
Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):188–205

Peeter Laud*
Parallel Oblivious Array Access for Secure Multiparty
Computation and Privacy-Preserving Minimum Spanning
Trees
Abstract: In this paper, we describe efficient protocols
to perform in parallel many reads and writes in private
arrays according to private indices. The protocol is im-
plemented on top of the Arithmetic Black Box (ABB)
and can be freely composed to build larger privacy-
preserving applications. For a large class of secure multi-
party computation (SMC) protocols, our technique has
better practical and asymptotic performance than any
previous ORAM technique that has been adapted for
use in SMC.
Our ORAM technique opens up a large class of paral-
lel algorithms for adoption to run on SMC platforms.
In this paper, we demonstrate how the minimum span-
ning tree (MST) finding algorithm by Awerbuch and
Shiloach can be executed without revealing any details
about the underlying graph (beside its size). The data
accesses of this algorithm heavily depend on the location
and weight of edges (which are private) and our ORAM
technique is instrumental in their execution. Our im-
plementation is the first-ever realization of a privacy-
preserving MST algorithm with sublinear round com-
plexity.

Keywords: Secure Multiparty Computation; Oblivious
Arrays; Minimum Spanning Tree

DOI 10.1515/popets-2015-0011
Received 2015-02-15; revised 2015-05-09; accepted 2015-05-15.

1 Introduction
In Secure Multiparty Computation (SMC), p parties
compute (y1, . . . , yp) = f(x1, . . . , xp), with the party
Pi providing the input xi and learning no more than
the output yi. For any functionality f , there exists a
SMC protocol for it [27, 57]. A universally compos-
able [12] abstraction for SMC is the arithmetic black
box (ABB) [21]. The ideal functionality FABB allows
the parties to store private data in it, perform com-
putations with data inside the ABB, and reveal the re-

*Corresponding Author: Peeter Laud: Cybernetica AS,
E-mail: peeter.laud@cyber.ee

sults of computations. This means that the ABB does
not leak anything about the results of the intermedi-
ate computations, but only those values whose declas-
sification is explicitly requested by the parties. Hence,
any secure implementation of ABB also protects the se-
crecy of inputs and intermediate computations. There
exist a number of practical implementations of the
ABB [4, 7, 11, 18, 31, 43], differing in the underlying
protocol sets they use and in the set of operations with
private values that they make available for higher-level
protocols.

These ABB implementations may be quite efficient
for realizing applications working with private data, if
the control flow and the data access patterns of the
application do not depend on private values. For hid-
ing data access patterns, oblivious RAM (ORAM) tech-
niques [28] may be used. These techniques have a signif-
icant overhead, which is increased when they are com-
bined with SMC. Existing combinations of ORAM with
SMC report at least O(log3m) overhead for accessing
an element of an m-element array [34].

In this work, we propose a different method for read-
ing and writing data in SMC according to private ad-
dresses. We note that SMC applications are often highly
parallelized, because the protocols provided by ABB im-
plementations often have significant latency. We exploit
this parallelism in designing oblivious data access meth-
ods, by bundling several data accesses together. In the
following, we assume that we have private vector ~v of m
elements (the number m is public, as well as the sizes of
other pieces of data). We provide two protocols on top
of ABB: for reading its elements n times, and for writing
its elements n times. These protocols receive as an input
a vector of indices (of length n) and, in case of writing,
a new vector of values, and return a vector of selected
elements of ~v, or the updated vector ~v. The asymptotic
complexity of both protocols is O((m+ n) log(m+ n)),
while the constants hidden in the O-notation are reason-
able. The protocols themselves are surprisingly simple;
the simplicity also being attenuated by the use of the
ABB model. Our protocols can be interleaved with the
rest of the SMC application in order to provide oblivious
data access capability to it.

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 189

To demonstrate the usefulness of our protocols in
privately implementing algorithms with private data ac-
cess, and to expand the set of problems for which there
exist reasonably efficient privacy-preserving protocols,
we provide a protocol for finding the minimum spanning
tree (MST) of a sparse weighted graph. The protocol is
implemented on top of ABB, i.e. the are no assumptions
on which computing party initially knows which parts of
the description of the graph. Kruskal’s and Prim’s algo-
rithms [15], the best-known algorithms for finding MST
(without privacy considerations), are not well suited for
a direct implementation on top of ABB, because of their
inherent sequentiality. In this paper, we consider a par-
allel algorithm by Awerbuch and Shiloach [3] (itself an
adoption of a MST algorithm by Borůvka [45]) that runs
on a PRAM (Parallel Random Access Machine) in time
logarithmic to the size of the graph, using as many pro-
cessors as the graph has edges. Hence the workload of
this algorithm is asymptotically the same as Kruskal’s.
We adapt it to run on top of our ABB implementa-
tion, using the private data access protocols we’ve de-
veloped. The adoption involves the simplification of the
algorithm’s control flow, and choosing the most suitable
variants of our protocols at each oblivious read or write.
The efficiency of the resulting protocol is very reason-
able; our adoption only carries the cost of an extra log-
arithmic factor, making the communication complexity
of our protocol to be O(|E| log2 |V |). We believe that
the adoption of other PRAM algorithms for SMC is a
promising line of research.

This paper has the following structure. After re-
viewing the related work in Sec. 2 and providing the nec-
essary preliminaries, both for the ABB model of SMC
and solving MST on PRAM in Sec. 3, we give the ac-
tual protocols for parallel reading and writing in Sec. 4
and discuss both their theoretical and practical perfor-
mance in Sec. 5. We will then present the solution for
the private MST problem, describing the adoption of
the algorithm described in Sec. 3 to privacy-preserving
execution in Sec. 6, again quantifying its performance.
We conclude in Sec. 7.

2 Related work
Secure multiparty computation (SMC) protocol sets can
be based on a variety of different techniques, including
garbled circuits [57], secret sharing [8, 24, 48] or homo-
morphic encryption [16]. A highly suitable abstraction
of SMC is the universally composable Arithmetic Black

Box (ABB) [21], the use of which allows very simple se-
curity proofs for higher-level SMC applications. Using
the ABB to derive efficient privacy-preserving imple-
mentations for various computational tasks is an ongo-
ing field of research [2, 14, 17, 41], also containing this
paper.

Protocols for oblivious RAM [28] have received sig-
nificant attention during recent years [37, 49, 51]. The
overhead of these protocols is around O(log2m) when
accessing an element of a vector of length m, where the
elements themselves are short. These ORAM construc-
tions assume a client-server model, with the client ac-
cessing the memory held by the server, which remains
oblivious to the access patterns. This model is simpler
than the SMC model, because the client’s and server’s
computations are not shared among several parties.

In this paper, we use SMC techniques to achieve
oblivious data access in SMC applications. This goal
has been studied before, by implementing the client’s
computations in an ORAM protocol on top of a secure
two-party computation protocol set [25, 26, 29, 42], or
over an SMC protocol set [20, 34]. For these protocol
sets, the overhead of at least O(log3m) is reported. Re-
cently, optimizing ORAM to perform well in the secure
computation setting has become a goal of its own [54].

The ORAM constructions often allow only sequen-
tial access to data, as the updating of the data struc-
tures maintained by the server cannot be parallelized.
Recently, Oblivious Parallel RAM [9] has been pro-
posed, which may be more suitable for SMC protocol
sets where the computations have significant latency.

Our parallel reading protocol essentially builds
and then applies an oblivious extended permutation
(OEP) [32, 36, 38, 44] (see Sec. 4.1 for details). Our
OEP application protocol is more efficient (both in prac-
tice and asymptotically) than any other published con-
struction built with SMC techniques. The building of an
OEP in composable manner has only been considered
in [38]; our construction is more efficient than theirs.
Our writing protocol is similar to the associative map
circuit [58], but optimized for SMC protocol sets based
on secret sharing.

There exist privacy-preserving protocols for a num-
ber of graph algorithms, e.g. single-source shortest paths
and for maximum flow [2, 6, 10, 34]. MST algorithms
also belong to this list. Brickell and Shmatikov [10]
present a two-party protocol that makes the resulting
MST public. Blanton et al. [6] adapt Prim’s algorithm
for privacy-preserving execution in a way that is asymp-
totically optimal (in terms of communication complex-
ity) for dense graphs. For both of them, the number of

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 190

communication rounds is proportional to the number of
vertices in the graph.

3 Preliminaries

3.1 Secure Multiparty Computation

3.1.1 Universal Composability

Universal composability (UC) [12] is a framework for
stating security properties of systems. It considers an
ideal functionality F and its implementation Π with
identical interfaces to the intended p users. The latter
is at least as secure as the former (or: Π securely imple-
ments F), if for any attacker A there exists an attacker
AS , such that Π‖A and F‖AS are indistinguishable to
any potential user Z of either Π or F . Here X‖Y de-
notes the systems X and Y (consisting of one or more
interactive Turing machines) running in parallel, possi-
bly communicating with each other over the common
interface.

The value of the framework lies in the composi-
tion theorem. The protocol Π may be implemented in
the F-hybrid model. In this case the Turing machines
M1, . . . ,Mp that implement the steps of the protocol Π
for the p users may additionally access an ideal function-
ality F for certain steps of the protocol. The protocol
Π securely implements an ideal functionality G in the
F-hybrid model if for any A there exists AS , such that
(M1‖ · · · ‖Mp‖F)‖A and G‖AS are indistinguishable.

Let Ξ, consisting of Turing machines M ′1, . . . ,M ′p
be a protocol that implements the ideal functionality
F . The machines M ′1, . . . ,M ′p could be used to provide
the functionality of F to the machines M1, . . . ,Mp of
the protocol Π. Let M ′′i be the “union” of Mi and M ′i ,
where Mi communicates with the user Z, and all calls
from Mi to F are replaced with calls to M ′i (hence Mi

acts as the user for M ′i). Let ΠΞ denote the protocol
consisting of machines M ′′1 , . . . ,M ′′p . The composition
theorem states the following [12]:

Theorem 1. If Π securely implements G in F-hybrid
model and Ξ securely implements F [in H-hybrid model]
then ΠΞ securely implements G [in H-hybrid model].

