
Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):222–243

Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa*, Kateryna Pavlyk, and Qiang Tang

Optimal Rate Private Information Retrieval
from Homomorphic Encryption
Abstract: We consider the problem of minimizing the
communication in single-database private information
retrieval protocols in the case where the length of
the data to be transmitted is large. We present first
rate-optimal protocols for 1-out-of-n computationally-
private information retrieval (CPIR), oblivious trans-
fer (OT), and strong conditional oblivious transfer
(SCOT). These protocols are based on a new optimal-
rate leveled homomorphic encryption scheme for large-
output polynomial-size branching programs, that might
be of independent interest. The analysis of the new
scheme is intricate: the optimal rate is achieved if a cer-
tain parameter s is set equal to the only positive root of
a degree-(m + 1) polynomial, where m is the length of
the branching program. We show, by using Galois the-
ory, that even when m = 4, this polynomial cannot be
solved in radicals. We employ the Newton-Puiseux algo-
rithm to find a Puiseux series for s, and based on this,
propose a Θ(logm)-time algorithm to find an integer
approximation to s.

Keywords: Branching programs, CPIR, Galois theory,
homomorphic encryption, OT, Puiseux series, SCOT

DOI 10.1515/popets-2015-0016
Received 2015-02-15; revised 2015-05-15; accepted 2015-05-15.

1 Introduction
In a computational private information retrieval (CPIR)
protocol [22] a client receives one `-bit database element
from an n-element database maintained by a server. It is
required that the server should not gain any knowledge
of which element was transferred to the client, and that
the communication of the protocol should be smaller

Aggelos Kiayias: National and Kapodistrian University of
Athens, Greece
Nikos Leonardos: Université Paris Diderot – Paris 7, France
*Corresponding Author: Helger Lipmaa: University of
Tartu, Estonia
Kateryna Pavlyk: University of Tartu, Estonia
Qiang Tang: University of Connecticut, USA

than that of the trivial protocol where the server just
sends the whole database to the client. There exists a
long line of works that improve on communication effi-
ciency aspects of CPIR protocols [3, 18, 19, 25, 26, 37].

Usually, one strives to improve the communication-
efficiency as a function of the database size n. In this
paper, we focus on optimizing the communication of a
CPIR protocol in the case where ` is especially large,
and the communication overhead plays a dominant role
in the usability of the protocol. We are motivated by an
example application where the client has paid the server
for downloading a movie (assuming all movies cost the
same) and does not want the server to know which movie
she is going to download. In such an application, one can
easily have `� 109 while n is not more than say 105.

The communication complexity of non-private in-
formation retrieval is log2 n+ `. Hence, the communica-
tion rate of a CPIR protocol is (log2 n + `)/L, where
L is the communication of the CPIR protocol. Sim-
ply put, the rate of a CPIR protocol measures the
communication-efficiency loss that the protocol suffers
due to the added privacy requirement.

The CPIR protocol of Gentry and Ramzan [18]
achieves rate 1

4 . The best previous rate, 1
2 , CPIR pro-

tocol was proposed by Lipmaa [26]. In practice, given
a database consisting of very large database elements,
even a rate- 1

2 CPIR protocol can be prohibitively waste-
ful. On the other hand, optimizing the rate is very inter-
esting from a theoretical viewpoint. In particular, opti-
mizing the rate and constructing rate-optimal protocols
is one of the focus points in areas like coding theory,
where one’s goal is often to obtain encoding rate that
is optimal, or near-optimal (e.g., different from the op-
timal by a sub-constant factor; in what follows we will
not distinguish between optimal and near-optimal rate).

We thus ask the following fundamental question:
Main question: Is it possible to construct a CPIR

protocol with a rate 1 − o(1), i.e., with a rate that is
close to the rate of a non-private retrieval protocol?

No such protocol is known or easy to derive from
the existing solutions.

Given a CPIR protocol with rate r, it is also natural
to ask whether one can construct other, related, proto-
cols with rate that is close to r. Probably the most natu-

Optimal Rate Private Information Retrieval from Homomorphic Encryption 223

ral such protocol to consider is oblivious transfer (OT).
Informally, an OT protocol is just a CPIR protocol with
an additional security guarantee that the client will ob-
tain information only about one database element.

