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Abstract: With the increasing popularity of hand-held de-
vices, location-based applications and services have access to
accurate and real-time location information, raising serious
privacy concerns for their users. The recently introduced no-
tion of geo-indistinguishability tries to address this problem by
adapting the well-known concept of differential privacy to the
area of location-based systems. Although geo-indistinguisha-
bility presents various appealing aspects, it has the problem of
treating space in a uniform way, imposing the addition of the
same amount of noise everywhere on the map. In this paper we
propose a novel elastic distinguishability metric that warps the
geometrical distance, capturing the different degrees of den-
sity of each area. As a consequence, the obtained mechanism
adapts the level of noise while achieving the same degree of
privacy everywhere. We also show how such an elastic met-
ric can easily incorporate the concept of a “geographic fence”
that is commonly employed to protect the highly recurrent lo-
cations of a user, such as his home or work. We perform an
extensive evaluation of our technique by building an elastic
metric for Paris’ wide metropolitan area, using semantic infor-
mation from the OpenStreetMap database. We compare the re-
sulting mechanism against the Planar Laplace mechanism sat-
isfying standard geo-indistinguishability, using two real-world
datasets from the Gowalla and Brightkite location-based social
networks. The results show that the elastic mechanism adapts
well to the semantics of each area, adjusting the noise as we
move outside the city center, hence offering better overall pri-
vacy. 1

Keywords: location privacy, differential privacy, distin-
guishability metric

DOI 10.1515/popets-2015-0023
Received 2015-02-15; revised 2015-05-13; accepted 2015-05-15.

1 This work was partially supported by the European Union 7th FP
project MEALS, by the project ANR-12-IS02-001 PACE, and by the IN-
RIA Large Scale Initiative CAPPRIS.
*Corresponding Author: Konstantinos Chatzikokolakis: CNRS and
LIX, École Polytechnique, France
Catuscia Palamidessi: INRIA and LIX, École Polytechnique, France
Marco Stronati: LIX, École Polytechnique, France

1 Introduction

The availability of devices capable detecting the geographical
position with pretty good accuracy (e.g. wifi-hotspots, GPS,
etc.) has led to a proliferation of applications that use the
location data to provide a range of services. These applica-
tions, called location-based services (LBSs), include points-
of-interest retrieval, coupon providers, GPS navigation, loca-
tion aware social networks, etc. While the value of these ser-
vices is undeniable, as attested by their vast popularity, at the
same time there are growing concerns about the potential pri-
vacy breaches that the user is exposed to, due to the constant
disclosure of location information.

Among the various approaches proposed in the litera-
ture to address the problem of privacy in the use of LBSs,
those based on obfuscating the real location by adding ran-
dom noise [2, 14, 28, 29] have emerged as the most robust
to side-information-enhanced attacks. Additionally, the geo-
indistinguishability framework [2, 14] has the appealing fea-
tures of providing formal privacy guarantees independent from
the user’s prior, being robust with respect to combination at-
tacks, and offering a good trade off between privacy and utility.
These features are inherited from the framework of differential
privacy [13] which prevents an adversary from distinguishing
datasets that are “close” based on the Hamming metric. Geo-
indistinguishability follows the same principles while using
the Euclidean distance between locations.

Formally, a mechanism provides geo-indistinguishability
if the user’s real location x is indistinguishable from other
nearby locations x′, meaning that the mechanism should re-
port any noisy location z with a probability similar to that of
reporting the same z when the real location is x′. The level
of similarity depends on the geographical distance between x
and x′. More precisely, the ratio between the two probabili-
ties is bound by an expression that grows exponentially with
the distance. This means that the mechanism protects the ac-
curacy of the real location but reveals that the user is, say, in
Paris instead than London, which is appropriate for the kind of
applications (LBSs) we are targeting. Geo-indistinguishability
is typically achieved by reporting a location obtained from the
user’s location by adding noise drawn from a 2-dimensional
Laplace distribution.

It is to be noted that the intuition behind most notions of
privacy is that of hiding in a crowd. The “crowd” may be of
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different nature: we might want to hide among several peo-
ple, hide the kind of shop we visit, the activity we perform,
etc. Geo-indistinguishability provides this property in the con-
text of the information that can be inferred from the location.
By properly setting a parameter of the definition, one can es-
tablish the area of the points indistinguishable from the real
location, that is, how many elements (resident people, shops,
recreational centers etc.) are made indistinguishable from the
ones in the real location.

However, one problem with the geo-indistinguishability
framework is that, being based on the Euclidean distance, its
protection is uniform in space, while the density of the ele-
ments that constitute the “crowd” in general is not. This means
that, once the privacy parameter is fixed, a mechanism provid-
ing geo-indistinguishability will generate the same amount of
noise independently of the real location on the map, i.e., the
same protection is applied in a dense city and in a sparse coun-
tryside. As a consequence, an unfortunate decision needs to be
made: one could either tune the mechanism to the amount of
noise needed in a dense urban environment, leaving less dense
areas unprotected. Or, to ensure the desired level of privacy
in low-density areas, we can tune the mechanism to produce
a large amount of noise, which will result in an unnecessary
degradation of utility in high-density areas.

The idea we pursue in this paper is to adopt a privacy no-
tion that reflects the local characteristics of each area. This can
be achieved while maintaining the main principles of geo-in-
distinguishability, by replacing the Euclidean distance with a
constructed distinguishability metric dX . The resulting notion,
called dX -privacy in [7], ensures that secrets which are close
wrt dX should remain indistinguishable, while secrets that are
distant wrt dX are allowed to be distinguished. We then have
the flexibility to adapt the distinguishability metric dX to our
privacy needs.

Going back to the intuition of privacy as being surrounded
by a crowd, we can reinterpret it in the light of distinguishabil-
ity metrics. On one hand people or points of interest can be ab-
stracted as being a privacy mass that we can assign differently
to every location. On the other hand the concept of being close
to a location rich in privacy can be seen as the desire to be sim-
ilar, or indistinguishable to such a location. Therefore we can
express our intuitive privacy with a distinguishability metric
that satisfies the following requirement: every location should
have in proximity a certain amount of privacy mass. This can
be better formalized with a requirement function req(l) that
for every distinguishability level l, assigns a certain amount
of privacy mass that must be present within a radius l in the
metric dX . Contrary to geo-indistinguishability, that considers
space uniform and assigns to every location the same privacy
value, we build a metric that is flexible and adapts to a terri-
tory where each location has a different privacy importance.

In comparison with the Euclidean metric, our metric stretches
very private areas and compresses the privacy poor ones in or-
der to satisfy the same requirement everywhere, for this reason
we call it an elastic metric. By using dX -privacy with a metric
that takes into account the semantics of each location, we pre-
serve the strengths of the geo-indistinguishability framework
while adding flexibility, borrowing ideas from the line of work
of l-diversity [22, 32]. This flexible behavior reflects also on
the utility of the resulting mechanism, areas poor in privacy
will result in more noisy sanitization.

