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Abstract. Revelations of large scale electronic surveillance and data
mining by governments and corporations have fueled increased adop-
tion of HTTPS. We present a traffic analysis attack against over 6000
webpages spanning the HTTPS deployments of 10 widely used, industry-
leading websites in areas such as healthcare, finance, legal services and
streaming video. Our attack identifies individual pages in the same web-
site with 90% accuracy, exposing personal details including medical con-
ditions, financial and legal affairs and sexual orientation. We examine
evaluation methodology and reveal accuracy variations as large as 17%
caused by assumptions affecting caching and cookies. We present a novel
defense reducing attack accuracy to 25% with a 9% traffic increase, and
demonstrate significantly increased effectiveness of prior defenses in our
evaluation context, inclusive of enabled caching, user-specific cookies and
pages within the same website.

1 Introduction

HTTPS is far more vulnerable to traffic analysis than has been previously dis-
cussed by researchers. In a series of important papers, a variety of researchers
have shown a number of traffic analysis attacks on SSL proxies [1,2], SSH tun-
nels [3,4,5,6,7], Tor [3,4,8,9], and in unpublished work, HTTPS [10,11]. Together,
these results suggest that HTTPS may be vulnerable to traffic analysis. This pa-
per confirms the vulnerability of HTTPS, but more importantly, gives new and
much sharper attacks on HTTPS, presenting algorithms that decrease errors
3.9x from the best previous techniques. We show the following novel results:

– Novel attack technique capable of achieving 90% accuracy over 500 pages
hosted at the same website, as compared to 60% with previous techniques

– Impact of caching and cookies on traffic characteristics and attack perfor-
mance, affecting accuracy as much as 17%

– Novel defense reducing accuracy to 25% with 9% traffic increase; significantly
increased effectiveness of packet level defenses in the HTTPS context

We evaluate attack, defense and measurement techniques on websites for health-
care (Mayo Clinic, Planned Parenthood, Kaiser Permanente), finance (Wells
Fargo, Bank of America, Vanguard), legal services (ACLU, Legal Zoom) and
streaming video (Netflix, YouTube).



We design our attack to distinguish minor variations in HTTPS traffic from
significant variations which indicate distinct webpages. Minor traffic variations
may be caused by caching, dynamically generated content, or user-specific con-
tent including cookies. To distinguish minor variations, our attack employs clus-
tering and Gaussian similarity techniques to transform variable length traffic
into a fixed width representation. Due to similarity with the Bag-of-Words ap-
proach to text analysis, we refer to our technique as Bag-of-Gaussians (BoG).
We augment our technique with a hidden Markov model (HMM) leveraging
the link structure of the website and further increasing accuracy. Our approach
achieves substantially greater accuracy than attacks developed by Panchenko et
al. (Pan) [8], Liberatore and Levine (LL) [6], and Wang et al. [9].3

We also present a novel defense technique and evaluate several previously
proposed defenses. In the interest of deployability, all defenses we evaluate have
been selected or designed to require minimal state. Our evaluation demonstrates
that some techniques which are ineffective in other traffic analysis contexts have
significantly increased impact in the HTTPS context. For example, although
Dyer et al. report exponential padding as decreasing accuracy of the Panchenko
classifier from 97.2% to 96.6% on SSH tunnels with website homepages [5], we
observe a decrease from 60% to 22% in the HTTPS context. Our novel defense
reduces the accuracy of the BoG attack from 90% to 25% while generating only
9% traffic overhead.

We conduct our evaluations using a dataset of 463,125 page loads collected
from 10 websites during December 2013 and January 2014. Our collection in-
frastructure includes virtual machines (VMs) which operate in four separate
collection modes, varying properties such as caching and cookie retention across
the collection modes. By training a model using data from a specific collection
mode and evaluating the model using a different collection mode, we are able to
isolate the impact of factors such as caching and user-specific cookies on anal-
ysis results. We present these results along with insights into the fundamental
properties of the traffic itself.

Our evaluation spans four website categories where the specific pages accessed
by a user reveal private information. The increased importance of contents over
existence of communication is present in traditional privacy concepts such as
patient confidentiality or attorney-client privilege. We examine three websites
related to healthcare, since the page views of these websites have the potential
to reveal whether a pending procedure is an appendectomy or an abortion, or
whether a chronic medication is for diabetes or HIV/AIDS. We also examine
legal websites, offering services spanning divorce, bankruptcy and wills and legal
information regarding LGBT rights, human reproduction and immigration. As
documented by Chen et al., specific pages accessed within financial websites
may reveal income levels, investment and family details; hence we examine three
financial websites [12]. Lastly, we examine two streaming video sites, as the
Netflix privacy breach demonstrates the importance of streaming video privacy.

3 To facilitate further research, code and data from this work are available for download
at http://secml.cs.berkeley.edu/pets2014.

http://secml.cs.berkeley.edu/pets2014


Privacy Page Set Page Set Accuracy Traffic Analysis Active
Author Technology Scope Size (%) Cache Cookies Composition Primitive Content

Miller HTTPS Closed 6388 90 On Individual Single Site Packet On

Hintz [1] SSL proxy Closed 5 100 ? Individual Homepages Request ?

Sun [2] SSL proxy Open
2,000 75 (TP)

Off Universal Single Site Request Off
100,000 1.5 (FP)

Cheng [10] HTTPS Closed 489 96 Off Individual Single Site Request Off
Danezis [11] HTTPS Closed ? 89 n/a n/a Single Site Request n/a

Herrmann [3] SSH tunnel Closed 775 97 Off Universal Homepages Packet ?
Cai [4] SSH tunnel Closed 100 92 Off Universal Homepages Packet Scripts
Dyer [5] SSH tunnel Closed 775 91 Off Universal Homepages Packet ?
Liberatore [6] SSH tunnel Closed 1000 75 Off Universal Homepages Packet Flash
Bissias [7] SSH tunnel Closed 100 23 ? Universal Homepages Packet ?

