
Proceedings on Privacy Enhancing Technologies 2015; 2015 (1):25–40

Gorka Irazoqui, Mehmet Sinan İncİ, Thomas Eisenbarth, and Berk Sunar

Know Thy Neighbor: Crypto Library Detection
in Cloud
Abstract: Software updates and security patches have
become a standard method to fix known and recently
discovered security vulnerabilities in deployed software.
In server applications, outdated cryptographic libraries
allow adversaries to exploit weaknesses and launch at-
tacks with significant security results. The proposed
technique exploits leakages at the hardware level to
first, determine if a specific cryptographic library is run-
ning inside (or not) a co-located virtual machine (VM)
and second to discover the IP of the co-located target.
To this end, we use a Flush+Reload cache side-channel
technique to measure the time it takes to call (load)
a cryptographic library function. Shorter loading times
are indicative of the library already residing in mem-
ory and shared by the VM manager through dedupli-
cation. We demonstrate the viability of the proposed
technique by detecting and distinguishing various cryp-
tographic libraries, including MatrixSSL, PolarSSL,
GnuTLS, OpenSSL and CyaSSL along with the IP of the
VM running these libraries. In addition, we show how
to differentiate between various versions of libraries to
better select an attack target as well as the applica-
ble exploit. Our experiments show a complete attack
setup scenario with single-trial success rates of up to
90% under light load and up to 50% under heavy load
for libraries running in KVM.

Keywords: Cryptographic Libraries, Cross-VM attacks,
Virtualization, Deduplication

DOI 10.1515/popets-2015-0003
Received 11/22/2014; revised 2/5/2015; accepted 2/6/2015.

Gorka Irazoqui: Worcester Polytechnic Institute, E-mail:
girazoki@wpi.edu
Mehmet Sinan İncİ: Worcester Polytechnic Institute, E-
mail: msinci@wpi.edu
Thomas Eisenbarth: Worcester Polytechnic Institute, E-
mail: teisenbarth@wpi.edu
Berk Sunar: Worcester Polytechnic Institute, E-mail:
sunar@wpi.edu

1 Motivation
Cloud computing has become a major building block in
today’s computing infrastructure. Many start-up and
mid scale companies such as Dropbox1 leverage the
ability to outsource and scale computational needs to
cloud service providers (CSPs) such as Amazon AWS2

or Google Compute Engine. Other companies may build
their computational infrastructure in the form of private
clouds, harnessing cost savings from resource sharing
and centralized resource management within the com-
pany.

Nevertheless, one of the main concerns that is slow-
ing the widespread usage of such Infrastructure as a
Service (IaaS) technologies are potential security vul-
nerabilities and privacy risks of cloud computing. Usu-
ally, CSPs employ virtual machines (VMs), allowing
multiple tenants to share the same computing hard-
ware. While this resource sharing maximizes utilization
and hence drastically reduces cost, ensuring isolation
of potentially sensitive data between VMs instantiated
by different and untrusted tenants can be a challenge.
Indeed, the main security principle in the design and
implementation of virtual machine managers (VMMs)
has been that of process and data isolation achieved
through sandboxing. Although logical isolation ensures
security at the software level, a malicious tenant might
still extract private information due to leakage coming
from side channels such as shared hardware resources.
In short, hardware sharing create an opening for vari-
ous side channel attacks developed for non-virtualized
environments. These powerful attacks are capable of ex-
tracting sensitive information, e.g. passwords and pri-
vate keys, by profiling the victim process. ignoring leak-
ages of information through subtle side-channels shared
by the processes running on the same physical hardware.
In non-virtualized environments, a number of effective
side-channel attacks were proposed that succeeded in
extracting sensitive data by targeting the software layer
only.

1 Dropbox grew from nil to an astounding 175 million users
from 2007 to 2013 [3].
2 Amazon AWS generated $3.8 billion revenue in 2013 [1].

Know Thy Neighbor: Crypto Library Detection in Cloud 26

As early as in 2003, D. Brumley and Boneh [22]
demonstrated timing side-channel vulnerabilities in
OpenSSL 0.9.7 [44], in the context of sandboxed exe-
cution in VMMs. The study recovers RSA private keys
from an OpenSSL-based web server when victim and at-
tacker run in the same processor. Symmetric cryptog-
raphy is another popular target of side channel attacks,
as demonstrated in 2005 by Bernstein [17] (and later
in [20, 28, 36]). He was able to recover an AES key due
to micro-architectural timing variations in the cache.
Time leakage in branch prediction units give rise to
another class of side channel attacks as demonstrated
by Acıiçmez et al. where the authors exploited key
dependent branches in a RSA computation of Open-
SSL [13–15]. Recently B.B. Brumley and Tuveri [21]
demonstrated that the ladder computation in the pop-
ular ECDSA implementation of OpenSSL 0.9.8o is vul-
nerable to timing attacks by extracting the private key
used in a TLS handshake.

Until fairly recently, the common belief was that
side-channel attacks were not realistic in the cloud set-
ting due to the level of access required to the cloud
server, e.g. control of process execution and more specif-
ically the difficulty in co-locating the attack process on
the machine executing the victim’s process. This belief
was overturned in 2009 by Ristenpart et al. [39] who
demonstrated that it is possible to solve the co-residency
problem and extract sensitive data across VMs. Using
the Amazon Elastic Compute Cloud (EC2) service as
a case study, Ristenpart et al. demonstrated that it is
possible to identify when an attacker VM is co-located
on the same server with a potential victim and therefore
using the same hardware as the attacker VM. The work
further shows that—once co-located—cache contention
between the VMs can be exploited to recover key strokes
across VM boundaries. By solving the co-location prob-
lem, this initial result fueled further research in Cross-
VM side-channel attacks. Zhang et al. [53] utilized a
cache side channel attack implemented across Xen VMs
to recover an ElGamal decryption key from a victim
VM. The authors applied a hidden Markov model to
process the noisy but high-resolution information across
VMs. Shortly thereafter, Yarom and Falkner showed
in [51] that RSA is also vulnerable, as well as ECDSA,
as shown by Yarom and Benger in [50]. Both attacks use
the Flush+Reload technique that exploits the shared L3
cache. It is important to note that since the L3 cache is
shared among cores, the attack works even if the victim
and the attack processes are located on different cores.

At the system level, another significant consequence
of these new high resolution cache attacks is that they

exposed new vulnerabilities in popular cryptographic li-
braries such as OpenSSL, which were previously consid-
ered secure. This forced the cryptographic library devel-
opers to fix their implementations and release patches
to mitigate these new attacks. It should be noted that
side channel attacks are just one more threat to cryp-
tographic libraries from a long list of vulnerabilities re-
gardless of whether the library is executed in VMs or
natively. Therefore, it is crucial to use the most recent
version of the cryptographic libraries where most of the
discovered vulnerabilities have been already mitigated
via series of patches. Using an outdated cryptographic
library renders the server vulnerable with potentially
devastating consequences. Good examples of recently
outdated cryptographic libraries are the ones suscep-
tible to Lucky Thirteen and the infamous Heartbleed
attacks. In 2013, AlFardan et al. discovered that most
cryptographic libraries were vulnerable to a padding or-
acle attack that they named Lucky 13 attack [27]. The
attack was able to recover the messages sent in TLS con-
nections by just looking at the time difference caused
by invalid padding in digest operations. Although they
showed only results in OpenSSL and GnuTLS, most of
the cryptographic libraries were affected by it. Patches
were released immediately by library developers. But us-
ing a non-patched version of any of these libraries would
still leave the door open to this MEE attack.

In 2014, Neel Mehta from the Google security team
discovered a dangerous security bug called the Heart-
bleed bug in the popular OpenSSL cryptographic li-
brary [4]. In a nutshell, the Heartbleed vulnerability
allows a malicious attacker to read more data in the
victim’s memory than it should, exposing sensitive in-
formation like secret keys. The attack quickly became
popular in the media, and caused grave concern among
security researchers for such a simple yet severe vulner-
ability to go undetected for many years. The cybersecu-
rity columnist Joseph Steinberg argued that the Heart-
bleed bug is the worst vulnerability found since com-
mercial traffic began to flow on internet. Indeed, 17% of
supposedly secure web servers were found to be vulner-
able to the attack. Soon after instances of Heartbleed
attack were discovered in the wild. For instance, the
Canada Revenue Agency reported the theft of 900 so-
cial security numbers [23]. Most of the websites patched
the bug within days of its release, but it remains unclear
whether the vulnerability has been exploited before its
public announcement. It is believed that some attack-
ers might have been exploiting the vulnerability for five
months before Mehta’s discovery.