We then need a way to compute the actual metric dX satis-
fying the requirement req(l). We propose a graph-based algo-
rithm that can efficiently compute an elastic metric for a large
number of locations. The algorithm requires a set of locations
marked with privacy mass and a privacy requirement to sat-
isfy. Starting from an empty graph, it iteratively adds weighted
edges to satisfy the requirement. The resulting distance be-
tween two locations is the weight of the shortest path connect-
ing them. Once obtained our metric we show how to use an
exponential distribution to obtain automatically a dX -private
mechanism that can also be efficiently implemented.

Another problem that arises in the approaches to location
privacy based on random noise – and geo-indistinguishability
is not immune to it – is that the reiterate use of the mecha-
nism will eventually disclose the frequently visited locations,
such as home or office. A solution (commonly employed for
various privacy purposes) consist in building a “fence” around
sensitive locations so that all points inside are completely in-
distinguishable from each other. In this way the attacker will
be able, after many iterations, to identify the fence but not the
exact location inside the fence. We show that such a solution
can be elegantly expressed in the distinguishability metric dX ,
and can be easily incorporated in our algorithm.

Finally, we show the applicability of our technique by
evaluating on two real-world datasets. We start by building
an elastic metric for Paris’ wide metropolitan area, in a grid
of 562, 500 locations covering an area of 5600 km2. Privacy
mass is computed from semantic information extracted from
the OpenStreetMap database, and the whole computation is
performed in under a day with modest computational capabil-
ity, demonstrating the scalability of the proposed algorithm.

We then compare the elastic mechanism to the Pla-
nar Laplace mechanism satisfying geo-indistinguishability, on
two large areas in the center of Paris as well as a nearby suburb.
The evaluation is performed using the datasets of Gowalla and
Brightkite[10], two popular location-based social networks,
and the widely used Bayesian privacy and utility metrics of
Shokri et al. [28]. The results show that the dynamic behavior
of the elastic mechanism, in contrast to Planar Laplace, pro-
vides adequate privacy in both high and low-density areas.
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Contributions

– We propose the use of elastic metrics to solve the flexi-
bility problem of geo-indistinguishability. We formalize
a requirement of such metrics in terms of privacy mass,
capturing properties such as space, population, points of
interest, etc.

– We propose an efficient and scalable graph-based algo-
rithm to compute a metric dX satisfying this requirement.

– We show that the technique of geo-fences can be elegantly
expressed in the metric and incorporated in the algorithm.

– We perform an extensive evaluation of our technique in
a large metropolitan area using two real-world datasets,
showing the advantages of the elastic metric compared to
standard geo-indistinguishability.

1.0.0.1 Plan of the paper
In the next section we recall some preliminary notions about
dX -privacy and geo-indistinguishability. In Section 3 we
present in detail the elastic metric. First how to extract mean-
ingful privacy resource for each location, then the definition of
a privacy requirement and finally the graph-based algorithm
that generated the metric. In Section 4 we describe how to
model geographical fences with a metric and how to integrate
it with the elastic metric algorithm. Finally in Section 5 an
elastic mechanism is built and evaluated in comparison with a
geo-indistinguishable mechanism.

2 Preliminaries

We briefly recall here some useful notions from the literature.

Probabilistic model
We first introduce a simple model used in the rest of the paper.
We start with a set X of points of interest (i.e. a subset of R2),
typically the user’s possible locations. Moreover, letZ be a set
of possible reported locations, which typically coincides with
X , although this is not necessary. For the needs of this paper
we consider X ,Z to be finite.

The selection of a reported value z ∈ Z is probabilis-
tic; z is typically obtained by adding random noise to the ac-
tual location x. The set of probability distributions over Z is
denoted by P(Z). We define the multiplicative distance be-
tween two distributions µ1, µ2 ∈ P(Z) as dP(µ1, µ2) =
supZ⊆Z | ln

µ1(Z)
µ2(Z) |, with the convention that | ln µ1(Z)

µ2(Z) | = 0
if both µ1(Z), µ2(Z) are zero and ∞ if only one of them is
zero.

A mechanism is a (probabilistic) function K : X →
P(Z) assigning to each location x ∈ X a probability distribu-
tion on Z , where K(x)(z) is the probability to report z ⊆ Z ,
when the user’s location is x.

Geo-indistinguishability and dX -privacy
The notion of geo-indistinguishability was proposed in [2] as
an extension of differential privacy in the area of location pri-
vacy. The main idea behind this notion is that it forces the out-
put of the mechanism applied on locations x, x′, i.e. the dis-
tributions K(x),K(x′), to be similar when x and x′ are geo-
graphically close, preventing an adversary from distinguish-
ing them, while it relaxes the constraint when x, x′ are far
away from each other, allowing a service provider to distin-
guish points in Paris from those in London. Let deuc(·, ·) de-
note the Euclidean metric; a mechanism K satisfies ε-geo-in-
distinguishability iff for all x, x′:

dP(K(x),K(x′)) ≤ εdeuc(x, x′)

Equivalently, the definition can be formulated as K(x)(z) ≤
eεdeuc(x,x′)K(x′)(z) for all x, x′ ∈ X , z ∈ Z .

The quantity εdeuc(x, x′) can be viewed as the distin-
guishability level between the secrets x and x′. The use of the
Euclidean metric deuc is natural for location privacy: the closer
(geographically) two points are, the less distinguishable we
would like them to be. Note, however, that any other (pseudo-
)metric could be used instead of deuc, such as the Manhat-
tan metric or driving distance, depending on the application.
The definition that we obtain by using an arbitrary distin-
guishability metric dX , i.e. requiring that dP(K(x),K(x′)) ≤
dX (x, x′), is referred to as dX -privacy, and is studied on its
own right in [7]. In Section 3 it is argued that a properly con-
structed dX can provide location privacy while taking into ac-
count the semantic properties of each location.

It should be noted that standard differential privacy simply
corresponds to εdh(x, x′)-privacy, where dh is the Hamming
distance between databases x, x′, i.e. the number of individu-
als in which they differ. If x, x′ are adjacent, i.e. they differ in
a single individual, then dh(x, x′) = 1 and the distinguisha-
bility level between such databases is exactly ε.

Two characterization results are also given in [2, 7], pro-
viding intuitive interpretations of geo-indistinguishability and
dX -privacy.

It should be emphasized that geo-indistinguishability aims
at protecting the user’s location, not his identity (protecting the
link between a person identity and its location is the goal of
several techniques in the location privacy literature, see Sec-
tion 6.0.0.6). In our setting a user might even be authenticated
with the LBS, for instance to obtain personalized search re-
sults, while wishing to protect his location.
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Distinguishability level and ε
A point worth emphasizing is the role of the distinguishability
level, and its relationship to ε in each definition. The distin-
guishability level between two secrets x, x′ is their distance
in the complete privacy metric employed, that is εdh(x, x′)
for differential privacy, εdeuc(x, x′) for geo-indistinguishabi-
lity, and dX (x, x′) for dX -privacy. Secrets that are assigned a
“small” distinguishability level will remain indistinguishable,
providing privacy, while secrets with a large distance are al-
lowed to be distinguished in order to learn something from the
system. Typical values that are considered “small” range from
0.01 to ln 4; we denote a small distinguishability level by l∗,
and in our evaluation we use l∗ = ln 2.