Wang [9] Tor Open
100 95 (TP)

Off Universal Homepages Packet Off
1000 .06 (FP)

Wang [9] Tor Closed 100 91 Off Universal Homepages Packet Off
Cai [4] Tor Closed 100 78 On Universal Homepages Packet Scripts
Cai [4] Tor Closed 800 70 Off Universal Homepages Packet Scripts
Panchenko [8] Tor Closed 775 55 Off Universal Homepages Packet Off

Panchenko [8] Tor Open
5 56-73 (TP)

Off Universal Homepages Packet Off
1,000 .05-.89 (FP)

Herrmann [3] Tor Closed 775 3 Off Universal Homepages Packet ?

Coull [13]
Anonymous

Open
50 49

On Universal Homepages NetFlow
Flash &

Trace 100 .18 Scripts

Table 1: Prior works have focused almost exclusively on website homepages ac-
cessed via proxy. Cheng and Danezis work is preliminary and unpublished. Note
that “?” indicates the author did not specify the property.

2 Prior Work

In this section we review attacks and defenses proposed in prior work, as well
as the contexts in which work is evaluated. Comparisons with prior work are
limited since much work has targeted specialized technologies such as Tor.

Table 1 presents an overview of prior attacks. The columns are as follows:

Privacy Technology The protection mechanism analyzed for traffic analysis
vulnerability. Note that some authors considered multiple mechanisms.

Page Set Scope Closed indicates the evaluation used a fixed set of pages known
to the attacker in advance. Open indicates the evaluation used traffic from
pages both of interest and unknown to the attacker. Whereas open conditions
are appropriate for Tor, closed conditions are appropriate for HTTPS.

Page Set Size For closed scope, the number of pages used in the evaluation.
For open scope, the number of pages of interest to the attacker and the
number of background traffic pages, respectively.

Accuracy For closed scope, the percent of pages correctly identified. For open
scope, the true positive (TP) rate of correctly identifying a page as being
within the censored set and false positive (FP) rate of identifying an uncen-
sored page as censored.

Cache Off indicates caching disabled. On indicates default caching behavior.
Cookies Universal indicates that training and evaluation data were collected

on the same machine or machines, and consequently with the same cookie
values. Individual indicates training and evaluation data were collected on
separate machines with distinct cookie values.



Traffic Composition Single Site indicates the work identified pages within a
website or websites. Homepages indicates all pages used in the evaluation
were the homepages of different websites.

Analysis Primitive The basic unit on which traffic analysis was conducted.
Request indicates the analysis operated on the size of each object (e.g. image,
style sheet, etc.). Packet indicates meta-data observed from TCP packets.
NetFlow indicates network traces anonymized using NetFlow.

Active Content Indicates whether Flash, JavaScript, Java or any other plugins
were enabled in the browser.

Several works require discussion in addition to Table 1. Chen et al. study
side-channel leaks caused by AJAX in web applications. As Chen focuses on
traffic generated after a page loads, we view the work as both complimentary
and orthogonal [12]. Danezis focused on the HTTPS context, but evaluated his
technique using HTTP server logs at request granularity, removing any effects
of fragmentation, concurrent connections or pipelined requests [11]. Cheng et
al. also focused on HTTPS and conducted an evaluation which parsed request
sizes from unencrypted HTTP traffic at a website intentionally selected for its
static content [10]. Like Cheng and Danezis, Sun et al. and Hintz et al. assume
the ability to parse entire object sizes from traffic [1,2]. For these reasons, we
compare our work to Liberatore and Levine, Panchenko et al. and Wang et al.
as these are more advanced and recently proposed techniques.

Herrmann [3] and Cai [4] both conduct small scale preliminary evaluations
which involve enabling the browser cache. These evaluations only consider web-
site homepages and all pages are loaded in a fixed, round-robin order. Herrmann
additionally increases the cache size from the default to 2GB. We evaluate the
impact of caching on pages within the same website, where caching will have a
greater effect due to increased page similarity, and load pages in a randomized
order for greater cache state variation.

Separate from attacks, we also review prior work relating to traffic analysis
defense. Dyer et al. conduct a review of low level defenses operating on individ-
ual packets [5]. Dyer evaluates defenses using data released by Liberatore and
Levine and Herrmann et al. which collect traffic from website homepages on a
single machine with caching disabled. In this context, Dyer finds that low level
defenses are ineffective against attacks which examine features aggregated over
multiple packets. Our evaluation finds that low level defenses are considerably
more effective in the HTTPS context.

In addition to the packet level defenses evaluated by Dyer, many defenses
have been proposed which operate at higher levels with additional cost and
implementation requirements. These include HTTPOS [14], traffic morphing [15]
and BuFLO [4,5]. HTTPOS manipulates features of TCP and HTTP to affect
packet size, object size, pipelining behavior, packet timing and other properties.
BuFLO sends a constant stream of traffic at a fixed packet size for a pre-set
minimum amount of time. Given the effectiveness and advantages of packet level
level defenses in our evaluation context, we do not further explore these higher
level approaches in our work.



Fig. 1: The dashed line separates training workflow from attack workflow. Bub-
bles indicate the section in which the system component is discussed. Note that
the attacker may conduct training in response to a victim visiting a website,
recording victim traffic and inferring contents after browsing has occurred.

