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Abstract. Mobile users increasingly report their co-locations with other
users, in addition to revealing their locations to online services. For in-
stance, they tag the names of the friends they are with, in the messages
and in the pictures they post on social networking websites. Combined
with (possibly obfuscated) location information, such co-locations can be
used to improve the inference of the users’ locations, thus further threat-
ening their location privacy: as co-location information is taken into ac-
count, not only a user’s reported locations and mobility patterns can be
used to localize her, but also those of her friends (and the friends of their
friends and so on). In this paper, we study this problem by quantifying
the effect of co-location information on location privacy, with respect to
an adversary such as a social network operator that has access to such
information. We formalize the problem and derive an optimal inference
algorithm that incorporates such co-location information, yet at the cost
of high complexity. We propose two polynomial-time approximate infer-
ence algorithms and we extensively evaluate their performance on a real
dataset. Our experimental results show that, even in the case where the
adversary considers co-locations with only a single friend of the targeted
user, the location privacy of the user is decreased by up to 75% in a
typical setting. Even in the case where a user does not disclose any lo-
cation information, her privacy can decrease by up to 16% due to the
information reported by other users.
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1 Introduction

Increasingly popular GPS-equipped mobile devices with Internet connectivity
allow users to enjoy a wide range of online location-based services while on the
go. For instance, mobile users can search for nearby points of interest and get
directions, possibly in real time, to their destinations. Location-based services
raise serious privacy concerns as a large amount of personal information can
be inferred from a user’s whereabouts. The research community has extensively
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Fig. 1. Examples showing how co-location information can be detrimental to privacy.
(a) A user reports being in a given area, and a second user reports being in another
(overlapping) area and that she is co-located with the first user. By combining these
pieces of information, an adversary can deduce that both users are located in the
intersection of the two areas, thus narrowing down the set of possible locations for both
of them. (b) Two users (initially apart from each other, at 10am) declare their exact
individual location. Later (at 11am), they meet and report their co-location without
mentioning where they are. By combining these pieces of information, the adversary
can infer that they are at a place that is reachable from both of the initially reported
locations in the amount of time elapsed between the two reports.

studied the problem of location privacy; more specifically, location-privacy pro-
tection mechanisms (so-called LPPMs), that can anonymize and obfuscate the
users’ locations before sending them to online location-based services, have been
proposed [16]. In addition, formal frameworks to quantify location privacy in
the case where users disclose their (possibly obfuscated) locations have been
proposed [19, 20]. In such frameworks, the mobility profiles of the users play an
important role in the inference of the users’ locations, namely in a localization
attack.

In parallel, social networks have become immensely popular. Every day, mil-
lions of users post information, including their locations, about themselves, but
also about their friends. An emerging trend, which is the focus of this paper, is to
report co-locations with other users on social networks, e.g., by tagging friends
on pictures they upload or in the messages they post. Our preliminary survey
involving 132 Foursquare users, recruited through Amazon Mechanical Turk,
reveals that 55.3% of the participants do report co-locations in their check-ins
and that for the users who do so, on average, 2.84%±0.06 of their check-ins do
contain co-location information. In fact, co-location information can be obtained
in many different ways, such as automatic face recognition on pictures (which
can contain the time and location at which the picture was taken in their EXIF
data), Bluetooth-enabled device sniffing and reporting neighboring devices. Sim-
ilarly, users who connect from the same IP address are likely to be attached to
the same Internet access point, thus providing evidence of their co-location.

Attacks exploiting both location and co-location information (as mentioned
in [22]) can be quite powerful, as we show in this paper. Figure 1 depicts and
describes two example situations in which co-location can improve the perfor-
mance of a localization attack, thus degrading the location-privacy of the users



involved. At the same time, it is clear that the proper exploitation of such in-
formation by an attacker can be complex because he has to consider jointly the
(co-)location information collected about a potentially large number of users.

This family of attacks and their complexity is precisely the focus of this pa-
per. More specifically, we make the following three contributions. (1) We identify
and formalize the localization problem with co-location information, we propose
an optimal inference algorithm and analyze its complexity. We show that, in
practice, the optimal inference algorithm is intractable due to the explosion of
the state space size. (2) We describe how an attacker can drastically reduce the
computational complexity of the attack by means of well-chosen approximations.
We present two polynomial-time heuristics, the first being based on a limited set
of considered users and the second relying on an independence approximation.
(3) We extensively evaluate and compare the performance of these two heuris-
tics in different scenarios, with different settings, based on a mobility dataset.
Our experimental results show that, even in the case where the adversary con-
siders co-locations with only a single friend of the targeted user, the median
location privacy of the user is decreased by up to 75% in a typical setting. Even
in the case where a user does not disclose any location information, her privacy
can decrease by up to 16% due to the information reported by other users. A
paramount finding of our work is that users partially lose control over their lo-
cation privacy as co-locations and individual location information disclosed by
other users substantially affect their own location privacy. To the best of our
knowledge, this is the first work to quantify the effects of co-location informa-
tion, that stems from social relationships, on location privacy; thus making a
connection between privacy implications of social networks and location privacy.