In the case of differential privacy, ε is exactly the
distinguishability level between adjacent databases (since
dh(x, x′) = 1 for such databases), hence we directly use our
“small” level l∗ for ε. For geo-indistinguishability, however,
ε represents the distinguishability level for points such that
deuc(x, x′) = 1; however, depending on the unit of measure-
ment as well as on the application at hand, we might or might
not want to distinguish points at a unit of distance. To choose
ε in this case, we start by defining a radius r∗ of high pro-
tection, say r∗ = 300 meters for an LBS application within
a big city, and we set ε = l∗/r∗. As a consequence, points
within r∗ from each other will have distinguishability level at
most l∗, hence an adversary will be unable to distinguish them,
while points will become increasingly distinguishable as the
geographic distance between them increases.

Note the difference between deuc(x, x′), the geographic
distance between x, x′, and εdeuc(x, x′), the distinguishability
level between x, x′. In other words, ε stretches the Euclidean
distance turning it into a distinguishability metric. To avoid
confusion, throughout the paper we use r to denote geograph-
ical distances and radii, and l to denote distinguishability lev-
els.

In the case of dX -privacy, dX (x, x′) directly gives the dis-
tinguishability level between x and x′. In Section 3 we investi-
gate some properties that such a metric should satisfy in order
to provide location privacy while taking into account the se-
mantics of each location. Then, in Section 3.4, we propose a
graph-based algorithm for constructing such a metric.

Repeated application
Any obfuscation mechanism is bound to cause privacy
loss when used repeatedly. In the case of an ε-geo-
indistinguishable mechanism K, applying it n times will sat-
isfy nε-geo-indistinguishability. This is typical in the area of
differential privacy, in which ε is thought as a budget which is
consumed with every query.

The situation is similar in the case of dX -privacy: applied
n times, a mechanism will satisfy ndX -privacy. This means
that the distinguishability level between x, x′ after n applica-
tions is ndX (x, x′); if dX (x, x′) > 0 then as n grows x and
x′ are bound to become completely distinguishable. However,
if we use a pseudo-metric such that dX (x, x′) = 0, then x, x′

are completely indistinguishable, and will remain so under any
number of repetitions n. This property will be exploited by the
“fence” technique of Section 4.

Planar Laplace and Exponential mechanisms
The typical approach for achieving differential privacy is
adding noise from some sort of Laplace-like distribution. In
the case of the Euclidean distance, the Planar Laplace (PL)
mechanism [2] can be employed. When applied on location x,
this mechanism draws a location z from the continuous plane
with probability density function:

ε

2π e
−εdeuc(x,z)

In [2] a method to efficiently draw from this distribution is
given, which uses polar coordinates and involves drawing an
angle and a radius from a uniform and a gamma distribution re-
spectively. The mechanism can be further discretized and trun-
cated, and can be shown to satisfy ε-geo-indistinguishability.

Furthermore, in the case of an arbitrary distinguishability
metric dX , a variant of the Exponential mechanism [23] can be
employed. When applied at location x, this mechanism reports
z with probability:

cxe
− 1

2 dX (x,z) with cx = (
∑

z′ e
− 1

2 dX (x,z′))−1

where cx is a normalization factor. This mechanism can be
shown to satisfy dX -privacy. Note the difference in the expo-
nent between the two mechanisms: the Exponential mecha-
nism has a factor 1

2 missing from the Planar Laplace; in the
proof of dX -privacy, this factor compensates for the fact that
the normalization factor cx is different for every x, in contrast
to the Planar Laplace while the normalization factor ε

2π is in-
dependent from x. The advantage of this technique is the pos-
sibility of obtaining a privacy mechanism independently of the
metric used, allowing us to focus solely on the metric design.

Utility
The goal of a privacy mechanism is not to hide completely
the secret but to disclose enough information to be useful for
some service while hiding the rest to protect the user’s privacy.
Typically these two requirements go in opposite directions: a
stronger privacy level requires more noise which results in a
lower utility.
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Utility is a notion very dependent on the application
we target. An example of noise insensitive applications are
weather forecast services, where utility remains unchanged
even if the reported location is kilometers away from the real
one. On the contrary an POI research application can tolerate
lower noise addition in order to report meaningful results.

However, to evaluate and compare general-purpose loca-
tion obfuscation mechanisms, the general principle is to report
locations as close as possible to the original ones. A natural
and widely used choice [5, 28, 29] is to define utility as the
expected geographical distance between the actual and the re-
ported locations. Hence, we define the average error of mech-
anism K on location x as:

EK(x) =
∑

z K(x)(z) deuc(x, z)

In the case of the Planar Laplace mechanism, the error is inde-
pendent from x (due to the symmetry of the continuous plane)
and is given by EPL(x) = 2/ε.

3 An elastic distinguishability
metric

Rarely we are interested in hiding our geographical location
per se, more commonly we consider our location sensitive
because of the many personal details it can indirectly reveal
about us. For this reason reducing the accuracy, through per-
turbation or cloaking, is considered an effective technique for
reporting a location that is at the same time meaningful and
decoupled from its sensitive semantic value. In the preliminar-
ies we explained how in geo-indistinguishability the privacy
level is configured for a specific radius r∗, that is perceived as
private. Using r∗ = 300 m for a large urban environment is
based on the fact that a large number of shops, services and
people can be found within that radius, limiting the power of
inference of the attacker. This is an intuitive notion of location
privacy that we call hiding in a crowd, where the crowd rep-
resents the richness and variety that a location provides to the
user’s privacy.

As explained in the introduction, the use of εdeuc as the
distinguishability metric has a major drawback. The simple
use of geographical distance to define privacy ignores the na-
ture of the area in which distances are measured. In a big city, ε
can be tuned so that strong privacy is provided within 300 me-
ters from each location but in a rural environment, they are not
perceived as sufficient privacy. And even inside a city, such a
protection is not always adequate: within a big hospital an ac-
curacy of 300 meters might be enough to infer that a user is
visiting the hospital.

In this section we address this issue using a custom dis-
tinguishability metric that is adapted to the properties of each
area, an elastic metric. More specifically we discuss proper-
ties that such a metric should satisfy, and in the next section
we present an algorithm for efficiently computing such a met-
ric.

Once obtained the elastic metric, we can plug it in the
dX -privacy definition and obtain an elastic privacy definition
for location privacy, much like was done for geo-indistingui-
shability. Furthermore we can use the Exponential mechanism
presented in Section 2 to obtain a sanitization mechanism that
satisfies our elastic privacy definition.

3.1 Privacy mass

The main idea to overcome the rigidity of geo-indistinguisha-
bility is to construct a distinguishability metric dX that adapts
depending on the properties of each area. However in order
to distinguish a city from its countryside, or on a finer scale,
a crowded market place from a hospital, we first need to as-
sign to each location how much it contributes to the privacy
of the user. In other words we consider privacy as a resource
scattered on the geographical space and each locations is char-
acterized by a certain amount of privacy.

