
Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):206–221

Markulf Kohlweiss and Ian Miers*
Accountable Metadata-Hiding Escrow:
A Group Signature Case Study
Abstract: A common approach to demands for lawful
access to encrypted data is to allow a trusted third party
(TTP) to gain access to private data. However, there is
no way to verify that this trust is well placed as the
TTP may open all messages indiscriminately. Moreover,
existing approaches do not scale well when, in addition
to the content of the conversation, one wishes to hide
one’s identity. Given the importance of metadata this is
a major problem. We propose a new approach in which
users can retroactively verify cryptographically whether
they were wiretapped. As a case study, we propose a
new signature scheme that can act as an accountable
replacement for group signatures, accountable forward
and backward tracing signatures.

Keywords: Accountability, traceable signatures, group
signatures

DOI 10.1515/popets-2015-0012
Received 2015-02-15; revised 2015-05-18; accepted 2015-05-18.

1 Introduction
For digital communication there are few scaling issues
to prevent mass surveillance and, indeed, no easy way
to detect it. To ensure privacy, we rely on cryptographic
guarantees. These are one of the best tools to prevent
such surveillance: even if there is a “political” solution to
one’s own government’s spying, there are always other
governments, and in both cases there is the added diffi-
culty of actually verifying that (covert) surveillance isn’t
occurring.

Cryptographic protections, on the other hand, are
absolute. However, precisely because they are inviolable,
widespread deployment of such systems, e.g., in cloud
services, often raises governmental objections or requires
mandated ways of providing access. A commonly pro-
posed solution for lawful access to encrypted commu-
nications is to appoint a trusted party (or multiple

Markulf Kohlweiss: Microsoft Research, E-mail:
markulf@microsoft.com
*Corresponding Author: Ian Miers: The Johns Hopkins
University, E-mail: imiers@cs.jhu.edu

partially-trusted parties) who escrow(s) a user’s iden-
tity or information about her actions for future retrieval.
This has been applied to anonymous signatures [8, 10],
e-cash schemes [9], and even saw very limited (and ul-
timately failed) real-world deployment in the form of
the Clipper chip for encryption. Indeed, the US and sev-
eral other countries are currently trying to mandate the
adoption of such techniques. However, especially in light
of recent revelations about the intelligence industry, it
should be clear that such proposals make cryptographic
protections against mass surveillance worthless:

First, in the face of nation-states that are willing to
compromise hardware, penetrate systems, and coerce in-
dividuals, such an approach seems foolhardy. Eventually
the trusted party’s key or unfettered access to it will be
extracted even if the party is itself trustworthy.

Second, escrow systems typically fail to hide meta-
data: users’ messages are encrypted with an escrowed
key, but nothing hides envelope information. This is
seemingly a fundamental limitation: if a user’s mes-
sages can easily be located (and subsequently decrypted
with an escrowed key), then the privacy protections are
severely lacking as such a system leaks metadata—i.e.,
who messages are going to and coming from. If it is
impossible to locate a user’s message given their name,
locating the messages to decrypt relies on expensive op-
erations such as trial decryption with every escrowed
key. This does not scale.

The question thus is, can we meet the requirements
for providing lawful access while still allowing crypto-
graphic systems that prevent dragnet surveillance of
either messages or metadata? We begin with three in-
sights:

1. There can be no central decryption key, since we
cannot trust anyone to hold it.

2. Even after raising suspicion, a user will likely inter-
act with the communication system (e.g., by logging
in again). If they were cautious enough not to do
so, they would be using existing end-to-end secure
schemes already.

3. We do not need to prevent the authorities from abus-
ing their position. Merely detecting if they do it,
serves as a deterrent for mass surveillance.

Accountable Metadata-Hiding Escrow 207

We feel this approach in general is quite promising. In
this paper, we apply it to a somewhat more theoreti-
cal problem: building a group signature like scheme—
which we call an accountable tracing signature—where
the group manager can, on a recurring basis, (i) choose
which users’ messages they have the ability to open and
(ii) prove that they did not have the ability to open
the messages of a given user. Similar to placing a GPS
tracker on a car or wiretapping a phone, this only pro-
vides information going forwards. We then extend this
to allow retroactive access and the escrow of keys, rather
than just user identities.

Group signatures are a useful starting point with
well studied cryptographic definitions. They allow
anonymity revocation by a group manager while still
providing privacy to everyone else. Moreover, they are
readily extendable to key escrow: many group signature
schemes are a signature scheme plus an escrow mecha-
nism for the users’ identity. Including a decryption key
in addition to the identity is simple. Additionally, by
starting with group signatures, we inherit the strong
guarantees that allow the group manager to prove that
someone authored a message if-and-only-if they actually
did so, i.e., she cannot frame users. While this property
is understandably neglected in many escrow schemes,
given the legal context in which escrowed messages are
likely to be used as evidence in court, attribution seems
to be a fundamental property that should be dealt with.
Finally, group signatures are third party verifiable, en-
abling an untrusted mail transport agent or telecom
switch to verify that messages comply with required law-
ful access requests without itself having that access.

In group signatures, however the group manager can
open any message and is simply trusted not to. For ac-
countable escrow, this is not the case and the group man-
ager is fundamentally an adversary who seeks to actively
violate user privacy. We model this by adding two ad-
ditional games. The first one—acountable anonymity—
ensures that the group manager cannot both trace a user
and provide proof that they did not do so. The second—
trace obliviousness—ensures that users cannot tell if
they are traceable or not (whereas in standard group
signatures, the user knows they are always traced).

Our approach to constructing a scheme meeting
these is as follows: as in a group signature, users escrow
their identity under an escrow public key as part of the
signature. Normally, however, their private key is not
known to the authority. When a user resubscribes (e.g.,
pays their monthly phone bill or logs into a webmail
account), the authority searches them by either (i) re-
placing that key with one the authority can decrypt,

or (ii) requiring the user to provide the escrow private
key encrypted under an authority provided key. The for-
mer results in tracing going forward—anything the user
does going forward is detectable—while the latter al-
lows backward tracing as well and reveals past actions.
In case a user is not traced, the authority does not re-
place keys and merely re-randomizes the existing public
key.

The core of this approach is a key-oblivious encryp-
tion scheme where public keys are randomizable and
randomized keys cannot be linked to each other or the
original key. As a result, without the entropy used in
key randomization, users cannot tell if their key was
replaced—as in the case of forward tracing—or if they
are encrypting to a random group element or the au-
thority’s public key—as in the case of backward tracing.
Because users cannot tell if either search mechanism was
invoked, users remain oblivious. However, once the ran-
domness is revealed, the authority is held accountable.

Our Contribution
We provide four contributions. First, we propose ac-
countability as a novel security requirement of escrow
systems and formalize it in the definitions for account-
able tracing signatures. Second, we provide a practical
construction for an accountable forward-tracing signa-
ture complete with proofs of security. This allows an au-
thority to covertly and accountably tag and trace user
messages once the user becomes suspect. Third, we ex-
tend our approach with an interactive subscribe proto-
col to build an accountable backward-tracing signature
scheme where all of a user’s messages can be identified
even retroactively. Finally, we show how to augment ei-
ther approach to create an accountable tracing signcryp-
tion scheme where messages are encrypted and opening
a signature reveals both the author and the message
content, giving us an efficient accountable wiretapping
system.

Related work
Several cryptographic schemes, both from the academic
literature and in practice, use a trusted party for escrow.
For example, in a group signature scheme [8], a group
manager allows users to sign messages as coming from
some member of the group while he alone maintains
the ability to provably identify who signed the message.
A related problem is given a suspicious user, identify
all messages they have authored. Systems that support
both functionalities are called traceable signatures [14].

Accountable Metadata-Hiding Escrow 208

Variants of these properties have been defined for e-cash
systems, with owner tracing, and coin tracing being de-
fined analogously. Interestingly there are e-cash schemes
that hold the authority accountable [15, 16]. Unfortu-
nately, these schemes require interaction with the trac-
ing authority for every transaction and, as a result, the
techniques do not necessarily scale.

Finally, key escrow, where an encrypted message
can be decrypted by both the recipient and an escrow
authority, is both a well studied topic and one that has
seen at least limited real world deployment in the (failed)
Clipper chip. A key escrow mechanism in which mul-
tiple trustees need to collaborate to decrypt has been
proposed by [18].