The remainder of the paper is organized as follows. In Section 2, we define
and formalize the system model. In Section 3, we present the optimal localization
attack for N users and assess its complexity. In Section 4, we show how this
complexity can be reduced by means of approximations. In Section 5, we report
on the experimental evaluation of the localization attack with co-locations. In
Section 6, we survey the related work. In Section 7, we conclude the paper and
suggest directions for the future work.

2 System Model and Formalization

We consider a set of mobile users who move in a given geographical area. While
on the go, users make use of some online services to which they communicate
potentially obfuscated location (i.e., where they are) and accurate co-location
information (i.e., who they are with). We consider that a curious service provider
(referred to as the adversary) wants to infer the location of the users from this
information, hence tracking them over time. In order to carry out the inference
attack, based on which the location privacy of the users is evaluated, the adver-
sary would model the users as described below. Our model is built upon [20] and
uses similar notations. Figure 2 gives an overview of the considered scenario.
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Fig. 2. Scenario of (co-)location exposure. Three users move in a given geographical
area. They communicate their potentially obfuscated locations and accurate co-location
information to a service provider (i.e., the adversary) who wants to infer their locations.

2.1 Users

We consider a set U = {u1, . . . , uN} of N mobile users who move within a
given geographical area that is partitioned into M regions (locations) R =
{R1, . . . , RM}. Time is discrete and we consider the state of the system (in-
cluding the locations of the users) at the successive time instants {1, . . . , T}.
The region in which a user u ∈ U is at time instant t ∈ {1, . . . , T} is called the
actual location of the user and is denoted by au(t). The mobility of the users is
modeled by a first order time-homogeneous Markov chain. We denote by pu(ρ, r)
the probability that user u moves from region ρ to region r during one time in-
stant, and by πu(r) the probability that user u is in region r at time t (i.e., the
stationary distribution of pu). We call a co-location the fact that two users are
at the same location at some point in time. The fact that users u and v are
co-located at time t means that au(t) = av(t); we denote by u ↔t v the fact
that a co-location between users u and v at time t is reported, and we denote by
cu(t) the set of all reported co-locations that involve user u at time t. We define
Ct =

⋃
u∈U cu(t) and C =

⋃
t=1..T Ct.

2.2 Location-Privacy Protection Mechanisms

In order to protect their privacy, users rely on location-privacy protection mech-
anisms (LPPM) for obfuscating their individual location information before they
communicate it to an online service provider. We denote by u@t r

′ the fact that
user u reports being at location r′ at time t to the online service. The online
service observes only the obfuscated location of the users, which we denote by
ou(t) for a user u at time t. We denote by R′ the set of obfuscated locations;
typically R′ is the power set of R, as LPPMs can return a set of locations instead
of a single one. Typical LPPMs replace the actual location of a user with an-
other location (i.e., adding noise to the actual location) or merge several regions
(i.e., reducing the granularity of the reported location). We model an LPPM by



a function that maps a user’s actual location to a random variable that takes
values in R′, that is, the user’s obfuscated location. This means that the lo-
cations of a user at different time instants are obfuscated independently from
each other and from those of other users. Formally, an LPPM is defined by the
function fu(r, r′) which denotes the probability that the LPPM used by u obfus-
cates location r to r′, i.e., Pr (ou(t) = r′ | au(t) = r). Let alone the co-location
information, our model corresponds to a hidden Markov model (HMM) [1]. We
assume that co-location information is not obfuscated and users do not rely on
pseudonyms.3 We denote by o(t) the vector of the observed locations of all the
users at time t. More generally, we use bold notations to denote a vector of values
of all users.

2.3 Adversary

The adversary, typically an online service provider (or an external observer who
has access to this information, e.g., another user of the social network), has ac-
cess to the observed locations and co-locations of one or several users and seeks
to locate users, at a given time instant, namely carry out a localization attack.
Because the locations of the users are not independent, given the co-location in-
formation, when attacking the location of a given user, the adversary takes into
account information potentially about all the users. The attack is performed a
posteriori, meaning that the adversary has access to the observed traces over
the complete period, namely {o(t)}t=1..T and C, at the time of the attack. In
addition to the observations during the time period of interest (i.e., {1, . . . , T}),
the adversary has access to some of the users’ past location traces, from which
he builds individual mobility profiles for these users, under the form of transition
probabilities {pu}u∈U . See [20] for more details about the knowledge construc-
tion, in particular on how the mobility profiles can be built from obfuscated
traces with missing locations. The mobility profiles constitute, together with the
knowledge of the LPPMs used by the users (including their parameters), the
adversary’s background knowledge K = {pu, fu}u∈U .