3.1.2 Arithmetic Black Box

The arithmetic black box is an ideal functionality FABB.
It allows its users (a fixed number p of parties) to se-
curely store and retrieve values, and to perform compu-
tations with them. When a party sends the command
store(v) to FABB, where v is some value, the functional-
ity assigns a new handle h (sequentially taken integers)
to it by storing the pair (h, v) and sending h to all par-
ties. If a sufficient number (depending on implementa-
tion details) of parties send the command declassify(h)
to FABB, it looks up (h, v) among the stored pairs and
responds with v to all parties. When a sufficient number
of parties send the command compute(op;h1, . . . , hk) to
FABB, it looks up the values v1, . . . , vk corresponding
to the handles h1, . . . , hk, performs the operation op on
them, stores the result v together with a new handle
h, and sends h to all parties. In this way, the parties
can perform computations without revealing anything
about the intermediate values or results, unless a suf-
ficiently large coalition wants a value to be revealed,
by issuing the command declassify(h) to FABB. When-
ever FABB executes a command, it also informs the ad-
versary, forwarding the command to it (except for the
value v in the store-command). This kind of informing
is necessary, because the real adversary is able to per-
form traffic analysis, deducing the executed commands
from the network traffic it can see between computing
parties.

The existing implementations of ABB are protocol
sets ΠABB based on either secret sharing [7, 11, 18],
threshold homomorphic encryption [21, 31] or garbled
circuits [22, 42]. Depending on the implementation, the
ABB offers protection against a honest-but-curious, or a
malicious party, or a number of parties (up to a certain
limit). An SMC application may be be built by having
an ABB implementation as its component, and invok-
ing the computation commands of the ABB according
to the description of the computation realized by this
application.

We have used the Sharemind SMC framework [7]
for implementing the protocols proposed in this pa-
per. Its implementation of the ABB consists of three
parties, providing protection against one honest-but-
curious party. The protocols of Sharemind are based
on secret sharing over rings.

All ABB implementations provide protocols for
computing linear combinations of private values (with
public coefficients; formally, the coefficients are part of
the operation name op) and for multiplying private val-
ues. The linear combination protocol is typically cheap,

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 191

involving no communication and/or cheap operations
with values. When estimating the (asymptotic) com-
plexity of protocols built on top of ABB, it is typical
to disregard the costs of computing of linear combina-
tions. There may be other operations provided by the
ABB implementation. These operations typically have
a cost at least as large as multiplying two private values,
and usually much more [8].

The peformance profiles of ABB implementations
based on different SMC constructions are very differ-
ent. Implementations based on operations with values
secret-shared over some ring require less communica-
tion among the parties than implementations based on
garbled circuits, if the operations the SMC application
performs map nicely into the arithmetic operations on
that ring. On the other hand, protocols based on garbled
circuits may run in constant rounds, while for secret-
sharing based protocols the number of rounds is at least
proportional to the circuit-depth of the computation re-
alized by the SMC application. Hence the parallelizabil-
ity of the application may be a criterion in choosing the
ABB implementation.

3.1.3 Extending an ABB

Let FABB support a certain set of operations. Let F ′ABB
support a larger set of operations. If we already have a
secure implementation of FABB and want to securely im-
plement F ′ABB, it makes a lot of sense in the FABB-hybrid
model, especially if the implementation Π′ABB consisting
of the machines M ′1, . . . ,M ′k works as follows [52]:
1. Any store- or declassify-command received by the

machines M ′1, . . . ,M ′k from the user Z is forwarded
by them to FABB, and the resulting handle or value
returned to the user. The machines M ′i contain a
translation table for handles known by Z and han-
dles known by FABB — each command from Z may
be translated to several commands to FABB, as we
explain below. The translation table is used by M ′i
while forwarding the handles in both directions. The
translation table is public, as it can be deduced from
the information FABB has sent to the adversary.

2. Any compute-command with an operation op known
to FABB is similarly forwarded to FABB and the re-
sulting handle returned to Z.

3. Any compute-command with a novel operation op is
converted to several commands to FABB according
to a public program Pop (the same programmed is
used by all machines M ′i). There is a proof that the
execution of Pop makes the result of op to be stored

inside FABB. The handle to this result is returned to
Z.

We see that the machines M ′i do not directly commu-
nicate with each other. Neither do they directly com-
municate with the adversary A, except when they have
been corrupted. To prove that Π′ securely implements
F ′ABB, we have to show how the attacker AS working
against F ′ABB is constructed from any attacker A work-
ing against Π′. We construct AS = Sim‖A, where the
task of the simulator Sim is to translate between the
adversarial interface of F ′ABB and the interface A has
for communicating with FABB.

The simulator Sim receives from F ′ABB the com-
mands it is executing, and translates them to commands
FABB would have executed. For the first two kinds of
commands listed above, the translation is equal to the
command (except for the translation of handles; Sim
maintains the same translation table as M ′i). For the
third kind of command, Sim internally executes Pop

and sends to A the commands it contains. This transla-
tion is trivial if there are no declassifications in Pop. If
there are, we have to explain how Sim generates the de-
classified values in a way that is indistinguishable from
Π. Also, if some computing parties store new values in
FABB, such that these values are not a priori known
to other computing parties, then we must argue that
Pop allows the validity of these values to be verified.
In this paper, there are no stores of such values. Hav-
ing constructed such simulator, we have shown that Π′

is a secure implementation of F ′ABB, tolerating any cor-
ruptions. Hence the corruptions tolerated by an actual
implementation of Π′ in the “plain” model are the same
as those tolerated by the used implementation of FABB.

The extension of a basic ABB has been demon-
strated in e.g. [1, 5, 13, 17, 46], where operations like
bit-decomposition, equality and less-than comparisons,
fixed- and floating-point, set and multiset operations
have been added to the ABB.

We present our oblivious data access, as well as
private MST operations as extensions to the ABB de-
scribed in Sec. 3.1.4. In the programs Pop we present,
we let JxK denote that some value has been stored in
the ABB and is accessible under handle x. The notation
JzK← JxK⊗JyK means that FABB is asked to perform the
operation ⊗ with values stored under handles x and y,
and the result is stored under handle z. In ABB imple-
mentations this involves the invocation of the protocol
for ⊗.

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 192

3.1.4 Our Initial ABB

In this paper, we require the values stored in the ABB
to come from a sufficiently large ring, such that the ar-
ray indices could be represented by them. Regarding
the provided functionality, we require the ABB imple-
mentation to provide protocols for equality and com-
parison operations [8, 17]. We also require the ABB to
have oblivious shuffles — private permutations of values
— together with operations to apply and unapply them
to vectors of values. Given an oblivious shuffle JσK for
m elements, and a private vector (Jv1K, . . . , JvmK), the
apply operation returns handles to elements of a new pri-
vate vector (Jv′1K, . . . , Jv′mK) with v′i = vσ(i). The unapply
operation similarly returns handles to (Jv′1K, . . . , Jv′mK),
but this time the equalities v′σ(i) = vi hold. Addition-
ally, there are operations that return handles to obliv-
ious shuffles. The operation random_shuffle(m) returns
JσK, where σ is a uniformly randomly chosen element of
the symmetric group Sm. The operation JσK ◦ ξ, where
σ, ξ ∈ Sm, returns JτK, where τ = σ ◦ ξ.

It is up to the implementation of an ABB, how
oblivious shuffles are represented. We note that Waks-
man networks [53] can be used to add oblivious shuf-
fles to any ABB, in the sense of Sec. 3.1.3. For certain
ABB implementations, including Sharemind, a more
efficient implementation is described in [40]. The com-
plexity of the protocols implementing the ABB opera-
tions apply, unapply and random_shuffle is either O(m)
or O(m logm) (for constant number of parties). The
complexity of the composition of a private and a public
shuffle is constant.

With oblivious shuffles and comparison operations,
the ABB can be extended to sort vectors of pri-
vate values (of length m) in O(m logm) time, where
the size of the constants hidden in the O-notation
is reasonable [30]. In our protocols, we let JσK ←
sortperm(J~v1K, . . . , J ~vkK), where ~v1, . . . , ~vk are vectors of
length m, denote the operation that produces an obliv-
ious shuffle JσK, such that the application of σ to each
of ~v1, . . . , ~vk would bring them to an order that is
componentwise lexicographically sorted (with the ~v1-
component being the most significant). We require the
sorting obtained through sortperm and shuffle applica-
tion to be stable.

3.2 Parallel algorithms for MST

Let G = (V,E) be an undirected graph, where the set
of vertices V is identified with the set {1, . . . , |V |} and

the set of edges E with a subset of V × V (the edge
between vertices u and v occurs in E both as (u, v) and
as (v, u)). We assume that the graph is connected. Let
ω : E → N give the weights of the edges (ω must be
symmetric). A minimum spanning tree of G is a graph
T = (V,E′) that is connected and for which the sum∑

e∈E′ ω(e) takes the smallest possible value.
Kruskal’s and Prim’s algorithms are the two most

well-known algorithms for finding the MST of a graph.
These algorithms work in time O(|E| log |V |) or O(|E|+
|V | log |V |) [15]. They are inherently sequential and
therefore unsuitable as a basis for our privacy-preserving
implementation on top of an ABB implementation
based on secret sharing.

Other algorithms for MST have been proposed.
Borůvka’s algorithm [45] works in iterations. At the be-
ginning of each iteration, the set of vertices V has been
partitioned into V1 ∪̇ · · · ∪̇ Vk and for each Vi, the mini-
mum spanning tree has already been found (at the start
of the algorithm, each vertex is a separate part). For
each i, let ei be a minimum-weight edge connecting a
vertex in Vi with a vertex in V \Vi. We add all edges ei
to the MST we are constructing and join the parts Vi
that are now connected. We iterate until all vertices are
in the same part. Clearly, the number of iterations is at
most log2 |V | because the number of parts drops to at
most half during each iteration.