3 Attack Presentation

Figure 1 presents the workflow of the attacker as well as the subsections in which
we discuss his efforts. In section 3.1, we present a formalism for labeling webpages
and generating a link graph relating labeled webpages. Section 3.2 presents the
core of our classification approach: Gaussian clustering techniques that capture
significant variations in traffic and allow logistic regression to robustly identify
objects that reliably differentiate pages. Having generated isolated predictions,
we then leverage the site graph and sequential nature of the data in section 3.3
with a hidden Markov model (HMM) to further improve accuracy.

Throughout this section we depend on several terms defined as follows:

Webpage A set of resources loaded by a browser in response to a user clicking a
link or entering a URL into the browser address bar. Webpages representing
distinct resources are considered the same if a user would likely view their
contents as substantially similar, regardless of the specific URLs fetched
while loading the webpages or dynamic content such as advertising.

Sample A traffic instance generated when a browser displays a webpage.
Label A unique identifier assigned to sets of webpages which are the same.

For example, webpages differing only in advertising receive the same label.
Samples are labeled according to the webpage in the sample’s traffic.

Website A set of webpages such that the URLs which cause each webpage to
load in the browser are hosted at the same domain.

Site Graph A graph representing the link structure of a website. Nodes corre-
spond to labels assigned to webpages within the website. Edges correspond
to links, represented as the set of labels reachable from a given label.

3.1 Label and Site Graph Generation

Although initially appealing, URLs are poorly suited to labeling webpages within
a website. URLs may contain arguments which do not impact content and result



in different labels aliasing webpages which are the same. URL redirection further
complicates labeling, allowing the same URL to refer to multiple webpages (e.g.
error pages or A/B testing). Similar challenges affect web crawlers, creating an
infinite web of dynamically generated pages [16]. We present a labeling solution
based on URLs and designed to accommodate these challenges.

Our approach contains two phases, each composed of a crawling and a graph
building step. The crawling step systematically visits the website to gather URLs
and record links. The graph building step uses a canonicalization function that
transforms webpage URLs into labels and generates a graph representing the
structure of the website. The URLs observed and site graph produced in the first
phase guide the second, larger crawl which is necessary to observe the breadth
of non-deterministic URL redirections. We present our approach below.4

Execute Initial Crawl The crawl can be implemented as either a depth-
or breadth-first search, beginning at the homepage and exploring every link on a
page up to a fixed maximum depth. We perform a breadth first search to depth
5. This crawl will produce a graph G = (U,E), where U represents the set of
URLs seen as links during the crawl, and E = {(u, u′) ∈ U × U | u links to u′}
represents links between URLs in U .

Canonicalize Initial Graph First, we construct a canonicalization function
of the form C : U → L, where C denotes the canonicalization function, U
denotes the initial set of URLs, and L denotes the set of labels. We then use our
canonicalization function to produce an initial site graph G′ = (L,E′) where L
represents the set of labels on the website and E′ represents links. We construct
E′ as follows:

E′ = {(C(u), C(u′)) | (u, u′) ∈ E} (1)

We define a reverse canonicalization function R : L→ P(U) such that

R(l) = {u ∈ U | C(u) = l} (2)

Note that P(X) denotes the power set of X, which is the set of all subsets of X.
Execute Primary Crawl The primary crawl allows the attacker to more

fully observe the URL redirection behavior of the website. The attacker conducts
the primary crawl in a series of browsing sessions; we fixed the length of each
session to 75 labels. The attacker builds browsing sessions using a random walk
through G′, prioritizing labels not yet visited. The attacker then executes each
browsing session by visiting a URL u for each label l such that u ∈ R(l). The
attacker records the value of document.location once u and all associated
resources are done loading to identify any URL redirections. U ′ denotes the
set of final URLs which are observed in document.location. We define a new
function T : U → P(U ′) such that T (u) = {u′ ∈ U ′ | u resolved at least once to
u′}. We use this to define a new translation T ′ : L→ P(U ′) such that

T ′(l) =
⋃

u∈R(l)

T (u) (3)

4 A more detailed description of the crawling infrastructure, canonicalization process
and graph generation is available on arXiv [17].



Initial Site Graph G′ Selected Subset Final Site Graph G′′′

Website URLs Labels Avg. Links URLs Labels Avg. Links Labels Avg. Links

ACLU 54398 28383 130.5 1061 500 41.7 506 44.7
Bank of America 1561 613 30.2 1105 500 30.3 472 43.2
Kaiser Permanente 1756 780 29.7 1030 500 22.6 1037 141.1
Legal Zoom 5248 3973 26.8 602 500 11.8 485 12.2
Mayo Clinic 33664 33094 38.1 531 500 12.5 990 31.0
Netflix 8190 5059 13.8 2938 500 6.2 926 9.0
Planned Parenthood 6336 5520 29.9 662 500 24.8 476 24.4
Vanguard 1261 557 28.4 1054 500 26.7 512 30.8
Wells Fargo 4652 3677 31.2 864 500 17.9 495 19.5
YouTube 64348 34985 7.9 953 500 4.3 497 4.24

Table 2: “Selected Subset” denotes the subset of the initial site graph randomly
selected for inclusion in our evaluation, “Avg. Links” denotes the average number
of links per label, and “URLs” indicates the number of URLs seen as links in
the preliminary site graph corresponding to an included label.

