the speed-limiting example,

because it ensures that only shares generated within the same time frame can be com-

bined. Hoepman and Galindo’s original solution requires that the keys for every time

frame are generated in advance, and therefore scales less well.

Our second contribution is a batched distributed encryption scheme. It addresses

the issue of inefficiency in traditional distributed encryption schemes in practice. In

the speed-limiting use case, for example, the cost to recover all encrypted plaintexts

from a set of ciphertexts shares is exponential: the only option is to try all possible

combinations of shares. Our batched solution, which we present in Sect. 6, is much

more efficient, at the cost of increased storage requirements. The amount of storage is

linear in the number of plaintexts. Hence this solution is feasible only if the domain is

small, as is the case for license plates. Nevertheless, we believe this to be a worthwhile

trade-off.

Finally, in Sect. 7 we analyze the performance of our schemes, suggest additions to

our scheme that may be useful in practice and present conclusions.

2 The idea

The idea of our new distributed encryption scheme is that a ciphertext share can be

generated by first encoding the plaintext, and then transforming the ciphertext into a

ciphertext share. If enough of these ciphertext shares are collected, the combiner can

recover the plaintext.

Let G be a cyclic group of prime order q, such that DDH is hard in G. The protocol

uses an injection χ : {0,1}ℓp → G to encode plaintexts elements into group elements.

The function χ−1 is the inverse of χ , i.e., χ−1(χ(p)) = p. This mapping is redundant,

i.e., with high probability a random group element g ∈G has no inverse under χ−1. We

construct this map in the next section.

Every sender i is given a secret share si ∈ Zq, corresponding to a k-out-of-n Shamir

secret sharing of a publicly known value, 1. Let f be the corresponding degree k− 1

secret-sharing polynomial, i.e., f (0) = 1 and si = f (i). Sender i produces a ciphertext

share for plaintext p as follows. First, it encodes the plaintext into a generator χ(p)∈G.

Then, it uses its secret share to produce the ciphertext share αi = χ(p)si . Given enough

of these shares for the same plaintext, the exponents can be removed, and the original

ciphertext can be recovered. More precisely, consider a set {αi1 , . . . ,αik} of shares with

I = {i1, . . . , ik} the set of indices, then there exist Lagrange coefficients λ I
i1
, . . . ,λ I

ik
such

that ∑i∈I λ I
i si = f (0) = 1. So, we can calculate

α = ∏
i∈I

α
λ I

i
i = χ(p)∑i∈I siλ

I
i = χ(p) f (0) = χ(p).

Then, p= χ−1(α). If the shares do not belong to the same plaintext the resulting encod-

ing will, with high probability not be an encoding of a plaintext element, and therefore

fail to decode using χ−1.

If χ is not redundant, the scheme is insecure. Let p = χ−1(g) and p′ = χ−1(g2).
Then given a share αi = χ(p)si = gsi it is trivial to make a share α ′i = χ(p′)si = g2si =
(gsi)2 for p′ without help of the sender. As will become clear later, this breaks the

scheme.

3 Preliminaries

We first recall some definitions. The security of our new distributed encryption schemes

requires the following problem to be hard.

Definition 1 (Decisional Diffie-Hellman problem). The Decisional Diffie-Hellman

problem (DDH) in a group G of order q takes as input a tuple (g,A = ga,B = gb,C =
gc) ∈G4 and outputs ‘yes’ if c = ab (mod q), and else ‘no.’

We define Lagrange coefficients as used in Shamir’s secret sharing scheme [12].

Definition 2 (Lagrange coefficients). For a set I ⊆ {1, . . . ,n} and field Zq with q > n,
we define the Lagrange polynomials λ I

i (x) as λ I
i (x) = ∏t∈I\{i}

x−t
i−t
∈ Z∗q[x], and the

Lagrange coefficients as λ I
i = λ I

i (0). Then, for any polynomial P ∈ Zq[x] of degree at

most |I|−1, P(x) = ∑i∈I P(i)λ I
i (x) and P(0) = ∑i∈I P(i)λ I

i .

Notation. We write |A| to denote the cardinality of the set A, [n] to denote the set

{1, . . . ,n} and x ‖ y to denote the concatenation of the strings x and y. Finally, x ∈R A

denotes that x is drawn uniformly at random from the set A.

Redundant Injective Map. We now describe how to construct the map χ described in

the previous section. The first step is a redundant injective map.

Definition 3. We call a map ψ : A→ B, with inverse ψ−1 : B→ A∪{⊥} a redundant

injective map with security parameter ℓH if it satisfies the following properties:

Computable The functions ψ and ψ−1 are efficiently computable.

Reversible For all a ∈ A we have ψ−1(ψ(a)) = a.
Redundant For any b ∈R B we have ψ−1(b) =⊥ with probability 1−2−ℓH .

The redundancy prevents the attack described at the end of Sect. 2, but requires |B| to

be at least 2ℓH |A|. In our scheme, B must be a group. We therefore use the following

group encoding that maps strings to group elements.

Definition 4. A group encoding (φ ,φ−1,{0,1}ℓ,G,E) consists of a bijective function

φ : {0,1}ℓ → E ⊂ G and its inverse φ−1. The functions φ and φ−1, and membership

tests in E run in polynomial time, and |G|/ |E| is polynomial in ℓ.

The Elligator map [1] is one such encoding, where |G|/ |E| ≈ 2, and the group is an

elliptic curve.

Definition 5. Our Redundant Injective Map consists of the three algorithms RIM.GEN,

RIM.MAP and RIM.UNMAP—the latter two correspond to χ and χ−1.

RIM.GEN(1ℓp ,1ℓH ,(φ ,φ−1,{0,1}ℓp+ℓH ,G,E)) Given a plaintext size ℓp, a security

parameter ℓH , and a group encoding (φ ,φ−1,{0,1}ℓp+ℓH ,G,E), it outputs two

cryptographic hash functions H1 : {0,1}ℓp→{0,1}ℓH and H2 : {0,1}ℓH →{0,1}ℓp .
RIM.MAP(p) This function takes as input a plaintext p ∈ {0,1}ℓp and returns the

group element φ(p⊕H2(r) ‖ r) ∈ E ⊂G where r = H1(p).
RIM.UNMAP(c) Given a group element c ∈ G this function returns ⊥ if c 6∈ E. Else,

it sets b1 ‖ b2 = φ−1(c) and p = b1⊕H2(b2). If H1(p) = b2 it returns p, else it

returns ⊥.

Computability and reversibility are clearly satisfied. For any c ∈R E the inverse b1 ‖
b2 = φ−1(c) is uniformly distributed over {0,1}ℓp+ℓH . Therefore, since H1 is a hash-

function, H1(b1⊕H2(b2)) = b2 with probability 2−ℓH , so the map is redundant.