2 Key-oblivious encryption
We call a public-key encryption scheme key-oblivious if
(i) it allows for a large set of public keys all related
to the same secret key, if (ii) existing public keys can
be randomized to generate related keys, and if (iii) it
cannot be discerned, without knowledge of the secret
key and the randomness used in their generation, how
public keys are related. The existence of such schemes
is cryptographic folklore and we do not claim much
novelty here. In order to allow for accountability, we
insist on the ability to prove, for a given public key,
which key was randomized to produce it. This leads to
slight variants of the standard key-privacy and plaintext-
indistinguishability games.

2.1 Syntax

We formalize a key-oblivious encryption scheme OE as a
collection OE.(GroupGen,KeyGen,KeyRand,Enc,Dec) of
five algorithms:
GroupGen(1λ)→ G: generates parameters, usually a

prime order group.
KeyGen(G)→ (pk, sk): generates a key pair.
KeyRand(pk)→ pk′: randomizes an existing public key

into a public key for the same secret key.
Enc(pk,m)→ ct: standard encryption functionality.
Dec(sk, ct)→ m: standard decryption functionality.

In definitions and in protocols, we sometimes make the
randomness of KeyRand explicit and write (pk′; r) ←
KeyRand(pk) and pk′ = KeyRand(pk; r). For two fixed
random public keys pk(0), pk(1), pk = KeyRand(pk(b); r)

acts as a hiding and binding bit commitment scheme,
with r its opening. (Similarly, we write (ct; s) ←
Enc(pk,m) and ct = Enc(pk,m; s) to make the random-
ness of Enc explicit in zero-knowledge proofs.)

2.2 Definitions

In addition to key randomizability—which corresponds
to the bit commitment being hiding, we require that
ciphertexts are plaintext indistinguishable even when
the adversary can randomize the target keys. We term
this plaintext indistinguishability under key randomiza-
tion (INDr). We also require such schemes to be key pri-
vate [5], again with the modification that this holds even
for adversarially randomized keys. Even though stronger
variants of these properties exist, security under chosen
plaintext attacks suffices for our purposes. We note that
any key randomizable encryption scheme can be made
key private via the added step of randomizing the public
key prior to encryption.

Game KR 4=
b← {0, 1}
G ← GroupGen(1λ)
(pk, sk)← KeyGen(G)
pk0 ← KeyRand(pk)
(pk1, sk1)← KeyGen(G)
b′ ← A(pk, pkb)
return (b′ = b)

Game KPr 4=
b← {0, 1}
G ← GroupGen(1λ)
(pk0, sk0)← KeyGen(G)
(pk1, sk1)← KeyGen(G)
(m, pk′0, r0, pk

′
1, r1, st)

← A0(G, pk0, pk1)
if ¬(pk′i = KeyRand(pki; ri)

for i ∈ {0, 1}) then
return ⊥

ct← Enc(pk′b,m)
b′ ← A1(ct, st)
return (b′ = b)

Game INDr 4=
b← {0, 1}
G ← GroupGen(1λ)
(pk, sk)← KeyGen(G)
(pk′, r,m0,m1, st)← A0(G, pk)
if pk′ 6= KeyRand(pk; r) then

return ⊥
ct← Enc(pk′,mb)
b′ ← A1(ct, st)
return (b′ = b)

Definition 1 (Key randomizability). Let OE be a key-
oblivious encryption scheme. Consider Game KR played
by adversary A: The key-randomizability advantage of
A, AdvKR(A) is defined as 2 · Pr[KR : true] − 1. A
scheme is key randomizable if for any polynomial time
A this advantage is negligible.

Accountable Metadata-Hiding Escrow 209

Definition 2 (Key privacy under key randomization).
Let OE be a key-oblivious encryption scheme. Con-
sider Game KPr played by adversary A: The key-
privacy advantage of A, AdvKPr(A) is defined as
2 · Pr[KPr : true] − 1. A scheme is key private if for
any polynomial time A = (A0,A1) this advantage is
negligible.

Definition 3 (Plaintext indistinguishability under k.r).
Let OE be a key-oblivious encryption scheme. Consider
Game INDr played by adversary A: The plaintext dis-
tinguishing advantage of A, AdvINDr(A) is defined as
2 · Pr[INDr : true] − 1. A scheme is secure if for any
polynomial time A = (A0,A1) this advantage is negligi-
ble.

2.3 Instantiation

Intuitively key-oblivious encryption can be obtained
from key-private homomorphic public-key encryption.
For a given key pair, let C(m; r) be the ciphertext of
message m with randomness r. Consider the homomor-
phic property C(m; r) ⊗ C(m′; r′) = C(m · m′; r + r′).
We construct a key-oblivious encryption scheme by let-
ting each oblivious public key corresponds to an en-
cryption C(1; r). We randomize a key by computing
C(1; r ∗ r′) for a random r′ (this can be computed using
⊗ by square-and-multiply). Encryption corresponds to
computing C(m; r+s) by multiplying a freshly random-
ized public key C(1; r + s) with the ciphertext C(m; 0),
i.e., the message encrypted with randomness zero—see
also [11].

We will use such a simple construction of key-
oblivious encryption based on ElGamal (ElKO):
ElKO.GroupGen(1λ): Pick a group G of prime order q

with generator g, and return G = (G, q, g).
ElKO.KeyGen(G): Sample r, γ ← Zq and return pk =

(gr, (gγ)r), sk = (pk, γ).
ElKO.KeyRand(pk): Let pk = (A,B), sample r ← Zq,

return pk′ = (Ar, Br) and randomness r.
ElKO.Enc(pk,m): Let pk = (A,B), sample s← Zq, and

return ct = (As, Bs ·m).
ElKO.Dec(sk, ct): Let sk = (pk, γ) and ct = (C,D). Re-

turn m = D/Cγ .

Lemma 4 (Key privacy of ElKO). If the decisional
Diffie-Hellman problem holds in G, ElKO is a key-
private key-oblivious encryption scheme.

Lemma 5 (Key randomizability of ElKO). If the deci-
sional Diffie-Hellman problem holds in G, ElKO is a key-
randomizable encryption scheme.

Lemma 6 (Plaintext indistinguishability of ElKO). If
the decisional Diffie-Hellman problem holds in G, ElKO
satisfies INDr.

2.3.1 SIG and OTS

To ensure efficiency, we need structure-preserving signa-
tures (SPS) [4]. SPS can either be proved secure in the
generic group model [3], using q-type assumptions [4],
or using static assumptions [1]. Usually the stronger
the assumption, the better the performance. This gives
us several options. Moreover, if we only use the signa-
ture scheme to sign freshly created one-time signature
(OTS) public keys, we do not require full adaptive un-
forgeability, but it suffices if the signature scheme is se-
cure for random messages. We can thus use the xSIG
scheme from [1] secure under DDH 2 and xDLIN 1 with
|σsig| = 6. For the OTS scheme, which does not need to
be structure preserving, on the other hand, we will al-
ways make use of the scheme of [13] with |pkots| = 2 and
|σots| = 2. Note that the xSIG scheme requires random
messages of a specific form, and thus requires extended
pkots of size 2× 3 = 6.

3 Accountable forward-traceable
signatures

In a group signature scheme, a group manager can open
any suspect message. In a tracing signature scheme, the
manager can test if any message belongs to a suspect
user. In an accountable tracing signature, the manager
can do the same but must later reveal which users she
deems suspect.

3.1 Syntax

We formalize an accountable tracing signature scheme
ATS as a collection ATS.(Setup,GKg,UKg,Enroll, Sign,
Verify,Open, Judge,Account) of nine algorithms:
Setup(1λ)→ gp: Generates the public parameters for

security level λ.
GKg(gp)→ (gpk, gsk): Generates the initial group key

pair.

Accountable Metadata-Hiding Escrow 210

UKg(gp)→ (upk, usk): Generates a user key pair. Each
user has a public key upk and a corresponding pri-
vate key usk. Per [6] this is necessary to provide
any meaning to the assertion that a user actually
did sign an opened message: without it, the group
manager is free to simply assert that a key of their
generation actually belongs to a user.