Refine Initial Graph To produce the final site graph, we construct a new
canonicalization function C ′ : U ′ → L′, where U ′ denotes the final set of URLs
and L′ denotes a new set of labels. The final graph G′′′ must maintain the
property that for any browsing path in the initial graph G′ and any URL redi-
rections in T ′, after canonicalization with C ′ the path must also be valid in the
final graph. Therefore, the attacker defines an intermediary graph G′′ = (U ′, E′′)
such that E′′ is defined as

E′′ = {(u, u′) | u ∈ T ′(l) ∧ u′ ∈ T ′(l′) ∀ (l, l′) ∈ E′} (4)

We apply our canonicalization function C ′ to produce a final graph G′′′ =
(L′, E′′′) where

E′′′ = {(C ′(u), C ′(u′)) ∀ (u, u′) ∈ E′′} (5)

guaranteeing that we have strictly increased the connectivity of the site graph.
In the interest of balancing, given available resources, the amount of collection

modes, samples of each label, websites surveyed, and pages included from each
website, we selected a 500 page subset of each initial site graph. Consequently,
we were able to complete data collection in about four weeks during December
2013 and January 2014 using four virtual hosts. We initialize the selected subset
to include the label corresponding to the homepage, and iteratively expand the
subset by adding a randomly selected label reachable from the selected subset
via the link structure of the initial site graph until 500 labels are selected. The
set of links for the graph subset is defined as any links occurring between the
500 selected labels. Table 2 presents properties of the initial site graph G′, se-
lected subset, and the final site graph G′′′ for each of the 10 websites we survey.
Note that the second crawl also serves as the data collection process; samples
are labeled as C ′(u′) ∈ L′ where u′ denotes the value of document.location

when the sample finished loading. Each model uses only redirections observed in
training data when generating the site graph used by the HMM for that model.
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Burst Pairs (KB)
Domain A B

Sample x (0.5, 60) (1.6, 22) (4.2, 30) (1.1, 75) (2.0, 25)
Sample + (1.1, 22) (4.0, 75) (4.2, 21)
Sample o (1.8, 22) (2.4, 83) (4.2, 25) (1.4, 75) (4.0, 50)

(c)

Feature Values
Domain A B

Index 1 2 3 4 5 6 7 8

Sample x .9 1 0 0 1 .8 1 0
Sample + .9 .8 1 0 0 0 0 0
Sample o 1 .9 0 1 0 .8 0 1

(d)

Fig. 2: Table 2c displays the burst pairs extracted from three hypothetical sam-
ples. Figures 2a and 2b show the burst pair clusters. Figure 2d depicts the Bag-
of-Gaussians features for each sample. Our Gaussian similarity metric enables
our attack to distinguish minor traffic variations from significant differences.

3.2 Feature Extraction and Machine Learning

This section presents our individual sample classification technique. First, we
describe the information which we extract from a sample, then we describe
processing to produce features for machine learning, and finally describe the
application of the learning technique itself.

We initially extract traffic burst pairs from each sample. Burst pairs are de-
fined as the collective size of a contiguous outgoing packet sequence followed by
the collective size of a contiguous incoming packet sequence. Intuitively, con-
tiguous outgoing sequences correspond to requests, and contiguous incoming
sequences correspond to responses. All packets must occur on the same TCP
connection to minimize the effects of interleaving traffic. For example, denot-
ing outgoing packets as positive and incoming packets as negative, the sequence
[+1420, +310, -1420, -810, +530, -1080] would result in the burst pairs
[1730, 2230] and [530, 1080]. Analyzing traffic bursts removes any fragmen-
tation effects. Additionally, treating bursts as pairs allows the data to contain
minimal ordering information and go beyond techniques which focus purely on
packet size distributions.



Once burst pairs are extracted from each TCP connection, the pairs are
grouped using the second level domain of the host associated with the destination
IP of the connection. All IPs for which the reverse DNS lookup fails are treated
as a single “unknown” domain. Pairs from all samples from each domain undergo
k-means clustering to identify commonly occurring and closely related tuples. We
fit a Gaussian distribution to each cluster using a maximum likelihood estimates
of the mean and covariance.5 We then treat each cluster as a feature dimension,
producing our fixed width feature vector. Features are extracted from samples
by computing the extent to which each Gaussian is represented in the sample.

Figure 2 depicts the feature extraction process using a fabricated example
involving three samples and two domains. Clustering results in five clusters for
Domain A and three clusters for Domain B, ultimately producing an eight-
dimensional feature vector. Sample x has traffic tuples in clusters 1, 2, 5, 6 and
7, but no traffic tuples in clusters 3, 4, 8, so its feature vector has non-zero values
in dimensions 1, 2, 5, 6, 7, and zero values in dimensions 3, 4, 8. We create feature
vectors for samples + and o in a similar fashion.

Analogously to the Bag-of-Words document processing technique, our ap-
proach projects a variable length vector of tuples into a finite dimensional space
where each dimension “occurs” to some extent in the original sample. Whereas
occurrence is determined by word count in Bag-of-Words, occurrence in our
method is determined by Gaussian likelihood. For this reason, we refer to our
approach as Bag-of-Gaussians (BoG).

We specify our approach formally as follows:

– Let X denote the entire set of tuples from a sample, with Xd ⊆ X denoting
the set all tuples observed at domain d.

– Let Σd
i , µ

d
i denote the covariance and mean of Gaussian i at domain d.

– Let F denote all features, with F d
i denoting feature i from domain d.

F d
i =

∑
x∈Xd

N (x|Σd
i , µ

d
i ) (6)

To determine the best number of Gaussian features for each domain, we divide
the training data into two parts to train and evaluate models using K values
of 4000, 1000 and 500. We then retrain using all training data and the best
performing K values for each domain.

Once Gaussian features have been extracted from each sample the feature
set is augmented to include counts of packet sizes observed over the entire trace.
For example, if the lengths of all outgoing and incoming packets are between 1
and 1500 bytes, we add 3000 additional features where each feature corresponds
to the total number of packets sent in a specific direction with a specific size. We
linearly normalize all features to be in the range [0, 1] and train a model using
L2 regularized multi-class logistic regression with the liblinear package [18].
We use C = 128 for all sites as we observed varying C did not improve accuracy
enough for any site to justify the additional computational cost.