We need the following lemma in our security proof.

Lemma 1. Our Redundant Injective Map from Definition 5 is programmable in the

random oracle model for H1 and H2. This means that we can adaptively ensure that

RIM.MAP(p) = g for any p ∈ {0,1}ℓp and g ∈R E with overwhelming probability, pro-

vided that H1 was not queried with p.

Proof. Suppose we wish to set RIM.MAP(p) = b1 ‖ b2 = φ−1(g). We set H1(p) = b2.

Then, since b2 is random, with overwhelming probability it was not queried before and

we can set H2(b2) = p⊕ b1. Since b1 and b2 are random, so is p⊕ b1, therefore, the

outputs are set to random values as required. ⊓⊔

4 A New DE scheme

Our new DE scheme, which we sketched in Sect. 2, directly creates shares of the plain-

text instead of shares of an identity-based decryption key that decrypts the plaintext, as

in Hoepman and Galindo’s scheme [7]. The resulting scheme is simpler and no longer

requires pairings. Furthermore, the new structure allows us to define a non-trivial key-

evolution method, which seems impossible for the original scheme without compromis-

ing forward security. We formally introduce this scheme now.

4.1 Syntax

First, we recall the syntax of a key-evolving distributed encryption scheme from [7].

Note that we have made the safety requirement explicit.

Definition 6 (Key-evolving Distributed Encryption). A k-out-of-n key-evolving dis-

tributed encryption scheme with lifetime divided into s stages, or (k,n,s)-KDE scheme,

consists of the following four algorithms.

KDE.GEN(1ℓ,k,n,s, ℓp) This key generation algorithm takes as input a security pa-

rameter 1ℓ, a threshold k, the number of senders n, the number of stages s and a

plaintext size ℓp.3 For each sender it generates initial encryption keys S1,1, . . . ,S1,n

and returns these, the system parameters, and the plaintext space P .

KDE.UPDKEY(Sσ ,i) The key update function KDE.UPDKEY takes as input Sσ ,i and

outputs the key Sσ+1,i for the next stage. This function aborts if σ +1 > s.

KDE.ENC(Sσ ,i, p) Given an encryption key Sσ ,i and a plaintext p, this function re-

turns a ciphertext share c.

KDE.COMB(C) Given a set C = {c1, . . . ,ck} consisting of k ciphertext shares, the

function KDE.COMB(C) either returns a plaintext p or ERROR.

Every key-evolving distributed encryption scheme must satisfy the following correctness

and safety requirements.

CORRECTNESS Create the encryption keys Sσ ,1, . . . ,Sσ ,n by running the algorithm

KDE.GEN and then repeatedly updating them using KDE.UPDKEY to reach the

required stage σ . For all plaintexts p and pairwise disjoint senders i j we have

KDE.COMB(C) = p if C = {KDE.ENC(Sσ ,i1 , p), . . . ,KDE.ENC(Sσ ,ik , p)}.

3 In the original description the plaintext size was implicit.

SAFETY Generate Sσ ,1, . . . ,Sσ ,n as for correctness. If C = {KDE.ENC(Sσ ,i1 , pi1), . . . ,
KDE.ENC(Sσ ,ik , pik)} with not all pi equal, then with overwhelming probability

KDE.COMB(C) = ERROR.

To make the system secure in practice, senders need to get their keys in a secure manner,

and, to ensure forward security, senders have to destroy the old key after updating it.

A distributed encryption scheme is a special case of a key-evolving distributed en-

cryption scheme.

Definition 7 (Distributed Encryption). A k-out-of-n distributed encryption scheme,

or (k,n)-DE scheme, is a (k,n,1)-KDE scheme were the functions are called DE.GEN,
DE.ENC and DE.COMB instead.

4.2 Security definition

We define the forward security of a key-evolving distributed encryption scheme by

recalling its security game. We present the security game by Hoepman and Galindo [7]

in a slightly more general setting: plaintexts that have been queried before may be used

in the challenge phase, provided this does not lead to a trivial win for the adversary.

Definition 8 (KDE forward-security game). Consider a (k,n,s)-KDE key-evolving

distributed encryption scheme with security parameter 1ℓ given by the four algorithms

KDE.GEN, KDE.UPDKEY, KDE.ENC and KDE.COMB. Define the following game

between a challenger and an adversary A .

Setup The challenger runs KDE.GEN(1ℓ,k,n,s) to obtain (S1,1, . . . ,S1,n) and sends a

description of the plaintext space P and system parameters to the adversary.

Find The challenger initializes the current stage σ to 1, and the set of corrupted

senders I1,c to the empty set. The adversary can issue the following three types

of queries:

– A corrupt(i) query is only allowed before any encryption query enc(i, p) has

been made for the current stage. If the query is allowed, the challenger sends

Sσ ,i to the adversary and it adds i to Iσ ,c.

– On encryption queries enc(i, p), where i ∈ [n], i /∈ Iσ ,c and p ∈P , the adver-

sary receives the ciphertext KDE.ENC(Sσ ,i, p).
– On next-stage queries next(), the challenger updates the encryption keys of

senders i ∈ {1, . . . ,n}\ Iσ ,c by setting Sσ+1,i← KDE.UPDKEY(Sσ ,i). The ad-

versary is responsible for updating the keys of the other senders i∈ Iσ ,c. Finally,

the challenger sets Iσ+1,c← Iσ ,c and σ ← σ +1.

Challenge The adversary A outputs a challenge stage number σ⋆ < s, indices Inc =
{i1, . . . , it} corresponding to senders from which it wants to receive challenge ci-

phertexts and two equal length plaintexts p0, p1 ∈P . Let r denote the cardinality of

Iσ⋆,c and C0 and C1 denote the senders at which plaintexts p0 and p1 were queried

respectively in stage σ⋆. The challenger aborts if the challenge is not valid, i.e., if

one of the following conditions holds

– p0 or p1 was queried at a challenge sender, i.e., if (C0∪C1)∩ Inc 6= /0;

– a challenge sender was already corrupted, i.e., if Inc∩ Iσ⋆,c 6= /0; or

– too many shares are known to the adversary for either p0 or p1. This is the

case if max(|C0∪ Iσ⋆,c| , |C1∪ Iσ⋆,c|)+ |Inc| ≥ k.

Finally, the challenger chooses β ∈R {0,1} and returns a challenge ciphertext share

cσ∗,i = DE.ENC(Eσ∗,i, pβ) for each i ∈ Inc.

Guess The adversary A outputs a guess β ′ ∈ {0,1}. The adversary wins if β = β ′.
The advantage of adversary A is given by AdvKDE

A (1ℓ) = 2
∣
∣Pr[β ′= β]−1/2

∣
∣. An KDE

scheme is called forward secure if AdvKDE
A (1ℓ) is negligible for every PPT adversary

A .

