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Substring-Searchable Symmetric Encryption
Abstract: In this paper, we consider a setting where a
client wants to outsource storage of a large amount of
private data and then perform substring search queries
on the data – given a data string s and a search string
p, find all occurrences of p as a substring of s. First, we
formalize an encryption paradigm that we call queryable
encryption, which generalizes searchable symmetric en-
cryption (SSE) and structured encryption. Then, we
construct a queryable encryption scheme for substring
queries. Our construction uses suffix trees and achieves
asymptotic efficiency comparable to that of unencrypted
suffix trees. Encryption of a string of length n takes
O(λn) time and produces a ciphertext of size O(λn),
and querying for a substring of length m that occurs k
times takes O(λm + k) time and three rounds of com-
munication. Our security definition guarantees correct-
ness of query results and privacy of data and queries
against a malicious adversary. Following the line of work
started by Curtmola et al. (ACM CCS 2006), in order
to construct more efficient schemes we allow the query
protocol to leak some limited information that is cap-
tured precisely in the definition. We prove security of
our substring-searchable encryption scheme against ma-
licious adversaries, where the query protocol leaks lim-
ited information about memory access patterns through
the suffix tree of the encrypted string.
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1 Introduction
In traditional symmetric-key encryption schemes, a user
encrypts a message so that only the owner of the corre-
sponding secret key can decrypt it. Decryption is “all-or-
nothing”; that is, with the key one can decrypt the mes-

Melissa Chase: Microsoft Research, E-mail: melis-
sac@microsoft.com
Emily Shen: MIT Lincoln Laboratory, E-mail:
emily.shen@ll.mit.edu. Work performed while at Microsoft
Research.

sage completely, and without the key one learns noth-
ing about the message. However, many settings such as
cloud storage call for encryption schemes that support
the evaluation of certain classes of queries on the data
without decrypting the data. A client may wish to store
encrypted data on a cloud server and then be able to
issue queries on the data to the server in order to make
use of the data without retrieving and decrypting the
original ciphertext.

Much work has been done on searchable symmet-
ric encryption (SSE), which considers the setting where
the data consists of a set of documents that the client
wishes to search for combinations of keywords. How-
ever, we are interested in applications where one wants
to search not for predetermined keywords but for ar-
bitrary substrings. For example, suppose a medical re-
search lab wants to store subjects’ genomic data using
a cloud storage service. Privacy concerns may require
that this data be encrypted. At the same time, the re-
searchers need to be able to use the data efficiently. Re-
searchers may be interested in making substring queries
on the genomic data to determine whether a particular
cancer marker sequence appears in any of the data or to
count whether a certain probe sequence is rare enough
to be useful. In addition to protecting the privacy of the
data from the cloud provider, researchers would like to
ensure that the process of performing queries does not
reveal information to the cloud about the queries or the
original data.

We note that existing SSE techniques do not solve
the substring search problem efficiently; applying SSE
by considering every substring of the original string as
a separate keyword results in O(n2) storage for a string
of length n. Our goal is to avoid this storage overhead
and achieve Õ(n) storage (as one would have in the
unencrypted scenario).

Queryable encryption
In this paper, we first define queryable encryption,
which generalizes the SSE and structured encryption
paradigms. A queryable encryption scheme allows for
evaluation of some query functionality F that takes as
input a message M and a query q and outputs an an-
swer. A client encrypts a message M under a secret key
and stores the ciphertext on a server. Then, using the
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secret key, the client can issue a query q by executing an
interactive protocol with the server. At the end of this
protocol, the client learns the value of F(M, q). For ex-
ample, for substring search queries, a query q is a search
string, the message M is a string, and F(M, q) returns
the set of indices of all occurrences of q as a substring
of M .

Substring-searchable encryption
We give a construction for a queryable encryption
scheme for substring search queries – given a string s
and a search string p, return all occurrences of p as
a substring of s. Our construction has asymptotic effi-
ciency comparable to that of substring search on unen-
crypted data.

We note that general techniques such as fully homo-
morphic encryption [9, 10, 25, 26] and functional encryp-
tion [7, 36, 42] would not achieve our efficiency goals.
Instead, we tailor our scheme to the specific functional-
ity of substring search.

To construct a substring-searchable encryption
scheme, we use suffix trees, a data structure used to ef-
ficiently perform substring search on unencrypted data.
We combine basic symmetric-key primitives to develop
a method that allows traversal of select edges in a suffix
tree in order to efficiently perform substring search on
encrypted data, without revealing significant informa-
tion about the string or the queries.

A suffix tree for a data string of length n takes
O(n logn) space, and searching for a substring of length
m takes O(m + k) time, where k is the number of oc-
currences of the substring. In our substring-searchable
encryption scheme, encryption time and ciphertext size
are O(λn), and querying for a substring takes time and
communication complexity O(λm + k), where λ is the
security parameter. The query protocol takes a constant
number of rounds of communication. All operations are
based only on symmetric-key primitives.

Security
We prove security of our scheme against malicious ad-
versaries. For security, we will think of the server as an
adversary trying to learn information about the message
and the queries. Ideally, we want an adversary that is
given a ciphertext and that engages in query protocols
for several queries to learn nothing about the message
or the queries. However, in order to construct a more
efficient scheme, we will allow some limited informa-
tion about the message and the queries to be revealed

(“leaked”) to the server through the ciphertext and the
query protocol. Our security definition specifies explic-
itly what information is leaked and guarantees that an
adversary learns nothing more than the specified leak-
age. This approach of trading off perfect privacy for effi-
ciency has been adopted previously in the case of struc-
tured encryption [13] and in recent work on searchable
encryption variants [11].

Our definition is similar to previous definitions for
structured encryption and SSE. However, while previ-
ous definitions focused on document retrieval and the
adversary had to learn the list of documents returned,
in our definition there are no documents and all that
is required is that the client learn the result of the
query. Furthermore, most previous definitions have fo-
cused on honest-but-curious adversaries. We define se-
curity within a malicious adversary model.

2 Related Work
Searchable encryption and structured encryption
We draw on related work on symmetric searchable en-
cryption (SSE) [16] and its generalization to struc-
tured encryption [13]. These works take the approach
of considering a specific type of query and identify-
ing a data structure that allows efficient evaluation of
those queries in an unencrypted setting. The construc-
tion then “translates” the data structure into an en-
crypted setting, so that the user can encrypt the data
structure and send the server a token to evaluate a query
on the encrypted structure. This translation is designed
to preserve the efficiency of the unencrypted data struc-
ture.

Since the server is processing the query, the server
can determine the memory access pattern of the queries,
that is, which parts of memory have been accessed, and
when the same memory block is accessed again.1 The
approach to security in SSE and structured encryption
is to acknowledge that some information will be leaked
because of the memory access pattern, but to clearly
specify the leakage, and to guarantee that is the only
information that the server can learn.

There have been many recent advances in SSE. Cash
et al. [11] propose an efficient construction for searches
involving multiple keywords. Several works [12, 30, 31,

1 Note that this is true even if we use fully homomorphic en-
cryption (e.g., [9, 10, 25, 26]) or functional encryption [7, 36, 42].
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45] propose schemes that allow updates to the stored
documents, and Kurosawa and Ohtaki [38] propose a
UC definition. However, all of these works focus on the
problem of retrieving documents based on keywords;
there has been very little work that considers encrypting
more complex types of data structures.

Predicate encryption and fully homomorphic
encryption
Predicate encryption (a special case of functional en-
cryption [7]) allows the secret key owner to generate
tokens for various predicates. One can evaluate a token
for a predicate f on an encryption of m to determine
whether f(m) is satisfied. State-of-the-art predicate en-
cryption schemes (e.g., [36, 42]) support inner-product
queries; that is, f specifies a vector v, and f(m) = 1 if
〈m, v〉 = 0. Applying an inner product predicate encryp-
tion scheme naively to construct a substring-searchable
encryption scheme, where the substrings can be of any
length, would result in ciphertexts and query time that
are O(nn), where n is the length of the string s, which
is clearly impractical.

Fully homomorphic encryption (FHE), beginning
with the breakthrough work of Gentry [25] and fur-
ther developed in subsequent work, e.g., [9, 10, 27], al-
lows one to evaluate any arbitrary circuit on encrypted
data without being able to decrypt. FHE would solve
the substring-searchable encryption problem (although
it would require O(n) query time), but existing con-
structions are extremely impractical.

Oblivious RAMs
The problem of leaking the memory access pattern is
addressed in the work on oblivious RAMs [41], which
shows how to implement any query in a way that en-
sures that the memory access pattern is independent of
the query. There has been significant process in mak-
ing oblivious RAMs more efficient; however, even the
most efficient constructions to date (see, e.g., Stefanov
et al. [43]) increase the amortized costs of processing a
query by a factor of at least logn, where n is the size of
the stored data. In our setting, where we assume that
the large size of the dataset may be one of the primary
motivations for outsourcing storage, a logn overhead
may be unacceptable.