Know Thy Neighbor: Crypto Library Detection in Cloud 27

The Heartbleed vulnerability presents a striking ex-
ample on the severe consequences of using an outdated
cryptographic library and a striking example of how
people ignore up-to-date software. One month after the
Heartbleed bug was discovered, 300k of 600k systems
were patched [43]. But the month after that only 9k
additional systems were patched leaving the remaining
300k systems still vulnerable. This dramatic drop in the
number of patched systems show that the Heartbleed
patching is almost over even though the security risk
still persist. In general, even when more critical vulner-
abilities are discovered, there is an inherent inertia in
patching systems gives attackers a window of opportu-
nity to penetrate computing systems. During this nar-
row window an attacker has to first run a discovery
phase where the system is target computing platform
through a series of tests to identify the most vulnerable
point of entry in the subsequent attack phase 3 . Dur-
ing the first phase it is critical for the attacker remains
stealthy. Therefore, a discovery tool that permits such
facility, i.e. covertly detecting a particular installation
of an outdated cryptographic library, will be an indis-
pensable tool in the hands of an attacker.

1.1 Our Contribution

In this work we introduce a method to detect the exe-
cution of specific software co-residing in the same host
across VM-boundaries. In particular we show that cryp-
tographic libraries executed in a co-located server in the
cloud can be detected with high accuracy, and that spe-
cific versions of those libraries can also be distinguished
reliably. After this library detection stage, we show to
that the IP of the co-located VM running the target
library is also recoverable in short time. The technique
can enable malicious parties, to covertly detect vulnera-
ble cryptographic libraries/versions prior to performing
an attack. The detection method exploits subtle leak-
ages of timing information at the hardware level and
runs rather quickly. At the protocol level the detection
technique does not interfere with the target’s usual op-
erations. Therefore, the detection method is very hard
to detect by the target.
Specifically, our contributions can be summarized as fol-
lows:

3 Directly running the attack carries varying levels of risks of
exposing the attack depending on the nature of the attack.

– We demonstrate that it is possible to detect and
classify executed code across VM boundaries with
high accuracy;

– We show how the developed method can be applied
to determine the cryptographic library being used
by a co-located VM;

– Our results imply that a co-located VM can discover
use of outdated vulnerable versions of a library;
This means that for the first time we show how to
distinguish between vulnerable and non-vulnerable
crypto-library versions across VMs.

– We show that after detecting the criptographic li-
brary, the IP address of the co-located VM can be
recovered in seconds to minutes depending on the
network size.

– We present a test bench with a popular cloud hyper-
visor KVM that proves the viability of our detection
method.

We present empirical results for detecting the execu-
tion of MatrixSSL, PolarSSL, GnuTLS, OpenSSL and
CyaSSL cryptographic libraries when running inside a
VM in KVM, as well as distinguishing and detecting
specific versions of such libraries, in particular OpenSSL
versions 0.9.7a, 0.9.8k, 1.0.0a, 1.0.1c, 1.0.1e, 1.0.1f, and
1.0.1g. Also, we present how long it takes to recover
the IP address of the co-located VM running aforemen-
tioned libraries. Our detection method obtains a success
rate of up to 90% under low noise scenarios and a suc-
cess rate of up to 50% under heavy load scenarios, while
maintaining a negligible false-positive rate. This means
that even when the workload is sufficiently high, our
detection method detects almost one out of two library
calls made by the target, and virtually never incorrectly
detects a library.

2 Background
In this study we develop a method that detects whether
a co-located VM is running a specific cryptographic li-
brary and to furthermore determine the specific ver-
sion of the library as well as the IP address of the co-
located VM. Described attack scenario requires a detec-
tion technique that must work across cores to be realistic
in a cloud setting. For this purpose we need to exploit a
type of shared resource between cores in multicore sys-
tems that leaks private information. Several single core
resources like branch predictors and TLBs have been
exploited in the past. However, information about these

Know Thy Neighbor: Crypto Library Detection in Cloud 28

shared resources in modern multicore modern proces-
sors is scant at best, and for most cases is not available
to the public. In contrast, in most modern processors
the cache can acts as the covert channel needed for our
detection method. In this section we give a brief descrip-
tion of typical cache architectures and a quick overview
on related work involving cache based side channel at-
tacks. Finally we describe the tool that this study will
use to detect cryptographic libraries in co-located VMs.

2.1 The Cache as a Covert Channel

2.1.0.1 Cache Hierarchy
The cache is a small memory element that is located
between the main memory and the CPU cores with the
purpose of providing faster access to the required data.
Upon a memory request, if the data resides in the cache
a cache hit occurs and the access time is small. If the
memory line is not found in the first level of cache, a
cache miss occurs and the data has to be fetched from
the lower level caches or the main memory.

Caches base their functionality on two main prin-
ciples: the temporal and spatial locality principles. The
first predicts that recently accessed data is likely to be
accessed soon, whereas the latter predicts that data in
nearby memory locations to the accessed data are also
likely to be accessed soon. Thus, when a cache miss oc-
curs, caches fetcg an entire memory block (cache line)
containing both accessed and nearby memory locations.

2.1.0.2 Related Cache Side-Channel Attacks
In general all the memory-dependent cryptographic al-
gorithms may potentially be exploited by cache at-
tacks, if no countermeasures are provided. Motivated
by this observation, a number of researchers have tar-
geted weakly designed software algorithms. The first
study considering cache-memory accesses as a covert
channel targeting the extraction of sensitive data was
done by Hu [29]. However it was not until 1998 when
Kelsey et al. [33] studied the cache hit ratio as a method
to deploy the first cache side-channel attacks. Page in
2003 suggested theoretical methods on cache side chan-
nel attacks [37]. The application of these kind of tech-
niques to recover information from typical table look
up operations performed in symmetric ciphers was first
studied by Tsunoo et al. [45]. The first practical cache
attack implementation appeared in 2005. Bernstein [17]
demonstrated that the timing leakage due to different
cache line accesses can be used to recover the secret key

used by the AES algorithm. In the same line, Bonneau
et al. [19] showed how collisions in the last round of
AES can affect the overall time execution and give in-
formation about the key used by the algorithm. These
two attacks can be considered as time driven cache at-
tacks, since they obtain information by just looking at
the overall timing execution. At the same time, sev-
eral new trace driven attacks were proposed. Osvik et
al. [36] introduced two new side channel techniques and
where able to extract an AES key: evict+time and
prime+probe.will be translated into a higher probing
time. If not, the attackers data will still be present in
the cache, and the probing time is going to be smaller.
Acıiçmez showed that cache attacks not only work when
they target the data cache, but also when they monitor
the instruction cache [12]. He used a prime+probe tech-
nique to monitor whether a RSA operation was calling
square or multiply operations, and thereby recovered
the private key.

In 2009, Ristenpart et al. [39] showed that it is pos-
sible to solve the co-location problem in cloud environ-
ments and therefore use the same hardware resources
as your victim. They targeted EC2 Amazon Web ser-
vices and demonstrated that an attacker can obtain
co-location with 40% chance. Their work for the first
time opened the door for side channel attacks in the
cloud setting. Two years later, Zhang et al. used the
cache as a tool to determine whether a user is co-located
with someone else or not [52]. Just one year later, again
Zhang et al. managed to recover an ElGamal encryption
key in a cloud scenario running XEN hypervisor when
the adversary is co-located in the same core [53]. They
used the above described prime+probe technique.

In the last three years, a new technique emerged
for cache analysis: Flush+Reload. The first research to
utilize this technique was Gullasch et al. [28], in which
they managed to recover an AES encryption key by us-
ing the Complete Fair Scheduler to block the encryption
execution. In 2013, Yarom et al. [51] used the tool to re-
cover a RSA decryption key running in GNUTLS. One
year later they used the same technique to recover an
ECDSA decryption key running in OpenSSL [50]. Irazo-
qui et al. [31] managed to recover an AES encryption
key in a real cloud scenario without the necessity of
blocking the AES execution (c.f. [28]). Lastly, Zhang et
al. [54] demonstrated that Flush+Reload is also applica-
ble in Product as a Service (PaaS) clouds by recovering
sensitive information from a co-located victim.