Borůvka’s algorithm seems amenable for paralleliza-
tion, as the edges ei can all be found in parallel. Par-
allelizing the joining of parts is more involved. Awer-
buch and Shiloach [3] have proposed a parallel variant
of Borůvka’s algorithm that introduces data structures
to keep track of the parts of V , and delays the joining of
some parts. Due to the delays, the number of iterations
may increase, but it is shown to be at most log3/2 |V |.

Awerbuch-Shiloach algorithm executes on priority-
CRCW PRAM. Parallel random access machines
(PRAM) are a theoretical model for parallel computa-
tions. In this model, an arbitrary number of processors
are available, executing synchronously and sharing com-
mon memory. There exist several subclasses of PRAM,
depending on how the read/write conflicts to the same
memory location are resolved. A CRCW PRAM allows
many processors to read and write the same location at
the same time. In priority-CRCW PRAM, concurrent
writes to the same location are resolved by (numeric)
priorities assigned to the write: only the writing opera-
tion with the highest priority gets through [33].

One iteration of the Awerbuch-Shiloach algorithm
requires constant time, when executed by |E| proces-
sors. The algorithm assumes that all edges have different

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 193

weights (this does not lessen the generality). We give a
thorough description of their algorithm, as we are going
to adapt it for privacy-preserving execution in Sec. 6.

The Awerbuch-Shiloach algorithm [3] is presented in
Alg. 1. It uses the array T to record which edges have
been included in the MST. For keeping track of the par-
titioning of V , Alg. 1 uses a union-find data structure —
the array F that for each vertex records its current “par-
ent”. When interpreting the array F as a set of directed
edges (v, F [v]) for each v ∈ V , then the directed graph
(V, F) will be a forest of rooted trees throughout the ex-
ecution of Alg. 1. Initially (as set in line 5), this graph
consists of trees of size 1, i.e. each vertex is a root of a
tree consisting only of this vertex. In general, a vertex v
is currently a root of a tree if F [v] = v. The trees in the
forest (V, F) define the parts in the current partitioning.
A rooted tree is called a star if its height is at most 1,
i.e. it is either an isolated vertex or a tree consisting of
a root and a number of leaves. The correctness of the
Awerbuch-Shiloach algorithm depends on the following
property: if v is a vertex in a star, then F [v] is the root
of that star.

Algorithm 1: MST algorithm by Awerbuch and
Shiloach
Data: Connected graph G = (V,E), edge weights ω
Result: E′ ⊆ E, such that (V,E′) is the MST of G

1 foreach (u, v) ∈ E do
2 T [{u, v}]← false
3 A[(u, v)]← true

4 foreach v ∈ V do
5 F [v]← v

6 W[v]← NIL

7 while ∃(u, v) ∈ E : A[(u, v)] do
8 foreach (u, v) ∈ E where A[(u, v)] do
9 if in_star(u) ∧ F [u] 6= F [v] then

10 F [F [u]]← F [v] with priority ω(u, v)
11 W[F [u]]← {u, v} with priority ω(u, v)

12 Synchronize
13 if W[F [u]] = {u, v} then T [{u, v}]← true;
14 if u < F [u] ∧ u = F [F [u]] then F [u]← u;
15 Synchronize
16 if in_star(u) then
17 A[(u, v)]← false

18 else
19 F [F [u]]← F [u]

20 return {(u, v) ∈ E | T [{u, v}]}

Algorithm 2: Checking for stars in Alg. 1
Data: A set V , a mapping F : V → V

Result: Predicate St on V , indicating which
elements of V belong to stars

1 foreach v ∈ V do St[v]← true;
2 foreach v ∈ V do
3 if F [v] 6= F [F [v]] then
4 St[v]← false
5 St[F [F [v]]]← false

6 foreach v ∈ V do St[v]← St[v] ∧ St[F [v]];
7 return St

The array A records which edges are “active”. The
algorithm iterates as long as any active edges remain.
The body of the while-loop is multi-threaded, creating
one thread for each active edge. The changes a thread
makes in common data are not visible to other threads
until the next Synchronize-statement. In particular,
the reads and writes of F in line 10 by different threads
do not interfere with each other.

The Awerbuch-Shiloach algorithm joins two parts
in the current partitioning of V or, two rooted trees in
the forest defined by F , only if at least one of them is
a star. Computing, which vertices belong in stars, can
be done in constant time with |V | processors. At each
iteration of Alg. 1, before executing the lines 9 and 16,
the algorithm Alg. 2 is invoked and its output is used
to check whether the vertex u belongs to a star.

An iteration of Alg. 1 can be seen as a sequence of
three steps, separated by the Synchronize-statements.
In first step, the edges to be added to the tree are se-
lected. For each star with root r ∈ V , the lightest out-
going edge is selected and stored inW[r]. This selection
crucially depends on the prioritized writing; the writing
with smallest priority will go through. Also, the star is
made a part of another tree, by changing the F -ancestor
of r. In the second step, we break the F -cycles of length
2 that may have resulted from joining two stars. Inde-
pendently, we also record the edges added to the MST.
In the third step, we decrease the height of F -trees, as
well as deactivate the edges that attach to a component
that is still a star at this step. These edges definitely
cannot end up in the MST.

Alg. 2 for checking which vertices belong in stars is
simple. If the parent and the grandparent of a vertex
differ, then this vertex, as well as its grandparent are
not in a star. Also, if a parent of some vertex is not in
a star, then the same holds for this vertex.

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 194

4 Oblivious data access
We present the protocols for obliviously reading and
writing elements of an array as extensions to the ABB
specified in Sec. 3.1.4.

4.1 Protocol for reading

In Alg. 3, we present our protocol for obliviously reading
several elements of an array. Given a vector ~v of length
m, we let prefixsum(~v) denote a vector ~w, also of length
m, where wi =

∑i
j=1 vj for all i ∈ {1, . . . ,m}. Comput-

ing prefixsum(J~vK) is a free operation in existing ABB im-
plementations, because addition of elements, not requir-
ing any communication between the parties, is counted
as having negligible complexity. We can also define the
inverse operation prefixsum−1: if ~w = prefixsum(~v) then
~v = prefixsum−1(~w). The inverse operation is even eas-
ier to compute: v1 = w1 and vi = wi − wi−1 for all
i ∈ {2, . . . ,m}.

Algorithm 3: Reading n values from the private
array
Data: A private vector J~vK of length m
Data: A private vector J~zK of length n, with

1 ≤ zi ≤ m for all i
Result: A private vector J~wK of length n, with

wi = vzi for all i
1 foreach i ∈ {1, . . . ,m} do JtiK← i;
2 foreach i ∈ {1, . . . , n} do Jtm+iK← JziK;
3 JσK← sortperm(J~tK)

. .
4 J~v′K← prefixsum−1(J~vK)
5 foreach i ∈ {1, . . . ,m} do JuiK← Jv′iK;
6 foreach i ∈ {1, . . . , n} do Jum+iK← 0;
7 J~u′K← unapply(JσK; prefixsum(apply(JσK; J~uK)))
8 foreach i ∈ {1, . . . , n} do JwiK← Ju′m+iK;
9 return J~wK

We see that in Alg. 3, the permutation σ orders the
indices which we want to read, as well as the indices
1, . . . , n of the “original array” ~v. Due to the stability of
the sort, each index of the “original array” ends up be-
fore the reading indices equal to it. In apply(σ, ~u), each
element v′i of ~v′, located in the same position as the in-
dex i of the “original array” in sorted ~t, is followed by
zero or more 0-s. The prefix summing restores the ele-
ments of ~v, with the 0-s also replaced with the element

Let ~v = (1, 4, 9, 16, 25). Let ~z = (3, 2, 4, 3). The interme-
diate values are the following.
– ~t = (1, 2, 3, 4, 5, 3, 2, 4, 3)
– σ is the permutation

1 2 3 4 5 6 7 8 9
1 2 7 3 6 9 4 8 5

meaning that e.g. the 3rd element in the sorted vec-
tor is the 7th element in the original vector.

– ~v′ = (1, 3, 5, 7, 9) and ~u = (1, 3, 5, 7, 9, 0, 0, 0, 0).
– After applying σ to ~u, we obtain the vector

(1, 3, 0, 5, 0, 0, 7, 0, 9).
– After prefixsumming, we get the vector

(1, 4, 4, 9, 9, 9, 16, 16, 25). Denote it with ~y.
– After applying the inverse of σ, we get ~u′ =

(1, 4, 9, 16, 25, 9, 4, 16, 9). Indeed, to find e.g. u′7, we
look for “7” in the lower row of the description of σ.
We find “3” in the upper row, meaning that u′7 = y3.

– Finally, we return the last n elements of ~u′, which
are ~w = (9, 4, 16, 9).

All values are private, i.e. stored in the ABB.
Fig. 1. Example of private reading according to Alg. 3

that precedes them. Unapplying σ restores the original
order of ~u and we can read out the elements of ~v from
the latter half of ~u′. A small example is presented in
Fig. 1.

By the arguments in Sec. 3.1.3, the protocol pre-
sented in Alg. 3 clearly preserves the security guaran-
tees of the implementation of the underlying ABB, as it
applies only ABB operations, classifies only public con-
stants and declassifies nothing. Its complexity is domi-
nated by the complexity of the sorting operation, which
is O((m+ n) log(m+ n)). We also note that the round
complexity of Alg. 3 is O(log(m+ n)).