The output of a localization attack that targets a user u at a time instant t,
is a posterior probability distribution over the set R of locations.

hut (r) , Pr (au(t) = r | {o(t)}t=1..T , C,K) . (1)

2.4 Location Privacy Metric

The location privacy LPu(t) of a user u at time t, with respect to a given ad-
versary, is captured by the expected error of the adversary when performing a
localization attack [20]. Given the output hut (·) of the localization attack, the
location privacy writes:

LPu(t) ,
∑
r∈R

hut (r) · d(r, au(t)) , (2)

3 Note that even if pseudonyms are used, the identity of the users can be inferred by
using their social network [18] or their locations [20].



where d(· , ·) denotes a distance function on the set R of regions, typically the
Haversine distance between the centers of the two regions.

3 Optimal Localization Attack

Without co-location information (as in [20]) and under the assumptions de-
scribed in the previous section, the localization problem translates to solving a
HMM inference problem, for which the forward-backward algorithm is a known
solution. Essentially, the forward-backward algorithm defines forward and back-
ward variables that take into account the observations before and after time
t, respectively. The forward variable is the joint probability of location of user
at time t and all the observations up to, and including, time t. The backward
variable is the conditional probability of all observations after time t, given the
actual location of user at that time instant. Then, the posterior probability dis-
tribution of the possible locations for the targeted user is obtained by combining
(i.e., multiplying and normalizing) the forward and backward variables. With
co-location information, the locations of the users are not mutually independent:
as soon as two users are co-located at some point in time t, their locations, be-
fore and after time t, become dependent. Actually, the fact that two users meet
a same third user (even if they meet her at different time instants) suffices to
create some dependencies between their locations; this means that, to perform
the localization attack on a user, the adversary must take into account the loca-
tions (i.e., the obfuscated location information and the co-location information)
of all the users who are connected to u by a chain of co-location (i.e., the con-
nected component of u in the co-location graph). Formally speaking, it means
that the adversary cannot rely only on the marginal distributions of the users’
location; instead he must consider the joint distributions. In other words, co-
locations turn N disjoint inference problems (i.e., HMM problems solved by the
forward-backward algorithm) into a joint inference problem.

To solve the localization problem, we consider the users jointly; we show
that it translates to an HMM problem that we solve using a forward-backward
algorithm. For a set U of users and a time t, we define the following forward and
backward variables:

αUt (r) , Pr (o(1) . . . ,o(t), C1, . . . , Ct,a(t) = r | K) (3)

βUt (r) , Pr (o(t+ 1) . . . ,o(T ), Ct+1, . . . , CT |a(t) = r,K) , (4)

where r denotes a vector of size N ,i.e., r ∈ RN , and represents the actual
locations of all users at a single time instant. These variables can be defined
recursively (over t) and, unlike in the case where no co-location observations are
available, their expressions involve the co-location information. More specifically,



it can be proved that for all r ∈ RN , we have4

αUt (r) =


πU (r) if t = 0

1t(r, C)∑
C′ 1t(r, C ′)

· fU (r,o(t))
∑

ρ∈RN

αUt−1(ρ) · pU (ρ, r) if t > 0 (5)

and

βUt (r) =


∑

ρ∈RN

1t(ρ, C)∑
C′ 1t(ρ, C ′)

· βUt+1(ρ) · pU (r,ρ) · fU (ρ,o(t+ 1)) if t < T

1 if t = T

(6)

where for r = (r1, . . . , rN ) ∈ RN, ρ = (ρ1, . . . , ρN ) ∈ RN, r′=(r′1, . . . , r
′
N ) ∈ R′N,

πU (r) =
∏N
i=1 πui

(ri), fU (r, r′) =
∏N
i=1 fui

(ri, r
′
i) , pU (ρ, r) =

∏N
i=1 pui

(ρi, ri),
and 1(· , ·) is the indicator function that returns 1 if the locations of the users are
consistent with the co-location information reported at time t, and 0 otherwise.
That is, formally,

1t(r, C) =

{
1 if ∀(ui ↔t uj) ∈ Ct, ri = rj

0 otherwise
. (7)

In other words, the indicator function captures whether the users for which a
co-location was reported are indeed at the same locations in r. As the adversary
has no knowledge about the way co-locations are reported, the distribution of the
sets of reported co-locations, given the actual locations of the users, is modeled
with a uniform distribution.

The intuition behind Equation (5) is that the forward variable at time t can
be expressed recursively, with respect to time, by combining, for all possible
locations of the users at time t − 1: (1) the joint probability that the users
were at location ρ at time t− 1 and reported the obfuscated locations observed
by the adversary up to time t − 1 (this is captured by αUt−1), (2) the joint
probability that the users move from the locations ρ to the locations r (this is
captured by pU ), (3) the joint probability that the users obfuscate their locations
r to that observed by the adversary o(t) (this is captured by fU ) and that the
locations r of the users are consistent with the co-locations reported at time t.
Because users obfuscate their locations independently from each other, the joint
obfuscation probability is the product of the individual obfuscation probabilities
(hence the expression of fU ). The same applies to pU . The same intuition lies
behind Equation (6).