Know Thy Neighbor: Crypto Library Detection in Cloud 29

2.2 Flush+Reload Spy Process

Flush+Reload is a powerful cache-based spy process first
studied in [28] where Gullasch et al. demonstrated that
it can be used to recover sensitive information such as
AES secret keys. It was not until 2013 when the spy
process acquired this name thanks to Yarom et al. when
they used it to recover RSA encryption keys [51]. The
spy process checks if targeted process accesses some
monitored memory lines. Flush+Reload is works in three
main stages:
– Flushing stage: In this stage, the spy process

flushes some desired memory lines from the cache
hierarchies of all the cores. This means that after
this stage, the monitored memory lines will not be
present in any cache level of any core in the server.
Instead they will reside in the main memory. This
is accomplished by using the clflush command.

– Target process stage: In this stage the target runs
a program which may or may not use the monitored
memory lines. If the program uses any of the moni-
tored lines, this will be loaded in the corresponding
core’s cache hierarchy, from the last level of cache
to the first one. However if none of the monitored
memory lines is used by the target program, these
will reside in memory.

– Reloading stage: In this stage the attacker reloads
again the monitored cache lines. If the monitored
memory lines reside in the cache, the reload time is
going to be small. On the other hand if they reside in
main memory, the reload time is going to be longer.
If the last level of cache is shared across cores, a
spy process working in a different core would still
be able to distinguish accessed from memory lines
that were not accessed.

3 Memory Deduplication Features
Memory deduplication is an optimization technique that
is implemented in operating systems and cloud hypervi-
sors with the goal of utilizing memory more efficiently.
The basic idea is to merge identical pages used by differ-
ent processes or virtual machines into one shared page
with a Copy-on-Write flag. After the merging, if one of
the processes try to modify this shared page, a duplicate
page is created and assigned to the process hence cut-
ting if from the shared page. The deduplication process
is performed by checking duplicate pages in memory via
first hash match checking then a bit-by-bit comparison

CYASSL

OPENSSL

GNUTLS

CYASSL

MATRIXSSL

GNUTLS

GNUTLS

OPENSSL

CYASSL

MATRIXSSL

MEMORY VM1

MEMORY VM2

MEMORY VM3

RACK SERVER

Fig. 1. Memory Deduplication Feature

of the data. This is especially effective in virtualized en-
vironments where multiple guest OSs co-reside on the
same physical machine and therefore share the provided
hardware resources. Many variations of deduplication
techniques are now implemented in OSs and hypervi-
sors e.g. Kernel Samepage Merging in Linux and Trans-
parent Page Sharing in VMware. Although they have
different names, both implement the above described
mechanism to handle duplicate pages.

Note that even though the memory deduplication
saves significant amount of physical memory under cer-
tain conditions, it also opens doors to side-channel at-
tacks like Flush+Reload. For this reason, it is disabled
by major public cloud service providers like Amazon
EC2, Rackspace, etc., and is generally used in private
clouds.

In this work we will focus on KSM, since this is the
deduplication technique used in our testbed hypervisor,
KVM.

3.1 KSM (Kernel Same-page Merging)

KSM is the Linux memory saving deduplication fea-
ture that was first provided in Linux kernel version
2.6.32 [5, 32] aiming at avoiding redundant memory

Know Thy Neighbor: Crypto Library Detection in Cloud 30

copies [2, 16]. The procedure is as following: when KSM
finds a candidate page to be shared, it creates a signa-
ture and stores it in a deduplication table. Each time
KSM generates a new signature it compares it against
the signatures stored in the table. If KSM finds that two
pages have created the same signature, it merges them.
By default KSM in KVM scans 100 pages in every 200
milliseconds. This is why any memory disclosure attack,
including ours, has to wait for a certain time before the
deduplication takes effect upon which the attack can be
performed [40–42].

The mechanism for the cross-VM scenario is very
similar to the one described above. KVM for example
uses the KSM mechanism among their VMs. In this
case, KSM performs memory merging techniques among
VMs instead of among processes. Therefore when the
same page is detected as used by two different VMs, the
page is shared if it is declared as shareable. The client
OS still performs KSM among the processes running
inside it. KVM is not the only hypervisor that imple-
ments deduplication. VMware uses a similar technique
called Transparent Page Sharing (TPS) with the goal of
improving performance among their VMs via memory
deduplication [48].

4 Threats of Library Detection
As described in Section 2, Zhang et al. [54] demon-
strated how to track the execution path of a particular
victim when co-located in the same virtual machine in
PaaS clouds. In contrast, our work:
– Is applied in IaaS clouds where the information leak-

age appears across different VMs. However, follow-
ing the work by Zhang et al. [54] our work is also
applicable in PaaS clouds where different users run
in the same guest OS. Hence, deduplication ceases
to be an issue.

– Detects vulnerable cryptographic libraries instead
of the number of items in a shopping cart. Note that
this is a substantially higher threat, since harmful
attacks can be mounted if a vulnerable deployment
is detected (e.g., the Heartbleed attack).

– Directly discovers the IP address of the target VM
by tracking the execution path. In a PaaS scenario,
both attacker and victim share the same IP address,
eliminating the IP detection phase.

– Profiles accesses to handpicked addresses of a cryp-
tographic library made by a target VM. Zhang et
al., instead, first train a non-linear finite automaton

and use it later to track the execution path of the
co-located victim’s processes.

As mentioned before, the motivations for detecting the
execution of a specific piece of software being used can
be manifold. The knowledge of the cryptographic li-
brary being used can give crucial information to a co-
located adversary. For example, each cryptographic li-
brary has unique features and therefore can be used
for fingerprinting. Furthermore, common attacks are
not addressed in the same way in all the libraries.
Some libraries have weaker patches than the others.
This tool gives to the attacker the ability to deter-
mine whether a library that a co-located tenant is using
is vulnerable against a certain type of attack. In this
work we focus on the most popular cryptographic li-
braries: GnuTLS, OpenSSL, PolarSSL, MatrixSSL and
CyaSSL [7, 11, 35, 38, 44]. These 5 libraries have different
cryptographic implementations and from side-channel
point of view some of them can be more secure than
others. In this section we give examples why an attacker
could benefit from the knowledge of the cryptographic
library being used.
AES: AES is the most popular block cipher in use to-
day. Its implementation among the different libraries
varies, with OpenSSL having cache attack mitigation
techniques in their implementation such as bit slicing
techniques, while other libraries such as PolarSSL do
not implement any technique to cope with cache leak-
age.
MEE attacks: The protection level of common attacks
like Beast [25] and Lucky 13 [27] varies among different
libraries. For example, we know that OpenSSL has a real
constant time implementation to avoid padding leakage,
whereas CyaSSL or GnuTLS do not [26, 27].
RSA: RSA is the most widely used public key cryp-
tographic algorithm. Yarom et.al [51] showed that
GNUTLS was not well protected to avoid cache leak-
age. Although the fix was addressed in the most recent
version, an attacker could still try to detect calls to a
specific non patched version of the library.
Insecure encryption ciphers: While some crypto-
graphic libraries such as CyaSSL do not support weak
encryption algorithms like DES-CBC, others do, e.g.
OpenSSL. If someone is using it, our detection technique
gives an attacker a good opportunity to perform attacks
against it.

The usage of cryptographic libraries is very typical
in many processes performed by a virtual machine. For
instance, Mozilla web browser uses NSS (which could

Know Thy Neighbor: Crypto Library Detection in Cloud 31

be added to the detector) whereas Chrome browser
uses GnuTLS. However when a downloading process in
the command line is performed, OpenSSL is used as the
cryptographic library. Other applications like Steam use
OpenSSL as well. This means that the observer could
easily detect one of those widely used libraries, and in
consequence, take advantage of any weakness present on
it. Furthermore, This cross-detection method applied to
cryptographic libraries allows the observer to profile the
usage of certain applications (in case that the applica-
tion is not using any other shareable code), as the ones
mentioned above.