Instead of reading elements from an array, the ele-
ments of which are indexed with 1, . . . ,m, the presented
protocol could also be used to read the private values
from a dictionary. In this case, the elements of the vector
~v would not be indexed with 1, . . . ,m, but with (private)
Jj1K, . . . , JjmK. For reading from a dictionary, JtiK is not
initialized with i, but with JjiK in line 1. The algorithm
has to be slightly modified to detect if all indices that
we attempt to read are present in the dictionary.

Note that in Alg. 3, the argument J~vK is only used
after the dotted line. At the same time, the step that
dominates the complexity of the protocol — sorting of
J~tK in line 3 — takes place before the dotted line. Hence,

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 195

if we read the same positions of several vectors, we could
execute the upper part of Alg. 3 only once and the lower
part as many times as necessary. In Sec. 6, we will denote
the upper part of Alg. 3 with prepareRead (with inputs
J~zK and m, and output JσK), and the lower part with
performRead (with inputs J~vK and JσK).

An extended permutation [44] from m elements to
n elements is a mapping from {1, . . . , n} to {1, . . . ,m}
(note the contravariance). The application of an ex-
tended permutation φ to a vector (x1, . . . , xm) produces
a vector (y1, . . . , yn), where yi = xφ(i). An oblivious ex-
tended permutation (OEP) protocol preserves the pri-
vacy of ~x, ~y and φ. The prepareRead protocol essen-
tially constructs the representation JσK of an OEP and
the performRead protocol applies it, with better perfor-
mance than previous constructions.

4.2 Protocol for writing

For specifying the parallel writing protocol, we have to
fix how multiple attempts to write to the same field
are resolved. We thus require that each writing request
comes with a numeric priority; the request with highest
priority goes through (if it is not unique, then one is
selected arbitrarily). We can also give priorities to the
existing elements of the array. Normally they should
have the lowest priority (if any attempt to write them
actually means that they must be overwritten). How-
ever, in case where the array element collects the max-
imum value during some process (e.g. finding the best
path from one vertex of some graph to another), with
the writes to this element representing candidate val-
ues, the priority of the existing element could be equal
to this element. This is useful in e.g. the Bellman-Ford
algorithm for computing shortest distances. As the pri-
orities of existing array elements are not used in the
examples of this paper, we will not explore this further.
To take such priorities into account, line 6 of Alg. 4
would have to be changed.

The parallel writing protocol is given in Alg. 4. The
writing algorithm receives a vector of values J~vK to be
written, together with the indices J~jK showing where
they have to be written, and the writing priorities J~pK.
Alg. 4 transforms the current vector J~wK (its indices and
priorities) to the same form and concatenates it with the
indices and priorities of the write requests. The data
are then sorted according to indices and priorities (with
higher-priority elements coming first). The vector J~bK is
used to indicate the highest-priority position for each
index: bi = 0 iff the i-th element in the vector ~j′ is the

first (hence the highest-priority) value equal to j′i. Note
that all equality checks in line 10 can be done in par-
allel. Here and elsewhere, foreach-statements denote
parallel execution. Performing the sort in line 11 moves
the highest-priority values to the first m positions. The
sorting is stable, hence the values correspond to the in-
dices 1, . . . ,m in this order. We thus have to apply the
shuffles induced by both sorts to the vector of values
~v′ = ~v‖~w, and take the first m elements of the result.
A small example of the writing protocol in presented in
Fig. 2.

Algorithm 4: Obliviously writing n values to a pri-
vate array
Data: Private vectors J~jK, J~vK, J~pK of length n,

where 1 ≤ ji ≤ m for all i
Data: Private array J~wK of length m
Result: Updated ~w: values in ~v written to indices

in ~j, if priority in ~p is the highest for this
position

1 foreach i ∈ {1, . . . , n} do
2 Jj′iK← JjiK
3 Jp′iK← −JpiK

4 foreach i ∈ {1, . . . ,m} do
5 Jj′n+iK← i

6 Jp′n+iK← MAX_VALUE

7 JσK← sortperm(J~j′K, J~p′K)
8 J~j′′K← apply(JσK; J~j′K)
9 Jb1K← 0

10 foreach i ∈ {2, . . . , N} do JbiK← Jj′′i K ?= Jj′′i−1K;
11 JτK← sortperm(J~bK)

. .
12 foreach i ∈ {1, . . . , n} do Jv′iK← JviK;
13 foreach i ∈ {1, . . . ,m} do Jv′n+iK← JwiK;
14 J~w′K← apply(JτK; apply(JσK; J~v′K))
15 foreach i ∈ {1, . . . ,m} do JwiK← Jw′iK;
16 return J~wK

The writing protocol is secure for the same reasons
as the reading protocol. Its complexity is dominated by
the two sorting operations, it is O((m+ n) log(m+ n)),
with the round complexity being O(log(m + n)). Simi-
larly to the reading protocol, the writing protocol can
be adapted to write into a dictionary instead. Another
similarity is the dotted line — the complex sorting oper-
ations above the line only use the indices and priorities,
while the actual values are used only in cheap opera-
tions below the line. For the purposes of Sec. 6, we thus

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 196

Let ~w = (1, 4, 9, 16, 25). Let the values to be written
be as follows, with the following priorities (defining ~j, ~v
and ~p):

j 3 2 4 3
v 5 6 7 8
p 1 2 1 2

In lines 1–6, Alg. 4 prepares the vectors ~j′ and ~p′. In
lines 12–13, it prepares the vector ~v′. They are the fol-
lowing, where we let ∞ to denote MAX_VALUE :

j′ 3 2 4 3 1 2 3 4 5
p′ −1 −2 −1 −2 ∞ ∞ ∞ ∞ ∞
v′ 5 6 7 8 1 4 9 16 25

The sorting permutation σ is shown below. Also shown
are the results of applying (denoted with $) σ to ~j′ (re-
sulting in ~j′′), to ~p′ (not computed at all), and to ~v′

(computed as an intermediate value in line 14).

σ
1 2 3 4 5 6 7 8 9
5 2 6 4 1 7 3 8 9

j′′ 1 2 2 3 3 3 4 4 5
σ $ p′ ∞ −2 ∞ −2 −1 ∞ −1 ∞ ∞
σ $ v′ 1 6 4 8 5 9 7 16 25
b 0 0 1 0 1 1 0 1 0

Vector ~b, computed in lines 9–10 from ~j′′, is also shown
above. In the rest of Alg. 4, we pick out those elements
of σ $ ~v′, where the corresponding element of ~b is 0. For
this, we sort ~b and apply the resulting permutation τ

also to σ $ ~v′:

τ
1 2 3 4 5 6 7 8 9
1 2 4 7 9 3 5 6 8

τ $ b 0 0 0 0 0 1 1 1 1
τ ◦ σ $ v′ 1 6 8 7 25 4 5 9 16

The updated vector ~w is equal to the first |~w| elements
of the last row. The update is performed in line 15 of
Alg. 4. All values shown in this example are private, i.e.
stored in the ABB.
Fig. 2. Example of private writing according to Alg. 4

introduce the protocols prepareWrite which executes the
operations above the dotted line, and performWrite, ex-
ecuting the operations below the line. The protocol
prepareWrite receives as inputs ~j, ~p, and the length m

of ~w. The output of prepareWrite is the pair of oblivi-
ous shuffles (JσK, JτK). These are input to performWrite
together with J~vK and J~wK.

4.3 Sorting bits

Alg. 4 makes two calls to the sorting protocol. While the
first one of them is a rather general sort, the second one
in line 11 only performs a stable sort on bits, ordering
the “0” bits before the “1” bits (and the sort does not
actually have to be stable on the “1”-bits). In the follow-
ing we show that the second sort can be performed with
the complexity similar to that of a random shuffle, in-
stead of a full sort. Our method leaks the number of 0-s
among the bits, but this information was already public
in Alg. 4 (being equal to the length of ~w). The sorting
protocol is given in Alg. 5. Here random_shuffle(n) gen-
erates an oblivious random shuffle for vectors of length
n. The protocol ends with a composition of an oblivi-
ous and a public shuffle; this operation, as well as the
generation of a random shuffle, is supported by existing
implementations of shuffles [40].

Algorithm 5: Stable sorting of 0-bits in a bit-vector
Data: Vector of private values J~bK of length m,

where each bi ∈ {0, 1}
Result: Oblivious shuffle JσK, such that

apply(JσK; J~bK) is sorted and the order of
0-bits is not changed

Leaks: The number of 0-bits in J~bK
1 foreach i ∈ {1, . . . ,m} do JciK← 1− JbiK;
2 J~xK← prefixsum(J~cK)
3 JτK← random_shuffle(m)
4 ~b′ ← declassify(apply(JτK; J~bK))
5 J~x′K← apply(JτK; J~xK)
6 foreach i ∈ {1, . . . ,m} do
7 yi ← if b′i = 0 then declassify(Jx′iK) else m+ 1

8 Let ξ be a public shuffle that sorts ~y
9 JσK← JτK ◦ ξ

10 return JσK

We see that the most complex operations of Alg. 5
are the applications of the oblivious shuffle JτK. If the
communication complexity of these is O(m) and the
round complexity of these is O(1), then this is also the
complexity of the entire protocol. The protocol declas-
sifies a number of things, hence it is important to verify
that the declassified values can be simulated. The vec-
tor ~b′ is a random permutation of 0-s and 1-s, where the
number of 0-bits and 1-bits is the same as in J~bK. Hence
the number of 0-bits is leaked. But beside that, nothing
is leaked: if the simulator knows the number n of 0-bits,

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 197

then ~b′ is a uniformly randomly chosen bit-vector with
n bits “0” and (m− n) bits “1”.

The vector ~y (computed in constant number of
rounds, as all declassifications can be done in parallel)
is a random vector of numbers, such that (m−n) of its
entries equal (m+ 1), and the rest are a uniformly ran-
dom permutation of {1, . . . , n}. The numbers {1, . . . , n}
in ~y are located at the same places as the 0-bits in ~b′.
Hence the simulator can generate ~y after generating ~b′.
Beside ~b′ and ~y, the sorting protocol does not declassify
anything else. The rest of Alg. 5 consists of invoking the
functionality of the ABB or manipulating public data.