Enroll(gsk, upk, epoch, t)→ (cert, wescrw): The author-
ity produces a certificate on a user’s escrow public
key. This certificate either provides full anonymity
(t = 0) or allows for tracing (t = 1) depending on
the bit t. The authority stores the witness wescrw

to t and returns the certificate to the user. The cer-
tificate cert contains the time range for which the
user is enrolled. We call this counter the epoch of
the certificate.

Sign(gpk, cert, usk,m)→ σ : Takes the group public
key, a certificate, the user’s private key, and a mes-
sage to sign as input. It outputs a signature that
may contain an escrow of the user’s identity. The
epoch of the signature corresponds to the epoch of
the certificate.

Verify(gpk,m, σ, epoch)→ {0, 1}: Given the group pub-
lic key, a message, its signature, and an epoch, ver-
ifies the signature is valid for the specified message
and epoch.

Open(gpk, gsk,m, σ, epoch)→ (upk, ψ): Given the
group public key, private key, a message, its signa-
ture, and the time interval; if possible (i.e., if signed
using an escrow certificate), return the public key
of the user and a proof that the user generated the
message-signature pair. Otherwise returns ⊥.

Judge(gpk,m, σ, epoch, upk, ψ)→ {0, 1}: Given the
group public key, a message, its signature, an epoch,
a user’s public key, and a proof that the user gen-
erated the signature of that epoch on that message,
verifies the proof.

Account(gpk, cert, wescrw, t)→ {0, 1}: Given the group
public key, a certificate, a bit t saying whether it
escrows the user’s identity, and a witness wescrw,
returns 1 if the witness confirms the choice of t.

We will expose some implementation details for the sake
of simplifying definitions and avoiding excessive scaffold-
ing. We use cert.epoch to denote the epoch of a certifi-
cate, cert.upk to denote the user public key being certi-
fied, gpk.gp the parameters of the group public key, and
gsk.csk to denote the certificate signing key—this makes
an adversary with access to this key strictly stronger
than an adversary with access to an ENROLL oracle.

3.2 Definitions

The games defining the properties of an accountable
tracing signature are described formally in Figure 1.
We outline them informally here. The first three are
just slight adaptations of the standard group signature
games.

The last two, anonymity with accountability and
trace-obliviousness, are fundamentally different from the
guarantees that group signatures can provide. These
stem from the requirement to hold the group manager
accountable.
Anonymity under tracing This corresponds to the

standard anonymity property of group signatures
which guarantees anonymity toward everyone ex-
cept the group manager. It ensures that even when
being traced users are anonymous to the general
public.

Traceability Informally, traceability requires that ev-
ery valid message will trace to someone as long as
the adversary does not have a certificate and private
key for a non-tracing certificate.
Although the attacker is free to choose the type of
certificate for honest users whose keys are generated
by the UKG oracle, he is not allowed to get untrace-
able certificates on user keys of his choosing. In the
definition this is ensured by (t ∨ upk /∈ dom(S)) al-
ways evaluating to 1 on such occasions. This is a
slight departure from the standard tracing game [6],
where ENROLL always produces traceable certifi-
cates.

Non-frameability This requires that no one, not even
the group manager, can sign messages on the user’s
behalf. At the same time, it guarantees that users,
if they are being traced, have to take responsibility
for the messages they sign, i.e., traced signatures
ensure non-repudiation.

Anonymity with accountability Intuitively, this
captures the notion that the user is anonymous
even from a corrupt authority that has full control
of the system. It requires that even if every single
parameter in the system is adversarially controlled,
a user is anonymous as long as the escrow key in
his certificate is accountably private.

Trace-obliviousness This requires that users cannot
tell whether they are being traced.

Accountable Metadata-Hiding Escrow 211
Definition 7 (Anonymity under tracing). Let ATS be an accountable forward-tracing signature scheme. Consider the following
game played by an adversary A:

Game AuT 4=
b← {0, 1}
gp← Setup(1λ)
(gpk, gsk)← GKg(gp)
b′ ← ACh,OPEN(gpk, gsk.csk)
return (b′ = b)

Oracle Ch(sk0, sk1, cert0, cert1,m,wescrw0 , wescrw1 , t) 4=
σ0 ← Sign(gpk, sk0, cert0,m)
σ1 ← Sign(gpk, sk1, cert1,m)

if (σ0 6= ⊥ ∧ σ1 6= ⊥ ∧ cert0.epoch = cert1.epoch ∧
Account(gpk, cert0, wescrw0 , t) ∧ Account(gpk, cert1, wescrw1 , t))
Q← Q ∪ {σb}
return σb

else
return ⊥

Oracle OPEN(m,σ) 4=
if (σ ∈ Q) then return ⊥
return Open(gsk,m, σ)

The anonymity under tracing advantage of A, AdvAuT(A) is defined as 2 · Pr[AuT : true]− 1. ATS is anonymous under tracing if
for any polynomial time A this advantage is negligible.
Definition 8 (Traceability). Let ATS be an accountable forward-tracing signature scheme. Consider the following game played by
adversary A:

Game Trace 4=
gp← Setup(1λ)
(gpk, gsk)← GKg(gp)

(m,σ)← AUKG,ENROLL,SIGN,OPEN(gpk)
(upk, ψ)← Open(gsk,m, σ)
return (Verify(gpk,m, σ) = 1 ∧

(m,σ) /∈ Q ∧
(Judge(gpk,m, σ, upk, ψ) = 0 ∨

upk = ⊥))

Oracle UKG(upk, epoch) 4=
(upk, usk)← UKg(gp)
S[upk]← usk
return upk

Oracle ENROLL(upk, epoch, t) 4=
(cert, wescrw)
← Enroll(gsk, upk, epoch,

(t ∨ upk /∈ dom(S)))
return cert

Oracle OPEN(m,σ) 4=
(upk, ψ)← Open(gsk,m, σ)
return (upk, ψ)

Oracle SIGN(cert,m) 4=
usk = S[cert.upk]
if (usk = ⊥) then return ⊥
σ ← Sign(gpk, cert, usk,m)
Q← Q ∪ {(m,σ)}; return σ

The traceability advantage of A, AdvTrace(A) is defined as Pr[Trace : true]. ATS is traceable if for any polynomial time A this
advantage is negligible.
Definition 9 (Non-frameability). Let ATS be an accountable forward-tracing signature scheme. Consider the following game
played by adversary A:

Game NF 4=
gp← Setup(1λ)
(gpk, st)← A0(gp)
if gpk.gp 6= gp then

return ⊥
(m,σ, upk, ψ)← AUKG,SIGN

1 (st)
return (Judge(gpk,m, σ, upk, ψ) = 1
∧(m,σ) /∈ Q ∧ upk ∈ S

Oracle UKG(upk, epoch) 4=
(upk, usk)← UKg(gp)
S[upk]← usk
return upk

Oracle SIGN(cert,m) 4=
usk = S[cert.upk]
if (usk = ⊥) then return ⊥
σ ← Sign(gpk, cert, usk,m)
Q← Q ∪ {(m,σ)}; return σ

The non-frameability advantage of A, AdvNF(A) is defined as Pr[NF : true]. ATS is non-frameable if for any polynomial time
A = (A0,A1) this advantage is negligible.
Definition 10 (Anonymity with accountability). Let ATS be an accountable forward-tracing signature scheme. Consider the
following game played by an adversary A:

Game AwA 4=
b← {0, 1}
gp← Setup(1λ)
(gpk, st)← A0(gp)
if gpk.gp 6= gp

return ⊥
b′ ← ACh

1 (st)
return (b′ = b)

Oracle Ch(sk0, sk1, cert0, cert1,m,wescrw0 , wescrw1)) 4=
σ0 = Sign(gpk, sk0, cert0,m)
σ1 = Sign(gpk, sk1, cert1,m)

if (σ0 6= ⊥ ∧ σ1 6= ⊥ ∧ cert0.epoch = cert1.epoch ∧
Account(gpk, cert0, wescrw0 , 0) ∧ Account(gpk, cert1, wescrw1 , 0))

return σb
else

return ⊥
The anonymity advantage of A, AdvAwA(A) is defined as 2 · Pr[AwA : true]− 1. ATS is anonymous if for any polynomial time
A = (A0,A1) this advantage is negligible.
Definition 11 (Trace-obliviousness). Let ATS be an accountable forward-tracing signature scheme. Consider the following game
played by an adversary A:

Game TO 4=
gp← Setup(1λ)
(gpk, gsk)← GKg(gp)
b← {0, 1}
(b′)← ACh,ENROLL,OPEN(gpk)
return (b′ = b)

Oracle OPEN(m,σ) 4=
(upk, ψ)← Open(gsk,m, σ)
if upk ∈ U then

return ⊥
else

return (upk, ψ)

Oracle ENROLL(upk, epoch, t) 4=
(cert, wescrw)← Enroll(gsk, upk, epoch, t)
return cert

Oracle Ch(upk, epoch) 4=
(cert, wescrw)← Enroll(gsk, upk, epoch, b)
U = U ∪ {upk}; return cert

The trace-obliviousness advantage of A, AdvTO(A) is defined as 2 · Pr[TO : true]− 1. ATS is trace oblivious if for any polynomial
time A this advantage is negligible.