Secure two-party computation of substring search
There have been several works on secure two-party or
multiparty computation (e.g., [17, 40]) and specifically
on secure substring search and other text processing in
the two-party setting (see [3, 22, 24, 29, 34, 39, 46]).
This is an interesting line of work; however, our setting is
rather different. In our setting, the client has outsourced
storage of its encrypted data to a server, and then the
client would like to query its data with a search string.
The server does not have the data string in the clear;
it is encrypted. Thus, even ignoring the extra rounds
of communication, we cannot directly apply secure two-
party substring search protocols.

Memory delegation and integrity checking
We consider security against malicious adversaries. One
way a malicious adversary may misbehave is by return-
ing something other than what was originally stored
on the server. Along these lines, there is related work
on memory delegation (e.g., [14]) and memory check-
ing (e.g., [18]), verifiable computation (e.g., [6, 23]), in-
tegrity checking (e.g., [44]), and encrypted computation
on untrusted programs (e.g., [21]); the theme of these
works is retrieving and computing on data stored on
an untrusted server. For our purposes, since we focus
on the specific functionality of substring-searchable en-
cryption in order to achieve an efficient scheme using
simple primitives, we do not need general purpose in-
tegrity checking techniques, which can be expensive or
rely on more complex assumptions.

3 Preliminaries
In this section, we review notation and definitions of
the data structures and cryptographic primitives we will
use. For formal definitions of the cryptographic primi-
tives, we refer the reader to [33].

3.1 Notation

We write x R← X to denote an element x being sampled
uniformly at random from a finite set X, and x← A to
denote the output x of an algorithm A.

If x is a string, then |x| refers to the length of x,
and xi denotes the ith character of x. If |x| = n and a
and b are integers 1 ≤ a ≤ b ≤ n, then x[a..b] denotes
the substring xa . . . xb. If x and y are strings, then x‖y
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denotes the concatenation of x and y. We use ε to denote
the empty string.

If S is a set, then |S| refers to the cardinality of
S, and P(S) denotes the power set of S (the set of all
subsets of S). If n is a positive integer, [n] denotes the
set {1, . . . , n}.

If F : K×D → R is a family of functions, we write
FK for the function defined by FK(x) = F (K,x). We
sometimes write EncK(m) and DecK(c) for Enc(K,m)
and Dec(K, c), respectively.

3.2 Data Structures

A dictionary D is a data structure that contains
key/value pairs. For our construction it is sufficient for
a dictionary to support insert and lookup operations.
The insert operation takes a key/value pair (k, v) and
adds it to the dictionary. The lookup operation takes a
key k and returns the associated value v = D[k].

3.3 Symmetric-Key Encryption

A symmetric encryption scheme Π = (Gen,Enc,Dec)
consists of three polynomial-time algorithms. Gen is a
probabilistic algorithm that takes a security parameter
λ and outputs a secret key K. Enc is a probabilistic
algorithm takes a key K and a message M and out-
puts a ciphertext CT . Dec is a deterministic algorithm
that takes a key K and a ciphertext CT and outputs
a message M or the symbol ⊥. Correctness requires
Dec(K,Enc(K,M)) = M with probability 1 for all K
and M .

We use the following security notions for symmetric
encryption.
– CPA security requires that ciphertexts reveal no in-

formation about plaintexts (other than length) to
a PPT adversary that can adaptively query an en-
cryption oracle.

– Ciphertext integrity [4, 5, 35] requires that it be
infeasible for any PPT adversary given access to
an encryption oracle to construct a new ciphertext
that decrypts successfully. A symmetric encryption
scheme is authenticated if it has both CPA security
and ciphertext integrity.

– Key hiding (also known as which-key concealing) [1,
20] requires that it be infeasible for any PPT adver-
sary given access to two encryption oracles to tell
whether they encrypt using the same key or differ-
ent keys.

3.4 Pseudorandom Functions and
Permutations

A pseudorandom function family (PRF) (respectively,
pseudorandom permutation family (PRP)) is a family
F of functions such that it is computationally infeasible
for any PPT adversary to distinguish a function chosen
randomly from F from a uniformly random function
(resp., permutation).

An almost-universal hash function is a family H of
hash functions such that for any pair of distinct mes-
sages the probability of a hash collision for a hash func-
tion chosen randomly from H is negligible.

A PRF composed with an almost-universal hash
function results in another PRF. That is, one can eval-
uate a PRF on a long input by first hashing it using
an almost-universal hash function to a short input and
then applying a PRF.

4 Queryable Encryption
We now formalize queryable encryption and present our
main definitions.

4.1 Functionality

Definition 4.1. A queryable encryption scheme sup-
porting query functionality F :M×Q→ R for message
spaceM, query space Q, and result space R consists of
three probabilistic polynomial-time algorithms.
Gen(1λ) → K: The key generation algorithm takes a

security parameter λ and generates a secret key K.
Enc(K,M) → CT : The encryption algorithm takes a

secret key K and a message M ∈ M, and outputs
a ciphertext CT .

Query(K, q, CT ) : The interactive query protocol oc-
curs between a client and a server. The client’s in-
put is the secret key K and a query q ∈ Q, and
the server’s input is a ciphertext CT . The client’s
output is a query result r ∈ R; the server has no
output.

For correctness we require the following property. For
all λ ∈ N, q ∈ Q, M ∈ M, let K ← Gen(1λ),
CT ← Enc(K,M), and r ← Query(K, q, CT ). Then
Pr[r = F(M, q)] = 1− negl(λ).
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Substring-searchable symmetric encryption
We define substring-searchable encryption as a special
case of queryable encryption.

Definition 4.2. A substring-searchable symmetric en-
cryption scheme for an alphabet Σ is a queryable en-
cryption scheme for message space M = Σ∗, query
space Q = Σ∗, result space R = P(N), and query
functionality F , where F(s, p) is the set of indices of
all the occurrences of p as a substring of s. That is,
F(s, p) = {i|s[i..i+m− 1] = p}, where m = |p|.

Discussion
Note that the definition of a queryable encryption
scheme does not include an explicit decryption algo-
rithm. If full decryption is desired, one can include a
query in F that returns the entire message.

Note also that typically we expect M to be quite
large, while the representation of q and F(M, q) are
small, so we would like the query protocol to be efficient
relative to the size of q and F(M, q). Without such ef-
ficiency goals, designing a queryable encryption scheme
would be trivial: the server could return the entire ci-
phertext, and the client could decrypt the ciphertext to
get M and compute F(M, q) directly.

Related definitions
Our queryable encryption definition can be viewed as a
generalization of previous definitions of searchable en-
cryption [16] and structured encryption [13]. Queryable
encryption allows any general functionality F . In con-
trast, the definition of searchable encryption is tied to
the specific functionality of returning documents con-
taining a requested keyword. Structured encryption is
a generalization of searchable encryption, but the func-
tionalities are restricted to return pointers to elements
of an encrypted data structure.

Since we allow general functionalities, our defini-
tion is similar to those of functional encryption. The
main technical difference is that our security defini-
tion only allows for a single ciphertext. Intuitively, in
queryable encryption, encryption is a one-time process:
a single (potentially very large) ciphertext is encrypted,
and then many queries are performed on that cipher-
text. We stress that one “message” encrypted under our
scheme refers not to a single word or document but to a
body of data upon which one wishes to be able to per-
form queries; this could be a collection of documents in

the SSE case, or a (set of) very long string(s) of data
(e.g. a genome database) as in this work.2

Also, in queryable encryption we allow the query
protocol to be interactive. In structured encryption,
functional encryption, and many searchable encryption
schemes the query protocol consists of two algorithms
TK ← Token(K, q) and A ← Query(TK,CT ). The
client constructs a query token and sends it to the
server, and the server uses the token and the ciphertext
to compute the answer to the query, which it sends back
to the client. We can think of these schemes as having
a one-round interactive query protocol. Our more gen-
eral definition allows for arbitrary interactive protocols,
which may enable better efficiency or privacy.

Finally, in contrast to related searchable encryption
notions, we do not require the server to actually learn
the answer to the query. After the server’s final message,
the client may do some additional computation using
its secret key to compute the answer. This can allow
stronger privacy guarantees against the server.

4.2 Malicious (L1,L2)-CQA2 Security

We now present our simulation-based security defini-
tion against malicious adversaries. Following [13], we
call the definition (L1,L2)-CQA2 security, where the
name “CQA2” comes from “chosen query attack” be-
cause the adversary chooses its queries adaptively. The
security definition will be parameterized by two leakage
functions L1 and L2. First, L1(M) denotes the informa-
tion about the message that is leaked by the ciphertext.
Second, for any j, L2(M, q1, . . . , qj) denotes the infor-
mation about the message and all queries made so far
that is leaked by the jth query.