For example, in the motivating scenario the server
would not like the client to obtain two movies for the
price of one. (Intuitively, a rate-1 CPIR protocol can-
not reveal more than one database element. However,
say in the case of a database of movies, it can re-
veal the best bits — e.g., no advertisements or clos-
ing credits — of both. This can be undesirable, and
thus one would still require an OT protocol.) While
various round-preserving CPIR-to-OT transformations
have been proposed [1, 23, 29], no previous work com-
pared them from the viewpoint of rate preservation.

Finally, in a strong conditional oblivious transfer
(SCOT, [2]) protocol, the client obtains fQ(x,y), where
Q is a public predicate and x, y are private inputs of the
client and the server respectively. This generalizes CPIR
and OT in the case where the selection strategy of the
client is not described as 1-out-of-n but as a more com-
plex relation. Constructing a rate-1 SCOT is an equally
interesting and wide open problem.

We are not aware of any computation-efficient
generic CPIR-to-SCOT transformations that preserve
the rate. In fact, a SCOT protocol intuitively requires
the server to execute a secure computation of Q, with-
out getting to know the result. Hence, a rate-optimal
SCOT primitive for a certain class C of languages is
intuitively equivalent to a rate-optimal public-key ho-
momorphic encryption scheme for C.

The rate of a regular public-key encryption scheme,
defined as |x|/|Enc(x)|, as a function of ` = |x| is typi-
cally of no great concern in cryptography, because there
exists a trivial construction achieving rate close to one
via hybrid encryption. However, the latter does not pre-
serve any homomorphic property that Enc(·) may have.
In fact, fully homomorphic encryption schemes (intro-
duced in [17]) have very low and typically sub-constant
rate, see [8] for a recent analysis of the parameters.

The only currently known rate-1 homomorphic
cryptosystems due to Damgård and Jurik [11, 12] allow
only an additive homomorphic property, i.e., homomor-
phic evaluation of arithmetic circuits with only addition
gates. No rate-optimal homomorphic cryptosystems are
known for more expressive language classes.

1.1 Our Contributions

To construct rate-optimal CPIR (and SCOT) proto-
cols, we initiate the study of good rate homomorphic
encryption schemes for non-trivial classes of languages.
We propose an optimal-rate homomorphic encryption
scheme for the class of functions (not necessarily predi-
cates) that can be computed by polynomial-size branch-
ing programs. The new construction is a variation of
older constructions [20, 25, 26]; however, the concrete
variation and the accompanied performance analysis
needed to optimize various parameters are novel. We
then show how our construction can be used to opti-
mize the communication of cryptographic tasks such as
CPIR assuming that ` is large enough.

More precisely, we consider the class LBP of func-
tions f that can be implemented by polynomial-size
(large-output) branching programs. In this case, the
client has an input x, the server has a branching pro-
gram Pf that computes f , and the client will obtain f(x)
while the server obtains no information about x. Since
we are mainly interested in concrete applications like
CPIR and SCOT, we make some assumptions that are
natural in such applications. Namely, we assume that
m, (a sufficiently close upper bound on) the length of
Pf , is known to the client before she sends an encryption
Enc(x) to the server. Due to this assumption, we call the
new homomorphic encryption scheme leveled. As usual
in homomorphic encryption schemes, the server then ap-
plies an evaluation function Eval to Pf and Enc(x), and
then returns the result Eval(Pf ,Enc(x)) to the client.

Motivated by the applications, we say that the com-
munication of the homomorphic encryption scheme is
equal to the length of the useful information divided by
the total communication, i.e.,

|x|+ |f(x)|
|Enc(x)|+ |Eval(Pf ,Enc(x))| .

The main reason the knowledge of m is public is that
this allows both the client and the server to choose pre-
cise parameters to optimize the rate.

We construct an LBP-homomorphic PKE scheme
that evaluates efficiently any (leveled) branching pro-
gram Pf for a function f : {0, 1}χ → {0, 1}` where we
assume that Pf has length (= the maximum number of
levels) m. Our construction has rate

1− 2
√

(w − 1)χmk · `−1/2 +O`(`−1) , (1)

where w is the arity of the branching program and k

is the security parameter. Our construction follows the
paradigm of [22] as applied in [20] to branching program

Optimal Rate Private Information Retrieval from Homomorphic Encryption 224

evaluation, with an array of crucial optimizations that
are tailored to the goal of achieving the optimal rate.