The solution by Hoepman and Galindo is only secure in a more restricted attacker

model (which they call the static adversary model), where the attacker announces up

front which senders it will corrupt in what stage, what the challenge stage σ⋆ is, and

which senders it will query in this challenge phase. Our scheme does not need these

restrictions.

4.3 A New Distributed Encryption Scheme

In Sect. 2 we gave a sketch of our new distributed encryption scheme. Here we fill out

the details. Correctness and safety follow from the earlier discussion.

Definition 9 (DE scheme). The new distributed encryption (DE) scheme is given by the

following algorithms, where RIM.GEN,RIM.MAP and RIM.UNMAP are as in Def. 5.

DE.GEN(1ℓ,k,n, ℓp) Create a group G of prime order q, where q ≈ 2ℓ, such that

DDH is hard in G, and create a group encoding δ = (φ ,φ−1,{0,1}ℓp+ℓ,G,E).
Call RIM.GEN(1ℓp ,1ℓ,δ) to setup the redundant injective map. Let P = {0,1}ℓp

be the plaintext space. Share the public value 1 using Shamir’s k-out-of-n secret

sharing as follows. Choose ε1, . . . ,εk−1 ∈R Zq and define the k−1 degree polyno-

mial f (x) = 1+∑k−1
i=1 εix

i, then f (0) = 1. Every sender i is given a share Si = (i,si)
where si = f (i). Output Si for each sender, and publish (G,q,E,φ ,φ−1,P).

DE.ENC(Si, p) Given an encryption key Si = (i,si) let αi = RIM.MAP(p)si . Return

ci = (i,αi).
DE.COMB(C) Let C =

{
ci1 , . . . ,cik

}
. Each share ci j

is parsed as
(
i j,αi j

)
. Construct4

I = {i1, . . . , ik}, let c = ∏i∈I(αi)
λ I

i and return RIM.UNMAP(c).

In Sect. 7.1 we sketch how to handle arbitrary-length plaintexts.

4.4 Security of the DE scheme

In this section we sketch the proof of the following theorem.

Theorem 1. In the random oracle model for H1 and H2 the new distributed encryption

scheme from Def. 9 is secure assuming the DDH assumption holds in the group G.

We first give an ideal model for this scheme, and show that in this model the DE scheme

is secure. We then prove that the ideal model and the actual scheme are indistinguish-

able, hence proving the security of the actual scheme as well.

4 The index i j is part of c j to be able to explicitly reconstruct I and thus compute λ I
i j

given a set

C.

The ideal scheme. In the ideal scheme the secret sharing is made specific to the plain-

text. So, sender i uses a plaintext-specific secret share s
(p)
i to construct a ciphertext share

αi = RIM.MAP(p)s
(p)
i for plaintext p. For each p, the secret shares s

(p)
1 , . . . ,s

(p)
n form a

random k-out-of-n sharing of the secret 1.

The reader may wonder at this point, if it still suffices to use a degree k− 1 poly-

nomial. Traditional uses of a secret sharing scheme suggest that the degree should be

k instead, since one secret share is already known. This is not the case, for the follow-

ing two reasons. First, knowing the secret itself does not help in the recovery as the

generator, i.e., the encryption of the plaintext, is actually unknown. Second, while it is

possible to guess the generator, thus giving k shares in total, an extra share is needed to

verify that guess.

Lemma 2. The ideal DE scheme is secure.

Proof. By construction of the secret shares we only need to consider the shares for

the challenge plaintexts p0 and p1; all others are completely independent. After the

challenge the attacker knows at most k−1 ciphertext shares. Hence, no information is

leaked as with only k− 1 shares, both sets of shares are equally likely to combine to

RIM.MAP(p0) as they are to RIM.MAP(p1). In fact, for each set of shares there exists

a kth share that reconstructs the desired value. ⊓⊔

Indistinguishability of ideal and real scheme. Suppose an attacker can break DDH,

i.e., given (g,A = ga,B = gb,C = gc) it can decide whether c = ab. Then it can break

our scheme as follows. It picks three different plaintexts p, p0, p1, and calculates g =
RIM.MAP(p) and A = RIM.MAP(p)si , for the latter it uses one query. Then it sets

B = RIM.MAP(p0) and obtains C = RIM.MAP(pd)
si as a response to its challenge

query on p0 and p1. Now, d = 0 if and only if c= ab in the DDH problem, thus breaking

the DE security as well.

The indistinguishability proof that we present here shows that any attacker has to

solve a DDH problem. The proof is in the hybrid model, see Fig. 1. Queries for the

first κ − 1 plaintexts will be answered using ideal shares, then the κth plaintext will

get either ideal or real shares depending on whether c = ab in the DDH instance, and

the remaining plaintext will have real shares. We use Lem. 1 to ensure that the correct

generators are used for those plaintexts. Induction on κ shows that any distinguisher

between ideal and real shares thus solves the DDH instance.

To construct the shares corresponding to the different senders while still ensuring

proper secret-sharing we duplicate the DDH instance, combine it with the corrupted

shares, and derive the remaining shares based on the underlying secret sharing scheme.

Lemma 3. In the random oracle model for H1 and H2 (as used by the redundant in-

jective mapping), the ideal and the real DE schemes are indistinguishable provided the

DDH assumption holds in G.

Proof. For this proof we use a hybrid scheme that is parametrized by κ . Let (g,A =
ga,B = gb,C = gc) be a DDH instance for G, our task is to decide whether c = ab.

co
rr

u
p
te

d

real shares

ideal shares

p
la

in
te

x
ts

senders

co
rr

u
p
te

d

w
e

d
et

er
m

in
e

d
et

er
m

in
ed

b
y

se
cr

et
sh

ar
in

g

p
la

in
te

x
ts

senders

Fig. 1. The table on the left shows which type of secret shares are used to answer the queries for

the plaintexts while the table on the right shows how these answers are constructed.

This proof is in the random oracle model for H1 and H2, so the adversary has oracle

access to each of them. Let PQ = (p1, . . . , pqE
) be the plaintexts queries made by the

adversary to the H1 oracle.

In the hybrid scheme, the ciphertext shares corresponding to plaintexts in the set

PI = {p1, . . . , pκ−1} will be created using ideal shares, whereas the ciphertext shares

for plaintexts in PR =
{

pκ+1, . . . , pqE

}
will be created using the real shares, see Fig. 1.

If c = ab (of the DDH instance) then the hybrid scheme uses real shares for pκ and

ideal shares otherwise. Any distinguisher for the two variants will thus solve the DDH

instance. Induction over κ completes the proof.