5 Performance and applicability
Using our algorithms, the cost of n parallel data accesses
is O((m+n) log(m+n)), where m is the size of the vec-
tor from which we’re reading values. Dividing by n, we
get that the cost of one access is O((1+ m

n) log(m+n)).
In practice, the cost will depend a lot on our ability
to perform many data accesses in parallel. Fortunately,
this goal to parallelize coincides with one of the design
goals for privacy-preserving applications in general, at
least for those where the used ABB implementation is
based on secret sharing and requires ongoing commu-
nication between the parties. Parallelization allows to
reduce the number of communication rounds necessary
for the application, reducing the performance penalty
caused by network latency.

Suppose that our application is such that on aver-
age, we can access in parallel a fraction of 1/f(m) of the
memory it uses (where 1 ≤ f(m) ≤ m). Hence, we are
performing m/f(m) data accesses in parallel, requiring
O(m logm) work in total, or O(f(m) logm) for one ac-
cess. Recall that for ORAM implementations over SMC,
the reported overheads are at leastO(log3m). Hence our
approach has better asymptotic complexity for applica-
tions where we can keep f(m) small.

There exists a sizable body of efficient algorithms
for PRAMs. Using our parallel reading and writing pro-
tocols, any algorithm for priority-CRCW PRAM can be
implemented on an ABB, as long as the control flow of
the algorithm does not depend on private data. A goal
in designing PRAM algorithms is to make their running
time polylogarithmic in the size of the input, while using
a polynomial number of processors. There is even a large
class of tasks, for which there exist PRAM algorithms
with logarithmic running time.

An algorithm with running time t must on each
step access on average at least 1/t fraction of the mem-
ory it uses. A PRAM algorithm that runs in O(logm)
time must access on average at least Ω(1/ logm) frac-
tion of its memory at each step, i.e. f(m) is O(logm).
When implementing such algorithm on top of SMC us-
ing the reading and writing protocols presented in this
note, we can say that the overhead of these protocols is
O(log2m). For algorithms that access a larger fraction
of their memory at each step (e.g. the Bellman-Ford al-
gorithm for finding shortest paths in graphs; for which
also the optimization described above applies), the over-
head is even smaller.

5.1 Experimental Results

We have implemented protocols in Sec. 4 on the Share-
mind secure multiparty computation platform (provid-
ing security against passive attacks by one party out
of three in total) [8] and tested their performance. We
measured the time it took to read n values from a vector
of length m, or to write n values to a vector of length
m. Due to the structure of the algorithms, the timings
almost completely depend only on m + n and this has
been the quantity we have varied (we have always picked
m = n). In our experiments, all values and indices were
elements of Z232 .

Our performance tests are performed on a cluster
of three computers with 48 GB of RAM and a 12-core
3 GHz CPU with Hyper Threading running Linux (ker-
nel v.3.2.0-3-amd64), connected by an Ethernet local
area network with link speed of 1 Gbps. The execution
time of the reading protocol on this cluster for various
values of m+ n is depicted in Fig. 3. We have split the
running time into two parts, for preparing the read and
for performing the read. We see that for larger values
of m+n the preparation is slower by almost two orders
of magnitude, hence in the design of privacy-preserving
algorithms one should aim for reuse of the results of
preparation.

Similarly, the performance measuring results of the
parallel writing are depicted in Fig. 4. Again, we distin-
guish the running times for preparing and performing
the write, with similar differences in running times.

We see that 2 million data accesses against an ar-
ray of length 2 million require about 1000 seconds. This
makes 0.5 ms per access. Of course, such efficiency is
possible only if the overlying application supports par-
allelism to this level.

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 198

10 20 40 10
0

20
0

40
0

10
00

20
00

40
00

10
00

0
20

00
0

40
00

0
10

00
00

20
00

00
40

00
00

10
00

00
0

20
00

00
0

40
00

00
0

1ms

10ms

100ms

1s

10s

100s

103s

Fig. 3. Times for preparing (upper) and performing (lower) a
parallel read, depending on the sum of vector length and the
number of reads

10 20 40 10
0

20
0

40
0

10
00

20
00

40
00

10
00

0
20

00
0

40
00

0
10

00
00

20
00

00
40

00
00

10
00

00
0

20
00

00
0

40
00

00
0

1ms

10ms

100ms

1s

10s

100s

103s

Fig. 4. Times for preparing (upper) and performing (lower) a par-
allel write, depending on the sum of vector length an the number
of writes

5.2 Comparison with Previous Work

We are interested in comparing our techniques with the
implementations of ORAM over SMC. The performance
of actual implementations has been reported in [29, 34,
42]. But as the underlying SMC protocol sets have been
rather different from our Sharemind framework, a fair
comparison may be difficult.

Gordon et al. [29] have implemented ORAM on top
of garbled circuits, offering security against one honest-
but-curious party. Their set-up uses two servers similar
to the ones in our cluster, connected to each other with a
1Gbit/s network link. Reading a 128-bit element of an
array with length 0.5 million takes about 22 seconds.
This is around 4.5 orders of magnitude slower than our

result of reading an element of a vector of 2 million 32-
bit elements in 0.5 milliseconds.

This comparison assumes that the application using
the oblivious access functionality is sufficiently parallel;
the timing of our protocols “0.5 ms per read” is valid for
n = 2 · 106 parallel reads from an array of length m =
2 · 106. If n� m = 2 · 106, then an n-wise parallel read
requires around 400 s (by Fig. 3), or 400/n seconds per
read. If, for example, n = 105, then our protocol requires
4 ms per read, or only 3.5 orders of magnitude less time
than Gordon et al.’s implementation. The parity with
their implementation would be obtained at n ≈ 20.

Obviously, the bottleneck of Gordon et al.’s im-
plementation is the network connection between two
servers — for each non-XOR binary Boolean opera-
tion in the circuit, three ciphertexts have to be sent
from one server to the other. If the authors had in-
stead used SMC protocols based on secret sharing over
Z2, the network communication had been significantly
lower. On the other hand, the latency of the network
connection might have started to significantly affect the
performance. Still, the amount of communication would
not have dropped by more than two orders of magni-
tude — instead of sending a couple of ciphertexts per
gate, the communication might have dropped to some
bits per gate, but not lower. To match this performance
with our protocols, the application using oblivious ac-
cess must be able to perform at least n ≈ 2000 reads in
parallel.

Liu et al. [42] have also implemented ORAM on top
of garbled circuits, offering security against one honest-
but-curious party. They do not report running times,
but the number of block cipher operations that the gar-
bling party executes. Also, they do not report perfor-
mance numbers for a single ORAM operation, but only
for larger applications that perform oblivious reads and
writes. On the other hand, they report using the same
methods for encoding ORAM as Gordon et al. [29],
hence we believe that the actual access times should be
similar as well. Liu et al. [42] improve the use of ORAM
in larger SMC applications; their techniques could also
be used in conjunction of our oblivious array access pro-
tocols, as long as the applications are sufficiently paral-
lelizable.

Keller and Scholl’s [34] implementation is probably
closest to ours: their ORAM implementation runs on
top of SPDZ protocol set [19, 35], based on additively
secret-sharing the values among an arbitrary number
of servers. In their implementation, they have used two
servers similar to our own, connected with a 1Gbit/s
network link. Through an expensive offline preprocess-

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 199

ing stage and a constant-communication post-execution
check, the SPDZ protocol set achieves security against
a malicious adversary corrupting all but one server. The
secret-sharing has to take place over a field that is suffi-
ciently large for the probability of wrongly passing the
post-execution check to be negligible. Keller and Scholl
have used GF (240) to measure the access times of their
ORAM over SMC implementation.

The online phase of the protocol to multiply two
shared field elements is highly efficient in SPDZ, each
party having to send just two values to every other
party. It is even more efficient than the multiplication
protocol in the current implementation of Sharemind,
where each party sends a total of five values to the other
two computing parties. Hence it may seem that for some
SMC application, using an ABB implementation based
on the online phase of two-party SPDZ is in general
more efficient than the implementation of Sharemind
(with three parties).

Unfortunately, the comparison is not that simple.
While in this setting, the multiplication protocol of
the online phase of SPDZ may be slightly faster than
the multiplication protocol of Sharemind, the proto-
col set of the latter is much larger and contains op-
timized protocols for many other operations useful in
SMC applications, while in SPDZ the other operations
have to be realized as compositions of many multiplica-
tions [17]. In particular, comparison operations are used
in ORAM protocols. In Sharemind, an inequality com-
parison over Z232 is around an order of magnitude slower
than the multiplication [8]. For values additively shared
over GF (2k), a comparison can be computed with the
help of an arithmetic circuit with k multiplications (and
a number of free operations) with multiplicative depth
dlog ke. Hence we guess that the communication costs
of the comparison operations in our implementation of
Sharemind and in Keller and Scholl’s implementation
of the online phase of SPDZ differ by no more than a
couple of times.

Keller and Scholl [34] report the execution time for
the read of one 40-bit element of a million-element ar-
ray in their implementation of ORAM over SMC to
be around 50 ms. This is around two orders of magni-
tude slower than in our implementation, when reading
in parallel n = 2 · 106 elements form an array of length
m = 2 · 106. Despite all the differences in underlying
protocol sets, we believe this to be a basically fair com-
parison. Again, the performance of our protocol drops
if the available parallelism is smaller. To match the per-
formance of [34], we need n ' 104.

Note that none of the implementations in [29, 34, 42]
would benefit from parallelization. They all implement
the Path ORAM technique [51] which does not support
parallel application.