We want to ensure that the information specified
by L1 and L2 is the only information that is leaked to
the adversary, even if the adversary can choose the mes-
sage that is encrypted and then adaptively choose the
queries for which it executes a query protocol with the
client. To capture this, our security definition requires
that the view of any adaptive adversary be simulatable
given only the information specified by L1 and L2.

Our definition differs from many previous defini-
tions in that we allow the adversary to be arbitrarily
malicious in the protocol. Since our protocol is inter-
active, this guarantee is important for privacy as well

2 See the discussion at the end of Section 5.4 for an extension
to allow for searches over a set of strings.
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as correctness. We require that the adversary cannot
distinguish the honest player’s output from the correct
output (or ⊥ if the adversary misbehaved in the proto-
col). This means the honest protocol must always pro-
duce the correct output (or ⊥) even in the face of a
malicious adversary; thus this definition captures both
privacy and correctness.

Definition 4.3 (Malicious (L1,L2)-CQA2 security).
Let E = (Gen,Enc,Query) be a queryable encryption
scheme for message space M, query space Q, result
space R, and query functionality F :M×Q→ R. For
functions L1 and L2, adversary A, and simulator S,
consider the following experiments:
RealE,A(λ): The challenger begins by running Gen(1λ)

to generate a secret keyK. The adversaryA outputs
a message M . The challenger runs Enc(K,M) to
generate a ciphertext CT , and sends CT to A. The
adversary adaptively makes a polynomial number of
queries q1, . . . , qt. For each query qi, first A interacts
with the challenger. The challenger plays the part of
the client in the Query protocol with input (K, qi)
and sends its output to the adversary. Finally, A
outputs a bit b.

IdealE,A,S(λ): First, A outputs a messageM . The sim-
ulator S is given L1(M), and outputs a value CT .
The adversary adaptively makes a polynomial num-
ber of queries q1, . . . , qt. For each query qi, the sim-
ulator is given L2(M, q1, . . . , qi) and interacts with
A. Then the simulator produces a flag fi; if fi = ⊥,
the challenger sends ⊥ to the adversary, otherwise
it sends F(M, qi). Finally, A outputs a bit b.

We say that E is (L1,L2)-CQA2 secure against mali-
cious adversaries if, for all PPT adversaries A, there
exists a simulator S such that

|Pr[RealE,A(λ) = 1]− Pr[IdealE,A,S(λ) = 1]| ≤ negl(λ)

5 Substring-Searchable
Encryption Construction

In this section, we construct a substring-searchable en-
cryption scheme – a queryable encryption scheme that
supports the functionality F , where F(s, p) returns the
indices of all occurrences of p as a substring of s.

5.1 Suffix Trees

Our scheme draws upon substring search algorithms for
unencrypted data. Several substring search algorithms
exist [2, 8, 32, 37], varying in their preprocessing effi-
ciency and query efficiency. Many algorithms have pre-
processing time O(m) and query time O(n), where n is
the length of the string s and m is the length of the
query substring p. In contrast, suffix trees [19, 28, 47]
have preprocessing time O(n) and query time O(m).
This is ideal for our applications, where the client stores
one string or set of strings on the server, and later per-
forms queries for many search strings. Therefore, we will
focus on substring search using suffix trees as the basis
for our scheme.

Here we give a brief overview of suffix trees. We
follow the terminology of [28].

Definition 5.1. A suffix tree for a string s = s1 . . . sn

is a rooted, directed tree with the following properties:
– Each edge is labeled with a non-empty substring of

s, called its edge label.
– Every internal node has at least two children.
– No two edges out of a node have edge labels starting

with the same character.
– The tree has n leaves, labeled 1 to n. These are in

one-to-one correspondence with the n suffixes to s.
Specifically, for each i, the suffix s[i..n] is the con-
catenation of the edge labels on the path from the
root to the leaf labeled i.

Definition 5.2. The path label of a node is the con-
catenation of the edge labels on the path from the root
to that node.

Figure 1 shows a suffix tree for the string “cocoon”.
Note that for a suffix tree to exist for a string s, it

must be the case that no suffix of s is a prefix of another
suffix of s. If this is not the case, one can append a
special termination character $ that does not appear
elsewhere in the string.

Substring search procedure
Searching for a substring using a suffix tree relies on the
following key observation: a string p is a substring of s
if and only if it is a prefix of some suffix of s. Thus, to
search for p in s, we look for a path from the root whose
label matches p.

To do this, match the characters of p sequentially
with a path from the root. Since no two edges out of a
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Fig. 1. A suffix tree for the string s =“cocoon”. The six suffixes
of “cocoon” correspond to the paths from the root to the six
leaves. Each leaf is labeled with the position in s where the cor-
responding suffix begins. Additionally, the nodes have arbitrary
labels that are provided for future reference.

node start with the same character, this path is unique.
Specifically, at each node on the path, find the outgoing
edge whose label starts with the next character of p
(if one exists) and continue matching along that edge.
Continue until either the next character of p does not
match, meaning p is not a substring of s, or all of p has
been matched, meaning p is a substring of s. If p is a
substring of s, the indices of the occurrences of p as a
substring of s are exactly the indices labeling the leaves
in the subtree below the end of the matching path.

Efficiency
A suffix tree can be constructed in O(n) time for a string
of length n [19, 47]. It can be shown that a suffix tree
has at most 2n nodes. However, storing the edge label
for all edges would require O(n2) storage in the worst
case. To represent a suffix tree in O(n logn) space, one
stores for each edge the start and end indices in s of the
first occurrence of the edge label as a string of s, along
with a copy of the string s.

Searching for a substring p of length m takes O(m)
time to find a single occurrence, or O(m+k) time to find
all occurrences, where k is the number of occurrences.

Observations
We make a few observations that will be useful for our
construction. We can identify with each node u an ini-
tial path label, which is the concatenation of the path
label of the parent of u and the first character of the
edge label from the parent to u. Note that if a string
p matches the initial path label of a node u and if p
is a substring of s, then either p’s matching path ends
somewhere along the edge to u, or it ends somewhere
in the subtree rooted at u. Note also that the indices

in s of occurrences of a node’s path label are exactly
the indices of the occurrences of the node’s initial path
label.

5.2 Notation

Before we describe our substring-searchable encryption
scheme, we introduce some notation. Some of the no-
tation will be relative to a string s and its suffix tree
Trees, even though they are not explicit parameters.
u: a node in Trees

ε: the empty string
path(u): the path label of u, i.e., the concatenation of the

edge labels on the path from the root to u. If u
is the root, path(u) = ε.

initpath(u): the initial path label of u, i.e., the concatenation
of the path label of u’s parent and the first char-
acter of the edge label from u’s parent to u. If u
is the root, initpath(u) = ε.

leafi: the ith leaf in Trees, where the leaves are num-
bered left to right

len(u): the length of initpath(u)
ind(u): the index in s of the first occurrence of path(u)

(equivalently, of initpath(u)). If path(u) = ε,
ind(u) = 0.

leafpos(u): the position (between 1 and n) in the tree of the
leftmost leaf in the subtree rooted at u.

num(u): the number of occurrences in s of path(u)
(equivalently, of initpath(u)) as a substring. If
path(u) = ε, num(u) = 0. For non-root nodes
u, num(u) is equal to the number of leaves in the
subtree rooted at u.

To illustrate the notation above, let us look at the suffix
tree in Figure 1 for the string “cocoon”. In this tree, we
have path(u3) = “cocoon”, initpath(u3) = “coc”, leaf3 =
u6, ind(u2) = 1, leafpos(u5) = 3, num(u2) = 2.

5.3 Intuition

Here we provide some intuition and work our way up to
the full construction.

We will use a symmetric encryption scheme Π, a
PRF F , and a PRP P . The key generation algorithm
will generate keys KD,KC,KL for Π, keys K1,K2 for
the PRF, and keys K3,K4 for the PRP. We will explain
how the keys are used as we develop the intuition for
the construction.
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A first attempt
We first aim to construct a queryable encryption scheme
for a simpler functionality F ′, where F ′(s, p) returns
whether p occurs as a substring in s, and, if so, the
index of the first occurrence in s of p. We will also only
consider correctness and security against an honest-but-
curious server, that is, a server that follows the protocol
honestly.

Let Π be a CPA-secure symmetric encryption
scheme. We will encrypt a string s = s1 . . . sn

in the following way. First, construct a suffix tree
Trees for s. Then construct a dictionary D that
contains, for each node u, the key/value pair
(FK1(path(u)),Π.EncKD(ind(u)). This dictionary is the
ciphertext.

In the query protocol for a string p, the client sends
FK1(p). The server then looks up FK1(p) in the dictio-
nary. If there is a corresponding value, the server returns
it to the client. The client then decrypts using KD to get
the index of the first occurrence in s of p.