We now show how to play the security game. Initially we generate γp ∈R Zq for all

p∈PR such that gγp ∈E and we generate γpκ ∈R Zq such that Aγpκ ∈E. This is possible

since |G|/ |E| is polynomial and can be done without knowing the queries in advance.

As queries for p’s come in to the H1 oracle, use Lemma 1 to set RIM.MAP(p) = gγp for

p ∈PR and to set RIM.MAP(pκ) = Aγpκ . All other queries are answered normally.

Then we play the game as follows. The attacker only makes corruption queries at

the start of the game. For every corrupt(i) query, add i to Ic and generate an arbitrary

secret-share si ∈R Zq and send Si = (i,si) to the challenger.

We now consider three cases of enc(i, p) queries. The first, where p∈PI , for which

the answers will be using ideal shares, the second when p = pκ and the third when

p ∈PR, for which the answers will be using real shares.

Without loss of generality, we assume that the r corrupted senders are numbered k−
r, . . . ,k−1, see Fig. 1. As we cannot play with the corrupted senders, the corresponding

shares are always given by enc(i, p) = RIM.MAP(p)si for i > n− r and all plaintexts

p ∈P .5 This determines r shares. Furthermore, RIM.MAP(p)1 is also a valid share,

giving r+ 1 determined shares. In the following we show how to answer the enc(i, p)
queries with 1≤ i≤ k− (r+1) for all three cases.

For plaintexts p∈PI generate ideal secret shares s
(p)
i for senders 1≤ i≤ k−(r+1).

The ciphertext shares are given by enc(i, p) = RIM.MAP(p)s
(p)
i .

For the remaining plaintexts we use the DDH instance (g,A = ga,B = gb,C = gc)
to compute the answers to the enc(i, p) queries. First, create an extension as follows.

Generate di,ei ∈R Zq for 1 ≤ i ≤ k− (r + 1) and set Bi = Bdigei and Ci = CdiAei . It

can be shown that (g,A,Bi = gbi ,Ci = gci) are DDH tuples such that ci = abi when

5 In this proof we omit the sender’s index and just write enc(i, p) = RIM.MAP(p)si .

/0 Z1,i Z2,i . . . Zσ ,i

z1,i z2,i zσ ,i

GZS UZS UZS UZS

E
Z

S

E
Z

S

E
Z

S

Fig. 2. Graphical representation of an evolving zero-sharing scheme.

c = ab in the original problem, and ci ∈R Zq otherwise [10]. We then act as if si = bi

for 1≤ i≤ k− (r+1).
For pκ the ciphertext shares for 1≤ i≤ k− (r+1) are given by enc(i, pκ) =C

γpκ
i .

If ci = abi then we have enc(i, pκ) = (gaγpκ)bi = RIM.MAP(pκ)
si , making the shares

real. Otherwise, the ci’s are random, thus the shares are ideal.

For all other plaintexts p ∈PR the ciphertexts for 1 ≤ i ≤ k− (r+1) are given by

cpi = B
γp

i = (gγp)bi = RIM.MAP(p)si , as desired.

We now determined k shares for every plaintext p, the responses for senders k, . . . ,n,

see Fig. 1, are calculated from these by interpolating the exponents

enc(i, p) = RIM.MAP(p)1λ I
0(i)enc(1, p)λ I

1(i) · · ·enc(k−1, p)λ I
k−1(i)

We have now described how to answer the queries.

Since DDH is hard, two subsequent hybrid schemes are indistinguishable. Thus, the

ideal scheme and the real scheme are indistinguishable as well. ⊓⊔

5 Forward-Secure DE scheme

The keys of our DE scheme consist of Shamir secret shares, to create a forward secure

scheme we need to forward-securely evolve these shares. In this section we show how to

do this. When we combine this technique with our new distributed encryption schemes

the result is forward secure. In this section we prove this for the scheme in Sect. 4. In

the next section we prove this for the batched scheme.

5.1 A key-evolution scheme

The scheme we present in this section forward securely generates sharings of the value

0. It combines ideas from Cramer et al. [4] and Ohkubo et al. [11]. We take the fol-

lowing approach, see also Fig. 2. Time is split into stages. Every sender i has an internal

state Zσ ,i for the current stage σ . The states of all senders combined implicitly define a

zero-sharing polynomial zσ . The states are constructed in such a way that every sender

can, without interacting with other senders, derive its zero-share zσ ,i = zσ (i) for that

stage. To move to the next stage, every party can individually update the internal state.

After destroying the previous internal state it is not possible to retrieve any information

on it from the current internal state.

Syntax. The informal description of the scheme captured in the previous section can

be formalized as follows.

internal Zσ ,1 . . . Zσ ,r Zσ ,r+1 . . . Zσ ,n

external zσ ,1 . . . zσ ,r zσ ,r+1 . . . zσ ,n

Fig. 3. The highlighted section illustrate the adversary’s view for a set of corrupted senders Ic =
{1, . . . ,r}. In the next stage, σ +1, the adversary gets the complete internal state.

Definition 10 (Evolving zero-sharing). The next three algorithms describe an evolv-

ing zero-sharing scheme. See also Fig. 2.

– GZS(k,n,s,K) takes as input the threshold k, the number of senders n, the number

of stages s, and secret sharing field K . It outputs initial states Z1,1, . . . ,Z1,n.

– UZS(Zσ ,i) is a non-interactive protocol that takes as input the current state Zσ ,i and

outputs a new state Zσ+1,i or aborts.

– EZS(Zσ ,i) takes as input the current state Zσ ,i and outputs a zero share zσ ,i.

This definition describes a non-interactive scheme because our use cases require this.

Interactive schemes are easier to build, but are not considered in this paper.

Intuitively, forward security requires that no matter what an adversary learns in

later stages, it cannot use this knowledge to obtain additional information on the cur-

rent stage. We formalize this notion for evolving zero-sharing schemes, which we call

transparency, as we need it to prove forward-security of our key-evolving distributed

encryption scheme.

Consider a stage σ . Clearly, an adversary has the biggest advantage in learning

more about stage σ , if it gets the complete state of the system in stage σ + 1. The

following definition formalizes the notion that every zero-sharing polynomial in stage

σ is equally likely, as long as it matches the view the adversary already had obtained

through corruptions—note this fixes the polynomial if the adversary has corrupted k−1

senders. The adversary gets access to the full zero-sharing polynomial in stage σ . We

note that this is very liberal, as in the actual combination with the DE schemes the

zero-shares will be kept secret.

Definition 11 (Transparency). Let k be the threshold, n the total number of senders,

q the group order and s the maximum number of stages. Let an evolving zero-sharing

given by the algorithms GZS, UZS and EZS be defined for these parameters. Let Zσ ,1,
. . . ,Zσ ,n be the result of calling GZS and then running UZS σ −1 times for each sender.