5 For clusters where all samples occur at the same point, we set the covariance matrix
to a scalar matrix with λ = N−1, where N denotes the size of the cluster.



3.3 Hidden Markov Model

The basic attack presented in section 3.2 classifies each sample independently.
In practice, samples in a browsing session are not independent since the link
structure of the website guides the browsing sequence. We leverage this ordering
information, contained in the site graph produced in section 3.1, to improve
results using a hidden Markov model (HMM). Recall that a HMM for a sequence
of length N is defined by a set of latent (unknown) variables Z = {zn | 1 ≤ n ≤
N}, a set of observed variables X = {xn | 1 ≤ n ≤ N}, transition matrix
A such that Ai,j = P (zn+1 = j|zn = i), an initial distribution π such that
πj = P (z1 = j) and an emission function E(xn, zn) = P (xn|zn).

To apply the HMM, we treat sample labels as latent variables and the traffic
contained in the samples as observed variables. We then use the Viterbi algorithm
to find the most likely sequence of labels Z visited by a user given the observed
traffic X produced by the user. Given a traffic sample, the logistic regression
model specifies the likelihood of each label and acts as the emission function E
required by the Viterbi algorithm. We assume in the initial distribution π that
the user is equally likely to begin browsing with any label in the website, and
construct the transition matrix A such that if the site graph contains a link from
label i to label j, then Ai,j = N−1i , where Ni denotes the number of links leading
from label i. If there is no link leading from label i to label j, then Ai,j = 0.

4 Impact of Evaluation Conditions

In this section we demonstrate the impact of evaluation conditions on accuracy
results and traffic characteristics. First, we present the scope, motivation and
experimental methodology of our investigation. Then, we present the results of
our experiments on four attack implementations, with the most affected attack
decreasing accuracy from 68% to 51%. We discuss attack accuracy only insofar
as is necessary to understand the impact of evaluation conditions; we defer a full
attack evaluation to section 5.

Cache Configuration The browser cache improves page loading speed by
storing previously loaded web resources; this poses two challenges to traffic anal-
ysis. Providing content locally decreases the total amount of traffic, reducing the
information available for use in an attack. Additionally, differences in browsing
history cause differences in cache contents and further vary network traffic. Since
privacy tools such as Tor frequently disable caching, many prior evaluations have
disabled caching as well [19]. General HTTPS users are unlikely to modify cache
settings, so we evaluate the impact of enabling caching to default settings.

User-Specific Cookies If an evaluation collects all data with either the
same browser instance or repeatedly uses a fresh browser image, there are re-
spective assumptions that the attacker and victim will either share the same
cookies or use none at all. While a traffic analysis attacker will not have access
to victim cookies, privacy technologies which begin all browsing sessions from
a clean browsing image effectively share the null cookie. We compare the per-
formance of evaluations which use the same (non-null) cookie value in all data,



different (non-null) cookie values in training and evaluation, a null cookie in all
data, and evaluations which mix null and non-null cookies.

Pageview Diversity Many evaluations collect data by repeatedly visiting
a fixed set of URLs from a single machine and dividing the collected data for
training and evaluation. This approach introduces an unrealistic assumption
that an attacker will be able to collect separate training data for each victim,
visiting the exact same set of webpages as the victim. We examine the impact
of allowing the victim to intersperse browsing of multiple websites, including
websites outside our attacker’s monitoring focus.6

Webpage Similarity Since HTTPS usually allows an eavesdropper to learn
the domain a user is visiting, our evaluation focuses on differentiating individ-
ual webpages within a website protected by HTTPS. Differentiating webpages
within the same website may pose a greater challenge than differentiating website
homepages. Webpages within the same website share many resources, increasing
caching and decreasing data available for analysis. We examine the relative traffic
volumes of browsing both website homepages and webpages within a website.

To quantify the impact of evaluation conditions on accuracy results, we de-
sign four modes for data collection designed to isolate specific effects. Our ap-
proach assumes that data will be gathered in a series of browsing sessions, each
consisting of a fixed number of samples. The four modes are as follows:

1. Cache disabled, new virtual machine (VM) for each browsing session
2. Cache enabled, new VM for each browsing session
3. Cache enabled, persistent VM for all browsing sessions, single site per VM
4. Cache enabled, persistent VM for all browsing sessions, all sites on same VM

We fixed the session length to 75 samples and collected at least 16 samples
of each label under each collection mode. The first two modes differ only with
respect to cache configuration and begin each browsing session with a fresh
VM image to eliminate any cookie persistence in browser or machine state. In
effect the second, third and fourth modes each represent a distinct cookie value,
with the second mode representing a null cookie and the third and fourth modes
having actual, distinct, cookie values set by the site. The third and fourth modes
differ in pageview diversity. In the context of HTTPS evaluations, the fourth
mode most closely reflects the behavior of actual users and hence serves as
evaluation data, while the second and third modes generate training data.

Our analysis reveals that caching significantly decreases the number of unique
packet sizes observed for samples of a given label. We focus on the number of
unique packet sizes since packet size counts are a commonly used feature in
traffic analysis attacks. Figure 3a contrasts samples from the first and second
collection modes, presenting the effect of caching on the number of unique packet
sizes observed per label for each of the 10 websites we evaluate. Note that the

6 This is different from the open-world vs. closed-world distinction in section 2, as
we assume that the attacker will train a model for each website in its entirety and
identify the correct model based on traffic destination. Here, we are concerned with
effects on browser cache or personalized content which may impact traffic analysis.
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Fig. 3: Impact of evaluation conditions on traffic characteristics. Figure 3a
presents the increase in number of unique packet sizes per sample of a given
label caused by disabling the cache. For each label l we determine the mean
number lm of unique packet sizes for samples of l with caching enabled, and
normalize the unique packet size counts of all samples of label l using lm. We
present the normalized values for all labels separated by cache configuration.
Figure 3b presents the decrease in traffic volume caused by browsing webpages
internal to a website as compared to website homepages. Similar to the effect of
caching, the decreased traffic volume is likely to increase classification errors.

figure only reflects TCP data packets. We use a normalization process to present
average impact of caching on a per-label basis across an entire website, allowing
us to depict for each website the expected change in number of unique packet
sizes for any given label as a result of disabling the cache.