One may wonder how our oblivious reading (and
writing) protocols compare with a basic O(m)-overhead
protocol where the private index JjK is first expanded to
a characteristic vector Jb0K, . . . , Jbm−1K with bi ∈ {0, 1}
and bi = 1 iff i = j. The scalar product of J~bK with
the array J~wK, requiring m multiplications, would then
be the value we seek. Our experiments with Share-
mind have shown that on our cluster, we can perform
around 4 million 32-bit multiplications per second. To
read from an array withm = 2·106 elements, the compu-
tation of the scalar product would require 0.5 seconds —
around three magnitudes more than our oblivious array
access. Additionally, the characteristic vector must be
computed; this has similar complexity [39]. We believe
that our oblivious read protocol is faster if n ' 1000.

A fair comparison of our results with previously
proposed protocols is further complicated by the pre-
pare/perform phases of our protocols, if the application
making use of oblivious data access protocols is such,
that the shuffle(s) computed by a single invocation of
a prepare-protocol (with complexity O((m+n) log(m+
n))) can be used by many perform-protocols (with com-
plexity O(m + n)). This would allow the amortization
of the expensive parts of our oblivious data access pro-
tocols and make them more competitive wrt. ORAM-
based protocols.

6 Privacy-preserving MST
Let the ABB store the information about the structure
of a graph and the weights of its edges. There are public
numbers n and m, denoting the number of vertices and
edges of the graph. The vertices are identified with num-
bers 1, 2, . . . , n. The structure of the graph is private —
the ABB stores m pairs of values, each one between
1 and n, giving the endpoints of the edges. For each
edge, the ABB also stores its weight. The preamble of
Alg. 7 specifies the actual data structures (arrays) and
the meaning of their elements.

Thanks to working in the ABB model, it is unneces-
sary to specify which parties originally hold which parts
of the description of the graph. No matter how they
are held, they are first input to the ABB, after which
the privacy-preserving MST algorithm is executed. Even
more generally, some data about the graph might ini-

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 200

tially be held by no party at all, but be computed by
some previously executed protocol. The benefit of work-
ing in the ABB model are the strong composability re-
sults it provides.

The algorithms in Sec. 4 can be used to imple-
ment Alg. 1 in privacy-preserving manner (indeed, we
will present the MST protocol as an extension to the
ABB specified in Sec. 4), if the dependencies of the con-
trol flow from the private data (there is a significant
amount of such dependencies, mostly through the array
A) could be eliminated without penalizing the perfor-
mance too much. Also, when implementing the algo-
rithm, we would like to minimize the number of calls to
prepareRead and prepareWrite algorithms, due to their
overheads.

Let us first describe the checking for stars in
privacy-preserving manner, as Alg. 2 has a relatively
simple structure. Its privacy-preserving version is de-
picted in Alg. 6. It receives the same mapping F as an
input, now represented as a private vector J~F K. As the
first step, the protocol finds F ◦F in privacy-preserving
manner, and stores in in J~GK. To find J~GK, we have to
read from the array J~F K according to the indices also
stored in J~F K. This takes place in lines 1–2 of Alg. 6.
We can now privately compare whether the parent and
grandparent of a vertex are equal (in parallel for all i,
as denoted by the use of foreach). The result is stored
in J~bK which serves as an intermediate value for the final
result J

−→StK. After line 3 of Alg. 6, the value of J~bK is the
same as the value of −→St after the assignments in lines 1
and 4 of Alg. 2.

Algorithm 6: Privacy-preserving checking for stars
Data: Private vector J~F K of length n, where

1 ≤ Fi ≤ n
Result: Private predicate J

−→StK, indicating which
elements of {1, . . . , n} belong to stars
according to ~F

1 JσK← prepareRead(J~F K, n)
2 J ~GK← performRead(J~F K, JσK)
3 foreach i ∈ {1, . . . , n} do JbiK← JFiK

?= JGiK;
4 Jbn+1K← false
5 foreach i ∈ {1, . . . , n} do
6 JaiK← JbiK ? (n+ 1) : JGiK

7 J~b′K← obliviousWrite(J~aK,
−−→
false,~1, J~bK)

8 J~pK← performRead(J~b′K, JσK) // Ignore b′n+1
9 foreach i ∈ {1, . . . , n} do JStiK← Jb′iK ∧ JpiK;

10 return J
−→StK

As next, we prepare to privately perform the assign-
ment in line 4 of Alg. 2. We only want to perform the
assignment if JFiK 6= JGiK, hence the number of assign-
ments we want to perform depends on private data. Al-
gorithm 4 presumes that the number of writes is public.
We overcome this dependency by assigning to a dummy
position each time Alg. 2 would have avoided the assign-
ment in its line 5. We let the vector J~bK to have an extra
element at the end and assign to this element for each
dummy assignment. In line 6 we compute the indices of
vector J~bK where false has to be assigned. Here the op-
eration ? : has the same semantics as in C/C++/Java
— it returns its second argument if its first argument
is true (1), and its third argument if the first argument
is false (0). It can be easily implemented in the ABB:
JbK ? JxK : JyK is computed as JbK · (JxK− JyK) + JyK.

In line 7 of Alg. 6, the oblivious write is performed.
The arguments of obliviousWrite are in the same order
as in the preamble of Alg. 4: the vector of addresses,
the vector of values to be written, the vector of writing
priorities, and the original array. All arguments can be
private values. All public values are assumed to be au-
tomatically classified. In line 7, all values to be written
are equal to false, as in Alg. 2. Hence the priorities do
not really matter; we make them all equal to 1 (with
the assumption that the priorities for existing elements
of J~bK, output by compute_priority in line 6 of Alg. 4, are
equal to 0). The result of the writing is a private vector
J~b′K of length n+ 1 that is equal to J~bK in positions that
were not overwritten.

Lines 8 and 9 of Alg. 6 correspond to the assignment
in line 6 of Alg. 2. First we compute St[F [v]] for all v
(in terms of Alg. 2) by reading from J~bK according to
the indices in J~F K. In line 1 we prepared the reading
according to these indices. As J~F K has not changed in
the meantime, this preparation is still valid and can be
reused. Hence we apply performRead to first n elements
of J~b′K. The conjunction is computed in line 9.

The privacy-preserving MST protocol is given in
Alg. 7. We explain it below.

To adapt Alg. 1 for execution on ABB, we first we
have to simplify its control flow. Fortunately, it turns
out that it is not necessary to keep track which edges
are still “active”. The outcome of Alg. 1 does not change
if all edges are assumed to be active all the time. In this
case, only the stopping criterion of Alg. 1 (that there are
no more active edges) has to be changed to something
more suitable. One could keep track of the number of
edges already added to the MST, or to execute the main
loop of the algorithm sufficiently many times (log3/2 n).
We opt for the second solution, as otherwise we may

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 201

Algorithm 7: Privacy-preserving minimum span-
ning tree
Data: Number of vertices n, number of edges m
Data: Private vector J ~EK of length 2m (endpoints

of edges, i-th edge is (Ei, Ei+m))
Data: Private vector J~ωK of length m (edge

weights)
Result: Private boolean vector J~T K of length m,

indicating which edge belongs to the MST
1 foreach i ∈ {1, . . . , 2m} do
2 Jω′iK← −Jωi mod mK
3 JE′iK← JE(i+m) mod 2mK

4 foreach i ∈ {1, . . . , n+ 1} do
5 JFiK← i

6 JWiK← (m+ 1)

7 foreach i ∈ {1, . . . ,m+ 1} do JTiK← false;
8 JσeK← prepareRead(J ~EK, n)
9 for iteration_number := 1 to blog3/2 nc do

10 J
−→StK← StarCheck(J~F K)

11 J~F eK← performRead(J~F K, JσeK) // Ignore Fn+1

12 J
−→SteK← performRead(J−→StK, JσeK)

13 foreach i ∈ {1, . . . ,m} do
14 JdiK← JF e

i K ?= JF e
i+mK

15 foreach i ∈ {1, . . . , 2m} do
16 JaiK← JSte

i K ∧ ¬Jdi mod mK ? JF e
i K : (n+ 1)

17 (JσvK, JτvK)← prepareWrite(J~aK, J~ω′K, n+ 1)
18 J~F K := performWrite(JσvK, JτvK, J ~E′K, J~F K)
19 J ~WK := performWrite(JσvK, JτvK,

(i mod m)2m
i=1, J ~WK)

20 J~T K := obliviousWrite(J ~WK,−−→true,~1, J~T K)
21 JσfK← prepareRead(J~F K, n+ 1)
22 J~GK← performRead(J~F K, JσfK)
23 J ~HK← performRead(J~GK, JσfK)
24 foreach i ∈ {1, . . . , n} do
25 Jc(1)

i K← i
?= JGiK

26 Jc(2)
i K← i

?
< JFiK

27 Jc(3)
i K← JFiK

?= JHiK ∧ JFiK
?
< JGiK

28 JFiK :=

i, if Jc(1)

i K ∧ Jc(2)
i K

JFiK, if Jc(1)
i K ∧ ¬Jc(2)

i K

JFiK, if ¬Jc(1)
i K ∧ Jc(3)

i K

JGiK if ¬Jc(1)
i K ∧ ¬Jc(3)

i K

29 return (JT1K, . . . , JTmK)

leak something about the graph through the running
time of the algorithm.

Alg. 7 first copies around some input data, effec-
tively making the set of edges E symmetric. Through-
out this algorithm we assume that x mod m returns a
value between 1 and m. In line 2 we negate the weights,
as lower weight of some edge means that it has higher
priority of being included in the MST. In lines 4 to 7
we initialize J~F K, J ~WK and J~T K similarly to Alg. 1. All
these vectors have an extra element in order to accom-
modate dummy assignments. In J ~WK, the value (m+ 1)
corresponds to the value NIL in Alg. 1 — the elements
of J ~WK are used below as addresses to write into J~T K
and (m+ 1) indicates a dummy assignment.