Fig. 1. Definitions

Accountable Metadata-Hiding Escrow 212

3.2.1 On the necessity of extra games

Although at first glance anonymity with accountability
is similar to the standard anonymity property and may
appear to subsumes it, this is not the case: even if the
authority can lawfully trace a user, we still need to en-
sure that no one else can.

From this, it appears that trace-obliviousness to-
gether with anonymity with accountability subsumes
the standard anonymity property. After all, if a third
party can track a traced user, then surely the user can
use the same technique to detect their own status.

If anonymity under tracing were limited to generic
third parties, this might be the case. However, in both
standard group signature schemes and ours, it is use-
ful to allow the opening authority to be distinct from
the group manager for security reasons: the former is
used infrequently while the latter is online continually
to allow new members in. Ideally, compromise of the on-
line portion ought not to violate users’ privacy, and so
the attacker in the anonymity under tracing game may
get access to the online portion’s state (gsk.csk). Trace-
obliviousness, however, cannot necessarily survive such
a strong attack, as the group manager may know whose
keys have been replaced. As a result, the games are dis-
tinct.

3.2.2 Remarks.

Note two things. First, if all keys are tracing keys, then
(i) the trace game would be standard, (ii) the trace-
oblivious game is moot, and (iii) there is no account-
able anonymity. As a result, we would have a standard
group signature scheme. Perhaps more interestingly, if
we dropped the requirement for anonymity under trac-
ing, we would not require simulation extractability for
the proof system.

Note, moreover, that the anonymity under tracing
adversary A provides all input to Ch. A simple hybrid
argument thus shows that anonymity under tracing with
a single challenge query implies security with multiple
challenge queries. This means that even one-time simu-
lation extraction is sufficient to prove security.

4 Accountable forward-tracing
signatures from key-oblivious
encryption

Assume we have an unforgeable signature scheme
SIG.(GroupGen,KeyGen,Sign,Verify), a one-time sig-
nature scheme OTS.(GroupGen,KeyGen,Sign,Verify),
a key-oblivious encryption scheme OE.(GroupGen,
KeyGen,KeyRand,Enc,Dec), and a simulation-ex-
tractable non-interactive zero-knowledge proof system
Π.(GroupGen,Setup,Prove,VfyProof,SimExtSetup,Sim,
Ext). (For efficiency we require that SIG.GroupGen =
OTS.GroupGen = OE.GroupGen = Π.GroupGen and re-
fer to this algorithm as GroupGen.)

We construct an accountable tracing scheme ATS:
ATS.Setup(1λ): Runs G ← GroupGen(1λ),

(pk(0), sk(0)) ← OE.KeyGen(G), crs ← Π.Setup(G).
The secret key sk(0) is discarded, in fact pk(0) should
be generated in such a way that sk(0) is not known
to any party. Outputs gp = (G, pk(0), crs).

ATS.GKg(gp): Runs (cpk, csk) ← SIG.Keygen(gp.G)
and (pk(1), sk(1)) ← OE.KeyGen(gp.G). Returns
gpk = (gp, cpk, opk = pk(1)) and gsk =
(gpk, csk, osk = sk(1)).

ATS.UKg(gp): Returns (upk, usk)← SIG.Keygen(gp.G).
ATS.Enroll(gsk, upk, epoch, b): Given a user public key,

computes (epk;wescrw) ← OE.KeyRand(pk(b)) and
a signature σcert ← SIG.Sign(csk, (upk, epk, epoch)).
Returns certificate cert = ((upk, epk, epoch), σcert)
and witness wescrw.

ATS.Sign(gpk, cert, usk,m): Parses gpk as (gp, cpk, opk)
and cert as ((upk, epk, epoch), σcert). Runs
(pkots, skots) ← OTS.Keygen(gp), σu ←
SIG.Sign(usk, pkots), and (escrw; s) ←
OE.Enc(epk, (upk, σu)). Computes a proof π using
crs for the following relation to prove knowledge of
(upk, epk, σcert , σu):

((escrw, pkots, cpk, epoch), (upk, epk, σcert , σu, s))∈Rsig
iff (SIG.Verify(cpk, σcert , (upk, epk, epoch)) = 1 ∧

escrw = OE.Enc(epk, (upk, σu); s) ∧
SIG.Verify(upk, σu, pkots) = 1) .

Computes σots ← OTS.Sign(skots, (m, (escrw, pkots,
cpk, epoch), π)) and sets σ = (π, σots, pkots, escrw).
If ATS.Verify(gpk,m, σ) = 0, returns ⊥, otherwise
returns σ. This check is needed as we guarantee
anonymity even for maliciously formed inputs, as
long as the signature verifies and the user is not
being traced.

Accountable Metadata-Hiding Escrow 213

ATS.Verify(gpk,m, σ, epoch): Parses gpk as (gp, cpk,
opk) and σ as (π, σots, pkots, escrw). First, veri-
fies the one-time signature: OTS.Verify(pkots, σots,
(m, (escrw, pkots, cpk, epoch), π)). Second, verifies
the proof Π.VfyProof(crs, (escrw, pkots, cpk, epoch),
π). If all checks succeed, returns 1, otherwise re-
turns 0.

ATS.Open(gpk, gsk,m, σ, epoch): Parses gpk as
(gp, cpk, opk) and σ as (π, σots, pkots, escrw).
Runs ATS.Verify(gpk,m, σ, escrw) and abort if it
fails. Extracts osk from gsk and runs (upk, σu) =
OE.Dec(osk, escrw). Returns (upk, ψ = σu).

ATS.Judge(gpk,m, σ, epoch, upk, ψ): Parses gpk as (gp,
cpk, opk), σ as (π, σots, pkots, escrw), and ψ as σu.
Runs ATS.Verify(gpk,m, σ, epoch) and then runs
SIG.Verify(upk, σu, pkots). If both checks succeed, re-
turns 1, otherwise 0.

ATS.Account(gpk, cert, wescrw, b): Returns 1, if
cert.epk = OE.KeyRand(pk(b);wescrw), otherwise 0.

Theorem 12. If SIG is unforgeable, OTS is strongly
unforgeable, OE is plaintext indistinguishable, key pri-
vate and key randomizable, and Π is zero-knowledge and
simulation-extractable then ATS is anonymous under
tracing, traceable, non-frameable, accountably anony-
mous, and trace oblivious as defined in Section 3.2. See
the proofs of Theorems 13-21 in Appendix B.1.

We detail the concrete costs of instantiating such a
scheme in Appendix A. Depending on techniques, a
signature in our scheme requires between 155 and 367
group elements. Depending on the type of curve, group
elements are between 32 and 128 bytes each for BN256
Curves with 128 bit security, this gives us a signature be-
tween 11Kb and 45Kb. This makes our scheme of mostly
theoretical interest as a proof of concept.

We note, however, that there may be substantial
room for improvement. First, our construction simply
uses stock parts and it’s possible that a bespoke solu-
tion would give far better performance. Second, we use
structure preserving signatures and Groth-Sahai proofs.
It’s possible that if we draw our stock parts from signa-
tures with efficient protocols and verifiable encryption
schemes, we will get a more efficient scheme. Similarly,
schemes secure in the Random-Oracle model generally
have more efficient protocols and our current construc-
tion is in the more expensive standard-model.

5 Backward-tracing and
message-escrow extensions

We only formally describe and analyze a base scheme,
though our approach can be extended in several direc-
tions to fit specific application requirements. We dis-
cuss two such extensions for applications that require
backward-tracing and encryption respectively.