The indicator function 1t(· , ·) accounts for the co-location information in
the localization attack by ruling out the impossible (i.e., inconsistent with the
reported co-locations) user locations, hence further narrowing down the set of
possible locations for the users involved in a co-location. Schematically speaking

4 For the sake of simplicity and clarity, we define the variables at t = 0 even though
no observations are made at this time instant.



(with a deterministic vision, for the sake of clarity), the set of possible locations
for a user ui (at time t), co-located with a user uj , consists of the locations that
can be obfuscated into the location reported by ui at time t and that can be
reached (according to ui’s mobility profile) from a possible location of ui at time
t− 1 and that can be obfuscated into the location reported by uj at time t and
that can be reached (according to uj ’s mobility profile) from a possible location
of uj at time t− 1.

Finally, the posterior probability distribution of the users’ locations can be
computed based on the forward and backward variables, by using the following
formula, for ui ∈ U and at time t:

hui
t (r) = Pr (aui(t) = r | {o(t)}t=1..T , C,K) =

∑
r∈RN | ri=r

αUt (r) · βUt (r)

∑
r∈RN

αUt (r) · βUt (r)
. (8)

We now evaluate the complexity of the joint localization attack. The first
observation is that the size of the state space (i.e., the locations of all users) is
MN . To attack a user at time t, the adversary needs to compute the values of α
up to time t and the values of beta down to time t.5 At each time instant, the ad-
versary needs to compute the values of these two variables for all possible values
of their inputs r ∈ RN (there are MN possible values for r). The computation
of each of these values requires summing over the MN possible locations ρ at
time t− 1; for each of the possible locations, the computation of one element of
the sum takes Θ(N) operations. Therefore, the computation of the forward and
backward variables, at all time instants, for all possible values of the localiza-
tions is Θ(NTM2N ) operations. Note that the complexity is the same whether
the adversary attacks one or all the users at one or all time instants. In fact, the
adversary can pre-compute the hut for all u and all t with a complexity that is
dominated by that of the computations of the forward and backward variables.
In summary, the complexity of the localization attack on one or all of the users
in U is

copt(N,T,M) = Θ(NTM2N ) . (9)

The complexity of the optimal localization attack is prohibitively high and
prevents its use for the entire set of users of a mobile social network; the optimal
localization attack is tractable only for small values of N , i.e., 2 and 3. In the
next section, we propose heuristics for performing low-complexity approximate
localization attacks.

5 The best way to do this is to use dynamic programming, i.e., compute the αt (and
storing its values) iteratively for increasing t and compute the βt (and store the
values) iteratively for decreasing t.



4 Approximate Localization Attack

We propose two low-complexity heuristics for performing approximate localiza-
tion attacks. Essentially, the first selects a small set of users to consider when
attacking a target user and performs an optimal joint localization attack on this
small set of users (i.e., considering only the co-locations between these users).
The intuition behind this heuristic is that the locations of a user are significantly
correlated with those of only a limited number of users (e.g., a few co-workers
during work hours, and her family and close friends the rest of the time). The
second makes use of individual forward-backward variables (one for each user of
the entire set of users) and computes their values at each time instant, based on
the considered user’s individual variable at time t−1 and the reported locations
of the users co-located with her at time t, hence disregarding the dependencies
stemming from past co-locations. The intuition behind this heuristic is that the
dependency between two users’ locations fades relatively quickly over time after
they meet.

4.1 Heuristic 1: Limited User Set Approximation

As discussed in Section 3, the optimal localization attack can be efficiently per-
formed only on small sets of users. This is because location of a target user u
depends on locations of all other users that are connected to u in the co-location
graph (where there is an edge between two users u and v if u↔t v for some time
t). The rationale of our first approximation is to limit the number of users, on
which the target user’s location depends, and to consider only those that have
high location correlation with u. Concretely, we choose the user(s) that have the
largest number of reported co-locations with the targeted user and we perform
an optimal localization attack on the resulting set of users. We call these users
the co-targets of the targeted user. Depending on his computational power, the
adversary can choose one or two such users (i.e., N = 2 or N = 3) to attack the
target with. The co-targets of a user u are chosen as follows:

co-target1(u) , argmax
v∈U\{u}

|{t ∈ {1, . . . , T} |u↔t v}| (10)

co-target2(u) , argmax
v∈U\{u,u′}

|{t ∈ {1, . . . , T} |u↔t v}|+ |{t ∈ {1, . . . , T} |u′ ↔t v}|

(11)

where u′ = co-target1(u) and | · | denotes the cardinality of the set. More specifi-
cally, the first co-target of a user u is the user with whom u has the more reported
co-locations during the time interval considered for the localization attack. The
second co-target of u is chosen so as to maximize the number of co-locations
with u plus the number of co-locations with u’s first co-target. Note that the
set of considered users can be different for every targeted user; in particular
v = co-target1(u) /=⇒ u = co-target1(v). The complexity of this heuristic is
Θ(TM4) for N = 2 and Θ(TM6) for N = 3 (obtained by replacing N by its
value in the generic expression (9) of the complexity of the optimal attack).