4.1 Additional Dangers of Version
Detection

Version detection goes beyond library detection, as its
main goal is to distinguish between different versions
of the same software family, such as a crypto library as
OpenSSL. There are several well-known vulnerabilities in
certain OpenSSL versions that can enable simple attacks
if a malicious party becomes aware of an unpatched im-
plementation. When used on the cloud, an adversary
can use the proposed tool to detect such outdated ver-
sions running in co-resident VMs.

Thus, the knowledge of the version enables the ad-
versary to choose the most powerful attack against a
spcific library. Outdated versions of a specific crypto-
graphic library are common, since each OS has its own
default installation of a specific version. For example,
Ubuntu 12.04 uses OpenSSL 1.0.1 and Ubuntu 14.04
uses OpenSSL 1.0.1f.

We work with seven OpenSSL versions; OpenSSL
0.9.7a, OpenSSL 0.9.8K, OpenSSL 1.0.0a, OpenSSL
1.0.1c, OpenSSL 1.0.1e, OpenSSL 1.0.1f, OpenSSL
1.0.1g. In the following we mention the most popular
bugs related to each one of the versions of the library
analyzed [6]. These are flaws that directly affect the
mentioned version, but of course new flaws in more
recent versions can be applied to the most outdated
ones:
OpenSSL 0.9.7: This is a most outdated version that
should not be used under any circumstance. There are
many attacks targeting this version, such as AES cache
attacks, branch prediction attacks in RSA or attacks on
PKCS [34].
OpenSSL 0.9.8k: Vulnerable to Denial of Service at-
tacks, Kerberos crash attacks or flaws in the handling
of CMS structures.

OpenSSL 1.0.0a: Vulnerable to Buffer Overrun attacks
in TLS, vulnerable to modifications of stored session
cache ciphersuites, DOS attacks due to GOST param-
eters, memory leakage due to failure of byte clearing
in SSL3.0, vulnerable to Vaudenay’s padding oracle at-
tack [47], weaknesses in the PKCS code exploitable us-
ing Bleichenbacher’s attack [18].
OpenSSL 1.0.1c: Vulnerable to Lucky 13 attack [27],
DOS attack due to failure in OCSP response, DOS at-
tack on AES-NI supporting platform.
OpenSSL 1.0.1e: Vulnerable to Flush+Reload ECDSA
attack [51], and to Heartbleed attack [4].
OpenSSL 1.0.1f: Vulnerable to Flush+Reload ECDSA
attack [51], and to Heartbleed attack [4].
OpenSSL 1.0.1g: Heartbleed fixed.

Heartbleed attack: The Heartbleed attack is a seri-
ous threat that was discovered in OpenSSL. The bug al-
lows a malicious attacker to steal sensitive information
used by SSL/TLS encryption. It compromises the se-
cret keys used to identify the service providers. The
bug was addressed in OpenSSL 1.0.1g, which means
that previous versions of OpenSSL are still vulnerable
to the attack. This compromises seriously those users
who are still using an outdated version of the popular
OpenSSL library. Our detection method allows an at-
tacker to detect whether one of the vulnerable versions
is being used.

5 Detection Method
Here we introduce our library detection method. We dis-
tinguish between two scenarios, for which the detection
methods slightly differ:
– Library Detection: detecting whether a library is

running in a co-located VM
– Version Detection: detecting whether a particu-

lar version of a library is running in a co-located
VM.

The Library detection method works by exploiting infor-
mation leaked through deduplication, detected by using
the Flush+Reload technique. It is clear that each library
has unique functions that are called when a SSL/TLS
connection is performed. This gives rise for a library
identifying process.

Know Thy Neighbor: Crypto Library Detection in Cloud 32

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

Hardware cycles

P
ro

ba
bi

lit
y

Instruction in cache
Instruction in memory

Fig. 2. Reload time in hardware cycles when a co-located VM is using the targeted instruction (red) and when it is not using the tar-
geted instruction (blue) using KVM on an Intel XEON 2670

5.1 Detection Stages

The detector performs the library detection or version
detection in several stages. A detailed description of the
steps of the detection method is as follows:
Unique Function Identification: The detector iden-
tifies functions that are called when an SSL/TLS con-
nection is established. The goal is to pick functions that
are unique to the library and therefore have a potential
in being mapped to a unique hash during the deduplica-
tion process while at the same time marking the event
we wish to be able to detect. For the cryptographic li-
braries we are targeting, we have preselected the iden-
tification functions as follows:
– OpenSSL: SSL_CTX_new. This function creates the

context variable to start an SSL/TLS connection
and is always called before a SSL/TLS connection.

– PolarSSL: ssl_set_authmode. This function is
called to select the preferred authentication mode
in an SSL/TLS connection performed by PolarSSL
at the beginning of an SSL/TLS connection.

– GNUTLS: gnutls_global_init. Function for the
initialization of GnuTLS library variables and error
strings that is called before the beginning of each
SSL/TLS connection.

– CyaSSL: CyaSSL_new. Every SSL/TLS connection
is associated with a CyaSSL object. This object is
created by the CyaSSL_new function, and therefore
has to be called prior to each CyaSSL SSL/TLS con-
nection.

– MatrixSSL: matrixSslOpen. Opening library
function performed by MatrixSSL prior to any other
SSL/TLS functions, making it suitable for our de-
tection method.

Offset Calculation: The detector has to calculate the
offset of these functions with respect to the beginning
of the library, since the ASLR is going to move the user
address space randomly. Functions such as dlopen allow
to recover the starting virtual address of the monitored
library. By further obtaining the virtual address of the
monitored function, the attacker can calculate the differ-
ence between both addresses. This difference is constant
for different virtual address spaces. Another possibility
for the attacker is to disable the ASLR in his own OS,
and refer directly to the address corresponding to the
targeted function.
Flush+Reload as Detection Method: The attacker
will use Flush+Reload to detect whether a function that
belongs to a library has been called or not. If any other
co-located VM uses one of the functions that the at-
tacker is trying to detect, this will be present in the last
level of cache and therefore the reload time is going to
be smaller. Hence the attacker can conclude that the
library which the function belongs to has been called.
If it was not accessed, the function will reside in main
memory, having a bigger reload time. Figure 2 visual-
izes this last statement via an experiment outcome. The
figure shows the reload times of a certain function when
monitored by Flush+Reload technique. The reload time

Know Thy Neighbor: Crypto Library Detection in Cloud 33

Page 1

Page 2

Page 3

Page 1

Page 2

Page 3

h
ash

h
ash

h
ash

h
as

h
h

as
h

h
as

h

OpenSSL
version 1

OpenSSL
version 2

0xaf

0x2a

0xb5

0xfe

0x48

0xb5

Fig. 3. KSM when two different versions have different pages, but
the targeted page is the same

Page 1

Page 2

Page 3

Page 1

Page 2

Page 3

h
ash

h
ash

h
ash

h
as

h
h

as
h

h
as

h

OpenSSL
version 1

OpenSSL
version 2

0xaf

0x2a

0xb5

0xfe

0x48

0x51

Fig. 4. KSM when two different versions have different pages,
and the targeted page is different

when a co-located VM is calling it constantly (red bars)
differs significantly from the case where it is not called
(blue bars). The difference is quite substantial, and if
we set the threshold in a correct value the amount of
noise is very small.

However, the detection method is not perfect.
Therefore, there are some accesses that are not going
to be detected:
– Victim access occurs before the reload stage, and

they do not overlap. In this case the access is going
to be detected by the Flush+Reload technique.

– Victim access occurs after the reload stage, and they
do not overlap. In this case the access is not going
to be detected by the Flush+Reload technique.

– Victim access and Flush+Reload stage overlap. If
the victim access was done slightly before the reload
stage, this access will be noticeable. However, if the

Page 1

Page 2

Page 3

Page 2

Page 3

h
ash

h
ash

h
ash

h
as

h
h

as
h

h
as

h

OpenSSL
version 1

OpenSSL
version 2

0xaf

0x2a

0xb5

0xfe

0x48

0x51

Page 1

Offset

Fig. 5. KSM when an offset introduced by a modification in the
library causes differences on the hash operation.

access was made slightly after the reload stage, it
will not be detected.

– Some other process evicts the access prior to the
reload stage, and therefore this is not going to be
noticeable by the Flush+Reload technique.