Since prior works have focused largely on website homepages, we present data
demonstrating a decrease in traffic when browsing webpages within a website.
Figure 3b presents the results of browsing through the Alexa top 1,000 websites,
loading the homepage of each site, and then loading nine additional links on
the site at random with caching enabled. By partitioning the total count of data
packets transferred in the loading of webpages internal to a website into five equal
size buckets we see that there is a clear skew towards homepages generating more
traffic. Similar to the traffic increase from disabled caching, the increased traffic
of website homepages is likely to increase accuracy.

Beyond examining traffic characteristics, our analysis shows that factors such
as caching, user-specific cookies and pageview diversity impact attack accuracy
measurements. We examine each of these factors by training a model using data
from a specific collection mode, and comparing model accuracy when evaluated
on a range of collection modes. Since some models must be trained and evaluated
using the same collection mode we must select a portion of the data from each
mode for training and leave the remainder for evaluation. We perform a three-
fold evaluation for each attack, varying the evaluation data used for each fold.
Figure 4 presents the results of our analysis:
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(c)

Mode Number Cache Cookie Retention Browsing Scope

1 Disabled Fresh VM every 75 samples Single website
2 Enabled Fresh VM every 75 samples Single website
3 Enabled Same VM for all samples Single website
4 Enabled Same VM for all samples All websites

(d)

Fig. 4: “Train: X, Eval: Y” indicates training data from mode X and evaluation
data from mode Y as shown in Table 4d. For evaluations which use a privacy
tool such as the Tor browser bundle and assume a closed world, training and
evaluating using mode 1 is most realistic. However, in the HTTPS context train-
ing using mode 2 or 3 and evaluating using mode 4 is most realistic. Figure 4c
presents differences as large as 17% between these conditions, demonstrating the
importance of evaluation conditions when measuring attack accuracy.

Cache Effect Figure 4a compares the performance of models trained and eval-
uated using mode 1 to models trained and evaluated using mode 2. As these
modes differ only by enabled caching, we see that caching has moderate
impact and can influence reported accuracy by as much as 10%.

Cookie Effect Figure 4b measures the impact of user-specific cookies by com-
paring the performance of models trained and evaluated using browsing
modes 2 and 3. We observe that both the null cookie in mode 2 and the
user-specific cookie in mode 3 generally perform 5-10 percentage points bet-
ter when the evaluation data is drawn from the same mode as the training
data. This suggests that any difference in cookies between training and eval-
uation conditions will impact accuracy results.

Total Effect Figure 4c presents the combined effects of enabled caching, user-
specific cookies and increased pageview diversity. Recalling Figure 4b, notice
that models trained using mode 2 perform similarly on modes 3 and 4, and
models trained using mode 3 perform similarly on modes 2 and 4, confirm-
ing the importance of user-specific cookies. In total, the combined effect of
enabled caching, user-specific cookies and pageview diversity can influence
reported accuracy by as much as 17%. Figure 4b suggests that the effect is
primarily due to caching and cookies since mode 2 generally performs better



on mode 4, which includes visits to other websites, than on mode 3, which
contains traffic from only a single website.

5 Attack Evaluation

In this section we evaluate the performance of our attack. We begin by presenting
the selection of previous techniques for comparison and the implementation of
each attack. Then, we present the aggregate performance of each attack across
all 10 websites we consider, the impact of training data on attack accuracy, and
the performance each attack at each individual website.

We select the Liberatore and Levine (LL), Panchenko et al. (Pan), and Wang
et al. attacks for evaluation in addition to the BoG attack. The LL attack offers
a view of baseline performance achievable from low level packet inspection, ap-
plying naive Bayes to a feature set consisting of packet size counts [6]. We imple-
mented the LL attack using the naive Bayes implementation in scikit-learn [20].
The Pan attack extends size count features to include additional features re-
lated to burst length as measured in both packets and bytes as well as total
traffic volume [8]. For features aggregated over multiple packets, the Pan attack
rounds feature values to predetermined intervals. We implement the Pan attack
using the libsvm [21] implementation of the RBF kernel support vector ma-
chine with the C and γ parameters specified by Panchenko. We select the Pan
attack for comparison to demonstrate the significant benefit of Gaussian similar-
ity rather than predetermined rounding thresholds. The BoG attack functions as
described in section 3. We implement the BoG attack using the k-means pack-
age from sofia-ml [22] and logistic regression with class probability output from
liblinear [18], with Numpy [23] performing intermediate computation.

The Wang attack assumes a fundamentally different approach from LL, Pan
and BoG based on string edit distance [9]. There are several variants of the Wang
attack which trade computational cost for accuracy by varying the string edit
distance function. Wang reports that the best distance function for raw packet
traces is the Optimal String Alignment Distance (OSAD) originally proposed by
Cai et al. [4]. Unfortunately, the edit distance must be computed for each pair of
samples, and OSAD is extremely expensive. Therefore, we implement the Fast
Levenshtein-Like (FLL) distance,7 an alternate edit distance function proposed
by Wang which runs approximately 3000x faster.8 Since Wang demonstrates that
FLL achieves 46% accuracy operating on raw packet traces, as compared to 74%

7 Note that the original attack rounded packet sizes to multiples of 600; we operate
on raw packet sizes as we found this improves attack accuracy in our evaluation.