4.2 Heuristic 2: Independence Approximation

As discussed in Section 3, the need to jointly consider the locations of all the
users, which cause the explosion of the state space size and thus the high com-
plexity of the attack, stems from the fact that their locations are not independent
as soon as co-locations are reported. The rationale behind our second heuristic is
to ignore the mobility profiles of the co-located users, hence alleviating the need
to take into account their past locations, which causes the state space explo-
sion) and to consider only their reported co-locations to improve the inference
of the target user’s location at the considered time instant. This comes down to
considering the locations reported by the users co-located with u, as if u had
reported these obfuscated locations herself (as depicted in Figure 1a). We define
individual forward and backward variables for each user and we couple them
upon co-locations, as follows:

α̂ut (r) ,


πu(r) if t = 0∏
u′|u↔tu′

fu′ (r, ou′(t)) · fu (r, ou(t)) ·
∑
ρ∈R

α̂ut−1(ρ) pu(ρ, r) otherwise (12)

and

β̂ut (r) ,


1 if t = T∑
ρ∈R

β̂ut+1(ρ) pu(r, ρ) fu(ρ, ou(t+ 1))
∏

u′|u↔t+1u′

fu′(ρ, ou′(t+ 1)) otherwise

(13)

Finally, when performing a localization attack on user u, the posterior distri-
butions of the locations of the users co-located with u at time t are taken into
account. More specifically, we estimate the probability distribution of user u’s
location at time t by

ĥut (r) ,

α̂ut (r) · β̂ut (r) ·
∏

u′|u↔tu′

α̂u
′

t (r) β̂u
′

t (r)

∑
r′∈R

α̂ut (r′) β̂ut (r′)
∏

u′|u↔tu′

α̂u
′

t (r′) β̂u
′

t (r′)

 . (14)

We now compute the complexity of this heuristic. To perform a localization
attack on a user, the adversary needs to compute the individual variables of all
the users that are connected to the target by a chain of co-location, that is N
users at most. The computation of a value α̂ and β̂ (for a given t and a given
r), in the worst case (i.e., when all the users are co-located), takes Θ(NM)
operations; and TM such values need be computed for each user. Therefore, the
complexity of this heuristic is Θ(N2TM2).
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Fig. 3. Illustration of the dataset used in the evaluation. Most traces are located in the
region of Beijing (left); we focus on a small active area that corresponds to the campus
of the Tsinghua University and we partition it by using a 5 × 5 square grid (middle).
The heat-map (right) shows the number of samples in each region (logscale).

5 Experimental Evaluation

We evaluate the effect of co-locations on users’ location privacy, with respect to
the various localization attacks presented in the previous sections, by using a
dataset of real mobility traces.

5.1 Dataset, Methodology and Experimental Setup

The dataset was collected by Microsoft Research Asia, in the framework of
the GeoLife project [24]. It comprises the GPS traces (i.e., sequences of time-
stamped latitude-longitude couples, sampled at a rate of one point every 1-5
seconds) of 182 users, collected over a period of over three years. The GPS
traces are scattered all over the world; but most of them are located in the re-
gion of Beijing, China. We processed the data as follows, in order to fit in our
formalism.

Space discretization. We select the area of ∼4.4 km×4.4 km, within Beijing,
that contains the largest number of GPS samples, and we filter out GPS samples
that are outside of this area. This geographic area corresponds to the campus
of the Tsinghua University (longitude ranging from 116.3 to 116.35 and latitude
ranging from 39.97 to 40.01, see Figure 3). We partition the selected area into
25 regions by using a 5×5 square grid. The GPS coordinates of each sample are
translated into the region (i.e., the grid cell) they fall into.

Time discretization. We split the continuous time interval into one-hour time
sub-intervals, which correspond to time instants in our formalism. For each time
sub-interval t and for each user u, we set the user’s actual location in that time
interval (i.e., au(t)) to the region corresponding to the sample that is the closest
to the midpoint of the considered time sub-interval. If a user’s trace does not
contain any sample in a given time sub-interval, the user’s actual location is set
to a dummy region r⊥, leaving us with partial user traces.



Co-location generation. As the dataset does not contain explicit co-location
information reported by the users, we use synthetic co-locations that we generate
as follows: At each time instant, we generate a co-location between two users if
their discretized actual locations are the same (and different from r⊥). Because
in real-life not all such situations correspond to actual co-location and because
even actual co-locations are not necessarily reported, in our evaluation we take
into account only a proportion ω (ranging from 0% to 100%) of the synthetic
co-locations.

For each user, we compute the number of co-locations she has with every
other user in the dataset, across the full user traces. We keep only the users for
which there exists another user with whom they have at least 200 co-locations.
For these users, we consider their common time interval (i.e., the longest time
interval during which all these users have at least one sample); we obtained an
interval of ∼6000 hours. Within the common interval, we sample 10 short traces
of 300 continuous hours such that (1) all users have at least 10% of valid samples
(i.e., , different from r⊥) and (2) all users have at least 20 co-locations with their
co-target1 (as defined in Equation (11)). This leaves us with a total of 5 users.