5.2 Avoiding Wrong Version Detections

The detection is performed by monitoring unique func-
tions associated to a library/version. These are easy to
find across libraries since OpenSSL does not use the same
function as any other library. However, this is not true
anymore in the version detection scenario. The targeted
functions in each version can experience three different
situation:
Different Versions, Same Page: Figure 3 shows the
case where two different OpenSSL versions are present
and the targeted page (in which resides our targeted
function) is the same for both of them. Since the mem-
ory is divided into pages of 4KBytes and KSM works
computing hashes at the page level, both pages will cre-
ate the same hash and they would be merged. Therefore,
an attacker would misspredict if the call was made by
OpenSSL version 1 or OpenSSL version 2. In this scenario,
the best route to take is to target another function that
is not same in both libraries.
Different Versions, Different Functions: If the tar-
geted functions to detect are different even though pre-
vious pages are the same, the attacker has no risk on
misspredicting the versions, since KSM will never merge
two different pages. This is the case we present in Fig-
ure 4

Know Thy Neighbor: Crypto Library Detection in Cloud 34

Different Versions, Same Page, Different Offset:
In another situation the functions are the same in both
versions of the library, but since a modification has been
done in some other previous page in the library, the off-
set will not be the same anymore. Therefore the page
address would be different and the result of the hash
operation applied to the pages will be different. In this
case the attacker would still be able to recognize differ-
ent versions even though they have the same function.
This is the situation presented in Figure 5.

We want to use a function that is called always in
an SSL/TLS connections and that establishes a rela-
tionship with one single specific library. In the cases
that we analyze, we keep using SSL_CTX_new because
it meets both requirements. We already discussed the
first requirement above. To test if we satisfy the sec-
ond requirement, we analyze the function across all
the libraries analyzed by our detector, observing dif-
ferent outcomes. This function changes between some of
the versions, e.g. OpenSSL 0.9.8k and OpenSSL 1.0.1a,
and does not change between some other versions, e.g.
OpenSSL 1.0.1e and OpenSSL 1.0.1f. However the off-
set with respect to a page boundary is different among
all of them, making the digest from the hash operation
different for all of them. Therefore there is no risk that
the hypervisor will merge pages from different library
versions.

5.3 IP Address Recovery

After determining the library running in the co-located
VM, the attacker runs the TLS handshake detector for
that specific library and starts the IP address recovery
step. To recover the IP address of the co-located VM,
the attacker starts sending TLS communication requests
to all IP addresses starting with her local subnet and
trying wider range of addresses until a handshake is de-
tected. When she triggers the co-located target VM, the
specific library detector that she ran beforehand detects
the TLS handshake. Only by observing the detector out-
put and the IP scanner process, she can then pinpoint
and recover the IP address at the time of a detection
hit. This step is scripted and requires varying times de-
pending on the detected library TLS setup time. In the
worst case with the slowest library, it takes less than 15
seconds to scan 255 different IP addresses for a match.

6 Experiment Setup and Results
Our measurement setup mimics the cloud setup found
in commercial CSPs. All experiments are performed on
a machine featuring an eight core Intel Xeon e5-2670 v2
CPU, running at 2.5GHz. This CPU is also commonly
used by the m3 instances of Amazon EC2. It features
32KBytes of private L1 cache and 262KBytes of pri-
vate L2 cache per core, as well as 20MBytes of L3 cache
shared among the cores. KVM is used as our cloud hy-
pervisor [10], whereas Ubuntu 12.04 is used for all the
guest OSs. KVM’s KSM feature is enabled for all exper-
iments, scanning 100 pages each 200 milliseconds (the
default values). Virtual machine manager is used to pro-
vide a graphic interface for the Virtual Machines.

In our evaluation setup, we create and use three
virtual machines. The first one, VM1, acts as a user
performing SSL/TLS connections with a library of its
choice. The second VM, VM2, acts as detector : VM2
aims at detecting the library and specific version used
by VM1. The last one, VM3, is used to simulate regu-
lar user load and therefore add various levels of noise
depending on the scenario:
– Noise-free: In the first scenario, the victim, VM1,

establishes SSL connections, the detector, VM2 ex-
ecutes our script to detect the library/version being
called by the victim. No additional noise coming
from a different VM is added, i.e. VM3 is idle.

– Web browsing: In the second scenario, again the
victim VM is performing SSL connections while the
detector VM tries to detect which library/version
he is using. However, in this case a third VM is per-
forming web-browsing operations at the same time.
It will run a script that opens a web page each 5
seconds.

– File sharing: The third scenario is similar to the
second one. In this case, while the victim is running
SSL/TLS operations and the detector VM tries to
run the detection script, a third Virtual Machine is
going to be running a script automatically down-
loads a 6KB PDF file every 5 seconds.

– Media streaming: In our last case, we want a sce-
nario in which the amount of CPU load introduced
by the noise adder VM is significantly higher than in
the previous cases. In this scenario, while the detec-
tor VM and victim VM are executing Flush+Reload
and SSL/TLS connections respectively, at the same
time a third VM continuously streams a movie. To
model this situation, we used Netflix as our me-
dia streaming software. In particular, we installed

Know Thy Neighbor: Crypto Library Detection in Cloud 35

the Netflix-desktop version for Unix. Note that the
content streamed via Netflix is Digital Rights Man-
agement (DRM) protected, therefore encrypted. For
encryption, Netflix uses AES-128 in counter mode.
The cryptographic operation as well as the me-
dia decoding process create significant background
noise.

We characterize our noise scenarios in terms of 3 pa-
rameters; the additional CPU load that is observed in
the hypervisor due to this operations, the network traf-
fic created by these operations and the number of cache
references experiences in one minute in each one of the
scenarios. Table 1 summarizes the observed values for
each of the characteristics analyzed for the scenarios
under consideration. We used the Linux tool top to ob-
serve the CPU load increase, and jnettop to observe
the network traffic value kn bits per second, and finally
we use perf to calculate the number of cache references
made in each scenario in one minute. We observed that
in terms of CPU load, both the web browsing scenario
and the file downloading scenario are similar with an
increase of 25%. As expected, the media streaming sce-
nario creates more CPU load; almost 4 times more than
the previous two scenarios with an increase of around
95%. The situation changes a little in terms of network
traffic and cache references, with the file downloading
scenario with slightly less noise. We observe an increase
of these two parameters in the web-browsing scenario.
Again for the media streaming scenario, we observe a
substantial increase in both parameters, making us be-
lieve that the detector will decrease its efficiency under
this scenario.

In the experiments, we followed the approach of
single-hit measurements meaning that we calculated the
probability of successfully detecting a single function
call at any time. It is important to note that the scan-
ning process for all the cryptographic libraries used in
the experiments takes only 5 seconds. Therefore, an ad-
versary can easily amplify the detection rate of target
library execution, even under heavy noise scenarios by
scanning multiple times either continuously or in short
intervals.

In our case the threshold to distinguish between ac-
cessed (function resides in the cache) and not accessed
(function resides in the memory) functions is 190 cycles.
As it can be seen in Figure 2, this threshold is based on
experimental measurements and is sufficient to distin-
guish the two Gaussian distributions. Note that this is a
hardware specific threshold and will have to be tuned if
the experiments are performed on a different machine.

Table 1. Noise parameters in different scenarios

Noise CPU Network Cache
Scenario load Traffic usage

(tx-rx) [references/min]

Noise free 0% 0 0
Web browsing 20-25% 3.67K-21K 115 × 106

File sharing 20-25% 600-1K 12.4 × 106

Streaming 95% 82K-5.8M 2, 300 × 106

The threshold value is easily obtained by running the
required library function on the target platform and
measuring the execution time using RDTSC(P) for both
memory and cache access. In order to ascertain that the
function code resides in the memory and the obtained
time belongs to the memory access, CLFLUSH instruc-
tion is used to flush the code from all levels of cache.

6.1 Library Detection

To determine the efficacy of the library detec-
tion method we surveyed five cryptographic li-
braries, i.e. OpenSSL 1.0.1 (OS), GnuTLS 26 2.12.14
(OS), MatrixSSL 3.6.1, CyaSSL3.0.0 and PolarSSL
1.3.7. All the libraries are compiled as shared libraries.
For our purposes we are going to suppose that one user
runs a SSL/TLS connection using one of these five li-
braries, and a second user has to detect which one was
run. We use typical functions that are used in a regu-
lar SSL/TLS connections (such as library initialization
or context creation functions). We run a script that
randomly chooses on of the libraries mentioned above
and performs SSL/TLS connections using the following
tools:
– OpenSSL: s_client and s_server tools provided

in the OpenSSL library.
– PolarSSL: ssl_client1 and ssl_server programs

provided by PolarSSL to perform the SSL/TLS con-
nection.