More precisely the privacy of location x depends on the
points that are indistinguishable from x. Let cover(x) denote
the set of points that are “highly” indistinguishable from x. For
the moment we keep cover(x) informal, it is properly defined
in the next section. Intuitively, the privacy of x depends:

1. on the number of points in cover(x): an empty set clearly
means that x can be inferred, while a set cover(x) con-
taining a whole city provides high privacy. This corre-
sponds to the idea that hiding within a large area provides
privacy.

2. on the semantic quality of points in cover(x): it is prefer-
able for cover(x) to contain a variety of POIs and highly
populated locations, than points in a desert or points all
belonging to a hospital. This corresponds to the idea that
hiding within a populated area with a variety of POIs pro-
vides privacy.

To capture this intuition in a flexible way we introduce the
concept of privacy mass. The privacy mass of a location x,
denoted by m(x), is a number between 0 and 1, capturing
the location’s value at providing privacy. We also denote by
m(A) =

∑
x∈Am(x) the total mass of a set A. The func-

tion m(·) should be defined in a way such that a set of points
containing a unit of mass provides sufficient cover for the user.
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Hence, the metric we construct needs to satisfy that

m(cover(x)) ≥ 1 ∀x ∈ X

Following the idea that privacy comes by hiding within
either a “large” or “rich” area, we define m(x) as

m(x) = a+ q(x)b (1)

where a is a quantity assigned to each location simply for “oc-
cupying space”, q(x) is the “quality” of x and b is a normaliza-
tion factor. The quality q(x) can be measured in many ways;
we measure it by querying the OpenStreetMap database for
a variety of POIs around x, as explained in Section 3.3. As-
suming q(x) to be given, we can compute a and b as follows:
we start with the intuition that even in empty space, a user
feels private if he is indistinguishable within some large radius
rlarge, for instance 3000 m (rlarge can be provided by the user
himself). Let Br(x) = {x′ | deuc(x, x′) ≤ r} denote the Eu-
clidean ball of radius r centered at x. Letting x be a location
in empty space, i.e. with q(x) = 0, intuitively we want that
cover(x) = Brlarge(x), and m(cover(x)) = 1, hence

a = 1
|Brlarge(x)|

Similarly, in an “average” location in a more private place,
like a city, a user feels private if he is indistinguishable within
some smaller radius rsmall, for instance 300 m (rsmall can be
also provided by the user himself). Let

avgq = Exq(Brsmall(x))

be the average quality of a rsmall ball (where expectation is
taken over all location in the city). On average we establish
that such a ball contains one unit of privacy mass, thus we get:

1 = a · |Brsmall(x)|+ b · avgq hence

b = 1
avgq

(1− |Brsmall(x)|
|Brlarge(x)| )

Note that the intuitive requirement of being indistinguish-
able from a set of entities with some semantic characteris-
tics is widely used in the privacy literature. Most notably, k-
anonymity [4, 12, 19, 25] requires to be indistinguishable from
group of at least k individuals, while l-diversity [22, 32] adds
semantic diversity requirements: hiding among k hospitals is
not acceptable since it still reveals that we are in a hospital. It
should be emphasized, however, that although we follow this
general intuition, we do so inside the geo-indistinguishability
framework, leading to a privacy definition and an obfuscation
mechanism vastly different from those of the aforementioned
works, as explained in more details in Section 6.0.0.6.

3.2 Requirement

Having fixed the function m(x), we turn our attention to the
requirement that our distinguishability metric dX should sat-
isfy in order to provide adequate privacy for all locations.

Let Bl(x) denote the dX -ball of distinguishability level
l. The dX -privacy property ensures that, the smaller l is, the
harder it will be to distinguish x from any point in Bl(x).
Our requirement is that Bl(x) should collect an appropriate
amount of privacy mass:

m(Bl(x)) ≥ req(l) ∀l ≥ 0, x ∈ X (2)

where req(l) is a function expressing the required privacy
mass at each level. The algorithm of Section 3.4 ensures that
the above property is satisfied by dX .

It remains to define the req(l) function. Let l∗ denote a
“small” distinguishability level (see Section 2 for a discussion
on distinguishability levels and what small means. In this pa-
per we use l∗ = ln 2). Points in Bl∗(x) will be “highly” indis-
tinguishable from x, hence Bl∗(x) plays the role of cover(x)
used informally in the previous Section. Privacy mass was de-
fined so that m(cover(x)) ≥ 1, hence we want req(l∗) = 1.

Moreover, as the dX -distance l from x increases, we
should collect even more mass, with the amount increasing
quadratically with l (since the number of points increases
quadratically). Hence we define req(l) as a quadratic function
with req(0) = 0 and req(l∗) = 1, that is:

req(l) =
( l
l∗
)2

Defining the requirement in terms of privacy mass is a
flexible way to adapt it to the properties we are interested in.
Indeed we can re-obtain geo-indistinguishability as a special
case of our new framework if all locations are considered just
for their contribute in space, not quality, i.e. q(x) = 0. The
requirement is then to be indistinguishable in certain area and
in an Euclidean metric it is simply the area of the circle with
radius l, a function that is indeed quadratic in l.

3.3 Extracting location quality

Our definition of privacy mass depends on the semantic qual-
ity q(x) of a point x. To compute the quality in a meaningful
way, we used the OpenStreetMap database 2 to perform geo-
localized queries. The open license ODbL of the database al-
lows to download regional extracts that can then be loaded in
a GIS database (Postgresql+PostGIS in our case) and queried

2 http://www.openstreetmap.org



Constructing elastic distinguishability metrics for location privacy 162

for a variety of geo-located features. The data in many urban
areas is extremely fine grained, to the level of buildings and
trees. Furthermore there is a great variety of mapped objects
produced by more that 2 millions users.

In order to extract the quality of a cell q(x), we per-
form several queries reflecting different privacy properties and
we combine them in one aggregate number using different
weights. In our experiments we query for a variety of Points
Of Interest in the tag class amenity, such as restaurants and
shops, and for the number of buildings in a cell. The buildings
are an indication of the population density, in fact despite the
database provides a population tag, it is for large census
areas and with a scarce global coverage, while the building
tag can be found everywhere and with fine resolution. Consid-
ering the simple nature of the queries performed we believe
the resulting grid captures very well the concept of hiding in
the crowd that we wanted to achieve (a sample can be viewed
in Figure 2a). We leave more complex query schemes as future
work as the main focus of this paper is on the metric costruc-
tion, described in detail in Section 3.4.

Among possible improvements three directions seem
promising.

First, one strength of dX -privacy is that it is independent
of prior knowledge that an attacker might have about the user,
making the definition suitable for a variety of users. However
in some cases we might want to tailor our mechanism to a spe-
cific group of users, to increase the performance in terms of
both privacy and utility. In this case, given a prior probability
distribution over the grid of locations, we can use it to influ-
ence the privacy mass of each cell. For instance, if we know
that our users never cross some locations or certain kind of
POIs, we can reduce their privacy mass.

Second, we are interested in queries that reward variety
other that richness e.g. a location with 50 restaurants should
be considered less private than one with 25 restaurant and 25
shops. Similar ideas have been explored in l-diversity, for a
detailed discussion of the differences in our approaches refer
to Section 6.0.0.6.