User mobility profiles construction. We build the mobility profiles {pu}u∈U
of the users based on their entire discretized traces by counting the transitions
from any region to any region (in R) in one time instant.

Obfuscation. We consider that users report a single (or none), potentially
obfuscated, location at each time instant.6 This means that the set R′ in which
the obfuscated location ou(·) takes values is R∪{r⊥}. We consider, for each user
u, that two location-privacy protection mechanisms are used together: First, the
location is hidden (i.e., obfuscated to r⊥) with a probability λu and then, if the
location has not been hidden, it is replaced by a region (chosen uniformly at
random) at a distance of at most du from the user’s actual discretized location
(i.e., a region). If the actual location of a user is not known (i.e., set to r⊥), the
LPPM returns r⊥ with probability 1. In our evaluation, we vary λu from 0 to 1
and we set du to the size of one grid cell; this means that, if it is not hidden, a
user’s location is obfuscated either to its actual value (with probability 0.2) or
to one of the four adjacent regions (e.g., 2, 6, 8 and 12 for region 7 in Figure 3),
each with probability 0.2.

Privacy Evaluation. We evaluate the location privacy of the users, and the
effect of co-locations on it, based on the metric defined in (2). For each user and
for each short trace, we generate 20 random obfuscated traces (remember that
obfuscation is a random process) and we perform a localization attack on each of
them. We compute the average location privacy of each user across the different
obfuscated traces and across the different time instants. Time instants for which
the location of a user is not known (i.e., set to r⊥) are not taken into account
in the computation of their average over time.

6 We make this assumption because of the limited size of the considered grid and we
leave the case where LPPMs output a set of locations to future work.



Limitations. Due to the synthetic nature of the reported location and co-
location information in our data source, our experimental setup does not per-
fectly reflect on a real usage case. Therefore, the results presented in this section
cannot directly be interpreted as the magnitude of the threat in real-life. Yet,
we believe that it suffices to get insight into the effect of co-locations on location
privacy, the sources of privacy loss, and the relative performance of the pro-
posed heuristics. Also, the number of users considered in our evaluation (i.e., 5)
is relatively small. Hence, the results may not be representative of the entire
population. In order to overcome the aforementioned shortcomings, we intend
to collect a large-scale dataset from an existing social network. We also intend
to run experiments on large grids (i.e., larger than the 5×5 grid used in the
evaluation).

5.2 Experimental Results

We now experimentally evaluate the algorithms, presented in Section 4, in dif-
ferent scenarios, with different settings. The goal of our evaluation is to assess
the raw performance of our heuristics, but also to compare them. In addition,
we analyze the effect of the different parameters of the model (including the
individual LPPM settings of the users and the differences between the individ-
ual LPPM settings of the users) and of the set of co-locations considered in the
localization attack.

Effects of co-locations and LPPM settings. We begin our evaluation by
analyzing the effect of (1) the proportion ω of reported co-location and (2) the
LPPM settings (i.e., w/ or w/o obfuscation and the location hiding probability
λ, assumed to be the same across users) in the case of two users, i.e., the tar-
get user and her first co-target are considered jointly in an optimal localization
attack, namely the limited user set approximation with N = 2. The results are
depicted in Figure 4. The left sub-figure shows the case where no obfuscation is
used (i.e., the users disclose their actual locations with probability 1−λ and hide
them completely otherwise), whereas the right sub-figure shows the case where
obfuscation is used (i.e., the users disclose their obfuscated locations, specifically
a region chosen uniformly at random among the actual location and the four im-
mediate neighboring regions, with probability 1 − λ and hide them otherwise).
The top graphs show a box-plot representation (i.e., first quartile, median, third
quartile and outliers) of the users’ location privacy expressed in terms of the
expected error of the adversary, in kilometers (left axis) and in proportion of
the size of the considered geographic area (right axis). For each couple of values
(λ, ω), we draw one box-plot to aggregate the data-points obtained for all users
and for all the 20 randomly generated obfuscated versions of each of the consid-
ered actual trace. Note that without obfuscation, the case λ = 0 leads to zero
privacy as users always disclose their actual locations. It can be observed that
the proportion of reported co-locations consistently decreases the location pri-
vacy of the users. To quantify this decrease, we plot (middle and bottom graphs)
the privacy loss caused by the use of co-location information, with respect to the
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Fig. 4. Privacy (top), absolute privacy loss (middle) and relative privacy loss (bottom)
for the limited user set attack with N = 2 users. The privacy loss is expressed wrt the
case where no co-locations are reported (ω = 0%); the histograms show median values.
Co-location information decreases privacy. The relative privacy loss is higher for small
values of the hiding probability and without obfuscation.

case where co-locations are ignored (or not available), i.e., ω = 0%. We show
both the median absolute privacy loss (in kilometers, middle graph) and the
median relative privacy loss (in percentage of the privacy in the case ω = 0%,
bottom graph). Note that the median privacy loss is not equal to the difference
of the median privacy. Consider for example, the case λ = 0.4 and ω = 50%:
in the case without obfuscation the median privacy loss is approximately 125m,
which corresponds to a decrease of 25%. The median absolute privacy loss can
go up to 290m (λ = 0.6, ω = 100%) and the median relative privacy loss up to
75% (λ = 0.2 and ω = 100%). We observe the same trend, with a more modest
loss, in the case where obfuscation is used. For the rest of the evaluation, we
focus on the case where users do obfuscate their locations and report ω = 50%
of the co-locations.