8 OSAD has O(mn) runtime where m and n represent the length of the strings,
whereas FLL runs in O(m + n). Wang et al. report completing an evaluation with
40 samples of 100 labels each in approximately 7 days of CPU time. Since our eval-
uation involves 10 websites with approx. 500 distinct labels each and 16 samples of
each label for training and evaluation, we would require approximately 19 months
of CPU time (excluding any computation for sections 4 or 6).
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Fig. 5: Performance of BoG attack and prior techniques. Figure 5a presents the
performance of all four attacks as a function of training data. Figure 5b presents
the accuracy of the BoG attack trained with 16 samples as a function of browsing
session length. At one sample, the HMM has no effect and reveals the effective-
ness of the BoG attack without the HMM. Note that the BoG attack achieves
90% accuracy as compared to 60% accuracy with the best prior work.

accuracy with OSAD, we view FLL as a rough indicator of the potential of the
OSAD attack. We implement the Wang - FLL attack using scikit-learn [20].

We now examine the performance of each attack implementation. We evalu-
ate attacks using data collected in mode 4 since this mode is most similar to the
behavior of actual users. We consider both modes 2 and 3 for training data to
avoid any bias introduced by using the same cookies as seen in evaluation data
or browsing the exact same websites. As shown in Figure 4, mode 2 performs
slightly better so we train all models using data from mode 2.

Consistent with prior work, our evaluation finds that accuracy of each attack
improves with increased training data, as indicated by Figure 5a. Note that since
we only collect 16 samples of each label in each collection mode, we are unable to
conduct a multi-fold evaluation since all data is required for a single 16 training
sample model. Notice that the Pan attack is most sensitive to variations in the
amount of training data, and the BoG attack continues to perform well even at
low levels of training data. In some cases an attacker may have ample oppor-
tunity to collect training data, although in other cases the victim website may
attempt to actively resist traffic analysis attacks by detecting crawling behavior
and engaging in cloaking, rate limiting or other forms of blocking.

The BoG attack derives significant performance gains from the application
of the HMM. Figure 5b presents the BoG attack accuracy as a function of the
browsing session length. Although we collect browsing sessions which each con-
tain 75 samples, we simulate shorter browsing sessions by applying the HMM to
randomly selected subsets of browsing sessions and observing impact on accu-
racy. At session length 1 the HMM has no effect and the BoG attack achieves
71% accuracy, representing the improvement over the Pan attack resulting from
the Gaussian feature extraction. The HMM accounts for the remaining perfor-
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Fig. 6: Accuracy of each attack for each website. Note that the BoG attack per-
forms the worst at Kaiser Permanente, Mayo Clinic and Netflix, which each have
approx. 1000 labels in their final site graphs according to Table 2. The increase
in graph size during finalization suggests potential for improved performance
through better canonicalization to eliminate labels aliasing the same webpages.

mance improvement from 71% accuracy to 90% accuracy. We achieve most of
the benefit of the HMM after observing two samples in succession, and the full
benefit after observing approximately 15 samples. Although any technique which
assigns a likelihood to each label for each sample could be extended with a HMM,
applying a HMM requires solving the labeling and site graph challenges which
we present novel solutions for in section 3.

Although the BoG attack averages 90% accuracy overall, only 4 of the 10
websites included in evaluation have accuracy below 91%. Figure 6 presents the
accuracy of each attack at each website. The BoG attack performs the worst at
Mayo Clinic, Netflix and Kaiser Permanente. Notably, the number of labels in the
site graphs corresponding to each of these websites approximately doubles during
the finalization process summarized in Table 2 of section 3. URL redirection
causes the increase in labels, as new URLs appear whose corresponding labels
were not included in the preliminary site graph. Some new URLs may have been
poorly handled by the canonicalization function, resulting in labels which alias
the same content. Although we collected supplemental data to gather sufficient
training samples for each label, the increase in number of labels and label aliasing
behavior degrade measured accuracy for all attacks.

Despite the success of string edit distance based attacks against Tor, the
Wang - FLL attack struggles in the HTTPS setting. Wang’s evaluation is con-
fined to Tor, which pads all packets into fixed size cells, and does not effectively
explore edit distance approaches applied to unpadded traffic. Consistent with
the unpadded nature of HTTPS, we observe that Wang’s attack performs best
on unpadded traffic in the HTTPS setting. Despite this improvement, the Wang
- FLL technique may struggle because edit distance treats all unique packet sizes
as equally dissimilar; for example, 310 byte packets are equally similar to 320
byte packets and 970 byte packets. Additionally, the application of edit distance
at the packet level causes large objects sent in multiple packets to have propor-
tionally large impact on edit distance. This bias may be more apparent in the
HTTPS context than with website homepages since webpages within the same
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(a)

Byte Packet Burst
Defense Overhead Overhead Entropy

No Defense 1.000 1.000 8.164
Linear 1.032 1.000 5.309
Exponential 1.055 1.000 5.241
Fragmentation 1.000 1.450 8.164
Burst: 1.03 1.025 1.022 5.994
Burst: 1.05 1.043 1.032 5.568
Burst: 1.10 1.090 1.065 5.010

(b)

Fig. 7: Figure 7a presents the impact of defenses on attack accuracy. Figure 7b
presents defense costs and entropy of burst sizes. The Burst defense is a novel
proposal, substantially decreasing accuracy at a cost comparable to a low level
defense. Entropy provides useful but limited insight into defense effectiveness,
as rare values minimally impact entropy but may uniquely identify content.

website are more similar than homepages of different websites. Replacing the
FLL distance metric with OSAD or Damerau-Levenshtein would improve at-
tack accuracy, although the poor performance of FLL suggests the improvement
would not justify the cost given the alternative techniques available.