– GNUTLS: anonymus authentication server and
anonymus authentication client examples provided
by GnuTLS in [8, 9] for our test SSL connection.

– CyaSSL: client and server examples provided by
CyaSSL to perform the SSL/TLS connections.

– MatrixSSL: client and server apps provided by
MatrixSSL that establish a SSL connection between
them.

We recorded a total of 100 calls per library. Results are
presented in Table 2. The success rate represents the

Know Thy Neighbor: Crypto Library Detection in Cloud 36

Table 2. Successful detection rate in library detection in all four noise scenarios.

Library Detection success rate per scenario
Noise free Web browsing File sharing Media streaming

CyaSSL 90% 85% 85% 50%
OpenSSL 77% 76% 79% 48%
MatrixSSL 71% 72% 76% 41%
PolarSSL 91% 88% 84% 50%
GnuTLS 83% 91% 86% 51%

False positives 0 0.2% 0.4% 0.4%

Table 3. Success detection rate in OpenSSL version detection in all four noise scenarios.

Library Detection success rate per scenario
Noise free Web browsing File sharing Media streaming

OpenSSL 0.9.7a 79% 79% 78% 34%
OpenSSL 0.9.8k 85% 84% 87% 50%
OpenSSL 1.0.0a 83% 84% 82% 42%
OpenSSL 1.0.1c 85% 86% 85% 41%
OpenSSL 1.0.1e 80% 86% 84% 44%
OpenSSL 1.0.1f 76% 83% 80% 44%
OpenSSL 1.0.1g 82% 84% 90% 38%

False positives 0.14% 0.29% 0.29% 0.14%

Table 4. IP detection rate results.

Library Number of Connections Scan Time for 255 IPs Average Detection Hits

CyaSSL 1 tries per IP 5.57 seconds in average 3.5
OpenSSL 3 tries per IP 6.86 seconds in average 0.77
MatrixSSL 1 tries per IP 3.4 seconds in average 2.66
PolarSSL 3 tries per IP 7.33 seconds in average 1.54
GnuTLS 3 tries per IP 9.7 seconds in average 1.31

percentage of correctly detected libraries. Incorrectly
detected libraries, i.e. false positives, are presented in
the last row. The first thing to notice here is that we
have an exceptionally low false positive rate, ranging
from 0 false positives observed in the noise-free scenario
to 2 false positives in both the third and forth noisy sce-
narios out of 500 calls. In the best case (noise-free sce-
nario) the success rate ranges between 70% and 90% de-
pending on the library. Furthermore, we observe that for
the low noise scenarios these results do not change sig-
nificantly, meaning that this type of noise would not af-
fect the results. Finally we observe that when the heavy
load scenario is applied, we do not observe a significant
increase in the wrong predictions, but we observe a de-
crease in the success rate of the libraries. These go down
from almost 90% to 50% in the best cases, and from 70%
to 41% in the worst cases. This means that even when

the target is residing in a physical machine with heavy
load, the detector can still detect with 50% accuracy.

One important fact that has to be mentioned here
is that since we are using the OpenSSL version provided
by the OS in the download script noise scenario, we
are detecting some additional calls of OpenSSL from the
downloading step. However since these calls are made
by another VM and could be considered both correct
or incorrect predictions, we did not include them in the
results.

6.2 OpenSSL Version Detection

The second scenario is where we have a version de-
tection tool. We used 7 different OpenSSL versions:
OpenSSL 0.9.7a, OpenSSL 0.9.8k, OpenSSL 1.0.0a,
OpenSSL 1.0.1c, OpenSSL 1.0.1e, OpenSSL 1.0.1f

Know Thy Neighbor: Crypto Library Detection in Cloud 37

(previous to heartbeat fix) and OpenSSL 1.0.1g (heart-
beat fixed). We have to be more specific here, since
we have to look for functions that are different across
libraries, because otherwise KSM would merge them
even if they are from different libraries. However in all
the libraries analyzed the offset of the function that
is being tested (SSL_CTX_new) with respect to the
beginning of a page is different, therefore KSM will
never merge them, even when the function is the same.
SSL_CTX_new is a function that is always called in a
new SSL connection. We use the applications s_server
and s_client that OpenSSL provides for testing SSL
connections. We run a script that randomly chooses
one of the above mentioned versions of OpenSSL and
performs a TLS connection.

Again we record 100 calls of each one of the ver-
sion, 700 in total, in each one of the scenarios. Again
we are going to run 4 types of experiments: noise-free,
web-browsing, download noise and heavy Netflix load.
Results are presented in Tables 3. We see a similar pat-
tern to the one we saw in the library detection. For
noise-free and low noise scenarios we observe that the
success probability varies from 76% to 90%. We have to
remark that in this experiments we are not using the OS
provided version of OpenSSL (plain 1.0.1) since we did it
in the previous tests and therefore we do not detect the
file downloads. One could always include this version to
the detectors and still be able to detect it. Another ob-
servation is that again, the wrong predictions are fairly
low, with 2 wrong predictions in 700 library calls in the
worst case. Finally we observe that when heavy load
is present in the server, the success rate decreases to
50% in the best case and to 34% in the worst case. This
shows again that even though heavy load decreases the
success rate, one could still detect one library call out
of 3 in the worst case.

6.3 IP Detection

For this part of the experiment, we used detection func-
tions that run when a TLS communication handshake
is triggered in each particular library. After the initial
library detection stage, we ran IP detector script and
the TLS handshake detector to discover the co-located
target VM’s IP address. To be able to scan wide range
of IP addresses in short time, we used the timeout com-
mand with the TLS client handshake process to elimi-
nate IP addresses with no active TLS servers. We should
note that this timeout value had to be short enough to
allow fast scanning of large group of IP addresses but

also provide enough time to allow the TLS client to run
necessary pre-connection processes. To meet these two
criteria, we tried different timeout values ranging from
0.001 milliseconds to 1 second for different libraries and
determined that 0.01 milliseconds was optimal.

As for TLS Client, we experimented with differ-
ent TLS clients provided with libraries and determined
that the OpenSSL client was the fastest one amongst
the inspected libraries. Therefore for the IP detection
stage we used OpenSSL TLS client to trigger TLS hand-
shake for all libraries. Table 4 shows the time it takes
to scan 255 IP addresses in the subnet to discover co-
located victim VM as well as the average detection hits
from the co-located attacker VM during the IP detec-
tion stage. As seen from the table, for some libraries,
namely OpenSSL, PolarSSL and GnuTLS, 3 TLS con-
nection attempts per IP is used while for CyaSSL and
MatrixSSL only 1 per IP is used. This is done in order
to increase the detection rate while keeping the average
scan time within acceptable limits. As the results show,
all libraries except the OpenSSL have average detection
hits over 1, meaning that they are always detected when
the TLS handshake is triggered. As for the OpenSSL,
even when 3 connections per IP are established, the de-
tection rate is 0.77 in average and cannot be further
increased by repeated measurements in acceptable scan
time limits. We believe that this is due to the fact that
OpenSSL handles TLS handshake faster than the de-
tector have a chance to detect the handshake. The fact
that OpenSSL TLS client was fastest to establish con-
nections in our test and the scan time for 255 IPs was
fastest for OpenSSL supports this reasoning.

7 Preventing Cross-VM Code
Detection

We propose methods to mitigate cache leakage, thereby
rendering our detection technique impotent.
– Avoiding clflush usage: Our detection method

is based on the detector’s ability of flushing spe-
cific memory lines from the cache with the clflush
command. Prohibiting the usage of the clflush
command would prevent the attacker from imple-
menting the Flush+Reload attack. Note that dis-
abling the clflush instruction will disrupt memory
coherence in devices where memory coherence is not
supported. Also note that, clflush-like instructions
can still be substituted by cache priming techniques,
as in [30].