Effects of the differences of individual LPPM settings. Here, we analyze
the effect of the differences, in the users’ LPPM settings, on the location privacy
(loss) due to co-locations. To do so, we focus on the case of two users, a target
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(c) Relative privacy loss (wrt to ω = 0%)

Fig. 5. Median values of the target’s location privacy (loss), for the limited user set
attack with N = 2 users, when the target and her co-target have different values of λ
(with obfuscation and ω = 50%). The diagonals correspond to the values of Figure 4b.

and her co-target, both who obfuscate their location but with different hiding
probabilities λtarget and λco-target. We perform a joint optimal localization attack.
The results are depicted in Figure 5 under the form of heat-maps that represent
the target user’s location privacy (a) as well as her absolute (b) and relative (c)
privacy loss (wrt the case ω = 0%) as functions of the respective LPPM settings
λco-target (x-axis) and λtarget (y-axis).
A first observation is that co-locations always decrease the privacy of the target
(i.e., all values in Figure 5b are positive) and that the more information the
co-target discloses, the worse the privacy of the target is (i.e., the cells of the
heat-map depicted in Figure 5a become lighter, when going from right to left on
a given row).
The diagonals of the heat-maps correspond to the case λco-target = λtarget, which
is depicted in more details in Figure 4. The region of the heat-map above the
diagonal corresponds to the case where the target is more conservative, in terms
of her privacy attitude, than her co-target (i.e., λco-target < λtarget). It can be



observed that the information disclosed by the target herself compromises her
privacy more than the information disclosed by her co-target, e.g., the cell (0.6,0)
is lighter (which means that the target’s privacy is lower) than the cell (0,0.6).

By comparing the columns “λco-target = 1” and “no co-target” (two right-most
columns in Figure 5a), we can observe the privacy loss stemming from the use,
through the co-location information, of the co-target’s mobility profile alone (as
the co-target never discloses her location). This is substantial.

Finally, in the extreme case where the target never discloses location informa-
tion and her co-target always does (top-left cell of the heat-maps in Figures 5b
and 5c), the privacy loss for the target is 330m, which corresponds to a decrease
of 16%. This case (and in general the cases where the target never discloses lo-
cation information, i.e., the top row of the heat-maps) highlights the fact that,
as reported co-locations involve two users, users lose some control over their pri-
vacy: Without revealing any information about herself, a user can still have her
privacy decreased by other users, due to co-location information.

For the rest of the evaluation, we focus on the case where all users have the same
LPPM settings (i.e., same values of λ).

Comparison of the proposed heuristics. Here, we compare, through exper-
imentation (we leave the analytical comparison to future work), the proposed
inference algorithms for the localization attack, by taking into account different
scenarios, as depicted in Figure 6. In scenario (a), we consider, in turn, all target
users in our set and perform an individual localization attack on each of them,
using only their own reported locations and no co-locations. This corresponds
to the baseline case ω = 0%, which was presented in detail in Figure 4b. We
then consider the case of an adversary that exploits co-locations. We assume the
adversary observes a limited proportion, ω = 50%, of the existing co-locations.
Scenario (b) corresponds to the case of an adversary that, in order to attack a
target user, performs an optimal joint inference attack on the target and her co-
target, as described in Section 3. This scenario corresponds to the case ω = 50%
in Figure 4b. Scenarios (c) and (d) correspond to the case of an adversary that
performs an optimal joint attack on the target and her two co-targets. We
distinguish two cases, (c) – in which the co-locations between the co-targets are
ignored and (d) – in which all co-locations between any of the three users are
considered. We make this distinction solely to quantify the privacy loss stem-
ming from the use of co-locations that do not directly involve the target. In
practice, an adversary would always consider scenario (d) as it takes into ac-
count more information at no extra cost. Finally we consider scenario (e), that
corresponds to an adversary that uses reported all co-locations but solves an
individual inference problem for each user, as described in 4.2.