6 Defense

This section presents and evaluates several defense techniques, including our
novel Burst defense which operates between the application and TCP layers to
obscure high level features of traffic while minimizing overhead. Figure 7 presents
the impacts and costs of the defenses we consider. We find that evaluation context
significantly impacts defense performance, as we observe increased effectiveness
of low level defenses in our evaluation as compared to prior work [5]. Additionally,
we find that the Burst defense offers significant performance improvements while
maintaining many advantages of low level defense techniques.

We select defenses for evaluation on the combined basis of cost, deployability
and effectiveness. We select the linear and exponential padding defenses from
Dyer et al. as they are reasonably effective, have the lowest overhead, and are
implemented statelessly below the TCP layer. The linear defense pads all packet
sizes up to multiples of 128, and the exponential defense pads all packet sizes up
to powers of 2. Stateless implementation at the IP layer allows for easy adoption
across a wide range of client and server software stacks. Additionally, network
overhead is limited to minor increases in packet size with no new packets gener-
ated, keeping costs low in the network and on end hosts. We also introduce the
fragmentation defense which randomly splits any packet which is smaller than



Algorithm 1 Threshold Calculation

Precondition: bursts is a set containing the length of each burst in a given direction
in defense training traffic

Precondition: threshold specifies the maximum allowable cost of the Burst defense
1: thresholds← set()
2: bucket← set()
3: for b in sorted(bursts) do
4: inflation← len(bucket+ b) ∗ max(bucket+ b)/sum(bucket+ b)
5: if inflation ≥ threshold then
6: thresholds← thresholds+max(bucket)
7: bucket← set() + b
8: else
9: bucket← bucket+ b

10: end if
11: end for
12: return thresholds+ max(bucket)

Algorithm 2 Burst Padding

Precondition: burst specifies the size of a directed traffic burst
Precondition: thresholds specifies the thresholds obtained in Algorithm 1
1: for t in sorted(thresholds) do
2: if t ≥ burst then
3: return t
4: end if
5: end for
6: return burst

the MTU, similar to portions of the strategy adopted by HTTPOS [14]. Fragmen-
tation offers the deployment advantages of not introducing any additional data
overhead, as well as being entirely supported by current network protocols and
hardware. We do not consider defenses such as BuFLO or HTTPOS given their
complexity, cost and the effectiveness of the alternatives we do consider [5,14].

The exponential defense slightly outperforms the linear defense, decreasing
the accuracy of the Pan attack from 60% to 22% and the BoG attack from 90% to
60%. Notice that the exponential defense is much more effective in our evaluation
context than Dyer’s context, which focuses on comparing website homepages
loaded over an SSH tunnel with caching disabled and evaluation traffic collected
on the same machine as training traffic. The fragmentation defense is extremely
effective against the LL and Wang - FLL attacks, reducing accuracy to below 1%
and 7% for each respective attack, but less effective against the Pan and BoG
attacks as these attacks perform TCP stream reassembly. Since TCP stream re-
assembly is expensive and requires complete access to traffic, the fragmentation
defense may be a superior choice against many adversaries in practice.

Although the fragmentation, linear and exponential defenses offer the deploy-
ment advantages of functioning statelessly below the TCP layer, their effective-



ness is limited. The Burst defense offers greater protection, operating between
the TCP layer and application layer to pad contiguous bursts of traffic up to pre-
defined thresholds uniquely determined for each website. Reducing the number
of thresholds allows the Burst defense to achieve greater privacy at the expense
of increased padding.

Algorithms 1 and 2 present the training and application of the Burst defense
respectively. Unlike the BoG attack which considers bursts as a tuple, for the
purposes of the Burst defense (and Figure 7b) we define a burst as a contigu-
ous sequence of packets in the same direction on the same TCP connection.
Hence, we apply Algorithm 1 in each direction. We evaluate the Burst defense
for threshold values 1.03, 1.05 and 1.10, with the resulting cost and performance
shown in Figure 7. The Burst defense outperforms defenses which operate solely
at the packet level by obscuring features aggregated over entire TCP streams. Si-
multaneously, the Burst defense offers deployability advantages over techniques
such as HTTPOS since the Burst defense is implemented between the TCP and
application layers. The cost of the Burst defense compares favorably to defenses
such as HTTPOS, BuFLO and traffic morphing, reported to cost at least 37%,
94% and 50% respectively [4,15].

7 Discussion and Conclusion

This work examines the vulnerability of HTTPS to traffic analysis attacks, focus-
ing on evaluation methodology, attack and defense. Although we present novel
contributions in each of these areas, many open problems remain.

Our examination of evaluation methodology focuses on caching and user-
specific cookies, but does not explore factors such as browser differences, operat-
ing system differences, mobile/tablet devices or network location. Each of these
factors may contribute to traffic diversity in practice, likely degrading attack
accuracy. Additional future work remains in the area of attack development. To
date, all approaches have assumed that the victim browses the web in a single
tab and that successive page loads can be easily delineated. Future work should
investigate actual user practice in these areas and impact on analysis results. For
example, while many users have multiple tabs open at the same time, it is un-
clear how much traffic a tab generates once a page is done loading. Additionally,
we do not know how easily traffic from separate page loadings may be delineated
given a contiguous stream of user traffic.

Defense development and evaluation also require further exploration. At-
tack evaluation conditions and defense development are somewhat related since
conditions which favor attack performance will simultaneously decrease defense
effectiveness. Defense evaluation under conditions which favor attack creates the
appearance that defenses must be complex and expensive, effectively discourag-
ing defense deployment. To increase likelihood of deployment, future work must
investigate necessary defense measures under increasingly realistic conditions
since realistic conditions may substantially contribute to effective defense.
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