The problem with this approach is that it only
works for search strings that fully match a node’s path
label (i.e., end exactly at a node); it does not work for
finding substrings that end partway down an edge.

Returning a possible match
To address this problem, we will identify each node with
its initial path label instead of its path label. Note that
if u is the last node (farthest from the root) for which
any prefix of p equals initpath(u), then either p is not a
substring of s, or p ends somewhere on the path to u,
and the indices in s of the occurrences of initpath(u) are
the same as the indices of the occurrences of p.

In the dictionary D, we will now use initpath(u) in-
stead of path(u) as the search key for a node u. We
will say that a prefix p[1..i] is a matching prefix if
p[1..i] = initpath(u) for some u; otherwise, we say p[1..i]
is a non-matching prefix. The ciphertext will also in-
clude an array C of encryptions of each character of s,
with C[i] = Π.EncKC(si).

In the query protocol, the client will send
T1, . . . , Tm, where Ti = FK1(p[1..i]). The server finds
the entry D[Tj ], where p[1..j] is the longest matching
prefix of p. The server will return the encrypted in-
dex Π.EncKD(ind) stored in D[Tj ]. The client will then
decrypt it to get ind, the index of the first occurrence
of the possible match, and requests the server to send
C[ind], . . . , C[ind+m− 1]. The client then decrypts the
result to check whether the decrypted string is equal to

the search string p and thus, whether p is a substring of
s.

Returning all occurrences
We would like to return not just the first occurrence or
a constant number of occurrences, but all of the occur-
rences of the search string. However, in order to keep
the ciphertext size O(n), we need the storage for each
node to remain a constant size. In a naive approach,
in each dictionary entry we would store encryptions of
indices of all of the occurrences of the corresponding
string. However, this would take O(n2) storage in the
worst case.

To maintain constant storage for each node, we use
the fact that the occurrences of a node’s path label (or
initial path label) as a substring of s are exactly the
occurrences of the path labels of the leaves in the subtree
rooted at that node, each of which is a suffix of s.

We construct a leaf array L of size n, with the leaves
numbered 1 to n from left to right. Each element L[i]
stores an encryption of the index in s of the path la-
bel of the ith leaf. That is, L[i] = Π.EncKL(ind(leafi)).
In the encrypted tuple in the dictionary entry for a
node u we also store leafpos(u), the position in the
tree of the leftmost leaf in the subtree rooted at u, and
num(u), the number of leaves in the subtree rooted at
u. That is, the value in the dictionary entry for a node
u is now Π.EncKD(ind(u), leafpos(u), num(u)) instead of
Π.EncKD(ind(u)).

In the query protocol, the server will return the en-
cryption of ind(u), leafpos(u), num(u) for the last node
u matched by a prefix of p. The client then decrypts
this and asks for C[ind], . . . , C[ind+m−1], decrypts to
determine whether p is a substring of s, and if so, asks
for L[leafpos(u)], . . . , L[leafpos(u) + num− 1] to retrieve
all occurrences of p in s.

Hiding common non-matching prefixes among queries
The scheme outlined so far works; it supports the de-
sired substring search functionality, against an honest-
but-curious adversary. However, it leaks a lot of unnec-
essary information to the server; we now add a num-
ber of improvements to reduce the information that is
leaked.

In the scheme sketched so far, the server will learn
from the Ti values when any two queries share a pre-
fix, even if the shared prefix is not a substring of s.
Although memory accesses will necessarily reveal when
two queries share a matching prefix (contained in the
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dictionary), but we would like to hide when queries
share non-matching prefixes.

To hide when queries share non-matching prefixes,
we change each Ti to be an encryption of f (i)

1 =
FK1(p[1..i]) under the key f (i)

2 = FK2(p[1..i]). The dic-
tionary entry for a node u will now also contain values
f2,i for its children nodes, where f2,i = FK2(initpath(vi))
for each of the children vi of u.

In the query protocol, the server starts at the root
node, and after reaching any node, the server tries using
each of the f2,i for that node to decrypt each of the next
Tj ’s, until it either succeeds and reaches the next node
or it reaches the end of the search string.

Hiding node degrees, order of children, and number
of nodes in suffix tree
Since the maximum degree of any node is the size d of
the alphabet, we can hide the degree of each node by
creating dummy random f2,i values so that there are
d in total. To hide the order of the children and hide
which of the f2,i are dummy values, we store the f2,i in
a random permuted order in the dictionary entry.

Similarly, since a suffix tree for a string of length
n contains at most 2n nodes, we will hide the exact
number N of nodes in the suffix tree by constructing
2n−N dummy entries in D.

Hiding string indices and leaf positions
In order to hide the actual values of the string
indices ind, . . . , ind + m − 1 and the leaf positions
leafpos, . . . , leafpos + num − 1, we make use of a pseu-
dorandom permutation family P of permutations [n]→
[n]. Instead of sending (ind, . . . , ind +m− 1), the client
applies the permutation PK3 to ind, . . . , ind+m−1 and
outputs the resulting values in a randomly permuted or-
der. Similarly, instead of sending (leafpos, . . . , leafpos +
num − 1), the client applies the permutation PK4 to
leafpos, . . . , leafpos + num− 1 and outputs the resulting
values in a randomly permuted order. Note that while
the server does not learn the actual indices or leaf posi-
tions, it still learns when two queries ask for the same
or overlapping indices or leaf positions.

Handling malicious adversaries
The scheme described so far satisfies security against
an honest-but-curious adversary, but not against a ma-
licious adversary; an adversary could potentially send

malformed or incorrect ciphertexts during the query
protocol.

To handle a malicious adversary, we will require Π
to be an authenticated encryption scheme. Thus, an ad-
versary will not be able to construct a ciphertext that
is not part of the dictionary D or the arrays C or L. We
add auxiliary information to the encrypted messages to
allow the client to check that any ciphertext returned by
the server is the one expected by the honest algorithm.
For example, for the characters of s we will encrypt
(si, i) instead of just si so that the client can check that
it is receiving the correct piece of the ciphertext. For
dictionary entries, we will add auxiliary information in
the encrypted tuple so that the client can check that the
ciphertext returned corresponds to the longest matching
prefix of p.

5.4 Construction

Let F : {0, 1}λ×{0, 1}∗ → {0, 1}λ be a PRF, and let P :
{0, 1}λ×[n]→ [n] be a PRP. Let Π = (Gen,Enc,Dec) be
an authenticated, key-hiding symmetric-key encryption
scheme. Our substring-searchable encryption scheme E
for an alphabet Σ with |Σ| = d is as follows.
Gen(1λ): Choose random stringsKD,KC,KL,K1,K2,K3,

K4
R← {0, 1}λ.3 The secret key is

K = (KD,KC,KL,K1,K2,K3,K4).

Enc(K, s): Let s = s1 . . . sn ∈ Σn. Construct a suffix
tree Trees for s.
1. Construct a dictionary D as follows.

For any node u, define f1(u) := FK1(initpath(u))
and f2(u) := FK2(initpath(u)).
For each node u in Trees (including the root and
leaves):
– Let v1, . . . , vj denote the children of u.
– For i = 1, . . . , j, let g2,i = f2(vi).
– For i = j + 1, . . . , d let g2,i

R← {0, 1}λ.
– Choose a random permutation πu : [d] →

[d].
– For i = 1, . . . , d, let f2,i(u) = g2,πu(i)(u).

3 We will assume for simplicity that Π.Gen simply chooses a
random key k

R← {0, 1}λ, so throughout the construction we
will use random values as Π keys. To allow for general Π.Gen
algorithms, instead of using a random value r directly as a key,
we could use a key generated by Π.Gen with r providing Π.Gen’s
random coins.
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– Let Xu = (ind(u), leafpos(u), num(u),
len(u), f1(u), f2,1(u), . . . , f2,d(u)), and then
let Wu = Π.EncKD(Xu).

– Store Vu = (f2,1(u), . . . , f2,d(u),Wu) with
search key κu = f1(u) in D.

Let N denote the number of nodes in Trees.
Construct 2n − N dummy entries in D as fol-
lows. For each dummy entry, choose random
strings f1, f2,1, . . . , f2,d

R← {0, 1}λ, and store
(f2,1, . . . , f2,d,Π.EncKD(0)) with search key f1 in
D.

2. Construct an array C as follows: for i =
1, . . . , n, set C[PK3(i)] = Π.EncKC(si, i).

3. Construct an array L as follows: For i =
1, . . . , n, set L[PK4(i)] = Π.EncKL(ind(leafi), i).

Output the ciphertext CT = (D,C,L).
Query(K, p,CT ): The interactive query protocol, be-

tween a client with K and p and a server with CT ,
runs as follows.
Let p = p1 . . . pm ∈ Σm, and let CT = (D,C,L).
1. The client computes, for i = 1, . . . ,m,

f
(i)
1 = FK1(p1 . . . pi), f

(i)
2 = FK2(p1 . . . pi) ,

and sets Ti = Π.Enc
f

(i)
2

(f (i)
1 ). Also, compute

root = FK1(ε). The client sends the server
(root, T1, . . . , Tm).