Finally, different grids could be computed for certain pe-
riods of the day or of the year. For instance, our user could use
the map described above during the day, feeling private in a
road with shops, but in the evening only a subset of the tags
should be used as many activities are closed, making a road
with many restaurants a much better choice.

Once we have enriched every location x with a quality
q(x), we can compute the resource functionm(x) as described
previously. In the next part we describe how to exploit this rich
and customizable information to automatically build an elastic
metric satisfying a requirement req.

3.4 An efficient algorithm to build elastic
metrics

In this section we develop an efficient algorithm to compute a
distinguishability metric dX that satisfies the quadratic require-
ment defined before. The metric we produce is induced by an
undirected graph G = (X , E), that is the main structure ma-
nipulated by the algorithm, where vertices are locations and
edges (x, d, x′) are labeled with the distance between loca-
tions. The distance between two locations is the shortest path
between them and thanks to this property instead of comput-
ing |X |2 edges, we can actually keep just a subset and derive
all other distances as shortest paths.

We start with a fully disconnected graph where all dis-
tances are infinite (thus each location is completely distin-
guishable) and we start adding edges guided by the require-
ment function. We work in iterations over the grid, where at
each iteration we add only one edge per vertex, stopping when
req is satisfied for all vertices. The reason to work in itera-
tions is that even if at iteration i a vertex can only reach a
certain number of cells, because of the other edges added dur-
ing the same iteration, at i + 1 it will find itself connected
to many more vertices. This approach distributes edges uni-
formly which provides two main advantages. First, it increases
the locality of connections which in turn reduces the average
error (or increases the utility) of the resulting mechanism. Sec-
ond, it leads to a smaller number of edges, thus decreasing the
size of the graph.

The requirement function req(l) is used as a guideline to
define the edges. Let req−1(m) = l∗

√
m be the inverse of

req.3 This function tells us at what distinguishability level
l = req−1(m) we should find m amount of privacy mass in
order to satisfy the requirement. For each location x we keep a
temporary level lx that is updated at each iteration using req−1

and stops at a predefined maximum value l>. At the begin-
ning lx is set using only the privacy mass provided by x alone
but adding edges will take into account also the ball of points
reachable within lx. In other words the temporary level of each
location indicates up to what level of distinguishability the re-
quirement is satisfied.

We then start the iterations and for each vertex x that
hasn’t already reached l> we recompute an updated lx. The
update is necessary to take into account other connections that
may have been added for other vertices and that could increase
the ball of x. In order to add a new edge we need a strategy

3 Note that our algorithm is not tied to the specific quadratic requirement
function, it can work with an arbitrary function req. Even if req(l) is not
invertible (e.g. for a step-like requirement), we could use req∗(m) =
inf{l | req(l) ≥ m} in place of req−1.
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to find a candidate vertex x′ to connect to. The strategy we
employ is next-by-geodistance, that returns the cell x′

geographically closest to x, but still not visited. In the result-
ing metric locations are more indistinguishable to nearby lo-
cations, reducing the average error of reported points. Once
we have a candidate location x′ there are two possible situa-
tions. If the distance between x and x′ is greater than lx, we
need to lower it to satisfy the requirement, so we add an edge
(x, lx, x′). Otherwise if the distance is shorter or equal than
lx, this means that x′ is already in the lx ball of x, so we ask
next-by-geodistance for another candidate. For each
vertex not completed an edge is added to the graph and the
process is repeated in iterations until all locations reach l>.

Our experiments showed that completion of the last few
tens of vertices can take extremely long and they are local-
ized mostly on the border of the grid. This is due to the fact
that points close to the border have fewer neighbors, making
it harder for them to find a candidate to connect to. As a con-
sequence they need to reach much further away, taking more
iterations and resulting in a higher average error because of
the long connections created. For this reason we use a stop-
ping condition that checks, at the end of every iteration, if all
the nodes remaining to complete are closer to the border than a
certain frame constant. If they are, the algorithm stops without
completing their requirement. All locations inside this frame
of the grid can be reported as sanitized locations but cannot be
used as secret locations. The frame value is a compromise be-
tween the algorithm running time and usable grid size, in our
experiments we used 3% of the grid size.

It can be shown that the metric dX constructed by this al-
gorithm does satisfy the requirement req for all l ≤ l>. The
stopping level l> can be set arbitrarily high, but in practice
setting it to any value larger than 10 has no effect on the re-
sulting metric. As shown in the evaluation of Section 5, the
algorithm can scale to an area of half a million locations with
modest computing resources. This is several orders of mag-
nitude better that techniques computing optimal obfuscation
mechanisms [5, 27, 29] which can only handle a few hun-
dred points within reasonable time constraints. Of course, our
method gives no optimality guarantees, it only constructs one
possible metric among those satisfying the requirement.

We believe further improvements in performance are pos-
sible in three directions, that we leave as future work. When
working in privacy poor areas, like in the country, the al-
gorithm spends a considerable time compressing large areas,
as expected. We believe that this work could be avoided by
grouping together several locations already when laying down
the grid. We would have a coarser resolution in the country,
which is acceptable, and a large speed up in the metric con-
struction. A second obvious improvement would come from
running the algorithm in parallel on portions of the map and

foreach x ∈ X do
lx := req−1(m({x}))

whi le ∃x. lx 6= l> do
foreach x ∈ X do
l := req−1(m(Blx(x)))
do
x′ := next-by-geodistance(x)

whi le dX (x, x′) ≤ lx
E := E ∪ {(x, lx, x′)}

merging the results. The problem arises on the borders of the
submaps, where on adjacent locations we have connections
with sharply different shapes. We believe however that com-
puting several submaps leaving a frame of uncompleted points
and them running again the algorithm in the entire map could
provide a reasonable result. Finally several strategies can be
applied in the choice of the next candidate and in the way we
perform the iterations that could have an impact on speed and
utility of the mechanism by completing faster the requirement.

3.5 Practical considerations

We believe that the techniques presented are practical enough
to deploy a location privacy mechanism in a real setting. The
resources required both in terms of hardware and time are very
limited, consider that the mechanism evaluated in the next sec-
tion was built in a day on a medium Amazon E2C instance. As
already mentioned querying the database is easily paralleliz-
able and the same grid can be reused to build several metrics.
We could imagine having a choice of pre-computed grids, for
different flavors of location quality and times (as explained in
Sec 3.3), on top of which the user could tune the requirement.

The computation of the metric is the most demanding part
of the process but proved reasonably fast for an area that can
easily contain all the movements of the user and many opti-
mization are still possible in the algorithm. We imagine these
two computationally intensive activities to be performed by a
remote server, with seldom updates from the OpenStreetMap
database.

The user’s phone needs to take care only of downloading
an extract of the metric to use in the Exponential mechanism.
For every request, the mechanism computes the exponential
distribution of sanitized locations and draws from it, which
amounts to a trivial computation, both in memory and time.
In principle we could also avoid contacting a third party by
saving the entire metric locally on the phone, as a reference
our metric for Ilê de France is only 58MB.
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From a user’s perspective, the amount of configuration re-
quired to run the mechanism varies according to her needs. It
can go from no configuration, in the case she downloads a pre-
computed map, to scaling the privacy mass requirement, to full
customization in the case the users wants to tailor the queries
to her specific needs.