Figure 7 shows the results of our comparison. The graph on the left shows a box-
plot representation of users’ privacy, for each of scenarios (a)-(e). To quantify
the different effects on the users’ privacy of the set of considered co-locations
and of the heuristic used, we show (right) the absolute and relative privacy loss,
with respect to scenario (a), for each of the scenarios (b)-(e). It can be observed
by comparing scenarios (a)-(d) that, unsurprisingly, the users’ privacy decreases



with the amount of considered co-locations. However, the comparison between
scenarios (c) and (d) shows that co-locations between the target’s co-targets
does not significantly improve the performance of the localization attack. Finally,
we observe that the second heuristic, which takes into account all co-locations
outperforms the first heuristic (N ≤ 3), at a lower computational cost.

u

(a)

u

(b)

u

(c)

u

(d)

all users

u

(e)

Fig. 6. Co-locations considered in the evaluation: (a) no co-locations, (b) only co-
locations between the target and co-target1 (Heuristic 1, N = 2), (c) only co-locations
between the target and co-target1 and between the target and co-target2 (Heuristic 1,
N = 3), (d) all co-locations between the target, co-target1 and co-target2 (Heuristic 1,
N = 3), (e) all co-locations (Heuristic 2). In scenarios (b)-(e), we consider that ω = 50%
of the co-locations are reported.
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Fig. 7. Comparison of the different localization attacks for the scenarios (a)-(e) de-
picted in Figure 6. The privacy loss (right) is evaluated wrt scenario (a).

6 Related Work

Location is identity. Even if the set of locations shared by a user is anonymized,
and her true identity is hidden from the location-based service provider, the ob-
served trajectories can be re-identified [5,9,12,15]. This attack is made by link-
ing available information about users’ mobility in the past with their observed



traces. To protect against such attacks, many location obfuscation mechanisms
have been proposed in the literature; they suggest users hide their locations
at certain locations, or reduce the accuracy or granularity of their reported lo-
cations [4, 8, 13]. These techniques increase users’ privacy by making it more
difficult for an adversary to de-anonymize users and localize or track them over
time. The location privacy of users in such settings can be computed using the
expected error of an adversary in estimating their true locations [20]. In such an
inference framework, an adversary has a background knowledge on users’ mo-
bility models; this is used to reconstruct the full trajectories of the users, given
the anonymized and obfuscated observed traces.

The adversary’s information, however, is not limited to mobility models. With
most users being members of social networks, an adversary can de-anonymize lo-
cation traces by matching the graph of co-traveler users with their social network
graph [21]. Co-travelers are those who have been in each others’ physical prox-
imity for a considerable number of times. Researchers have extensively studied
the problem of inferring social ties between users based on their physical proxim-
ity [3,7]. Recent revelations about NSA surveillance programs also show that this
type of information is of great use for tracking and identifying individuals [2].

The correlation between different users’ information also opens the door to a
new type of privacy threat. Even if a user does not reveal much information about
herself, her privacy can be compromised by others. In [11], the authors study
how information revealed, from pictures, by a user’s friends in social networks
can be used to infer private information about her location. Private information
about, for example, user profile and her age can also be inferred from shared
information on online social networks [6,17]. Mobile users, connecting to location-
based services from a same IP address, can also compromise the privacy of those
who want to keep their location private [23]. The loss in privacy, due to other
users, has also been shown in other contexts such as genomics [10,14].

Extracting co-location information about users, i.e., who is with whom, is
becoming increasingly easier. More specifically, with the proliferation of mobile
social networks, where users can check-in themselves and others to different loca-
tions, the threat of available co-location information on users’ location privacy
is clear (as pointed out in [22]). Despite the mentioned works on quantifying
the location privacy and the privacy of users in social networks, as well as the
extensive research on privacy loss due to others, there has not been a study on
evaluating location privacy considering co-location information. We bridge the
gap between studies on location privacy and social networks, and we propose
the first analytical framework to quantify the effects of co-location information
on location privacy, where users can also make use of obfuscation mechanisms.

7 Conclusion

In this paper, we have studied the effect on users’ location privacy when co-
location information is available, in addition to individual (obfuscated) location
information. To the best of our knowledge, this is the first paper to quantify



the effects of co-location information, that stems from social relationships be-
tween users, on location privacy; as such it constitutes a first step towards bridg-
ing the gap between studies on location privacy and social networks. We have
shown that, by considering the users’ locations jointly, an adversary can exploit
co-location information to better localize users, hence decreasing their individ-
ual privacy. Although the optimal joint localization attack has a prohibitively
high computational complexity, the polynomial-time approximate inference al-
gorithms that we propose in the paper provide good localization performance.
An important observation from our work is that a user’s location privacy is
no longer entirely in her control, as the co-locations and the individual location
information disclosed by other users significantly affect her own location privacy.

The message of this work is that protection mechanisms must not ignore
the social aspects of location information. Because it is not desirable to report
dummy lists of co-located users (as this information is displayed on the users’
profiles on social networks), a location-privacy preserving mechanism needs in-
stead to generalize information about co-located users (i.e., replace the names of
the co-located users by the type of social tie, e.g., “with two friends”) or to gen-
eralize the time (i.e., replace the exact time of the co-location with the period of
the day, e.g., replacing 11am with “morning”, when the co-location is declared
a posteriori) of a social gathering as well as the locations of users at other lo-
cations, in order to reduce the effectiveness of the attacks we suggested in this
paper. We intend to tackle the design of social-aware location-privacy protection
mechanisms (running on the users’ mobile devices) to help the users assess and
protect their location privacy when co-location information is available.
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