5.1 Accountable backward-tracing
signatures

So far we have considered monitoring a suspect’s future
actions. In the case of recovering past actions, we cannot
retroactively tag a message and must, instead, extract
something from the user to identify her messages.

With some applications (e.g., cloud based email),
where users may maintain an encrypted inbox/outbox
of their messages merely (accountably) extracting the
necessary decryption key is sufficient. We can decrypt
the inbox rather than resort to trial message decryption.
For other applications, it seems search costs are on the
order of m × t where m is the number of messages in
the system and t is the number of targeted users.

In either case, retrieving the user’s key introduces
a second issue: restoring privacy. For forward tracing,
the authority merely needs to replace the escrow key
with a randomization of pk(0) when a warrant expires.
For backward tracing, things are more complicated as
we need the user to replace her key with a new one
without realizing she did so. This requires more than
just key obliviousness: the user must only hold a share
of her private key. If not, she can simply test if she can
decrypt messages encrypted under the new key.

We augment ElKO with a basic distributed key gen-
eration functionality to form DElKO. We model dis-
tributed key generation using the following algorithms:
ShareGen(G) generates public and private key shares
(ps, ss), while CombinePS and CombineSS combine a vec-
tor of public and private key shares into a public and
a private key respectively. We extend ElKO with algo-
rithms ShareGen, CombinePS and CombineSS for gener-
ating keys from public and private shares:
DElKO.ShareGen(G): α← Zq, ps = gα, ss← α.

Returns (ps, ss).
DElKO.CombinePS(~ps): r ← Zq,

Returns pk = (gr, (
∏
psi)r).

DElKO.CombineSS(~ss): Returns sk =
∑
ssi.

Accountable Metadata-Hiding Escrow 214

5.1.1 Adding backward tracing

An Accountable backward-tracing signature scheme
is a set of eight algorithms: (Setup,GKg,UKg, Sign,
Verify,Open, Judge,Account) and one protocol
Subscribe(gpk, usk)↔ Enroll(gsk, upk, b).

Our construction is based on our forward-tracing
scheme from Section 4 with two modifications (i) epk
instead of being a key for ElKO is now for DElKO
and (ii) we replace Enroll with an interactive protocol
(Subscribe, Enroll), that handles key generation, key re-
trieval in the case of a warrant, and key renewal on
warrant expiration.

Subscribe, detailed in Figure 2, uses a blind de-
cryption scheme [12] with algorithms BE.(KeyGen,Enc,
Blind,BlindDec,UnBlind). Intuitively, in Subscribe, the
user provides the authority with an encryption of her
share of the escrow key. The authority can gain obliv-
ious access to this share via a blind decryption query.
To maintain trace-obliviousness, the authority normally
issues blind decryption queries on an encryption of 0.
Again, revealing the randomness—in this case for blind-
ing the ciphertext—renders this accountable.

The process for key renewal is best understood via
Figure 2. It leverages the fact that a user, since she
knows only shares of escrow keys, cannot tell at the end
of subscription whether she holds an escrow key gener-
ated from an old share, a new share, or a randomized
key shared with all traced users.

5.2 Extending to encryption and message
escrow

Both signature schemes can be readily adapted to form
an escrowed encryption scheme by having the mes-
sage be a ciphertext and including in escrw a copy
of the plaintext, and modifying the proof in the sig-
nature accordingly. Formally, such as scheme has ten
algorithms: (Setup,GKg,UKg,Enroll,Signcrypt,Decrypt,
Verify,Open, Judge,Account). Sign is replaced by
Signcrypt and augmented to additionally take a pub-
lic key under which the message is encrypted. These
keys can either be from an external source or produced
by UKg. The resulting “signature” can be decrypted by
Decrypt only with the corresponding private key. Verify
can still be run by anyone of course.

Concretely, ATS.Sign becomes
(σ, escrw)← Signcrypt(gpk, cert, usk,m, pk):

Parse gpk as (cpk, crs, opk) and
cert as (upk, epk, epoch).

Compute (ct; spk)← PKEnc(pk,m).
Run (pkots, skots)← OTS.Keygen(gp),
σu ← SIG.Sign(usk, pkots), and
(escrw, soe)← OE.Enc(epk, (upk, σu,m)).
Compute a proof π for the relation

(escrw, pkots, cpk, epoch, ct),
(upk, σcert , σu,m, soe, spk)) ∈ Rsig

iff (SIG.Verify(cpk, σcert , (upk, epk, epoch)) = 1∧
escrw = OE.Enc(epk, (upk, σu,m); soe)∧
ct = PKEnc(pk,m; spk)∧
SIG.Verify(upk, σu, pkots) = 1) .

Run σots ← OTS.Sign(skots, (escrw, pkots, cpk,
epoch, ct, π)), set σ = (π, σots, pkots, escrw, ct) and
if ATS.Verify(gpk,m, σ) = 0, return ⊥ else, return σ.

6 Transparency reports and
conclusions

Accountable tracing signatures hold those who demand
“lawful” access to encrypted messages accountable for
what they access. With it, under some circumstances at
least, demands for lawful access to cryptographic sys-
tems can be dealt with without allowing mass surveil-
lance of message content and, crucially, metadata.

For most ordinary criminal cases, the existence of a
search warrant is already revealed when data obtained
from it is used in court. Thus the requirement to reveal
searches after the fact is innocuous. However, many of
the more troubling issues stem from orders which de-
mand both access and silence. Currently, many compa-
nies issue transparency reports purportedly giving sta-
tistical data about the volume of such requests. These,
again, are not accountable. Using an ATS scheme or
its message escrow variant, however, these transparency
reports become provable. If every epk is stored in a
public ledger, then the authority can easily issue zero-
knowledge proofs (e.g., using an efficient instantiation of
zkSNARKS [19]) attesting that less than some fraction
of its transactions use tracing keys for warrants accom-
panied by gag orders.

Accountable tracing signatures do not, of course,
preclude the use of backdoors, software vulnerabilities,
or other non-cryptographic attack vectors. However,
given that they provide a vector for lawful access (and
arguably bounded “unlawful” access to whatever extent
the transparency report allows), they eliminate part of
the motivation. Moreover, by potentially eliminating the

Accountable Metadata-Hiding Escrow 215

Subscribe(gpk, usk) Enroll(gsk, upk, epoch, b)

read(upk, (epkold , gpsold , gssold , Eold ,

bold,witnesses, keys))
starttracing = b ∧ ¬bold;
stoptracing = bold ∧ ¬b
w0 ← $
if (starttracing) then
B = BE.Blind(Eold, w0)

else
B = BE.Blind(E0, w0)

B←−−−−−−−−
(ps, ss)← OE.ShareGen(gp)
E ← BE.Enc(bpk, ss)
D = BE.Dec(bsk,B)
π is a proof of correct decryption

ps,E,D,π−−−−−−−−→

w1 ← $
verify the proof of correct decryption
if (starttracing)

ssold = BE.Unblind(D,w0)
k = OE.CombineSS(gssold , ssold)
epk = OE.KeyRand(pk(1);w1)
store(upk, (epk,⊥,⊥,⊥, 1,witnesses, keys :: k))

else if (stoptracing) then
(gps, gss)← OE.ShareGen(gp)
epk = OE.CombinePS(gps, ps;w1)
store(upk, (epk, gps, gss, E,

0,witnesses :: (w0, w1), keys))
else
epk = OE.KeyRand(epkold ;w1)
store(upk, (epk, gpsold , gssold , Eold,

b,witnesses :: (w0, w1), keys)
sig ← Sign(gsk, (epk, upk, epoch))
cert = (upk, epk, epoch, sig)

cert←−−−−−−−−

Fig. 2. The Subscribe↔ Enroll protocol

lawful access objection to strong cryptography and al-
lowing its deployment, they make mass surveillance far
more difficult.

Our approach has two major limitations. First,
While accountable tracing signatures hold the author-
ity accountable, they obviously only do so after the fact.
An attacker who controls the authority gets access to all
data until they are detected. Thus, if the goal is to max-
imize security, such systems should be avoided unless
the alternatives are a non-accountable escrow system or
no cryptographic protections at all. Second, the current
scheme we have is by no means efficient and improving
it either by using more efficient primitives or relaxing
the security requirements is an area for future work.