4 Incorporating fences in the
metric

As discussed in the introduction another issue of geo-indis-
tinguishability is that, repetitive use of a mechanism from the
same location is bound to reveal that location as the number
of reports increases. This is crucial for locations that the user
frequently visits, such as his home or work location. Such lo-
cations cannot be expected to remain indistinguishable in the
long run; repetitive use of the mechanism is bound to reveal
them with arbitrary accuracy.

Despite the fact that all privacy mechanism are suscep-
tible to this privacy erosion over time, the compositionality
property of ε-geo-indistinguishability quantifies exactly this
privacy degradation: repetitive use of a mechanism causes a
linear accumulation of ε, lowering the privacy protection guar-
anteed. There are techniques to alleviate this effect, such as
the predictive mechanism of [8], but they are not enough in
this highly recurrent cases.

This problem, especially for the home-work locations, has
been already studied in the literature [16], although in the con-
text of anonymity i.e. how to match a user identity to a pair
of home-work locations. In fact our interest is focused on re-
ducing the accuracy of the reported location, because of the
sensitive data the attacker can infer from it. Even if the user
is authenticated with a LBS, for instance to notify her friends
that she is home, it is still valuable to not disclose the precise
address (that friends know anyway).

4.1 Fences

For highly recurrent locations we propose the use of geo
fences, areas on the map where the user’s movements are com-
pletely hidden and that are considered known to the attacker.
This technique is not novel and indeed has been widely used
by a large number of LBS. For example, personal rental ser-
vices (e.g. Airbnb) allow the user to indicate an area where the
good to be rented is located, so that other users can evaluate if
it is at a convenient distance without compromising the privacy
of the owner. Despite the vast use of fences in practice, to the

best of our knowledge, there is a lack of works in the literature
about their implementations or evaluating their effectiveness.

Our contribution consist in a simple formalization of
fences in the framework of distinguishability metrics. This
construction allows to hide completely sensitive locations
within a fence, while permitting the use of any other dX -
private mechanism outside. Given a privacy metric dX , we de-
fine a new fenced metric dF as:

dF (x, x′) =


0 x, x′ ∈ F
dX (x, x′) x, x′ /∈ F
∞ otherwise

Outside the fence the original metric dX is in place while in-
side the fence all points are completely indistinguishable. The
advantage is that being zero the distance inside the fence, any
repeated use of the mechanism from the sensitive location
comes for free, effectively stopping the linear growth of the
budget. In practice we keep reporting uniformly points inside
the fence, thus leaking no information to the attacker, other
than the public fact that we are inside the fence. Indeed it
should be noted that any movement across the fence is com-
pletely distinguishable, the attacker knows when we are in or
out.

Regarding utility, in this case it simply depends on the size
of the fence, in direct contrast with privacy.

Automatic Configuration of position and size
In order to configure the position and size of the fences, the
user input would be the best option (as shown in [6]), how-
ever they could also be inferred and suggested automatically.
In [15] the authors developed an attack to identify POI of a
specific user, from a set of mobility traces. A similar tech-
nique could be employed on the user’s phone, over a training
period, to collect and analyze her movements for a few days.
The mechanism would then automatically detect recurrent lo-
cations and suggest the user to fence them, possibly detecting
more than just home/work locations.

With the use of geolocated queries, such as those used to
extract privacy points in Section 3.3, we could determine the
size of the fence so to include a reasonable amount of buildings
for home and other POIs for work.

Compatibility with the elastic metric algorithm
It should be noted that fences are applicable to any distin-
guishability metric, including but not limited to the elastic
metric presented in Sec 3. Not only we can incorporate fences
in our elastic definition but also in our graph based algo-
rithm, in a simple and efficient way. It amounts to connecting
the locations inside the fence with zero labeled edges and to



Constructing elastic distinguishability metrics for location privacy 165

leave them disconnected from the nodes outside. When run-
ning the algorithm we should also take care to maintain this
disconnection of the fence. In order to avoid adding edges
from the inside we simply set the temporary radius rx of all
nodes inside the fence to d>, so that the algorithm considers
them completed and skips them. On the other side, to avoid
adding edges from the outside, we need to modify the function
next-by-geodistance so to avoid considering a candi-
date any location inside a fence. Both alterations to the algo-
rithm are trivial to implement and have no effect on perfor-
mances. The only drawback of the presented method is that
the fences need to be set before building the metric, which is
inconvenient as for each user we are obliged to recompute, for
the most part, the same metric. Despite this our experiments
show that in under a day is possible to generate the metric so
this remains an effective technique for practical purposes, es-
pecially considering the very static nature of the fences.

As future work we are investigating the possibility to
carve the fences from an already built metric. The challenge in
this case is re-enforcing the requirement for all affected points
and it is not clear for now how spread out is the impact on
other nodes and what is the effect on utility.

5 Evaluation

In this section we perform an extensive evaluation of our
technique in Paris’ wide metropolitan area, using two real-
world datasets. We start with a description of the metric-
construction procedure, and we discuss the features of the re-
sulting metric as well as the obfuscation mechanism obtained
from it. Then, we compare the elastic mechanism to the Planar
Laplace mechanism satisfying geo-indistinguishability, using
data from the Gowalla and Brightkite social networks. The
comparison is done using the privacy and utility metrics of
[28]. It should be emphasized that the metric construction was
completely independent from the two datasets, which were
used only for the evaluation. All the code used to run the eval-
uation is publicly available [1].

5.1 Metric construction for Paris’
metropolitan area

We build an elastic metric dX for a 75 km × 75 km grid cen-
tered in Paris, roughly covering its extended metropolitan area.
Each cell is of size 100 m × 100 m, and the set of locations
X contains the center of each cell, giving a total number of
562, 500 locations. The area covered is shown in Fig 1; note
that the constructed metric covers the larger shown area, the

Fig. 1. Coverage of EM with two subregions: Nanterre suburb on
the left and Paris city on the right

two smaller ones are only used for the evaluation of the mech-
anism in the next section.

The semantic quality q(x) of each location was extracted
from OpenStreetMap as explained in Section 3.3, and the pri-
vacy mass m(x) was computed from (1) using rsmall = 300
m and rlarge = 3 km. The resulting mass of each location is
shown in Figure 2a, where white color indicates a small mass
while yellow, red and black indicate increasingly greater mass.
The figure is just a small extract of the whole grid depicting the
two smaller areas used in the evaluation: central Paris and the
nearby suburb of Nanterre. Note that the colors alone depict
a fairly clear picture of the city: in white we can see the river
traversing horizontally, the main ring-road and several spots
mark parks and gardens. In yellow colors we find low density
areas as well as roads and railways while red colors are present
in residential areas. Finally dark colors indicate densely popu-
lated areas with presence of POIs.