Furthermore, let zσ ,i = EZS(Zσ ,i) and Zσ+1,i = UZS(Zσ ,i). Let A be an adversary. It

outputs a set Ic ⊂ [n] of senders corrupted in stage σ and receives

– the internal state Zσ ,i, for all senders i ∈ Ic,

– the external state zσ ,i for all senders, and

– the internal state Zσ+1,i for all senders,

see also Fig. 3. We say the evolving zero sharing scheme is transparent if adversary A

cannot distinguish the following two situations:

1. the normal situation with zσ ,i = zσ ,i and

2. a situation in which the secret changes, i.e. zσ ,i = zσ ,i + z(i) where z is a degree

k−1 zero-sharing polynomial, such that z(i) = 0 for all i ∈ Ic.

Key-evolution scheme. We follow Cramer et al. [4] in constructing a zero-sharing

polynomial in such a way that sender i can only evaluate the polynomial at the point i.

For every set A ⊂ [n] of cardinality n− (k− 2) we define the k− 1 degree polynomial

gA(x) = x∏i∈[n]\A(x− i). Our zero-sharing polynomial is then given by

zσ (x) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,A ·gA(x),

where a factor rσ ,A is known only to the senders i ∈ A. Note that by construction, z is of

degree k−1 and zσ (0) is indeed 0. It can be shown that k−2 colluding parties cannot

recover zσ (x). Furthermore, for every zero-sharing polynomial z of degree k−1, there

exist values for the rσ ,As such that zσ (x) = z(x). This gives the following scheme.

Definition 12 (Evolving zero-sharing scheme). Let ℓh be a security parameter and let

h1 : {0,1}ℓh → {0,1}ℓh and h2 : {0,1}ℓh → Zq be hash functions. The evolving zero-

sharing scheme is implemented as follows.

– GZS(k,n,s,Zq) For each A⊂ [n] of cardinality n−(k−2) generate a random share

r̄1,A ∈R {0,1}
ℓh and for each sender i set Z1,i = (r̄1,A)A∋i.

– UZS(Zσ ,i) This algorithm is non-interactive. First, parse Zσ ,i as (r̄σ ,A)A∋i, and set

r̄σ+1,A = h1(r̄σ ,A) for A such that i ∈ A. Then return Zσ+1,i = (r̄σ+1,A)A∋i.

– EZS(Zσ ,i) To derive the zero-share parse Zσ ,i as (r̄σ ,A)A∋i. Then, set rσ ,A = h2(r̄σ ,A)
for A such that i ∈ A and determine

zσ ,i = zσ (i) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,A ·gA(i).

Finally, return zσ ,i.

The construction and the proof of the following lemma are inspired by the Ohkubo et

al. scheme [11]. See the appendix for the proof.

Lemma 4. The evolving zero-sharing scheme from Def. 12 is transparent in the random

oracle model for h2.6

5.2 A Key-Evolving DE Scheme

In this section we build a key-evolving DE scheme using the evolving zero-sharing

scheme of the previous section. The latter scheme generates as many distributed zero-

sharing polynomials as we want. By adding the constant polynomial g(x) = 1 to this

polynomial we obtain the key-sharing polynomial in our DE scheme.

Definition 13 (KDE scheme). The key-evolving distributed encryption (KDE) scheme

is constructed from the new distributed encryption scheme given by the algorithms

DE.GEN, DE.ENC and DE.COMB, and the evolving zero-sharing scheme from Def-

inition 12 given by the algorithms GZS, UZS and EZS. It is defined by the following four

algorithms.

6 Actually, it is not really necessary to use a random oracle for this part of the proof. In fact, one

can use k-wise independent functions, see for example Canetti et al. [3], and thus prove this

lemma in the standard model.

– KDE.GEN(1ℓ,k,n,s, ℓp) The KDE.GEN algorithm first runs DE.GEN(1ℓ,k,n, ℓp)
to obtain (G,q,E,φ ,φ−1,P), which it outputs as well. Here group G is of order

q. It then calls GZS(k,n,s,Zq) to obtain Z1,1, . . . ,Z1,n, sets s1,i = 1+ EZS(Z1,i) and

outputs S1,i = (i,s1,i,Z1,i) for each sender.

– KDE.UPDKEY(Sσ ,i) Let Sσ ,i = (i,sσ ,i,Zσ ,i). It then sets Zσ+1,i = UZS(Zσ ,i) and

sσ+1,i = 1+ EZS(Zσ+1,i) and returns Sσ+1,i = (i,sσ+1,i,Zσ+1,i) or aborts if UZS

aborts.

– KDE.ENC(Sσ ,i, p). Let Sσ ,i = (i,sσ ,i,Zσ ,i). To encrypt a plaintext p algorithm

KDE.ENC returns the result of DE.ENC((i,sσ ,i), p).
– KDE.COMB(C) To combine ciphertexts KDE.COMB runs DE.COMB(C).

Efficiency. The evolving zero-sharing scheme has complexity
(

n
k−2

)
in both space and

time to store and evaluate the zero-shares. While this number is exponential, it is al-

most always much smaller than the cost of combining in a real scenario (see Table 1 on

page 17). In particular, it is comparable to recovering a single plaintext in the batched

scheme which we will present in the next section. Furthermore, its space complexity

is independent of the number of stages, which is a big gain with respect to the origi-

nal scheme [7] where the space complexity is linear in the number of stages. In many

practical applications this number will be a lot bigger than
(

n
k−2

)
.

Security. The security of the KDE scheme can easily be reduced to that of the DE

scheme by using the properties of the evolving zero-sharing scheme. We give a sketch

of the proof; we refer to App. B for the full proof.

Theorem 2. The new KDE scheme is (k,n,s)-KDE secure provided that the DE is

(k,n,1)-KDE secure and the evolving zero-sharing scheme is transparent. The proof

is in the random oracle model for h2
7.

Proof (Sketch). We reduce the security of the KDE scheme to that of the DE scheme.

To setup the system we generate random r̄1,As. We guess the challenge phase σ⋆ and

simulate all stages except σ⋆, where we use our DE oracle. To ensure that this is not

detected we must ensure that corrupted hosts have the correct secret shares. We do this

by modifying h2(r̄σ⋆,A) in the random oracle model on r̄σ⋆,A that were not yet known

to the adversary. Then queries in stage σ⋆ can be answered by our DE oracle. The

distribution of the secret shares does not correspond to the initial r̄1,As, however, the

transparency of the evolving zero-sharing scheme ensures this cannot be detected. ⊓⊔

This proof easily translates to other evolving zero-sharing schemes where the challenge

phase can be incorporated.