2. The server proceeds as follows, maintain-
ing variables f1, f2,1, . . . , f2,d,W . Initialize
(f2,1, . . . , f2,d,W ) to equal D[root].
For i = 1, . . . ,m :
For j = 1, . . . , d:
Let f1 ← Π.Decf2,j (Ti). If f1 6= ⊥, update

(f2,1, . . . , f2,d,W ) to equal D[f1], and break
(proceed to the next value of i). Otherwise, do
nothing.
At the end, the server sends W to the client.

3. The client runs X ← Π.DecKD(W ).
If X = ⊥, output ⊥ and end
the protocol. Otherwise, parse X as
(ind, leafpos, num, len, f1, f2,1, . . . , f2,d). Check
whether FK1(p[1..len]) = f1. If not, output ⊥
and end the protocol. Otherwise, check whether
Π.Dec(f2,i, Tj) 6= ⊥ for any j ∈ {len+ 1, . . . ,m}
and i ∈ {1, . . . , d}. If so, output ⊥ and end
the protocol. If ind = 0, output ∅. Otherwise,
choose a random permutation π1 : [m] → [m].
For i = 1, . . . ,m, let xπ1(i) = PK3(ind + i − 1).
The client sends (x1, . . . , xm) to the server.

4. The server sets Ci = C[xi] for i = 1, . . . ,m and
sends (C1, . . . , Cm) to the client.

5. For i = 1, . . . ,m, the client runs Y ←
Π.DecKC(Cπ1(i)). If Y = ⊥, output ⊥ and
end the protocol. Otherwise, let the result be
(p′i, j). If j 6= ind + i − 1, output ⊥. Other-
wise, if p′1 . . . p′m 6= p, then the client outputs
∅ as its answer and ends the protocol. Other-
wise, the client chooses a random permutation
π2 : [num] → [num]. For i = 1, . . . , num, let
yπ2(i) = PK4(leafpos + i − 1). The client sends
(y1, . . . , ynum) to the server.

6. The server sets Li = L[yi] for i = 1, . . . , num,
and sends (L1, . . . , Lnum) to the client.

7. For i = 1, . . . , num, the client runs
Π.DecKL(Lπ2(i)). If the result is ⊥, the client
outputs ⊥ as its answer. Otherwise, let the
result be (ai, j). If j 6= leafpos + i − 1, out-
put ⊥. Otherwise, output the answer A =
{a1, . . . , anum}.

Extension to multiple data strings
While we describe the protocol in terms of a single data
string s, we note that it can easily be extended to sup-
port a functionality where the client encrypts a set of
strings initially, and then can search for occurrences of
a substring within all of them. This is done by building
a generalized suffix tree [28] that contains suffixes from
multiple strings and then using our encryption scheme.
For simplicity, however, in the following analysis we re-
strict ourselves to the single string version.

5.5 Efficiency

We will make the standard RAMmodel assumption that
values of size O(logn) bits can be read or written in
constant time.

We assume encryption and decryption using Π take
O(λ) time. Also, we assume the dictionary is imple-
mented in such a way that dictionary lookups take con-
stant time (using hash tables, for example).

Efficient batch implementation of PRFs
Assuming the evaluation of a PRF takes time linear in
the length of its input, in a naive implementation of
our scheme, computing the PRFs f1(u) and f2(u) for
all nodes u would take O(n2) time, since the sum of the
lengths of the strings initpath(u) can be O(n2). Simi-
larly, computing the PRFs used for T1, . . . , Tm would
take O(m2) time. It turns out that we can take advan-
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tage of the way the strings we are applying the PRFs to
are related, to speed up the batch implementation of the
PRFs for all of the nodes of the tree. We will use two
tools: the polynomial hash and suffix links (described
below).

The polynomial hash is defined as follows. View a
message x as a sequence (x1, . . . , xn) of `-bit strings.
For any k in the finite field GF(2`), the hash function
Hk(x) is defined as the evaluation of the polynomial
px over GF(2`) defined by coefficients x1, . . . , xn, at the
point k. That is, Hk(x) = px(k) = Σn

i=1xik
i−1, where

all operations are in GF(2`). The polynomial hash is an
almost universal hash function, so to compute the PRF
of a string, we can first apply the polynomial hash and
then compute the PRF.

First, we use a trick that is used in the Rabin-Karp
rolling hash (see Cormen et al. [15],e.g.). (A rolling hash
is a hash function that can be computed efficiently on a
sliding window of input; the hash of each window reuses
computation from the previous window.) The Rabin-
Karp hash is the polynomial hash, with each character
of the string viewed as a coefficient of the polynomial
applied to the random key of the hash.

The key observation is that the polynomial
hash H allows for constant-time computation
of Hk(x1 . . . xn) from Hk(x2 . . . xn), and also of
Hk(x1 . . . xn) from Hk(x1 . . . xn−1). To see this, no-
tice that Hk(x1 . . . , xn) = x1 + k · Hk(x2 . . . xn), and
Hk(x1 . . . xn) = Hk(x1 . . . xn−1) + xnk

n−1. Using this
trick, for any string x of length `, we can compute the
hashes Hk(x[1..i]) for all i = 1, . . . ,m in total time
O(λm). Thus, the T1, . . . , Tm can be computed in time
O(λm).

To compute the hashes of initpath(u) for all nodes
u in time O(n), we need one more trick. Many efficient
suffix tree construction algorithms include suffix links.
Each non-leaf node u with associated string path(u) =
a||B, where a is a single character, has a pointer called
a suffix link pointing to the node u′ such that path(u′)
is B. It turns out that connecting the nodes in a suffix
tree using the suffix links forms another tree, in which
the parent of a node u is the node u′ to which u’s suffix
link points.

Since initpath(u) = path(par(u))||u1, where par(u)
is the parent of u, we can first compute the hashes
of path(u) for all non-leaf nodes u, and then com-
pute initpath(u) for each node u in constant time from
path(par(u)). To compute path(u) for all nodes u, we
traverse the tree formed by the suffix links, starting at
the root, and compute the hash of path(u) for each u us-
ing path(u′), where u′ is u’s parent in the suffix link tree.

Each of these computations takes constant time, since
path(u) is the same as path(u′) but with one character
appended to the front. Therefore, computing the hashes
of path(u) for all non-leaf nodes u (and thus, computing
the hashes of initpath(u) for all nodes u) takes total time
O(n).

Encryption efficiency
Using the efficient batch implementation of PRFs de-
scribed above, the PRFs f1(u) and f2(u) can be com-
puted for all nodes u in the tree in total time O(λn).
Therefore, the dictionary D of 2n entries can be com-
puted in total time O(λn). The arrays C and L each
have n elements and can be computed in time O(λn).
The PRPs can actually be implemented by applying a
PRF and then sorting the resulting output. Therefore,
encryption takes time O(λn) and the ciphertext is of
size O(λn).

Query protocol efficiency
In the query protocol, the client first computes
T1, . . . , Tm. Using the efficient batch PRF implemen-
tation above, computing the f

(i)
1 and f

(i)
2 for i =

1, . . . ,m takes total time O(m), and computing each
Π.Enc

f
(i)
2

(f (i)
1 ) takes O(λ) time, so the total time to

compute T1, . . . , Tm is O(λm).
To find W , the server performs at most md de-

cryptions and dictionary lookups, which takes total
time O(λm).4 The client then computes x1, . . . , xm

and the server retrieves C[x1], . . . , C[xm], in time O(m).
If the answer is not ∅, the client then computes
y1, . . . , ynum and the server retrieves L[y1], . . . , L[ynum]
in time O(num), in time O(num). Thus, both the client
and the server take computation time O(λm+ num) in
the query protocol. (Since we are computing an upper
bound on the query computation time, we can ignore the
possibility that the server cheats and the client aborts
the protocol.) The query protocol takes three rounds
of communication, and the total size of the messages
exchanged is O(λm+ num).

5.6 Security

Before describing the leakage functions for our scheme,
we provide some notation.

4 We treat the alphabet size d as a constant.
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We first give some notation for the leakage of this
scheme. We say that a query p visits a node u in the
suffix tree Trees if initpath(u) is a prefix of p.

Let:
– numi denote the number of occurrences of pi as a

substring of s
– indi denote the index in s of the first occurrence of

the longest prefix of pi that is a substring of s, or 0
if no such prefix exists

– leafposi denote the index in the tree of the leftmost
leaf whose path label has pi as a prefix

– ui,j denote the jth node visited by the query for pi
– leni,j denote the length of initpath(ui,j)
– ni denote the number of nodes visited by the query

for pi

The leakage from queries includes the query prefix pat-
tern, the index intersection pattern, and the leaf inter-
section pattern, which we now define.