For this grid, we use the algorithm presented in Sec-
tion 3.4 to compute an elastic metric dX with the quadratic
requirement of (2), configured with l∗ = ln 2. The whole com-
putation took less than a day on an entry-level Amazon EC2
instance. This performance of the algorithm is already suffi-
cient for real-world use: the metric only need to be computed
once, while the computation can be done by a server and the
result can be then transmitted to the user’s device. Note that
the algorithm can deal with sizes several orders of magnitude
bigger that techniques computing optimal obfuscation mecha-
nisms [5, 27, 29], which makes it applicable to more realistic
scenarios.

We then construct an Exponential mechanism (described
in Section 2) using dX as the underlying metric. We refer to
the resulting obfuscation mechanism as the Elastic Mecha-
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(a) Privacy mass m(x) of each location (b) Expected error EEM(x) at each location

Fig. 2. Paris’ center (right) and the nearby suburb of Nanterre (left)

nism (EM). The mechanism is highly adaptive to the prop-
erties of each location: high-density areas require less noise
than low-density ones to achieve the same privacy require-
ment. Figure 2b shows our utility metric per location, com-
puted as the expected distance EEM(x) between the real and
the reported location. Compared to Figure 2a it is clear that
areas with higher privacy mass result to less noise. Populated
areas present a good and uniform error that starts to increase
on the river and ring-road. On the other hand, the large low-
density areas, especially in the Nanterre suburb, have a higher
error because they need to report over larger areas to reach the
needed amount of privacy mass.

Finally, Figure 3 shows a boxplot of the expected error
for each location in the two areas. It is clear that the amount of
noise varies considerably, ranging from a few hundred meters
to several kilometers. It is also clear that locations in central
Paris need considerably less noise that those in the suburban
area. For comparison, the Planar Laplace mechanism (com-
pared against EM in the next section) has a constant expected
error for all locations.

Note that the expected error will always be higher than
the rsmall used in the normalization. For example in a location
that satisfies its requirement in 300 m it would be 870 m. This
is expected and it is due to the nature of the exponential noise
added.

5.2 Evaluation using the Gowalla and
Brightkite datasets

In this section we compare the Elastic Mechanism (EM) con-
structed in the previous section with the Planar Laplace mech-
anism [2] satisfying standard geo-indistinguishability. For the
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Fig. 3. Expected error EEM(x) per location

evaluation we use two real-world datasets from location-based
social networks.

5.2.0.2 The Gowalla and Brightkite datasets
Gowalla was a location-based social network launched in 2007
and closed in 2012, after being acquired by Facebook. Users
were able to “check-in” at locations in their vicinity, and
their friends in the network could see their check-ins. The
Gowalla dataset [10] contains 6, 442, 890 public check-ins
from 196, 591 users in the period from February 2009 to Oc-
tober 2010. Of those, 9, 635 check-ins were made in Paris’
center area and 429 in the Nanterre area (displayed in Fig 1).

Brightkite was another location-based social network cre-
ated in 2007 and discontinued in 2012. Similarly to Gowalla
users could check-in in nearby locations and query who
is nearby and who has been in that location before. The
Brightkite dataset [10] contains 4, 491, 143 check-ins from
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58, 228 users. Of those, 4, 014 check-ins were made in Paris’
center and 386 in Nanterre.

These datasets are particularly appealing for our evalu-
ation since a check-in denotes a location of particular inter-
est to the user, and in which the user decided to interact with
an actual LBS. This is in sharp contrast to datasets contain-
ing simply mobility traces, which just contain user movements
without any information about the actual use of an LBS.

5.2.0.3 Privacy metrics
Since the EM and PL mechanisms satisfy different privacy
definition, to perform a fair comparison we employ the widely
used Bayesian privacy metric of [28]. This metric considers a
Bayesian adversary having a prior knowledge π of the possi-
ble location of the user and observing the output of the mecha-
nismK. After seeing a reported location z the attacker applies
a strategy h : Z → X to remap z to the real secret location
where he believes the user could be, e.g. if z is in a river, it
is likely that the user is actually in a nearby location x on the
banks.

The ADVERROR metric measures the expected loss of an
attacker trying to infer the user’s location. It is defined as:

ADVERROR(K,π, h, dA) =
∑
x,z

π(x) K(x)(z) dA(x, h(z))

where dA is a metric modeling the adversary’s loss in case he
fails to identify the user’s real location. Notice how the loss
function is not applied directly to the reported location z, but
to the remapped location h(z). A rational adversary will use
the strategy h∗ minimizing his error, hence [28] proposes to
use ADVERROR(K,π, h∗, dA) as a privacy metric, where

h∗ = arg min
h

ADVERROR(K,π, h, dA)

Note that h∗ can be computed efficiently using the techniques
described in [29].

In our evaluation the secrets are POIs in each dataset.
We use two commonly used loss functions modelling differ-
ent types of adversaries: the first is the binary loss function
dbin, modelling an adversary interested in the semantics of the
user’s POI, hence trying to guess exactly in which one he is
located.

dbin(x, z) =
{

0 x = z

1 x 6= z

Then ADVERROR(K,π, h, dbin) expresses the adversary’s
probability of error in guessing the user’s POI. Second, we
use the Euclidean loss function deuc, modelling an adver-
sary who is interested in guessing a POI close to the user’s,
even if that POI is unrelated to his activity. In this case,
ADVERROR(K,π, h, deuc) gives the adversary’s expected er-
ror in meters in guessing the user’s POI.

We should emphasize an important difference between
the two adversaries: dbin tries to extract semantic information
from the actual POI, and is less effective in dense areas where
the number of POIs is high. On the other hand, deuc is less sen-
sitive to the number of POIs: if many POIs are close to each
other, guessing any of them is equally good. This difference is
clearly visible in the evaluation results.

We use each dataset to obtain a prior knowledge π∗ of
an “average” user of each social network, by considering all
check-ins within the areas of interest. Note that the datasets
do not have enough check-ins per-user to construct individ-
ual user profiles. Indeed, most users have checked-in in each
location at most once, hence any profile built by n− 1 check-
ins would be completely inadequate for inferring the remain-
ing one. As a consequence, we assume that the adversary will
compute his best strategy h∗ by using the global profile π∗.

Finally, we use

ADVERROR(K,πu, h∗, dA) dA ∈ {dbin, deuc}

as our privacy metric, where πu is the user’s individual prior
(computed only from the user’s check-ins), and

h∗ = arg min
h

ADVERROR(K,π∗, h, dA)

is the adversary’s strategy computed from the global profile.
Hence, the individual priors πu are only used for averaging
and not for constructing the strategy.

5.2.0.4 Utility metrics
The utility of an obfuscation mechanism is in general closely
tied to the application at hand. In our evaluation we want to
avoid restricting to a particular one; as a consequence we use
two generic utility metrics that are reasonable for a variety of
use cases. We measure utility as the expected distance between
the real and the reported locations, using two distance func-
tions. In some applications, service quality degrades linearly
as the reported location moves away from the real one; in such
cases the Euclidean distance deuc provides a reasonable way
of measuring utility. Other applications tolerate a noise up to
a certain threshold r with almost no effect on the service, but
the quality drops sharply after this threshold. In such cases, we
can measure utility using the follwoing distance metric:

dr(x, z) =
{

0 deuc(x, z) < r

1 ow.