References
[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf

Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. Constant-
size structure-preserving signatures: Generic constructions
and simple assumptions. In Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the The-
ory and Application of Cryptology and Information Security,
Beijing, China, December 2-6, 2012. Proceedings, pages
4–24, 2012.

[2] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Tagged one-time signa-
tures: Tight security and optimal tag size. In Public-Key
Cryptography - PKC 2013 - 16th International Conference
on Practice and Theory in Public-Key Cryptography, Nara,
Japan, February 26 - March 1, 2013. Proceedings, pages
312–331, 2013.

Accountable Metadata-Hiding Escrow 216

[3] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Optimal structure-preserving signatures
in asymmetric bilinear groups. In Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages
649–666, 2011.

[4] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo.
Signing on elements in bilinear groups for modular protocol
design. Cryptology ePrint Archive, Report 2010/133, 2010.

[5] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-privacy in public-key encryption. In
Advances in Cryptology—ASIACRYPT 2001, pages 566–582.
Springer, 2001.

[6] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi.
Foundations of group signatures: Formal definitions, sim-
plified requirements, and a construction based on general
assumptions. In Advances in Cryptology—Eurocrypt 2003,
pages 614–629. Springer, 2003.

[7] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A
public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In
Advances in Cryptology - EUROCRYPT 2009, volume 5479,
pages 351–368, 2009.

[8] David Chaum and Eugène van Heyst. Group signatures. In
EUROCRYPT, volume 547 of Lecture Notes in Computer
Science, pages 257–265, 1991.

[9] Georg Fuchsbauer, David Pointcheval, and Damien
Vergnaud. Transferable constant-size fair e-cash. In Juan A.
Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS,
volume 5888 of Lecture Notes in Computer Science, pages
226–247. Springer, 2009.

[10] Georg Fuchsbauer and Damien Vergnaud. Fair blind signa-
tures without random oracles. In AFRICACRYPT, volume
6055 of Lecture Notes in Computer Science, pages 16–33,
2010.

[11] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F.
Syverson. Universal re-encryption for mixnets. In CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages
163–178, 2004.

[12] Matthew Green. Secure blind decryption. In Dario Catalano,
Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
Public Key Cryptography, volume 6571 of Lecture Notes in
Computer Science, pages 265–282. Springer, 2011.

[13] Dennis Hofheinz and Tibor Jager. Tightly secure signatures
and public-key encryption. In CRYPTO. Springer, 2012.

[14] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable
signatures. In Advances in Cryptology-EUROCRYPT 2004,
pages 571–589. Springer, 2004.

[15] Dennis Kügler and Holger Vogt. Auditable tracing with
unconditional anonymity. 2001.

[16] Dennis Kügler and Holger Vogt. Offline payments with
auditable tracing. In Financial Cryptography, pages 269–281.
Springer, 2003.

[17] Kaoru Kurosawa. Multi-recipient public-key encryption with
shortened ciphertext. In Public Key Cryptography, pages
48–63. Springer, 2002.

[18] Jia Liu, Mark D Ryan, and Liqun Chen. Balancing societal
security and individual privacy: Accountable escrow system.
In 27th IEEE Computer Security Foundations Symposium
(CSF), 2014.

[19] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In IEEE Symposium on Security and Privacy, pages
238–252. IEEE Computer Society, 2013.

A Instantiation
We now detail how to instantiate our scheme using stan-
dard proof techniques.

A.1 Groth-Sahai proofs and simulation
extraction

We will use Groth-Sahai (GS) proofs to efficiently in-
stantiate the simulation-extractable proof system Π for
the relation Rsig used in the signing algorithm of our ac-
countable forward-tracing signature scheme. GS proofs
operate over bilinear groups and we thus pick suitable
primitives for SIG, OTS, and OE. In our instantiation,
we let GroupGen on input security parameter 1λ output
the bilinear group G := (q,G1,G2,Gt, e, G, Ĝ) used by
Π.Setup. We let SIG, OTS, which will be pairing based,
use the same groups, while OE will use (G1, q, G) as its
(G, q, g).

Recall the properties of bilinear groups:

• q is a λ-bit prime,
• G1,G2,Gt are groups of prime order q with efficiently

computable group operations, membership tests, and
bilinear mapping e : G1 ×G2 → Gt,

• G and Ĝ are random generators ofG1,G2, and e(G, Ĝ)
generates Gt, and

• ∀A ∈ G1, ∀B ∈ G2, ∀x, y ∈ Z : e(Ax, By) =
e(A,B)xy.

• an equation of the form
∏
i

∏
j e(Ai, Bj)

γij = 1 for
constants γij ∈ Zp, and constants or variables Ai ∈
G1, Bj ∈ G2 is called a pairing product equation
(PPE for short).

These are exactly the type of equations that can be
proved using the GS proof system. Pairing product equa-
tions that are linear, that is equations in which variables
appear only on one side of the pairing, are more efficient
to prove.

We use the standard R-or-Sign technique to con-
struct a simulation-extractable proof system Π from GS
proofs, SIG and OTS. The left side of the ‘or’ proves

Accountable Metadata-Hiding Escrow 217

the original statement (this is Rsig which we denote
S0), while the right side proves knowledge of a signature
(σsim) under a public key in the crs (we denote this S1).
This signature certifies a one-time signature public key,
which in turn is used to sign the instance and the Groth-
Sahai proof. For details on the construction we refer to
the construction of [7]. For the performance analysis we
fall back on [2]:

The number of group elements in a proof of SE-
NIZK is counted as follows. Let S0 = (Rsig(x,w) = 1)
and S1 = (Verifysim(pksim, σsim, pkots_sim) = 1) be the
statements of the left and right side respectively, both
represented by pairing product equations. The proof size
of the SE-NIZK is as follows:

(size of S0)+(size of switch)+(size of S1)+(size of OTS)
= (size of S0) (1)
+ (|com| × 1 + |πNL| × 1) (2)
+ (|com| × (|σsim|+ S1(C))

+ |πL| × (S1(L) + S1(C)) + |πNL| × S1(NL) (3)
+ (|pkots_sim|+ |σots_sim|) (4)

|πL| denotes the cost of proving a single linear PPE (e.g,
e(A,X) = 1 where A is a constant),

S1(L) denotes the number of linear relations needed to
prove Verifysim(. . .) = 1

|πNL| denotes the cost of proving a non-linear PPE
(e.g., e(X,Y) = 1)

S1(L) denotes the number of linear PPEs.
S1(C) denotes the number of constant pairings, e.g.

e(A,B), in PPEs.
pkots_sim is the size of the one-time signature key

signed by the key in the crs (not part of a PPE)
σots_sim is the size of the actual signature (again not

part of a PPE).

For GS proofs over DLIN in asymmetric groups, we have
(|com|, |πL|, |πNL|) = (3, 3, 18); and for GS proofs over
XDH, we have (|com|, |πL|, |πNL|) = (2, 2, 8).

We consider the one-time simulation-extractable
scheme SE-NIZK4 from [2] and an instantiation based
on the xSIG scheme of [1] with unbounded simulation
extraction. For these constructions, we summarize the
overhead for achieving simulation extractability on top
of simply proving the original statement, computed as
the sum of equations (2)+(3)+(4), for both DLIN and
XDH-based GS proofs in Table 1.

A.2 Putting it all together

We now examine the actual cost of our ATS scheme. It
is dominated by proving the statement for the core re-
lation Rsig of our accountable tracing signature scheme
(S0 above).

The equation for the proof size for Rsig is given
below and the results for various instantiations is sum-
marized in Table 2.

(size of S0) (5)
= |com| × (|upk|+ |epk|+ |σcert|+ |σu|+ 1 + S0(C))

(6)

+ |πL| × (S0(L) + S0(C)) + |πNL| × S0(NL) (7)

Where S0({L,C,NL}) are defined as in the same way
as S1({L,C,NL})

To reduce the size of epk we use a key-oblivious
randomness-reusing variant of ElKO similar to [17] to
allow us to efficiently encrypt multiple group elements.
Effectively, each group element is encrypted under a dis-
tinct key using the same randomness. This results in
a ciphertext overhead of only a single group element
and thus shorter oblivious keys. (The PPE for verifi-
able encryption is

∧n
i=1 e(Di, Ĝ) = e(Bi, Ĝs)e(mi, Ĝ) ∧

e(C, Ĝ) = e(A, Ĝs)). Note that keys now correspond to
encryptions of vectors of 1.