The query prefix pattern for a query pi indicates, for
each node visited for pi, which of the previous queries
also visited that node.

Definition 5.3. The query prefix pattern
QP(s, p1, . . . , pi) is a sequence of length ni, where the
jth element is a list listj of indices i′ < i such that the
i′th query also visited ui,j .

The index intersection pattern for a query pi indicates
when any of the retrieved indices indi, . . . , indi + |pi|− 1
are equal to any of the retrieved indices for previous
queries.

Definition 5.4. The index intersection pattern
IP(s, p1, . . . , pi) is a sequence of length i, where the
jth element is equal to {r1[indj ], . . . , r1[indj +mj − 1]}
for a fixed random permutation r1 : [n]→ [n].

The leaf intersection pattern for a query pi indicates
when any of the retrieved leaves leafposi, . . . , leafposi +
numi − 1 are equal to any of the retrieved leaves for
previous queries.

Definition 5.5. The leaf intersection pattern
LP(s, p1, . . . , pi) is a sequence of length i, where the
jth element is equal to {r2[leafposj ], . . . , r2[leafposj +
numj−1]} for a fixed random permutation r2 : [n]→ [n].

The leakage of the scheme E is as follows. L1(s) is just
n = |s|. L2(s, p1, . . . , pi) consists of
– mi = |pi|

– {leni,j}ni

j=1
– QP(s, p1, . . . , pi)
– IP(s, p1, . . . , pi)
– LP(s, p1, . . . , pi)

Leakage Example
To illustrate the leakage of our scheme, consider the
following toy example.

Consider the string s = “cocoon”, whose suffix tree
is shown in Figure 1, and a sequence of three queries,
p1 = “co”, p2 = “coco”, and p3 = “cocoa”.

The query for “co” visits node u2, the retrieved in-
dices into s are 1, 2, and the retrieved leaf positions are
1, 2. The query for “coco” visits nodes u2 and u3, the
indices retrieved are 1, 2, 3, 4, and the leaf position re-
trieved is 1. The query for “cocoa” visits nodes u2 and
u3, the indices retrieved are 1, 2, 3, 4, 5, and no leaf po-
sitions are retrieved (because there is not a match).

The leakage L1(s) is n = 6. The leakage L2 from all
three queries combined is as follows.
– The lengths of the search strings: 2, 4, and 5,
– The lengths 1 and 3 of the initial paths of the nodes

u2 and u3 visited by the three queries,
– The query prefix pattern, which says that p1, p2, p3

visited the same first node, and then p2 and p3 vis-
ited the same second node,

– The index intersection pattern, which says that two
of the indices returned for p2 are the same as the
two indices returned for p1, and four of the indices
returned for p3 are the same as the four indices re-
turned for p2, and

– The leaf intersection pattern, which says that the
leaf returned for p2 is one of the two leaves returned
for p1, and that the queries for p1, p2, and p3 re-
turned two leaves, one leaf, and no leaves, respec-
tively.

Security
Our security theorem is as follows.

Theorem 5.6. Let L1 and L2 be as defined above. If
F is a PRF, P is a PRP, and Π is an authenticated,
key-hiding, symmetric-key encryption scheme, then the
substring-searchable encryption scheme E satisfies ma-
licious (L1,L2)-CQA2 security.

The proof is given in Appendix A.
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Discussion
As mentioned in Section 1, our work follows a line of
work starting with [16] that allows some information
leakage while ensuring that this leakage is formally spec-
ified. In all of this work, a major challenge is interpreting
the impact of this leakage for any particular applica-
tion, and this challenge become greater as the schemes
become more complex (see e.g. [11] or [31]). Our work
presents similar challenges in this respect.

We make a few brief observations. It may be possible
to reduce the leakage heuristically at the cost of some
efficiency by, for example, having the client cache the
result of previous queries and do some of the query eval-
uation locally, or by incorporating ORAM techniques.
However, it seems difficult to reduce the leakage signif-
icantly without reducing the efficiency of the scheme
significantly. The leakage in our scheme corresponds
roughly to the information an adversary would gain if it
were allowed to observe only the memory access pattern
when a search is evaluated on an unencrypted suffix tree.
In this sense, our leakage seems inherent in any suffix-
tree-based approach. Constructing an efficient scheme
with a significantly less leakage would seem to require a
different data structure whose memory access patterns
leak less information. We pose the problem of identify-
ing or designing such a data structure as an interesting
open problem.

6 Conclusion
We presented a definition of queryable encryption
schemes and defined security against malicious adver-
saries making chosen query attacks. Our security defini-
tions are parameterized by leakage functions that spec-
ify the information that is revealed about the message
and the queries by the ciphertext and the query proto-
cols.

We constructed an efficient substring-searchable en-
cryption scheme – a queryable encryption scheme that
supports finding all occurrences of a search string p

as a substring of an encrypted string s. Our approach
is based on suffix trees. Our construction uses only
basic symmetric-key primitives (pseudorandom func-
tions and permutations and an authenticated, which-
key-concealing encryption scheme). The ciphertext size
and encryption time are O(λn) and query time and mes-
sage size are O(λm+k), where λ is the security param-
eter, n is the length of the string, m is the length of
the search string, and k is the number of occurrences

of the search string. Querying requires three rounds of
communication.

While we have given a formal characterization of the
leakage of our substring-searchable encryption scheme,
it is an open problem to analyze the practical cost of the
leakage. Given the leakage from several typical queries,
what can a server infer about the message and the
queries? We believe our scheme provides a worthwhile
efficiency/leakage tradeoff for many applications, espe-
cially when current alternatives are either no encryption
at all or existing searchable encryption schemes that are
designed for keyword search but inefficient for substring
search.
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A Security Against Malicious
Adversaries

We now prove that our substring-searchable encryption
scheme satisfies malicious-(L1,L2)-CQA2 security for
the leakage functions L1 and L2 defined in Section 5.6.

Theorem A.1. Let L1 and L2 be defined as in Sec-
tion 5.6. If F is a PRF, P is a PRP, and Π is a key-
hiding, authenticated symmetric-key encryption scheme,
then the substring-searchable encryption scheme E sat-
isfies malicious (L1,L2)-CQA2 security.

Proof. As explained in Section 4.2, we show that our
scheme leaks only L1,L2, by showing that no adver-
sary can distinguish interaction with the real client from
interaction with a simulator who does not know s or
the queries qj , but is only given the leakage defined by
L1,L2.

We define a simulator S that works as follows. S
first chooses random keys KD,KC,KL

R← {0, 1}λ.

Ciphertext
Given L1(s) = n, S constructs a simulated ciphertext
as follows.
1. Construct a dictionary D as follows. For

i = 1, . . . , 2n, choose fresh random values
κi, f2,1, . . . , f2,d,

R← {0, 1}λ, and then for each i

store Vi = (f2,1, . . . , f2,d,W = Π.Enc(KD, 0)) with
search key κi in D.5

2. Choose an arbitrary element σ0 ∈ Σ. Construct an
array C, where C[i] = Π.Enc(KC, (σ0, 0)) for i =
1, . . . , n.

3. Construct an array L, where L[i] = Π.Enc(KL, 0)
for i = 1, . . . , n.

Output CT = (D,C,L).

Tables
In order to simulate the query protocol, S will need to
do some bookkeeping.

5 Throughout our description, we assume each key is only used
for a fixed message space. Thus, for example, 0 here is padded to
the appropriate length to match the messages encrypted under
KD in the real scheme.
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S will maintain two tables T1 and T2, both initially
empty. T1 contains all currently defined tuples (i, j, κ)
such that the entry inD with search key κ represents the
jth node visited by the ith query. We write T1(i, j) = κ

if (i, j, κ) is an entry in T1.
T2 contains all currently defined tuples

(κ, f2, flag, flag1, . . . , flagd), where for the node u rep-
resented by the entry D[κ], κ = f1(u), f2 = f2(u),
flag indicates whether u has been visited by any query,
and flagi indicates whether child(u, πu(i)) has been
visited. The value of each flag is either “visited” or
“unvisited”. We write T2(κ) = (f2, flag, flag1, . . . , flagd)
if (κ, f2, flag, flag1, . . . , flagd) is an entry in T2.

Choose an arbitrary entry (κ∗, V ∗) inD to represent
the root node of Trees. In T2(κ∗), set all flags to “un-
visited” and set f2 = 0. (The f2 for the root node will
never be used, so it is fine to set it to 0.) We implicitly
define T1(i, 0) = κ∗ for all i.

Query protocols
For the jth token query pj , S is given
L2(s, p1, . . . , pj), which consists of mj = |pj |,
{lenj,i}nj

i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), and
LP(s, p1, . . . , pj).