6 Efficient solutions for small domains

As was already analyzed by Hoepman and Galindo [7], any distributed encryption so-

lution will be rather inefficient. The main culprit is the combination phase. We do not

7 Again, it is not really necessary to use a random oracle for this proof either. However, the

security of the DE scheme uses non-standard assumptions anyway.

add indicators, like the hash of a plaintext, to the ciphertexts as they allow an attacker

to trivially test if they belong to given plaintext. Therefore, it is not clear which shares

might belong to the same plaintext. The only solution is to try all combinations of k

shares, from different senders, of the received shares. Depending on the situation this

can become prohibitive. We now propose a variant of our new scheme that is much

more efficient for small plaintext domains.

The crucial difference is that we will now operate in a batched setting. At the end

of a stage the sender generates a share for every plaintext. It generates a proper share

for every plaintext it needs to send, as before, and a random value for all other plain-

texts. Now we know directly which shares belong to a given plaintext. This reduces the

exponential term in the combing phase considerably. Also, since the plaintext is known

a priori, the only remaining task of the combiner is to determine whether this plain-

text was encrypted by a sufficient number of senders. In particular we can replace the

integrity preserving encryption scheme with a hash function.

6.1 Syntax

For small plaintext spaces, the following definition of a batched key-evolving distributed

encryption scheme makes sense.

Definition 14 (Batched KDE). A k-out-of-n batched key-evolving distributed encryp-

tion scheme with lifetime divided into s stages, or (k,n,s)-BKDE scheme, consists of the

following four algorithms.

BKDE.GEN(1ℓ,k,n,s,P) Given the security parameter 1ℓ, the threshold k, the num-

ber of senders n, the number of stages s and a plaintext space P it generates initial

encryption keys S1,1, . . . ,S1,n for each sender i∈ [n]. It returns these encryption keys

as well as the system parameters.

BKDE.ENC(Sσ ,i,P) Given an encryption key Sσ ,i corresponding to sender i at stage

σ and a set of plaintexts P ⊂P , this function returns a vector Ci of ciphertext

shares of length |P|.
BKDE.UPDKEY(Sσ ,i) The key update function takes as input Sσ ,i and outputs the key

Sσ+1,i for the next stage. This function aborts if σ +1 > s.

BKDE.COMB(C1, . . . ,Cn,s) Given the ciphertext share vectors C1, . . . ,Cn produced

by the senders, the function BKDE.COMB returns a set of plaintexts P.

A key-evolving batched distributed encryption scheme must satisfy the following com-

bined correctness and safety requirement.

CORRECTNESS & SAFETY Let the encryption keys Sσ ,i be generated as described

above. Let Ci = BKDE.ENC(Sσ ,i,Pi) for each sender i and for all Pi ⊂P . Then

the result P of BKDE.COMB(C1, . . . ,Cn) is such that p ∈ P if p ∈ Pi for at least k

different Pi.

6.2 Security Definition

The following game captures the security properties of our protocol.

Definition 15 (Batched KDE forward-security game). Consider a (k,n,s)-BKDE

batched key-evolving distributed encryption scheme. The batched KDE forward-security

game is very similar to the KDE forward-security game for a (k,n,s)-KDE scheme. We

only note the changes. The algorithms BKDE.GEN and BKDE.UPDKEY replace the

algorithms KDE.GEN and KDE.UPDKEY.

Setup First, the adversary outputs a plaintext space P it wants to attack, then the

setup phase runs as before.

Find In the find phase the adversary is allowed to make bcorrupt(i), bnext() and

benc(i,P) queries. The first two are implemented using corrupt(i) and next() re-

spectively. On input of a query benc(i,Pi), where i ∈ [n], i /∈ Iσ ,c and P ⊂P , the

challenger sends the vector BKDE.ENC(Sσ ,i,Pi) to the adversary.

Challenge If the challenge on p0 and p1 at hosts Inc is valid (see Definition 8) the

challenger chooses β ∈R {0,1}, sets C = BKDE.ENC(Sσ⋆, j,
{

pβ

}
), and returns

the ciphertext share Cpβ
to the challenger for each j ∈ Inc.

Guess The guess phase is unchanged.

The adversary A ’s advantage is defined as AdvBKDE
A (1ℓ) =

∣
∣Pr[β ′ = β]− 1/2

∣
∣. An

BKDE scheme is called forward secure if AdvBKDE
A (1ℓ) is negligible for every PPT

adversary A .

6.3 The scheme

In the batched scheme a sender will output a complete vector of ciphertext shares

(cpi)p∈P at the end of a stage. Let H : {0,1}∗ → G be a cryptographic hash func-

tion. An element cpi equals H(p)si when sender i been asked to encrypt p, and cpi ∈R G

otherwise. Intuitively, when the secret shares are unknown, these two are indistinguish-

able. The full scheme is given by the following definition. Note the similarities with our

new KDE scheme.

Definition 16 (Batched KDE scheme). Let (GZS,UZS,EZS) be an evolving zero-sha-

ring scheme. The following algorithms define a batched key-evolving distributed en-

cryption (BKDE) scheme.

BKDE.GEN(1ℓ,k,n,s,P) Generate a cyclic group G such that its order q is of size

ℓ bits. Then construct a hash function H : {0,1}∗ → G. Create the secret sharing

of zero by calling GZS(k,n,s,Zq) to obtain Z1,1, . . . ,Z1,n. Let s1,i = 1+ EZS(Z1,i).
Output S1,i = (s1,i,Z1,i) for each sender, together with a description of G and the

hash function H.

BKDE.ENC(Sσ ,i,P) Let Sσ ,i = (sσ ,i,Zσ ,i), and let Ci = (cpi)p∈P be the resulting ci-

phertext share vector such that for all p ∈P

cpi =

{

H(p)sσ ,i if p ∈ P

h ∈R G otherwise.

BKDE.UPDKEY(Sσ ,i) Let Sσ ,i = (sσ ,i,Zσ ,i). Set Zσ+1,i = UZS(Zσ ,i) and sσ+1,i = 1+
EZS(Zσ+1,i). Return Sσ+1,i = (sσ+1,i,Zσ+1,i) or abort if UZS does.

BKDE.COMB(C1, . . . ,Cn) For each p ∈ P , do the following. Consider all shares

(cp1, . . . ,cpn) corresponding to plaintext p from senders 1 trough n. For all pos-

sible combinations of index sets I ⊆ {1, . . . ,n} of size k verify whether

∏
i∈I

(cpi)
λ I

i = H(p)1 = H(p).

If so, add p to the set of plaintexts to return.

The structure of this scheme is similar to that of our new DE and KDE schemes. Cor-

rectness and safety are easy to check. The security proofs of the DE and KDE schemes

can readily be adapted to this setting directly by replacing the redundant injective map

by one hash function in the random oracle model. We will not do this here. Instead we

prove that the security of the BKDE scheme can be reduced to that of the KDE scheme.