For performance, we instantiate SIG with two differ-
ent schemes. As discussed above, we can for instance use
a general purpose structure-preserving signature scheme
(SPS) with secret key csk for the group manager and use
an XRMA-secure scheme with secret keys usk for users.

As a further optimization, instead of the complete
upk, we encrypt a single unique group element that
serves as an identifier of upk. Instead of adding an ad-
ditional group element to cert, the group manager can
reuse one of the random elements of upk by ensuring
that it is unique. The user encrypts this element to-
gether with σu, so OE needs to encrypt only |σu| + 1
group elements, thus |epk| = |σu| + 2 because of the
ciphertext overhead.

An ATS signature σ consists of the elements
(π, σots, pkots, escrw). To reduce the overhead, we gen-
erate only a single pkots (and one-time signature σots)
and use it both in S0 and S1. In both cases σots, respec-
tively σots_sim, signed the instance, the proof, and the
message. They can thus be merged.

The overall signature size of an ATS signature is
thus the sum of the number of group elements needed
to prove Rsig, the simulation-extraction overhead, and

Accountable Metadata-Hiding Escrow 218

SE-NIZK overhead simulatability |σsim| S1(C) S1(L) S1(NL) |pkots_sim| |σots_sim| DLIN XDH
SE-NIZK4 [2] one-time 3 2 3 0 2 2 55 34

SE-NIZK+xSIG [1] unbounded 6 2 1 1 2× 3 2 80 48

Table 1. Overhead of GS proof in terms of group elements.

Relation Rsig |upk| |epk| |σcert| |σu| S0(C) S0(L) S0(NL) DLIN XDH
SPS [3]+SPS [3] 1 2 + |σu| 3 3 8 + |σu| 4 + |σu| 4 198 116
SPS [3]+xSIG [1] 10 2 + |σu| 3 6 6 + |σu| 3 + |σu| 3 237 144
SIG2 [1]+xSIG [1] 10 2 + |σu| 14 6 4 + |σu| 4 + |σu| 4 279 170

Table 2. Number of group elements needed for ATS relation Rsig .

the ciphertext size |escrw| = |epk|. In our example in-
stantiations it ranges from 155 to 367 group elements.

Because of the availability of a large number of
structure-preserving primitives, there is plenty of room
for optimization, especially when one is aiming for
both efficiency and weak cryptographic assumptions.
We stress, moreover, that our instantiation does not
make use of random oracles in its security proof.

B Proofs

B.1 Security for ATS.

Theorem 13 (Anonymity under tracing). If Π is zero-
knowledge and simulation-extractable and OE is plain-
text indistinguishable and key private, then the construc-
tion described in Section 4 is anonymous under tracing
as defined in Section 3.2.

Proof. We now proceed to describe a sequence of
hybrid experiments.

– a0. The original AuT game.
– a1. Same as a0, except that in the Ch oracle we

use Sim to simulate πb in σb and store the simu-
lated proof along with its inputs in a log LS. By the
zero-knowledge property of the proof system, the at-
tacker has a negligible advantage in distinguishing
between this and the previous game.

– a2. Same as a1, except that for proofs π ∈ LS we
answer with the stored data from the simulator. For
π /∈ LS we use extraction to answer OPEN ora-
cle queries without using the decryption key in gsk.
If this fails we abort. Because Π is simulation ex-
tractable, by definition the probability of failing to
extract on a proof that was not directly produced
by the simulator (i.e. is not in LS) is negligible,

and hence so is the probability of abort and the
attacker’s advantage in distinguishing between this
and the previous game.

– a3 and a4 correspond to a2 and a3 of the anonymity
with accountability proof.

In a4, all inputs to A are independent of b and its ad-
vantage is therefore zero.

Theorem 14 (Traceability). If Π is extractable, SIG is
unforgeable, and OTS is strongly unforgeable, then the
construction described in Section 4 is traceable as de-
fined in Section 3.2.

Proof. We proceed through a sequence of hybrids.

– a0. The original traceability game.
– a1. The same as a0, except that we attempt to ex-

tract (upk, epk, σcert , σu) from the proof π in σ and
abort without A winning if extraction fails. The dif-
ference in the advantage of A winning compared
with a0 is negligible by the extractability of the
proof system.

– a2. Same as a1, except that we abort if the attacker
uses a signature σcert on a fresh upk, epk.

Lemma 15. The difference in the advantage of A
winning compared with a1 is negligible by the un-
forgeability of SIG.

– a3. Same as a2, except that we abort if the attacker
uses a signature σu on a fresh OTS public key pkots,
i.e., one that did not result from a signing query.

Lemma 16. The difference in the advantage of A
winning compared with a2 is negligible by the un-
forgeability of SIG.

Accountable Metadata-Hiding Escrow 219

– a4. Same as a3, except that we abort if the attacker
reuses a OTS public key to sign a different message
(i.e not the one stored in Q). The probability of
this happening, and hence aborting, is negligible by
a slight variant of Lemma 15 and 16 for one-time
signatures.

In a4 the advantage of A is zero.

Theorem 17 (Non-frameability). Let SIG be an un-
forgeable signature scheme and OTS a strongly unforge-
able one-time signature scheme, then the construction
described in Section 4 is non-frameable as defined in Sec-
tion 3.2.

Proof. Informally, causing Judge to validate is the
same as forging one of the two signature in ψ. This is
assumed impossible for secure signature schemes.

The proof is thus nearly identical to that of trace-
ability, except that A already provides σu as part of his
output and it is thus does not need to extracted. For
the hybrids see a3 and a4 of the traceability proof.

Theorem 18 (Anonymity with accountability). If Π
is zero-knowledge and OE is plaintext indistinguishable
and key private, then the construction described in Sec-
tion 4 is accountably anonymous as defined in Sec-
tion 3.2.

Proof. We proceed through a sequence of hybrids.

– a0. The original AwA game.
– a1. Same as a0, except that we replace the zero-

knowledge proofs by simulated proofs. By the zero-
knowledge property of the proof system, the at-
tacker has a negligible advantage in distinguishing
between this and the previous game.

– a2. Same as a1, except we modify ATS.Sign in game
Ch to produce an escrow ciphertext of the encryp-
tion of 0 for σb.

Lemma 19. By the INDr-CPA property of ElKO,
the new ciphertext is indistinguishable from the old
one and so a1 and a2 are indistinguishable.

– a3. Same as a2, except we modify ATS.Sign in game
Ch to use a fresh random key as the escrow key.

Lemma 20. By the key privacy property of ElKO,
the new ciphertext is indistinguishable from the old
one and so a3 and a4 are indistinguishable.

In a3, Ch returns a simulated proof and an encryption
of zero under a new key. Hence all inputs to A are inde-
pendent of b and its advantage is therefore zero.

Theorem 21 (Trace-obliviousness). If OE is key ran-
domizable, and Π is extractable, then the construction
described in Section 4 is trace-oblivious as defined in
Section 3.2.

Proof. We proceed through a sequence of hybrids.

– a0. The original trace-obliviousness game.
– a1. Same as a0, except that we change OPEN to in-
voke the extractor for Π to decrypt escrw instead of
using the private key. The attacker has a negligible
advantage in distinguishing between this game and
a0 by the extractability of the proof system.

– a2. Same as a1, except that we change Enroll in
ENROLL to return freshly generated public keys in-
stead of randomized keys.

Lemma 22. By the key randomizability property of
ElKO, the new key is indistinguishable from the old
one.

In a2 the output of all oracles is independent of b, and
therefor the adversary’s advantage is zero.

B.2 Proofs of supporting lemmas
Proof Lemma 4. Given an attacker A = (A0,A1)

who breaks KPr we construct a distinguisher D for DDH.