For t = 1, . . . , nj , if listt = QP(pj , s)[t] is non-empty
(i.e., the node uj,t was visited by a previous query), let
j′ be one of the indices in listt. Let κ = T1(j′, t) and let
(f2, flag, flag1, . . . , flagd) = T2(κ). Tlenj,t = Π.Enc(f2, κ).
Set T1(j, t) = κ.

If instead listt is empty, choose a random un-
used entry (κ, V ) in D to represent the node uj,t,
and set T1(j, t) = κ. Let κ′ = T1(j, t − 1) and let
(f2, flag, flag1, . . . , flagd) = T2(κ′). Choose a random
i ∈ {1, . . . , d} such that flagi is “unvisited”, and set
flagi to “visited”. Let f2,i be D[κ′].f2,i. Set Tlenj,t =
Π.Enc(f2,i, κ), set T2(κ).f2 = f2,i, set T2(κ).flag to “vis-
ited”, and set T2(κ).flagi to “unvisited” for i = 1, . . . , d.

For any i 6= lent for any t = 1, . . . , nj , choose a
random f2

R← {0, 1}λ, and let Ti = Π.Enc(f2, 0).
Let κ∗ be the key chosen for the root entry

of the dictionary in the simulated ciphertext. Send
(κ∗, T1, . . . , Tm) to the adversary.

Upon receiving a W from the adversary, check
whether W = D[T1(j, nj)].W . If not, output ⊥ and set
the flag fj to ⊥. Otherwise, let (x1, . . . , xm) be a ran-
dom ordering of the elements of the set IP(pj , s)[j], and
send (x1, . . . , xm) to the adversary. (If IP(pj , s)[j] shows
no indices for the jth query, then end the protocol.)

Upon receiving C1, . . . , Cm from the adversary,
check whether Ci = C[xi] for each i. If not, output ⊥
and set the flag fj to ⊥. Otherwise, let (y1, . . . , ynum)
be a random ordering of the elements of LP(pj , s)[j],
and send (y1, . . . , ynum) to the adversary. (If LP(pj , s)[j]
shows no leaf positions for the jth query, then end the
protocol.)

Upon receiving L1, . . . , Lnum from the adversary,
check whether Li = L[yi] for each i. If not, output ⊥
and set the flag fi to ⊥.

This concludes the description of the simulator S.

Sequence of games
We now show that the real and ideal experiments are
indistinguishable by any PPT adversary A except with
negligible probability. To do this, we consider a sequence
of games G0, . . . , G17 that gradually transform the real
experiment into the ideal experiment. We will show that
each game is indistinguishable from the previous one,
except with negligible probability.
Game G0. This game corresponds to an execution of

the real experiment, namely,
– The challenger begins by running Gen(1λ) to

generate a key K.
– The adversary A outputs a string s and receives

CT ← Enc(K, s) from the challenger.
– A adaptively chooses search strings p1, . . . , pq.

For each pi,A first interacts with the challenger,
who is running the client part of Query honestly
with input (K, pi). Then the challenger sends
its output from Query to A.

Game G1. This game is the same as G0, except that
in G1 the challenger is replaced by a simulator that
does not generate keysK1,K2 and replaces FK1 and
FK2 with random functions. Specifically, the simula-
tor maintains tables R1, R2, initially empty. When-
ever the challenger in G0 computes FKi(x) for some
x, the simulator uses Ri(x) if it is defined; other-
wise, it chooses a random value from {0, 1}λ, stores
it as Ri(x), and uses that value.
A straightforward hybrid argument shows that G1

is indistinguishable from G0 by the PRF property
of F .

Game G2. This game is the same as G1, except that in
G2 the simulator does not generate keys K3,K4 and
replaces PK3 and PK4 with random permutations.
Specifically, the simulator maintains tables R3 and
R4, initially empty. Whenever the simulator in G1

computes PKi(x) for some x, the simulator in G2

uses Ri(x), if it is defined; otherwise, it chooses a
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random value in [n] that has not yet been defined
as Ri(y) for any y, and uses that value.
A straightforward hybrid argument shows that G1

and G2 are indistinguishable by the PRP property
of P .

Game G3. This is the same as G2, except that we
modify the simulator as follows. For any query,
when the simulator receives a W from the adver-
sary in response to T1, . . . , Tm, the simulator’s deci-
sion whether to output ⊥ will not based on the de-
cryption of W . Instead, it will output ⊥ if W is not
the ciphertext in the dictionary entry D[R1(p[1..i])],
where p[1..i] is the longest matching prefix of p. Oth-
erwise, the simulator proceeds as in G2.
We argue that games G2 and G3 are indistinguish-
able by the ciphertext integrity of Π.
Lemma A.2. If Π has ciphertext integrity, then G2

and G3 are indistinguishable, except with negligible
probability.

Proof. We analyze the cases in which G2 and G3

each output ⊥ in response to a W .
G2 runs Π.Dec(KD,W ) to get either
⊥ or a tuple X, which it parses as
(ind, leafpos, num, len, f1, f2,1, . . . , f2,d). G2 outputs
⊥ if any of the following events occur:
– (Event W.1) Π.Dec(KD,W ) = ⊥, or
– (Event W.2) W decrypts successfully, but f1 6=

R1(p[1..len]), or
– (Event W.3) W decrypts successfully and f1 =

R1(p[1..len]), but
Π.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j >
len.

G3 outputs ⊥ if W is not the ciphertext in the
dictionary entry D[R1(p[1..i])], where p[1..i] is the
longest matching prefix of p, which is the case if any
of the following events occur:
– (Event W.1′) W is not a ciphertext in D,
– (EventW.2′)W is a ciphertext in D but not for

any prefix of p. That is, W = D[κ] where κ is
not equal to R1(p[1..i]) for any i.

– (EventW.3′)W is a ciphertext in D for a prefix
of p, but there is a longer matching prefix of
p. That is, W = D[R1(p[1..i])] for some i, but
there exists a j > i such that there is an entry
D[R1(p[1..j])].

If G3 outputs ⊥ in response to W for any query,
then G2 also outputs ⊥: If event W.1′ occurs, then
W.1 occurs with all but negligible probability by the
ciphertext integrity of Π. If event W.2′ occurs, then
event W.2 occurs with probability all but at most

1/2λ (the probability that FK1(p[1..len]) = f1 when
f1 is an independent, random value). If event W.3′

occurs, then clearly W.3 also occurs.
If G2 outputs ⊥, then G3 also outputs ⊥, since if
W is the ciphertext in D[R1(p[1..i])], then W will
decrypt successfully, with f1 = R1(p[1..len]), and
Π.Dec(f2,k, Tj) = ⊥ for all k ∈ {1, . . . , d}, j > i.
Thus, G2 and G3 are indistinguishable except with
negligible probability.

Game G4. This is the same asG3, except that we mod-
ify the simulator as follows. For any query, when
the simulator receives C1, . . . , Cm from the adver-
sary in response to indices x1, . . . , xm, the simula-
tor’s decision whether to output ⊥ is not based on
the decryptions of C1, . . . , Cm. Instead, it outputs
⊥ if Ci 6= C[xi] for any i. Otherwise, the simulator
proceeds as in G3.
We argue that games G4 and G3 are indistinguish-
able by the ciphertext integrity of Π.
Lemma A.3. If Π has ciphertext integrity, then G3

and G4 are indistinguishable, except with negligible
probability.

Proof. We analyze the cases in which G3 and G4

each output ⊥ in response to C1, . . . , Cm.
For each i, G3 outputs ⊥ if either of the following
events occur:
– (Event C.1) Π.Dec(KC, Ci) = ⊥, or
– (Event C.2) Π.Dec(KC, Ci) = (p′i, j) where j is

not the correct index.
For each i, G4 outputs ⊥ if Ci 6= C[xi], which hap-
pens if either of the following events occur:
– (Event C.1′) Ci is not among C[1], . . . , C[n], or
– (Event C.2′) Ci = C[k] where k 6= xi.
IfG4 outputs⊥ for some i thenG3 outputs⊥ except
with negligible probability: For any i, if event C.1′

occurs, then event C.1 occurs with all but negligible
probability, by the ciphertext integrity of Π. If event
C.2′ occurs, then event C.2 occurs, since if Ci = C[k]
for some k 6= xi, Ci will decrypt to (sj , j) for an
incorrect index j.
If G3 outputs ⊥, if event C.1 occurred, then C.1′

also occurred, since Ci will decrypt successfully if it
is one of C[1], . . . , C[n]. If event C.2 occurred, then
either C.1′ or C.2′ occurred, since Ci will decrypt
to the correct value if Ci = C[xi]. Therefore, if G3

outputs ⊥ for some i, so does G4.
Thus, G3 and G4 are indistinguishable except with
negligible probability.
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Game G5. This game is the same as G4, except for
the following differences. The simulator does not de-
crypt the C1, . . . , Cm from the adversary. For any
query p, instead of deciding whether to output ∅
based on the decryptions of C1, . . . , Cm, the simula-
tor outputs ∅ if p is not a substring of s. Otherwise,
the simulator proceeds as in G4.
As we showed in Lemmas A.2 and A.3, if the ad-
versary does not send the correct W , the client will
respond with ⊥, and if the adversary does not send
the correct C1, . . . , Cm, the client will also respond
with ⊥. Therefore, if the simulator has not yet out-
put ⊥ when it is deciding whether to output ∅,
then C1, . . . , Cm are necessarily the correct cipher-
texts, and the decryptions p′1, . . . , p′m computed in
G4 match p if and only if p is a substring of s. There-
fore, G4 and G5 are indistinguishable.