This theorem is slightly weaker as it requires us to also model H1 and H2 in the random

oracle model. However, it nicely illustrates how the schemes relate.

Theorem 3. The batched key-evolving distributed encryption scheme is (k,n,s)-BKDE

secure, provided that the KDE scheme is (k,n,s)-KDE secure. The proof is in the ran-

dom oracle model for H,H1 and H2.

Proof. Suppose we have an adversary A against the batched scheme, then we build an

adversary B against the KDE scheme. First, A requests a plaintext space P for the

batched scheme. Then, B gets a description of the group and the plaintext space P ′

from its challenger. It forwards the group description to A . Furthermore, it chooses a

hash function H ′ : P →P ′ onto the plain text space required by the KDE scheme.

Then we answer its queries as follows.

Adversary B answers a bcorrupt(i) query from A with the result of a corrupt(i)
query to its oracle. On input of a bnext(i) query B makes a next() query to its oracle.

Adversary B answers a hash query H(x) with H(x) = RIM.MAP(H ′(x)).
The answer Ci to a batched encryption query benc(i,Pi) is constructed as follows:

cpi =

{
enc(i,H ′(p)) if p ∈ Pi

h ∈R G otherwise

By choice of H(x) this is indeed correct, as

enc(i,H ′(p)) = RIM.MAP(H ′(p))sσ ,i = H(p)sσ ,i ,

as desired. The challenge made by A is forwarded to B’s challenge oracle, and the

results relayed back. The advantage of A against the BKDE scheme is the same as B’s

advantage against the KDE scheme. ⊓⊔

7 Analysis and conclusions

7.1 Practical considerations

We propose two small extensions that can improve the scheme in practice. Our scheme

works only with fixed-length plaintexts. It is, however, possible to handle longer plain-

texts as well. First, append a hash of the message to authenticate the message as a whole.

Then, split the message into appropriately sized chunks and run the DE scheme for each

of them. After recovering the multiple blocks, combine them and check the hash before

outputting the plaintext. This procedural extension allows encrypting arbitrary length

plaintexts.

The second improvement deterministically encrypts the message with the public

key of the combiner before running the DE scheme itself. This ensures that only the

combiner—which is still assumed to be honest—can successfully recover the encrypted

plaintexts even if ciphertexts leak.

Table 1. Performance comparison between the KDE scheme and the batched KDE (BKDE)

scheme. The time complexity gives the approximate number of combine actions needed. The

space complexity gives the number of ciphertext shares stored. Here m is the average number of

plaintexts encrypted by each sender.

KDE BKDE

Parameters Time Space Time Space

Formula
(

n
k

)
mk nm

(
n
k

)
|P| n |P|

Speed limiting
n = 2, |P| = 107

k = 2,m = 600
1×360 ·103 2,250 1×10 ·106 50 ·106

Canvas cutters
n = 8, |P| = 107

k = 4,m = 400
70×26 ·109 3,200 70×10 ·106 80 ·106

7.2 Performance

Tab. 1 shows the two methods’ time complexity, in terms of combine operations, and

the space complexity, in terms of stored ciphertext shares. It also gives numbers for two

specific use cases. In both, we assume the total number of vehicles is 10 million, like in

the Netherlands. For the first, a speed-monitoring example, we choose the parameters

to monitor a 20 kilometer stretch of highway—for simplicity, we assume there are no

exits—with one ANPR system placed at the beginning, and one at the end. We set the

epoch length to 10 minutes. Every minute, we start a parallel instance of the system.

This setting guarantees that every car going at least 120/(9/60)≈ 133 km/h will gener-

ate two shares in the same epoch, and is thus always caught, while cars going between

120 km/h and 133 km/h may be caught. Using 20 parallel instances, instead of 10, will

lower this bound to 126 km/h.

Suppose that 600 cars pass the ANPR systems during an epoch. The regular KDE

scheme is more efficient in this setting due to the relatively low number of shares. In

fact, it can be optimized significantly, because the first station needs to create a share for

only the newest epoch, instead of all parallel ones. This modification reduces the com-

bining cost by another factor of 10. In this setting, our key-evolution schemes ensure

that the senders do not need to store 60 ·24 keys for every day the system is operational,

instead they store only two.

The second use case comes from Hoepman and Galindo [7]. They describe a sce-

nario where criminals, so-called canvas-cutters, frequently visit rest stops along a high-

way, cut open the canvas on lorries, and rob them. The criminals can typically be rec-

ognized by looking for cars that visit rest stops rather frequently. Suppose we monitor

8 rest stops, and consider a car suspicious if it visits at least 4 within a 4 hour period.

Suppose 400 (different) cars visit each rest stop per period. Here, the BKDE scheme is

clearly better. The exponential factor in the regular scheme quickly drives up the number

of combines needed. In fact, this would be exacerbated if traffic increases. Nevertheless,

these cases also illustrate that if storage is an issue, or fewer shares are expected, then

it is better to use the non-batched scheme.

7.3 Conclusion

In this paper, we presented a new distributed encryption scheme that is simpler than

previous solutions, and uses weaker assumptions. Furthermore, we described a key-

evolving variant that offers proper key evolution and is therefore forward secure. Addi-

tionally, we demonstrated a batched variant of our new distributed encryption scheme

that is much more efficient for small plaintext domains.

None of the known distributed encryption schemes offer semantic security; senders

always produce the same ciphertext for a given plaintext. It would be very interesting

to see solutions that use randomization to avoid this problem.

References

1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indis-

tinguishable from uniform random strings. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)

ACM Conference on Computer and Communications Security. pp. 967–980. ACM (2013)

2. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How

to win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A.,

Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communica-

tions Security. pp. 201–210. ACM (2006)

3. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptol-

ogy 20(3), 265–294 (2007)

4. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and ap-

plications to secure computation. In: Kilian, J. (ed.) Theory of Cryptography, Second Theory

of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Pro-

ceedings. LNCS, vol. 3378, pp. 342–362. Springer (2005)

5. Franklin, M.K.: A survey of key evolving cryptosystems. International Journal of Security

and Networks 1(1/2), 46–53 (2006)

6. Hoepman, J.H.: Revocable privacy. ENISA Quarterly Review 5(2) (Jun 2009)

7. Hoepman, J.H., Galindo, D.: Non-interactive distributed encryption: a new primitive for re-

vocable privacy. In: Chen, Y., Vaidya, J. (eds.) Proceedings of the 10th annual ACM work-

shop on Privacy in the electronic society, WPES 2011, Chicago, IL, USA, October 17, 2011.

pp. 81–92. ACM (2011)