Distinguisher D(G, X, Y, T) 4=
b← {0, 1}
λ, µ, ξ, r0, r1,← Zq
X0 ← X;Y0 ← Y ;T0 ← T

X1 ← X · gλ;Y1 ← Y ξ · gµ;T1 ← T ξ ·Xµ · Y λξ · gλξ

pk0 ← (gr0 , Y r0
0)

pk0 ← (gr1 , Y r1
1)

(m, pk′0, w0, pk
′
1, w1, st)← A0(G, pk0, pk1)

if pk′0 6= KeyRand(pk0;w0) ∨ pk′1 6= KeyRand(pk1;w1)
return ⊥

d← A1(Xrbwb , T rbwb

b ·M, st)
return (d = b)

Given Diffie-Hellman’s random self-reducibility, if
X,Y, T is a Diffie-Hellman triple, then so is X1, Y1, T1.
Moreover, both triples are distributed identically regard-
less and produce the proper distributions of keys in
ElKO. In the case that T is a random group element,
then the challenge ciphertext given to A contains no in-

Accountable Metadata-Hiding Escrow 220

formation, as Yb and Twb

b are identically distributed re-
gardless of b. Hence, A’s advantage at guessing the bit
is negligible. On the other hand, in the case where the
challenge is a valid Diffie-Hellman triple, A’s inputs are
the same as in Game KO, since T rbwb

b = (gxb·yb)rb·wb =
gxb·yb·rb·wb = (Xrb·wb)yb = Cyb .

Thus if A has a non-negligible advantage at break-
ing Game KO, then D breaks DDH.

Proof Lemma 5. Given a DDH challenge
(G, X, Y, T), the reduction is immediate.

Distinguisher D(G, X, Y, T) 4=
r,← Zq
d← A((gr, Xr), (Y r, T r))
return d

In the case where (X = gx, Y = gy, T = gxy), then
our original key is (gr, gxr), and the second one is
((gr)y, (gxr)y)), i.e., the original key re-randomized by
y. On the other hand, where (X = gx, Y = gy, T = gz),
the second key is unrelated. Thus if A distinguishes be-
tween a real or random key with a non-negligible advan-
tage, then the distinguisher above breaks DDH with the
same advantage.

Proof Lemma 6. Given an attacker A = (A0,A1)
who wins against INDr we construct a DDH distin-
guisher D.

Distinguisher D(G, X, Y, T) 4=
b← {0, 1}
r ← Zq
pk ← (gr, Xr)
pk′, r′,m0,m1 ← A0(G, pk)
if pk′ 6= KeyRand(pk; r′) then

return ⊥
ct← ((Y r)r

′
, (T r)r

′
·mb)

b′ ← A1(ct)
return (b = b′)

In the case where (X,Y, T) is a DDH triple, A’s view
is identical to INDr game: she receives a public key grx

and a base gr and then a properly formed ciphertext(
((gr)r

′
)y, ((gr)r

′
)xy ·m

)
. On the other hand, when T

is a random group element, (T r)r
′
· mb reveals no in-

formation about mb. Hence her advantage is negligible.
Thus if A has an advantage in winning INDr, then the
above breaks DDH with the same advantage.

Proof Lemma 15. Given an attacker Aa who forges
a signature in Trace, we construct a reduction to the
standard EU-CMA signature game where an attacker A

is given access to a signing oracle and a public key and
produces a forgery on a message not previously signed
by the oracle.
ASIG(pk) works as follows. Given pk it simulates the

standard Trace game using the verification key it re-
ceived as input as the authority’s key in the parameters.
We modify SIGN to return signatures generated by the
oracle SIG oracle. When Aa triggers abort by producing
a signature on a key not in S, A returns it as a signature
forgery.

Proof Lemma 16. This proof is nearly identical to
that of Lemma 15. Instead of inserting the challenge
public key into the parameters, however, we must have
ENROLL embed this key in some generated user key. Un-
fortunately, we can only do so for one query and must
simply blindly guess upon which one to do so. Having
done so, the game continues as in the proof above and,
if we guessed correctly, we get the appropriate forgery.
Because Aa makes at most poly() queries to ENROLL,
there is a 1

poly() chance Aa forges a signature under the
target key (i.e., that the forgery resulted from the query
we picked), thus Aa’s probability of abort is negligi-
ble.

Proof Lemma 19. Aa makes at most poly() queries
to the Ch oracle. We construct a series of hybrids—
a0

2, . . . ,ai2, , . . . ,a
poly()
2 where apoly()

2 is equivalent to
a2—replacing the ciphertext in each successive query
with 0. Given an adversary Aia who detects the hybrid
that modifies the ith query to Ch, we construct an ad-
versary AIND = (A0,A1) who breaks INDr as follows.
A0 runs the standard AwA game with Aia using

the provided parameters as the (non)escrow key in
gp. On the ith query to the Ch oracle, A0 returns
(certb.epk, wescrwb , ctm, 0) as (pk′, r,m0,m1) where ctm
is the correct content of an escrow ciphertext. Upon re-
ceiving the challenge ciphertext, A1 constructs σ using
ct as the escrow ciphertext and allows the AwA game to
continue. Finally, it returns the resulting bit.

In the case where m0 is chosen in the INDr game,
Aia’s view is identical to that of ai−1

2 (i.e. where the
ith query is untampered with and results in a proper
ciphertext). On the other hand, in the case where m1

is chosen, her view is identical to the case of ai2 (i.e.,
where the ith ciphertext is an encryption of the all zero
string). Thus Aia’s advantage is the same as AdvINDr(A)
which is negligible. Thus Aa’s advantage for the whole
set of substitutions is AdvINDr(A) · poly() which is still
negligible.

Accountable Metadata-Hiding Escrow 221

Proof Lemma 20. This proof proceeds similarly to
Lemma 19. Again, Aa, this time distinguishing between
a2 and a3, makes at most polynomially many queries
to Ch. We construct a series of hybrids —a0

3, . . .ai3,
. . .apoly()

3 where apoly()
3 is equivalent to a3—in which

we swap the key in the ith query. Given an adversary
Aia who detects the hybrid that modifies the ith query
to Ch, we construct an adversary AKP = (A0,A1) who
breaks KPr as follows.
A0(pk0, pk1) runs the standard AwA game with

Aa using pk0 as the key in gp. On the ith query
to the Ch oracle, A0 samples fresh randomness r

and returns (0, certb.epk, wescrw0 ,KeyRand(pk1; r), r, 0)
as (m, pk′0, w0, pk

′
1, w1, st). Upon receiving the challenge

ciphertext,A1 constructs σ using ct as the escrow cipher-
text and allows the AwA game to continue. Finally, it
returns the resulting bit.

In the case where pk0 is chosen as the encryption key
in the KPr game, Aia’s view is identical to ai−1

3 , where
the provided key is used. On the other hand, in the case
where pk2 is chosen, her view is identical to ai3 where a
fresh key is used. Thus her advantage in distinguishing
between any two hybrids is AdvKPr(A) which is negli-
gible. This implies Aa’s advantage AdvKPr(A) · poly()
which is still negligible.

Proof Lemma 22. This proof proceeds similarly to
the others above. We construct a series of hybrids, one
for each query to ENROLL where we sequentially re-
place the returned key with a random one. We denote
these a0

2, . . .ai2, . . .a
poly()
2 where apoly()

2 is equivalent to
a2. Given an adversary Aia who detects the hybrid that
tampers with the ith query, We construct AKR(pk, pkb)
as follows.
AKR embeds pk as the escrow key in the parameters

and runs Aia. On the query to ENROLL, it returns pkb.
The game continues as normal. Finally, it returns the
resulting bit.

In the case of AKR(pk, pk0), Aia receives a ran-
domized key and her view is identical to that of ai−1

2 .
On the other hand, in the case of AKR(pk, pk1), her
view is identical to that in ai2. Thus her advantage
is AdvKR(A) when detecting tampering with any one
query. Aa’s advantage in distinguishing between a1 and
a2 is AdvKR(A) · poly() which is negligible.

	Accountable Metadata-Hiding Escrow: A Group Signature Case Study
	1 Introduction
	2 Key-oblivious encryption
	2.1 Syntax
	2.2 Definitions
	2.3 Instantiation
	2.3.1 SIG and OTS

	3 Accountable forward-traceable signatures
	3.1 Syntax
	3.2 Definitions
	3.2.1 On the necessity of extra games
	3.2.2 Remarks.

	4 Accountable forward-tracing signatures from key-oblivious encryption
	5 Backward-tracing and message-escrow extensions
	5.1 Accountable backward-tracing signatures
	5.1.1 Adding backward tracing

	5.2 Extending to encryption and message escrow

	6 Transparency reports and conclusions
	A Instantiation
	A.1 Groth-Sahai proofs and simulation extraction
	A.2 Putting it all together

	B Proofs
	B.1 Security for ATS.
	B.2 Proofs of supporting lemmas