5.2.0.5 Results
We carry out our evaluation in two different areas of the Paris
metropolitan area, with very different privacy profiles. The
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Fig. 4. Per-user binary ADVERROR of the EM and PL mechanisms for each area
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Fig. 5. Per-user Euclidean ADVERROR of the EM and PL mechanisms for each area

first area is the city of Paris intra-muros, very private on aver-
age, while the second is the adjacent suburb of Nanterre, where
already the concentration of privacy mass is much lower.

To obtain a fair comparison, the Planar Laplace PL mech-
anism is configured to have the same utility as the EM mech-
anism in Paris’ center. We computed the utility of EM us-
ing the global profile π∗ from both datasets, using four dis-
tance functions, namely deuc and dr with r = 1200, 1500 and
1800 meters. In each case, we computed the parameter ε of PL
that gives the same utility; we found that in all 8 cases the ε
we obtained was almost the same, ranging from 0.001319 to
0.001379. Since the difference between the values is small, we
used a single configuration of PL with the average of these val-
ues, namely ε = 0.001353. With this configuration, we then
compare the two mechanisms’ privacy in both areas.

Note that, although we configured the expected utility of
both mechanisms to be the same in the city, the EM’s be-
haviour is highly dynamic: in the most private areas of Paris
EM uses much less noise: in 10% of the city’s locations PL
adds 50% or more noise than EM.

The results for the binary adversarial error are shown in
Figure 4. We can see that in the center of Paris both mecha-

nisms provide similar privacy guarantees. The dynamic nature
of PL does not affect its privacy: locations in which the noise is
lower have more POIs in proximity, hence even with less noise
it is still hard to guess the actual one. On the other hand, in the
suburb there is a sharp degradation for PL. The reason is that
the number of POIs in both datasets is much smaller in Nan-
terre than in Paris, the distance between them is greater, and
the resulting priors are more “informed”. Hence it is consider-
ably easier for the adversary to distinguish such POIs, leading
to a probability of error as low as 0.62. On the other hand, EM
maintains a higher ADVERROR in the suburb, by introducing
a higher amount of noise.

To match EM’s privacy guarantees in the suburb, PL
should be configured with a higher amount of noise. However,
since Planar Laplace treats space in the same way everywhere,
this would lead to a high degradation of utility in Paris’ center,
which is unfortunate since (i) the extra noise is unnecessary
to provide good privacy in the center, and (ii) the extra noise
could render the mechanism useless in a dense urban environ-
ment where accurate information is crucial. In short, the flexi-
bility of the elastic mechanism allow it to add more noise when
needed, while offering better utility in high-density areas.
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The results for the Euclidean adversarial error are shown
in Figure 5. Here, we see a sharp difference wrt the binary ad-
versary: the effectiveness of guessing a POI close to the real
one is not affected much by the number of POIs (guessing any
of them is equally good). As a consequence, EM, which adds
less noise in dense areas with a great number of POIs, scores
a lower adversarial error in the city (although the difference is
moderate). The median error for EM in Gowalla is 1056 me-
ters while for PL it is 1180 meters. The motivation behind PL
was that, in a dense urban area, it is harder for the adversary to
extract semantic information from the reported location even if
less noise is used. But the Euclidean adversary is not interested
in semantic information, so he scores better with less noise.

In the suburb, on the contrary, the picture is reversed. Due
to the fact that priors in Nanterre are more “informed” making
remapping easier, the adversarial error for PL decreases com-
pared to the city. On the other hand, EM adapts its noise to the
less dense environment, leading to much higher adversarial er-
ror.

Note that the Nanterre area is still quite close to the city
center and highly populated itself. The fact that we can already
see a difference between the two mechanisms so close to the
center is remarkable; clearly, the difference will be much more
striking as we move away from the city center (unfortunately,
the datasets do not contain enough data in these areas for a
meaningful quantitative evaluation).

Finally, we should emphasize that the mechanism’s con-
struction and evaluation were completely independent: no in-
formation about Gowalla’s or Brightkite’s list of check-ins
was used to construct the metric. The only information used
to compute dX was the semantic information extracted from
OpenStreetMap.

6 Related Work and Conclusion

6.0.0.6 Related work
Concerning location privacy, there are excellent works and sur-
veys [20, 26, 31] that present the threats, methods, and guar-
antees.

A large body of works developed from k-anonymity, orig-
inally a notion of privacy for databases [4, 12, 19, 22, 24, 25,
32]. Many of the shortcomings of k-anonymity, outlined in
[30], are addressed in the current main trend based on the ex-
pectation of distance error [11, 18, 28, 29]. Both are depen-
dents on the adversary’s side information, contrary to our ap-
proach, as are some other works [9] and [3].

Extraction of privacy points uses ideas similar to k-
anonymity or l-diversity but the mechanisms are very differ-
ent in nature. The privacy of our resulting mechanism is due

to the obfuscation technique, it is independent of the attacker
side knowledge and doesn’t require any third party to operate.
Furthermore we protect privacy as the location accuracy and
not its anonymity.

Notions that abstract from the attacker’s knowledge based
on differential privacy can be found in [21] and [17] although
only for aggregate information.

In this work we extend and generalize geo-indistinguisha-
bility [2] and in order to so we go back to the notion it is based
on, dX -privacy [7] that provides a metric extension of differ-
ential privacy. This family of definitions abstracts from the at-
tacker’s prior knowledge, and is therefore suitable for scenar-
ios where the prior is unknown, or the same mechanism must
be used for multiple users.

Regarding the construction of finite mechanisms, [27]
proposes a linear programming technique to construct an opti-
mal obfuscation mechanism with respect to either the expecta-
tion of distance error or geo-indistinguishability. In [5] the au-
thors propose again a linear programming technique to com-
pute a geo-indistinguishable mechanism with optimal utility.
Their approach uses a spanner graph to approximate the metric
in a controlled way. Our algorithm does not provide optimality
with respect to privacy nor utility, it guarantees the respect of
a privacy requirement while achieving good utility. Moreover
the state of the art in optimal mechanism construction is lim-
ited to few tens of locations while the purpose of our technique
is to scale to several thousands of points.

6.0.0.7 Conclusion
In this paper, we have developed a novel elastic privacy met-
ric that allows to adapt the privacy requirement, as hence the
amount of applied noise, to the properties of each location.
We have formalized a requirement for such metrics based on
the concept of privacy mass, and using semantic information
extracted from OpenStreetMap. We have developed a graph-
based algorithm to efficiently construct a metric satisfying
this requirement for large geographical areas. We have dis-
cussed how the geo fencing technique can be elegantly ex-
pressed in the metric and incorporated in its construction. Fi-
nally, we have performed an extensive evaluation of our tech-
nique in Paris’ wide metropolitan area, using two real-world
datasets from the Gowalla and Brightkite social networks. The
results show that the adaptive behavior of the elastic mecha-
nism can offer better privacy in low-density areas by adjusting
the amount of applied noise.
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