Know Thy Neighbor: Crypto Library Detection in Cloud 38

– Disabling Deduplication: Disabling deduplica-
tion prevents the flush and reload based detection
of executed code. Even partial disabling, e.g. by
marking cryptographic libraries (or any critical soft-
ware) to be excluded from deduplication, can pre-
vent the library detection with minimal effect on
performance. The main disadvantage of this coun-
termeasure is the lack of memory usage optimiza-
tion, especially in multi-tenant systems. Keep in
mind that with deduplication, it is shown to be pos-
sible to run over 50 Windows XP guest VMs on
server with 16 GBs RAM [5]. Also note that, other
spy processes like Prime and Probe may still suc-
ceed even when deduplication is turned off.

– Dedicated hosting: Public clouds like Amazon
EC2 can provide customers with dedicated hosts.
In this scenario no cache side-channel attacks can
be implemented, since the attacker cannot co-locate
with a victim anymore.

– Cache Partitioning: As suggested in [49], parti-
tioning the cache is a hardware solution that would
mitigate any kind of cache side channel attack. If
the attacker and the victim have associated differ-
ent portions in the shared level of cache (effectively
creating private caches), no cache-based attacks are
possible. Therefore associating some portions of the
cache to some VMs/processes, even when dedupli-
cation is enabled, would avoid any cache leakage be-
tween VMs/processes. The downside of cache par-
titioning is that the cache utilization associated to
each process decreases significantly, resulting in se-
rious performance penalties.

– Randomizing Cache Loads: Another possibility
also suggested in [49] is to add a random offset when
the CPU fetches data to the cache. In this way,
the physical memory would only have one copy of a
shared page, but it would add a random offset when
being loaded into the cache. This random offset is
private for each of the processes/VMs. Therefore,
an attacker would have to know the private offset
of the victim’s process/VM to be able to access the
same data/set.

– Diversifying the execution code: One possibil-
ity to mitigate cache side-channel attacks is to cre-
ate different and unique program traces (that per-
form identical computations) for different execu-
tions. This countermeasure, proposed in [24], will
prevent the Flush+Reload technique since the spe-
cific location of the function that the attacker wants
to monitor would be different for different users (and
thus, libraries would never be deduplicated).

– Degrading the granularity of timers: As cache
timing side channel attacks base their procedure on
the accuracy of rdtscp-like timers, an easy solution
that cloud hypervisors can adopt is to eliminate the
access to fine grain timers from guest VMs. Alter-
natively, as stated in [46], fine grained timers could
introduce a certain amount of noise so that cache
side channel attacks are no longer applicable.

8 Conclusion
In this work, we presented a detection method to iden-
tify the execution of pieces of software on a target’s VM
across co-located VMs. While the technique is generic
and applies to cross-VM settings where deduplication is
enabled, our experiments focused specifically on cryp-
tographic libraries. We believe that this is a highly rele-
vant use case for the detection method, since it enables
an attacker to covertly carry out a discovery phase with
high precision and great speed. We demonstrated the vi-
ability of the detector by identifying the cryptographic
library and the particular version used by a target. Our
work shows for the first time that identifying a specific
library version being used by a co-located tenant is pos-
sible. This enables an attacker to focus on the most vi-
able vulnerability. One clear example is the Heartbleed
bug, which was not fixed until OpenSSL 1.0.1g and al-
lows an attacker the extraction of private information.
We presented experiment results on OpenSSL versions
under various noise scenarios. We observed that in low-
noise scenarios the detection rate is up to 90%, whereas
in heavy load scenarios the detection rate reaches up to
50%. Nevertheless we would like to emphasize that even
in the worst case scenario with heavy load, the attacker
gains the knowledge about the used library after two or
three library calls.

9 Acknowledgments
This work is supported by the National Science Founda-
tion, under grant CNS-1318919 and CNS-1314770. We
would like to thank the anonymous reviewers of PETS
2015 for their helpful comments.

Know Thy Neighbor: Crypto Library Detection in Cloud 39

References
[1] Amazon AWS: 3.8 billion revenue in 2013. https://

readwrite.com/2013/01/14/amazon-web-services-can-it-
win-the-enterprise.

[2] Analyzing shared memory opportunities in different work-
loads. http://os.itec.kit.edu/downloads/sa_2011_
groeninger-thorsten_shared-memory-opportunities.pdf.

[3] The dropbox blog. https://blog.dropbox.com/2013/07/
dbx/.

[4] Heartbleed bug. http://heartbleed.com/.
[5] Kernel samepage merging. http://

kernelnewbies.org/Linux_2_6_32#head-
d3f32e41df508090810388a57efce73f52660ccb/.

[6] OpenSSL vulnerabilities. https://www.openssl.org/news/
vulnerabilities.html.

[7] CyaSSL: Embedded SSL library wolfSSL. http://www.
wolfssl.com/yaSSL/Home.html, May 2014.

[8] GnuTLS client examples. http://www.gnutls.org/manual/
html_node/Client-examples.html, April 2014.

[9] GnuTLS server examples. http://www.gnutls.org/manual/
html_node/Server-examples.html, April 2014.

[10] Kernel based virtual machine. http://www.linux-kvm.org/
page/Main_Page, April 2014.

[11] MatrixSSL: Open source embedded SSL. http://www.
matrixssl.org/, May 2014.

[12] Acıİçmez, O. Yet another microarchitectural attack:: Ex-
ploiting i-cache. In Proceedings of the 2007 ACM Workshop
on Computer Security Architecture (New York, NY, USA,
2007), CSAW ’07, ACM, pp. 11–18.

[13] Acıİçmez, O., Gueron, S., and Seifert, J.-P. New
branch prediction vulnerabilities in OpenSSL and necessary
software countermeasures. Cryptology ePrint Archive, Re-
port 2007/039, 2007. http://eprint.iacr.org/2006/351.pdf.

[14] Acıİçmez, O., Koç, C. K., and Seifert, J.-P. On the
power of simple branch prediction analysis. IACR Cryptology
ePrint Archive 2006 (2006), 351.

[15] Acıİçmez, O., Koç, C. K., and Seifert, J.-P. Predict-
ing secret keys via branch prediction. In CT-RSA (2007),
M. Abe, Ed., vol. 4377 of Lecture Notes in Computer Sci-
ence, Springer, pp. 225–242.

[16] Arcangeli, A., Eidus, I., and Wright, C. Increasing
memory density by using KSM. In Proceedings of the linux
symposium (2009), pp. 19–28.

[17] Bernstein, D. J. Cache-timing attacks on AES, 2004.
URL: http://cr.yp.to/papers.html#cachetiming.

[18] Bleichenbacher, D. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS1.
Springer-Verlag, pp. 1–12.

[19] Bonneau, J. Robust final-round cache-trace attacks against
AES.

[20] Bonneau, J., and Mironov, I. Cache-collision timing
attacks against AES. In Cryptographic Hardware and Em-
bedded Systems—CHES 2006 (2006), vol. 4249 of Springer
LNCS, Springer, pp. 201–215.

[21] Brumley, B. B., and Tuveri, N. Remote timing attacks
are still practical. In Computer Security–ESORICS 2011.
Springer, 2011, pp. 355–371.

[22] Brumley, D., and Boneh, D. Remote timing attacks are
practical. Computer Networks 48, 5 (2005), 701–716.

[23] CBC news. Heartbleed bug: 900 SINs stolen from Revenue
Canada. http://www.cbc.ca/news/business/heartbleed-bug-
rcmp-asked-revenue-canada-to-delay-news-of-sin-thefts-
1.2609192l, April 2014.

[24] Crane, S., Homescu, A., Brunthaler, S., Larsen, P.,
and Franz, M. Thwarting cache side-channel attacks
through dynamic software diversity.

[25] Dan Goodin. Hackers break SSL encryption used by mil-
lions of sites. http://www.theregister.co.uk/2011/09/19/
beast_exploits_paypal_ssl/, 2011.

[26] Duong, T., and Rizzo, J. Here come the XOR ninjas.
[27] Fardan, N. J. A., and Paterson, K. G. Lucky Thirteen:

Breaking the TLS and DTLS record protocols. In Security
and Privacy (SP), 2013 IEEE Symposium on (May 2013),
pp. 526–540.

[28] Gullasch, D., Bangerter, E., and Krenn, S. Cache
games – bringing access-based cache attacks on AES to
practice. IEEE Symposium on Security and Privacy 0
(2011), 490–505.

[29] Hu, W.-M. Lattice scheduling and covert channels. In
Proceedings of the 1992 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 1992), SP ’92, IEEE Com-
puter Society, pp. 52–.