Before starting the iterative part of the algorithm,
in line 8 we prepare for reading according to the end-
points of edges. The actual reads are performed in each
iteration.

As mentioned before, the number of iterations of
Alg. 7 (line 9) will be sufficient for all edges of the MST
to be found. As discussed before, blog3/2 nc is a suitable
number. All iterations are identical; the computations
do not depend on the sequence number of the current
iteration.

An iteration starts very similarly to Alg. 1, running
the star checking algorithm and finding for each end-
point u of each edge e the values F [u] and St[u] (in
terms of Alg. 1). In line 9 of Alg. 1, a decision is made
whether to update an element of ~F and an element of
~W. The same decision is made in lines 14–16 of Alg. 7:
we choose the address of the element to update. If the
update should be made then this address is JF e

i K. Oth-
erwise, it is the dummy address n + 1. In lines 17–19
the actual update is made. As the writes to both J~F K
and J ~WK are according to the same indices J~aK and pri-
orities J~ω′K, their preparation phase has to be executed
only once. If the write has to be performed, we write
the other endpoint of the edge to ~F and the index of
the edge to ~W. In line 20 we update J~T K similarly to
line 13 of Alg. 1.

Compared to Alg. 1, we have redesigned the break-
ing of F -cycles and decreasing the height of F -trees,
in order to reduce the number of calls to algorithms in
Sec. 4. In Alg. 1, the cycles are broken (which requires
data to be read according to the indices in ~F , and thus
the invocation of prepareRead, as ~F has just been up-
dated), and then the F -grandparent of each vertex is
taken to be its F -parent (which again requires a read
according to ~F and another invocation of prepareRead).
Instead, we will directly compute what will be the F -

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 202

grandparent of each vertex after breaking the F -cycles,
and take this to be its new F -parent.

For this computation, we need the F -parents of each
vertex, which we already have in the vector ~F . We also
need their F -grandparents which we store in ~G, and F -
great-grandparents, which we store in ~H. We only need
a single call to prepareRead to find both J~GK and J ~HK.
After breaking the cycles, the F -grandparent of the ver-
tex i can be either i, Fi or Gi. It is not hard to convince
oneself that the computation in lines 25–28 finds the F -
grandparent of i and assigns it to JFiK. As before, the
computations for different vertices are made in paral-
lel. The case-construction in line 28 is implemented as
a composition of ? : operations.

Finally, we return the private boolean vector J~T K
indicating which edges belong to the MST, except for
its final dummy element JTm+1K.

Alg. 7 (including Alg. 6) is secure for the reasons
given in Sec. 3.1.3 — it only applies the operations
of ABB, classifies only public constants and declas-
sifies nothing. The amount of work it performs (or:
the amount of communication it requires for typical
ABB implementations) is O(|E| log2 |V |). Indeed, it per-
forms O(log |V |) iterations, the complexity of which
is dominated by reading and writing preparations re-
quiring O(log |E|) = O(log |V |) work. For typical ABB
implementations, the round complexity of Alg. 7 is
O(log2 |V |), because each private reading or writing
preparation requires O(log |V |) rounds.

Awerbuch-Shiloach algorithm (Alg. 1) accesses all of
its memory during each of its iterations. Hence we can
say that for this algorithm the overhead of our private
data access techniques is only O(logm).

Experimental Results

We have also implemented Alg. 7 (and Alg. 6) on the
Sharemind SMC platform and tested its performance
on the same setup as described in Sec. 5. We have varied
the number of vertices n and selected the number of
edges m based on it and on the most likely applications
of our private MST protocol.

We believe the most relevant cases for our proto-
col to be planar graphs and complete graphs. Planar
graphs have m ≈ 3n, if most of its faces are triangles.
Complete graphs have m = n(n − 1)/2. We have also
considered the case m = 6n as a “generic” example of
sparse graphs.

10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0
10

00
00

20
00

00

1s

10s

100s

103s

104s

105s

Fig. 5. Running times for the private MST algorithm, depending
on the number of vertices n. Number of edges is m = 3n (lower
line), m = 6n (middle line), m = n(n − 1)/2 (upper line)

The results of our performance tests are depicted in
Fig. 5. These will serve as the baseline for any further
investigations in this direction.

7 Conclusions
We have presented efficient privacy-preserving protocols
for performing in parallel many reads or writes from pri-
vate vectors according to private indices. We have used
these protocols to provide a privacy-preserving proto-
col for finding the minimum spanning tree in a graph;
no protocols for this task have been investigated before.
To achieve these results, this paper makes use of several
novel ideas.

First, we noted that multiparty computations by ne-
cessity have to process their data in a parallel fashion,
otherwise the costs of network latency are prohibitive.
Hence one does not need a protocol for reading or writ-
ing one value from a private vector according to private
index (with the intent to run many copies of this proto-
col in parallel). It is sufficient to look for protocols that
are efficient only when performing many reads or writes
in parallel.

Second, we have noticed that the operations avail-
able relatively cheaply in existing ABB implementations
allow us to construct such protocols. Our protocols in
Sec. 4 are somewhat inspired by the techniques first ap-
pearing in [38], but are significantly more efficient.

Third, we have noticed that many PRAM algo-
rithms become amenable to privacy-preserving imple-
mentations without too much overhead, if the protocols
in Sec. 4 are available. In this sense, the private MST
protocol of Sec. 6 serves just as an example. We have

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 203

chosen this example because it is very difficult to imag-
ine it to be implemented without the ideas in this paper.

Performance-wise, we have certainly obtained im-
pressive results: a graph with 200,000 vertices and
1,200,000 edges can be processed in nine hours. Also,
the set-up of our performance tests is realistic — LAN
speeds between servers under control of different par-
ties can easily be achieved through a co-located hosting
service that provides physical barriers to the access of
individual servers.

As we already mentioned in Sec. 5, our oblivious
parallel array access protocols may be used to turn
any efficient PRAM algorithm into a privacy-preserving
computation, as long as the control flow of the algo-
rithm does not depend on private data. We have al-
ready applied these protocols in a number of privacy-
preserving applications. In [50], parallel algorithms for
string matching have been adapted for SMC. We have
also implemented a privacy-preserving Bayesian spam
filter, and a privacy-preserving database query engine
that keeps track, which original rows contributed to the
answers of different queries, in order to provide person-
alised differential privacy [23] to the answers.

Privacy-preserving MST may also find applications
in a number of areas, e.g. for privacy-preserving gene
expression data clustering [56] or image processing [55].
The likely real-world data sizes for these applications are
in the range of the experiments we reported in Fig. 5.

Acknowledgements
This research has been supported by Estonian Research
Council through grant No. IUT27-1, by the European
Regional Development Fund through the Estonian Cen-
ter of Excellence in Computer Science, EXCS, and by
the European Union Seventh Framework Programme
(FP7/2007–2013) under grant agreement No. 284731
(UaESMC).

References
[1] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Se-

cure computation on floating point numbers. In 20th An-
nual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February 24-27,
2013. The Internet Society, 2013.

[2] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. V. Vyve.
Securely solving simple combinatorial graph problems. In A.-
R. Sadeghi, editor, Financial Cryptography, volume 7859
of Lecture Notes in Computer Science, pages 239–257.
Springer, 2013.

[3] B. Awerbuch and Y. Shiloach. New connectivity and MSF
algorithms for shuffle-exchange network and PRAM. IEEE
Trans. Computers, 36(10):1258–1263, 1987.

[4] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a
system for secure multi-party computation. In CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security, pages 257–266, New York, NY,
USA, 2008. ACM.

[5] M. Blanton and E. Aguiar. Private and oblivious set and
multiset operations. In H. Y. Youm and Y. Won, editors,
7th ACM Symposium on Information, Compuer and Com-
munications Security, ASIACCS ’12, Seoul, Korea, May 2-4,
2012, pages 40–41. ACM, 2012.

[6] M. Blanton, A. Steele, and M. Aliasgari. Data-oblivious
graph algorithms for secure computation and outsourcing. In
K. Chen, Q. Xie, W. Qiu, N. Li, and W. Tzeng, editors, 8th
ACM Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’13, Hangzhou, China - May 08
- 10, 2013, pages 207–218. ACM, 2013.

[7] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
S. Jajodia and J. López, editors, ESORICS, volume 5283
of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

[8] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-
performance secure multi-party computation for data mining
applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

[9] E. Boyle, K.-M. Chung, and R. Pass. Oblivious parallel
ram. Cryptology ePrint Archive, Report 2014/594, 2014.
http://eprint.iacr.org/.

[10] J. Brickell and V. Shmatikov. Privacy-preserving graph
algorithms in the semi-honest model. In B. K. Roy, editor,
ASIACRYPT, volume 3788 of Lecture Notes in Computer
Science, pages 236–252. Springer, 2005.

[11] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain net-
work events and statistics. In USENIX Security Symposium,
pages 223–239, Washington, DC, USA, 2010.

[12] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages 136–
145. IEEE Computer Society, 2001.

[13] O. Catrina and S. de Hoogh. Improved primitives for se-
cure multiparty integer computation. In J. Garay and
R. De Prisco, editors, Security and Cryptography for Net-
works, volume 6280 of LNCS, pages 182–199. Springer,
2010.

[14] O. Catrina and A. Saxena. Secure computation with fixed-
point numbers. In R. Sion, editor, Financial Cryptography
and Data Security, volume 6052 of LNCS, pages 35–50.
Springer, 2010.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, chapter 23.2 The algorithms of
Kruskal and Prim, pages 567–574. MIT Press and McGraw-
Hill, 2nd edition, 2001.

[16] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty
computation from threshold homomorphic encryption. In
B. Pfitzmann, editor, EUROCRYPT, volume 2045 of Lec-
ture Notes in Computer Science, pages 280–299. Springer,
2001.

http://eprint.iacr.org/

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 204

[17] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft.
Unconditionally secure constant-rounds multi-party compu-
tation for equality, comparison, bits and exponentiation. In
S. Halevi and T. Rabin, editors, TCC, volume 3876 of Lec-
ture Notes in Computer Science, pages 285–304. Springer,
2006.