8. Itkis, G.: Forward security – adaptive cryptography: Time evolution. In: Bidgoli, H. (ed.)

Handbook of Information Security, pp. 927–944. John Wiley and Sons (2006)

9. Lueks, W., Everts, M.H., Hoepman, J.H.: Revocable privacy 2012 – use cases. Tech. Rep.

35627, TNO (2012)

10. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-

tions. J. ACM 51(2), 231–262 (2004)

11. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient Hash-Chain Based RFID Privacy Protec-

tion Scheme. In: International Conference on Ubiquitous Computing – Ubicomp, Workshop

Privacy: Current Status and Future Directions. Nottingham, England (September 2004)

12. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

13. Speed Check Services: SPECS3 network average speed check solutions. http://www.

speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf, accessed: 27 Jan-

uary 2013

14. Stadler, M.: Cryptographic Protocols for Revocable Privacy. Ph.D. thesis, Swiss Federal In-

stitute of Technology, Zürich (1996)

http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf
http://www.speedcheck.co.uk/images/SCS_SPECS3_Brochure.pdf

A Proof of Lemma 4

Proof. Let Zσ ,i = (r̄σ ,A)A∋i and let zσ (x) be the zero-sharing polynomial in stage σ ,

corresponding to situation one. Now, we show how to change this to zσ (x) + z(x)
by modifying the random oracle for h2. Let r = |Ic| , and w.l.o.g. assume that Ic =
{n− r+1, . . . ,n}. Since z(i) is zero for all i ∈ Ic the polynomial is fully determined by

c = k−1− r extra values. We need to ensure that

zσ ,i + z(i) = ∑
A⊂[n]

|A|=n−(k−2)

rσ ,AgA(i) = ∑
A∩Ic 6= /0

rσ ,AgA(i)

︸ ︷︷ ︸

fixed

+ ∑
A∩Ic= /0

rσ ,AgA(i)

︸ ︷︷ ︸

not fixed

.

The fixed part contains values that are known to the adversary, and hence cannot be

changed. The not-fixed part can, however, be changed. Consider the sets:

Ai = [n]\ ({1, . . . , i−1, i+1, . . .c}∪ Ic)

for i ∈ [c]. These sets are such that only set Ai influences the value for sender i, i.e.

zσ ,i + z(i) =





 ∑

A⊂[n]
|A|=n−(k−2),∀ j:A6=A j

rσ ,AgA(i)






+ rσ ,Ai

gAi
(i), (1)

for i ∈ [c]. Let rσ ,A = h2(r̄σ ,A) for all A 6= Ai as always. Then choose the rσ ,Ai
s such

that equation (1) holds for i ∈ [c]. Finally, set h2(r̄σ ,Ai
) to the new value rσ ,Ai

. This

cannot be detected by the adversary due to the one-wayness of h1, so the situations are

indistinguishable. ⊓⊔

B Full proof of Theorem 2

Proof. Suppose we have an adversary A against the KDE scheme. We then build an

adversary B against the underlying DE scheme. Adversary B receives the system pa-

rameters from the challenger and forwards them to A . Next, adversary B makes a

guess σ⋆ for the challenge stage and initializes the set of corrupted senders Ic to /0.

Adversary B will fully simulate all stages, except stage σ⋆, where it will use its

oracle to answer the queries. For all A⊂ [n], such that |A|= n− (k−2) generate r̄1,A ∈R

{0,1}ℓh .

We now look into the details of the evolving zero-sharing scheme. By generating

r̄1,A’s we have completely fixed the system, but we still need to ensure that epoch σ⋆

can be answered using our oracles. To this end we will change the value of the hash

function h2(r̄σ⋆,Ai
) for specific sets Ai belonging to corrupted parties i. These sets Ai

will be chosen in such a way, that r̄σ⋆,Ai
is not known to any previously corrupted party.

We handle corrupt(i) queries in or before stage σ⋆ as follows. Let Ic be the set of

senders that were corrupted earlier and fσ⋆ the secret-sharing polynomial induced by

the values r̄σ⋆,A. First, we corrupt sender i using our oracle to obtain its internal state

(i,sσ⋆,i) = corrupt(i). We need to ensure that fσ⋆(i) = sσ⋆,i. Pick a set Ai of cardinality

n− (k−2) such that Ic∩Ai = /0 and i ∈ Ai. This is possible, since the constraints in the

challenge phase require |Ic∪{i}|< k, therefore, |Ic| will be at most k−2. For all other

sets A ∋ i obtain rσ⋆,A = h2(r̄σ⋆,A) as usual. Then choose rσ⋆,Ai
such that:

sσ⋆,i = fσ⋆(i) = 1+ ∑
A⊂[n]

|A|=n−k+1

rσ⋆,A ·gA(i).

By the choice of the set Ai the coefficient r̄σ⋆,Ai
is not known to any corrupted host,

hence we can use the random oracle model to ensure that h2(r̄σ⋆,Ai
) = rσ⋆,Ai

. With very

high probability this will not be detected by the adversary as the r̄σ⋆,Ai
s are random.

Finally, we return (i,(r̄σ⋆,A)A∋i) to the adversary.

Now B proceeds as follows. For all stages except σ⋆ it knows the complete state of

the system, and can thus answer all A ’s queries. For epoch σ⋆, all corrupted hosts will,

by construction of the hash-function, have the correct secret shares for this epoch. All

other queries can be answered by the oracle.

The transparency of the evolving zero-sharing scheme ensures that it is not possible

for the adversary to detect that we do something different in stage σ⋆8.

In the challenge phase A will announce its challenge phase σ ′. If σ ′ 6= σ⋆ then B

aborts. Otherwise, B will pass the challenge from A on to its own oracle. Finally, B

outputs whatever A outputs. Adversary B has the same advantage as A up to a factor

1/s for guessing the stage. This proves the result. ⊓⊔

8 This proof only changes h2 for corrupted hosts, whereas the proof of Lemma 4 (see Appen-

dix A) changes h2 for non-corrupted hosts, so they can indeed be combined.

	Forward-Secure Distributed Encryption
	Introduction
	The idea
	Preliminaries
	Notation.
	Redundant Injective Map.

	A New DE scheme
	Syntax
	Security definition
	A New Distributed Encryption Scheme
	Security of the DE scheme
	The ideal scheme.
	Indistinguishability of ideal and real scheme.

	Forward-Secure DE scheme
	A key-evolution scheme
	Syntax.
	Key-evolution scheme.

	A Key-Evolving DE Scheme
	Efficiency.
	Security.

	Efficient solutions for small domains
	Syntax
	Security Definition
	The scheme

	Analysis and conclusions
	Practical considerations
	Performance
	Conclusion

	Proof of Lemma 4
	Full proof of Theorem 2