Game G6 . This game is the same as G5, except
that in G6, for i = 1, . . . , n, instead of setting
ci = Π.Enc(KC, (si, i)), the simulator sets ci =
Π.Enc(KC, (σ0, 0)), where σ0 is an arbitrary element
of Σ.
Note that in both G5 and G6, KC is hidden and the
ci’s are never decrypted. A hybrid argument shows
that games G5 and G6 are indistinguishable by CPA
security of Π.

Game G7. This game is the same as G6, except that
we eliminate the use of the random permutation
R3, in the following way. For i = 1, . . . , n, the
simulator set C[i] = ci instead of C[R3(i)] = ci,
where ci = Π.Enc(KC, (σ0, 0)). Furthermore, for any
query pj , the simulator is given an additional input
IP(s, p1, . . . , pj) (as defined in Section 5.6). To gen-
erate (x1, . . . , xm) in the query protocol, the simu-
lator outputs a random ordering of the elements in
IP(s, p1, . . . , pj)[j].
Since each ci is an encryption under KC of (σ0, 0),
it does not matter whether the ci’s are permuted in
C; if we permute the ci’s or not, the result is identi-
cal. After we eliminate the use of R3 in generating
C, R3 is only used by the simulator to compute
(x1, . . . , xm). Thus, we can replace the computation
of (x1, . . . , xm) for each query pj with a random or-
dering of the elements of IP(s, p1, . . . , pj)[j], and the
result will be identical.

Game G8. This is the same asG7, except that we mod-
ify the simulator as follows. For any query, when the
simulator receives L1, . . . , Lnum from the adversary
in response to indices y1, . . . , ynum, the simulator’s
decision whether to output ⊥ is not based on the
decryptions of the L1, . . . , Lnum; instead, it outputs

⊥ if Li 6= L[yi] for any i; otherwise, it proceeds to
compute the answer A as in G7.
Lemma A.4. If Π has ciphertext integrity, then G3

and G4 are indistinguishable, except with negligible
probability.
This follows from a very similar argument to the
proof of Lemma A.3.

Game G9. This game is the same as G8, except for
the following differences. The simulator does not de-
crypt the L1, . . . , Lnum from the adversary. For any
query pj , instead of computing the answer Aj us-
ing the decryptions of L1, . . . , Lnum, if Aj has not
already been set to ⊥ or ∅, the simulator outputs
Aj = F(s, pj).
As we showed in Lemmas A.2, A.3, and A.4, if any
of the W , C1, . . . , Cm or L1, . . . , Lnum from the ad-
versary are incorrect, the client will respond to the
incorrect message with ⊥.
Moreover, if the simulator has not yet output ⊥
when it is computing Aj , then the it follows directly
from the protocol description that the output will
be Aj = F(s, pj) (by correctness of E). Therefore,
G8 and G9 are indistinguishable.

Game G10. This game is the same as G9, except
that in G10, for each i = 1, . . . , n, the simula-
tor generates each `i as Π.Enc(KL, 0) instead of
Π.Enc(KL, (indleafi , i)).
A straightforward hybrid argument shows that G9

and G10 are indistinguishable by the CPA security
of Π.

Game G11. This game is the same as G10, except that
we eliminate the use of the random permutation
R4, in the following way. For i = 1, . . . , n, the
simulator set L[i] = `i instead of L[R4(i)] = `i,
where `i = Π.Enc(KL, 0). Furthermore, for any
query pj , the simulator is given an additional input
LP(s, p1, . . . , pj) (as defined in Section 5.6). To gen-
erate (y1, . . . , ynum) in the query protocol, the simu-
lator outputs a random ordering of the elements in
LP(s, p1, . . . , pj)[j].
The argument for game G11 is analogous to the
one for game G7. Since each `i is an encryption
under KL of 0, it does not matter whether the
`i’s are permuted in L; if we permute the `i’s or
not, the result is identical. After we eliminate the
use of R4 in generating L, R4 is only used by the
simulator to compute (y1, . . . , ynum). Thus, we can
replace the computation of (y1, . . . , ynum) for each
query pj with a random ordering of the elements of
LP(s, p1, . . . , pj)[j], and the result will be identical.
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Game G12. This is the same as G11, except that the
simulator in G12 does not decrypt the W from the
adversary in the query protocol.
Since the simulator in G11 no longer uses any values
from the decryption of W , G12 is indistinguishable
from G11.

Game G13. This is the same as G12, except that in
G13, for each node u the simulator generates Wu as
Π.Enc(KD, 0) instead of Π.Enc(KD, Xu).
A straightforward hybrid argument shows that G12

and G13 are indistinguishable by the CPA security
of Π.

Game G14. This is the same as game G13, except that
in the query protocol, for any non-matching pre-
fix p[1..i], the simulator replaces Ti with an en-
cryption under a fresh random key. That is, for
any query p, for any prefix p[1..i], i = 1, . . . ,m,
if p[1..i] is a non-matching prefix, the simula-
tor chooses a fresh random value r and sets
Ti ← Π.Enc(r,R1(p[1..i])); otherwise, it sets Ti ←
Π.Enc(R2(p[1..i]), R1(p[1..i])) as in game G13.
For any k and i, let pk denote the kth query, and let
Tk,i denote the Ti produced by the simulator for the
kth query. The only way an adversaryAmay be able
to tell apart G13 and G14 is if two queries share a
non-matching prefix; that is, there exist i, j, j′ such
that j 6= j′ and pj [1..i] = pj′ [1..i]. In this case, G14

will use different encryption keys to generate Ti,j
and Ti,j′ , while G13 will use the same key. Note that
the decryption keys for Ti,j and Ti,j′ will never be
revealed to A in either game. Thus, a straightfor-
ward hybrid argument shows that G13 and G14 are
indistinguishable by the key-hiding property of Π.

Game G15. This is the same as game G14, except that
in the query protocol for any string p, for any non-
matching prefix p[1..i], the simulator replaces Ti
with an encryption of 0. That is, for any query
p, for any prefix p[1..i], i = 1, . . . ,m, if p[1..i] is
non-matching, the simulator chooses a fresh random
value r and sets Ti ← Π.Enc(r, 0); otherwise, it sets
Ti ← Π.Enc(R2(p[1..i]), R1(p[1..i])) as in game G14.
The only way an adversary A may be able to tell
apart G14 and G15 is if a prefix pj [1..i] is non-
matching. In this case, in G15, Tj,i will be an encryp-
tion of 0, while in G14, Tj,i will be an encryption of
R1(pj [1..i]). The decryption key for Tj,i will never
be revealed to A in either game. Thus, a straight-
forward hybrid argument shows that games G14 and
G15 are indistinguishable by the CPA security of Π.

Game G16. This is the final game, which corresponds
to an execution of the ideal experiment. In G16, the

simulator is replaced with the simulator S defined
above.
The differences between G15 and G16 are as fol-
lows. In G16, the simulator no longer uses the
string s when creating the dictionary D, and for
each query p, it no longer uses p when creating
T1, . . . , Tm. When constructing D, whenever the
simulator in G15 generates a value by applying a
random function to a string, S generates a fresh ran-
dom value without using the string. Note that all of
the initpath(u) strings used in D are unique, so S
does not need to ensure consistency between any of
the random values, thus the resulting D will clearly
be identical. For any query pj , for each matching
prefix pj [1..i], S constructs Ti to be consistent with
D and with prefix queries using the query prefix
pattern QP(s, p1, . . . , pj). The simulator in game
G15 behaves the same except that it again uses ran-
dom functions (applied to distinct strings) in place
of randomly sampled strings; as above the result is
identical. Also, while the simulator in G15 associates
entries in D to strings when it first constructs D,
S associates entries in D to strings as it answers
each new query; this however has no effect on the
game. Finally, in game G15, after each query the
simulator outputs either ⊥ or Aj = F(s, pj) which
is sent to the adversary. In game G16 the simulator
outputs a flag fj = ⊥ exactly when the G15 sim-
ulator outputs ⊥. By definition of the ideal game,
the game sends ⊥ to the adversary whenever fj = ⊥
and sends F(s, pj) otherwise. Thus, both simulators
produce identical views.
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