[18] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen.
Asynchronous Multiparty Computation: Theory and Imple-
mentation. In S. Jarecki and G. Tsudik, editors, Public Key
Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 160–179. Springer, 2009.

[19] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and
N. P. Smart. Practical Covertly Secure MPC for Dishonest
Majority - Or: Breaking the SPDZ Limits. In J. Crampton,
S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134
of Lecture Notes in Computer Science, pages 1–18. Springer,
2013.

[20] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly
secure oblivious ram without random oracles. In Y. Ishai,
editor, TCC, volume 6597 of Lecture Notes in Computer
Science, pages 144–163. Springer, 2011.

[21] I. Damgård and J. B. Nielsen. Universally composable ef-
ficient multiparty computation from threshold homomor-
phic encryption. In D. Boneh, editor, CRYPTO, volume
2729 of Lecture Notes in Computer Science, pages 247–264.
Springer, 2003.

[22] D. Demmler, T. Schneider, and M. Zohner. ABY - A frame-
work for efficient mixed-protocol secure two-party compu-
tation. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2014. The Internet Society, 2015.

[23] H. Ebadi, D. Sands, and G. Schneider. Differential privacy:
Now it’s getting personal. In S. K. Rajamani and D. Walker,
editors, Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015,
pages 69–81. ACM, 2015.

[24] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss
and fact-track multiparty computations with applications to
threshold cryptography. In PODC, pages 101–111, 1998.

[25] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla,
M. Raykova, and D. Wichs. Optimizing oram and using
it efficiently for secure computation. In E. D. Cristofaro and
M. Wright, editors, Privacy Enhancing Technologies, volume
7981 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2013.

[26] C. Gentry, S. Halevi, C. Jutla, and M. Raykova. Pri-
vate Database Access With HE-over-ORAM Architec-
ture. Cryptology ePrint Archive, Report 2014/345, 2014.
http://eprint.iacr.org/.

[27] O. Goldreich, S. Micali, and A. Wigderson. How to Play
any Mental Game or A Completeness Theorem for Protocols
with Honest Majority. In STOC, pages 218–229. ACM,
1987.

[28] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 43(3):431–473,
1996.

[29] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin,
M. Raykova, and Y. Vahlis. Secure Two-Party Computation
in Sublinear (Amortized) Time. In T. Yu, G. Danezis, and

V. D. Gligor, editors, the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 513–524. ACM, 2012.

[30] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Taka-
hashi. Practically efficient multi-party sorting protocols from
comparison sort algorithms. In T. Kwon, M.-K. Lee, and
D. Kwon, editors, ICISC, volume 7839 of Lecture Notes in
Computer Science, pages 202–216. Springer, 2012.

[31] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: tool for automating secure two-
party computations. In CCS ’10: Proceedings of the 17th
ACM conference on Computer and communications security,
pages 451–462, New York, NY, USA, 2010. ACM.

[32] Y. Huang, D. Evans, and J. Katz. Private Set Intersection:
Are Garbled Circuits Better than Custom Protocols? In 19th
Annual Network and Distributed System Security Sympo-
sium, NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012.

[33] J. JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

[34] M. Keller and P. Scholl. Efficient, Oblivious Data Structures
for MPC. In P. Sarkar and T. Iwata, editors, Advances in
Cryptology - ASIACRYPT 2014 - 20th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II, volume 8874 of Lecture
Notes in Computer Science, pages 506–525. Springer, 2014.

[35] M. Keller, P. Scholl, and N. P. Smart. An architecture for
practical actively secure mpc with dishonest majority. In
Sadeghi et al. [47], pages 549–560.

[36] V. Kolesnikov and T. Schneider. A practical universal circuit
construction and secure evaluation of private functions. In
G. Tsudik, editor, Financial Cryptography, volume 5143 of
Lecture Notes in Computer Science, pages 83–97. Springer,
2008.

[37] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme.
In Y. Rabani, editor, Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 143–156.
SIAM, 2012.

[38] P. Laud and J. Willemson. Composable oblivious extended
permutations. In F. Cuppens, J. García-Alfaro, A. N. Z.
Heywood, and P. W. L. Fong, editors, Foundations and
Practice of Security - 7th International Symposium, FPS
2014, Montreal, QC, Canada, November 3-5, 2014. Revised
Selected Papers, volume 8930 of Lecture Notes in Computer
Science, pages 294–310. Springer, 2014.

[39] J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-
Moran. Efficient lookup-table protocol in secure multiparty
computation. In P. Thiemann and R. B. Findler, editors,
ICFP, pages 189–200. ACM, 2012.

[40] S. Laur, J. Willemson, and B. Zhang. Round-Efficient Obliv-
ious Database Manipulation. In Proceedings of the 14th
International Conference on Information Security. ISC’11,
pages 262–277, 2011.

[41] H. Lipmaa and T. Toft. Secure equality and greater-than
tests with sublinear online complexity. In F. V. Fomin,
R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors,
ICALP (2), volume 7966 of Lecture Notes in Computer Sci-

http://eprint.iacr.org/

Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees 205

ence, pages 645–656. Springer, 2013.
[42] C. Liu, Y. Huang, E. Shi, J. Katz, and M. W. Hicks. Au-

tomating efficient ram-model secure computation. In 2014
IEEE Symposium on Security and Privacy, SP 2014, Berke-
ley, CA, USA, May 18-21, 2014, pages 623–638. IEEE Com-
puter Society, 2014.

[43] L. Malka. Vmcrypt: modular software architecture for scal-
able secure computation. In Y. Chen, G. Danezis, and
V. Shmatikov, editors, Proceedings of the 18th ACM Con-
ference on Computer and Communications Security, CCS
2011, Chicago, Illinois, USA, October 17-21, 2011, pages
715–724. ACM, 2011.

[44] P. Mohassel and S. S. Sadeghian. How to Hide Circuits in
MPC: an Efficient Framework for Private Function Eval-
uation. In T. Johansson and P. Q. Nguyen, editors, EU-
ROCRYPT, volume 7881 of Lecture Notes in Computer
Science, pages 557–574. Springer, 2013.

[45] J. Nešetřil, E. Milkovà, and H. Nešetřilovà. Otakar Borůvka
on minimum spanning tree problem; Translation of both
the 1926 papers, comments, history. Discrete Mathematics,
233(1-3):3–36, 2001.

[46] T. Nishide and K. Ohta. Multiparty computation for in-
terval, equality, and comparison without bit-decomposition
protocol. In T. Okamoto and X. Wang, editors, Public Key
Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 343–360. Springer, 2007.

[47] A. Sadeghi, V. D. Gligor, and M. Yung, editors. 2013 ACM
SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013.
ACM, 2013.

[48] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[49] E. Shi, T. H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((log N)3) worst-case cost. In D. H. Lee and
X. Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 197–214.
Springer, 2011.

[50] S. Siim. Privacy-Preserving String Matching with PRAM
Algorithms. Cryptography Seminar report, University of
Tartu, 12 2014. https://courses.cs.ut.ee/MTAT.07.022/
2014_fall/uploads/Main/sander-report-f14.pdf.

[51] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In Sadeghi et al. [47], pages 299–
310.

[52] T. Toft. Secure data structures based on multi-party compu-
tation. In C. Gavoille and P. Fraigniaud, editors, Proceedings
of the 30th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2011, San Jose, CA, USA, June
6-8, 2011, pages 291–292. ACM, 2011. Full version in Cryp-
tology ePrint archive, http://eprint.iacr.org/2011/081.

[53] A. Waksman. A permutation network. J. ACM, 15(1):159–
163, 1968.

[54] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi.
SCORAM: Oblivious RAM for Secure Computation. In
G. Ahn, M. Yung, and N. Li, editors, Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communi-

cations Security, Scottsdale, AZ, USA, November 3-7, 2014,
pages 191–202. ACM, 2014.

[55] J. Wassenberg, W. Middelmann, and P. Sanders. An effi-
cient parallel algorithm for graph-based image segmentation.
In X. Jiang and N. Petkov, editors, Computer Analysis of
Images and Patterns, 13th International Conference, CAIP
2009, Münster, Germany, September 2-4, 2009. Proceedings,
volume 5702 of Lecture Notes in Computer Science, pages
1003–1010. Springer, 2009.

[56] Y. Xu, V. Olman, and D. Xu. Clustering gene expression
data using a graph-theoretic approach: an application of
minimum spanning trees. Bioinformatics, 18(4):536–545,
2002.

[57] A. C.-C. Yao. Protocols for secure computations (extended
abstract). In FOCS, pages 160–164. IEEE, 1982.

[58] S. Zahur and D. Evans. Circuit structures for improving ef-
ficiency of security and privacy tools. In 2013 IEEE Sympo-
sium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 493–507. IEEE Computer Society,
2013.

https://courses.cs.ut.ee/MTAT.07.022/2014_fall/uploads/Main/sander-report-f14.pdf
https://courses.cs.ut.ee/MTAT.07.022/2014_fall/uploads/Main/sander-report-f14.pdf
http://eprint.iacr.org/2011/081

	Parallel Oblivious Array Access for Secure Multiparty Computation and Privacy-Preserving Minimum Spanning Trees
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Secure Multiparty Computation
	3.1.1 Universal Composability
	3.1.2 Arithmetic Black Box
	3.1.3 Extending an ABB
	3.1.4 Our Initial ABB

	3.2 Parallel algorithms for MST

	4 Oblivious data access
	4.1 Protocol for reading
	4.2 Protocol for writing
	4.3 Sorting bits

	5 Performance and applicability
	5.1 Experimental Results
	5.2 Comparison with Previous Work

	6 Privacy-preserving MST
	7 Conclusions