[30] Irazoqui, G., Eisenbarth, T., and Sunar, B. Jack-
pot stealing information from large caches via huge pages.
Cryptology ePrint Archive, Report 2014/970, 2014. http:
//eprint.iacr.org/.

[31] Irazoqui, G., İncİ, M. S., Eisenbarth, T., and Sunar,
B. Wait a Minute! A fast, Cross-VM Attack on AES. In
Research in Attacks, Intrusions and Defenses, A. Stavrou,
H. Bos, and G. Portokalidis, Eds., vol. 8688 of Lecture
Notes in Computer Science. Springer International Pub-
lishing, 2014, pp. 299–319.

[32] Jones, M. T. Anatomy of Linux kernel shared memory.
http://www.ibm.com/developerworks/linux/library/l-kernel-
shared-memory/l-kernel-shared-memory-pdf.pdf/, April
2010.

[33] Kelsey, J., Schneier, B., Wagner, D., and Hall, C.
Side Channel Cryptanalysis of Product Ciphers. J. Comput.
Secur. 8, 2,3 (Aug. 2000), 141–158.

[34] Klíma, V., Pokorny, O., and Rosa, T. Attacking RSA-
based sessions in SSL/TLS. In in Proc. of Cryptographic
Hardware and Embedded Systems (CHES), 2003 (2003),
Springer, pp. 426–440.

[35] Nikos Mavrogiannopoulos and Simon Josefsson.
GnuTLS: The GnuTLS transport layer security library. May
2014.

[36] Osvik, D. A., Shamir, A., and Tromer, E. Cache at-
tacks and countermeasures: The case of AES. In Proceed-
ings of the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology (Berlin, Heidelberg,
2006), CT-RSA’06, Springer-Verlag, pp. 1–20.

[37] Page, D. Theoretical use of cache memory as a cryptana-
lytic side-channel, 2002.

[38] PolarSSL. PolarSSL: Straightforward,secure communica-
tion. www.polarssl.org.

[39] Ristenpart, T., Tromer, E., Shacham, H., and Sav-
age, S. Hey, you, get off of my cloud: Exploring information

https://readwrite.com/2013/01/14/amazon-web-services-can-it-win-the-enterprise
https://readwrite.com/2013/01/14/amazon-web-services-can-it-win-the-enterprise
https://readwrite.com/2013/01/14/amazon-web-services-can-it-win-the-enterprise
http://os.itec.kit.edu/downloads/sa_2011_groeninger-thorsten_shared-memory-opportunities.pdf
http://os.itec.kit.edu/downloads/sa_2011_groeninger-thorsten_shared-memory-opportunities.pdf
https://blog.dropbox.com/2013/07/dbx/
https://blog.dropbox.com/2013/07/dbx/
http://heartbleed.com/
http://kernelnewbies.org/Linux_2_6_32#head-d3f32e41df508090810388a57efce73f52660ccb/
http://kernelnewbies.org/Linux_2_6_32#head-d3f32e41df508090810388a57efce73f52660ccb/
http://kernelnewbies.org/Linux_2_6_32#head-d3f32e41df508090810388a57efce73f52660ccb/
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
http://www.wolfssl.com/yaSSL/Home.html
http://www.wolfssl.com/yaSSL/Home.html
http://www.gnutls.org/manual/html_node/Client-examples.html
http://www.gnutls.org/manual/html_node/Client-examples.html
http://www.gnutls.org/manual/html_node/Server-examples.html
http://www.gnutls.org/manual/html_node/Server-examples.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://www.matrixssl.org/
http://www.matrixssl.org/
http://eprint.iacr.org/2006/351.pdf
http://www.cbc.ca/news/business/heartbleed-bug-rcmp-asked-revenue-canada-to-delay-news-of-sin-thefts-1.2609192l
http://www.cbc.ca/news/business/heartbleed-bug-rcmp-asked-revenue-canada-to-delay-news-of-sin-thefts-1.2609192l
http://www.cbc.ca/news/business/heartbleed-bug-rcmp-asked-revenue-canada-to-delay-news-of-sin-thefts-1.2609192l
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/
http://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf/
www.polarssl.org

Know Thy Neighbor: Crypto Library Detection in Cloud 40

leakage in third-party compute clouds. In Proceedings of
the 16th ACM Conference on Computer and Communica-
tions Security (New York, NY, USA, 2009), CCS ’09, ACM,
pp. 199–212.

[40] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Mem-
ory deduplication as a threat to the guest OS. In Proceed-
ings of the Fourth European Workshop on System Security
(2011), ACM, p. 1.

[41] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Soft-
ware side channel attack on memory deduplication. SOSP
POSTER (2011).

[42] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Effects
of memory randomization, sanitization and page cache on
memory deduplication.

[43] The Guardian. More than 300k systems ’still vulnera-
ble’ to Heartbleed attacks. http://www.theguardian.com/
technology/2014/jun/23/heartbleed-attacks-vulnerable-
openssl, July 2014.

[44] The OpenSSL Project. OpenSSL: The open source
toolkit for SSL/TLS. www.openssl.org, April 2003.

[45] Tsunoo, Y., Saito, T., Suzaki, T., and Shigeri, M.
Cryptanalysis of DES implemented on computers with
cache. In Proc. of CHES 2003, Springer LNCS (2003),
Springer-Verlag, pp. 62–76.

[46] Vattikonda, B. C., Das, S., and Shacham, H. Eliminat-
ing fine grained timers in xen.

[47] Vaudenay, S. Security flaws induced by CBC padding - ap-
plications to SSL, IPSEC, WTLS. In Proceedings of In Ad-
vances in Cryptology - EUROCRYPT’02 (2002), Springer-
Verlag, pp. 534–546.

[48] Waldspurger, C. A. Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems
Review 36, SI (2002), 181–194.

[49] Wang, Z., and Lee, R. B. New cache designs for thwart-
ing software cache-based side channel attacks. In Proceed-
ings of the 34th Annual International Symposium on Com-
puter Architecture (New York, NY, USA, 2007), ISCA ’07,
ACM, pp. 494–505.

[50] Yarom, Y., and Benger, N. Recovering OpenSSL ECDSA
nonces using the flush+reload cache side-channel attack.
Cryptology ePrint Archive, Report 2014/140, 2014. https:
//eprint.iacr.org/2014/140.pdf.

[51] Yarom, Y., and Falkner, K. E. Flush+reload: a high
resolution, low noise, L3 cache side-channel attack. IACR
Cryptology ePrint Archive 2013 (2013), 448.

[52] Zhang, Y., Juels, A., Oprea, A., and Reiter, M. K.
Homealone: Co-residency detection in the cloud via side-
channel analysis. In Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA,
2011), SP ’11, IEEE Computer Society, pp. 313–328.

[53] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart,
T. Cross-VM side channels and their use to extract private
keys. In Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security (New York, NY, USA,
2012), CCS ’12, ACM, pp. 305–316.

[54] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart,
T. Cross-tenant side-channel attacks in paas clouds. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2014),
CCS ’14, ACM, pp. 990–1003.

http://www.theguardian.com/technology/2014/jun/23/heartbleed-attacks-vulnerable-openssl
http://www.theguardian.com/technology/2014/jun/23/heartbleed-attacks-vulnerable-openssl
http://www.theguardian.com/technology/2014/jun/23/heartbleed-attacks-vulnerable-openssl
www.openssl.org
https://eprint.iacr.org/2014/140.pdf
https://eprint.iacr.org/2014/140.pdf

	Know Thy Neighbor: Crypto Library Detection in Cloud
	1 Motivation
	1.1 Our Contribution

	2 Background
	2.1 The Cache as a Covert Channel
	2.2 Flush+Reload Spy Process

	3 Memory Deduplication Features
	3.1 KSM (Kernel Same-page Merging)

	4 Threats of Library Detection
	4.1 Additional Dangers of Version Detection

	5 Detection Method
	5.1 Detection Stages
	5.2 Avoiding Wrong Version Detections
	5.3 IP Address Recovery

	6 Experiment Setup and Results
	6.1 Library Detection
	6.2 OpenSSL Version Detection
	6.3 IP Detection

	7 Preventing Cross-VM Code Detection
	8 Conclusion
	9 Acknowledgments