In [20, 25, 26], one recursively applies a basic (w, 1)-
CPIR, for a small w, that is based on the cryptosystem
of [11]. The basic CPIR has linear communication (un-
avoidable by the lower bound of [32]) but importantly,
it has a short answer from the server. Every recursion
level i defines a length parameter si (intuitively, this
means that the plaintexts on this level belong to Nsi ,
where N is an RSA modulus); in all the aforementioned
constructions the values si are strictly increasing.

Via our analysis using technique from multivariable
calculus we show this setting is sub-optimal and, in
fact, the optimal rate is achievable if the parameters
s1, . . . , sm are all equal. In more detail, we show that
the optimal communication results from choosing s as
the unique positive root of the degree-(m + 1) polyno-
mial fm(·, σ), where fm(x, y) := yxm+1 − (x + 1)m−1,
and σ = (w− 1)kχ/(`m) for some integer w ≥ 2 (in the
case of usual branching programs, w = 2).

Finding the root is impossible analytically when
m > 3. In Sect. 6, we use basic Galois theory to show
that, for example, one cannot solve f4(x, 1) = 0 in radi-
cals. Instead, we use the Newton-Puiseux algorithm [39]
to compute the Puiseux series

∑∞
i=0 ciσ

(i−1)/2 of the
optimal s. We then construct a simple algorithm that,
given the first two partial sums of the Puiseux series,
computes an integer approximation to the optimal s in
log2m steps. This analysis is very intricate and we con-
sider it to be one of our main contributions.

The whole approach seems to be novel in the con-
text of the design and analysis of cryptographic pro-
tocols. In particular, we are not aware of any previous
use of Galois-theory based impossibility results or of the
Newton-Puiseux algorithm in cryptography.

To sum it up, the main difference of the new con-
struction, as compared to [20, 25, 26] is the use of a sin-
gle well-chosen parameter s = s1 = · · · = sm. It is rather
surprising that a simple modification like ours allows to
achieve optimal rate. That optimal rate is achievable
becomes clear only after extensive analysis of the pa-
rameters as explained above.

1.2 Applications

Based on the new rate-optimal LHE scheme, we show
how to construct rate-optimal CPIR, OT, and SCOT
protocols. First, we construct an (n, 1)-CPIR protocol
with communication ` + 1.72 log2 n ·

√
k` + O(1) and

an optimal rate 1 − 1.72 log2 n ·
√
k/` + O(`−1). This

protocol just applies our new LHE scheme by using a
complete 5-ary decision tree. The choice of 5-ary branch-
ing programs is somewhat unexpected, but follows from
analysis. Hence, we answer positively to the previous
“main question” of the current paper.

We propose concrete parameter choices for the new
CPIR protocol, demonstrating that in an application
where a client wants to privately retrieve a 2.56GB
movie from the server’s database of 57 = 78125 movies,
one can obtain rate 0.99.

We construct an optimal-rate semisimulatable OT
protocol based on the CPIR-to-OT transformation by
Naor and Pinkas [29]. The resulting OT protocol is only
computationally secure for the server; we leave the con-
struction of an information-theoretically server-private
optimal-rate OT protocol as an interesting open prob-
lem. Alternatively, we note that one can use zero knowl-
edge proofs to obtain an optimal-rate 2-message simu-
latable OT protocol in the random oracle model.

We outline how to construct an optimal-rate SCOT
protocol for any predicate that can be implemented by
a (large-output) polynomial-size branching program.

We note that recently, [21] applied the rate-optimal
SCOT protocol from the current paper to construct a
rate-1 asymmetric fingerprinting scheme.

1.3 Computation

Another important aspect of a CPIR protocol is the
server’s computation. While this is not a focus of the
current work, we remark that the new protocol fares
better than the CPIR protocols of [25, 26] also in this
aspect. This is since instead of encrypting at least `-bit
strings, we encrypt in suitably small segments. Since
encryption takes superquadratic time, we thus save sig-
nificantly in computation. We make this claim concrete
in Sect. 8 where we show that (for parameters interest-
ing to us, i.e., for large `) the new CPIR protocol is
significantly (an off-hand calculation results in a factor
of 105 times) faster than the CPIR protocol of [25].

We describe one possible strategy that allows us
to further significantly optimize the server’s computa-
tion, while decreasing its rate only marginally. Given
the same parameter settings as mentioned in Sect. 1.2,
decreasing the rate less than two times (to 0.52, which
is still better than the rate in any previous CPIR pro-
tocol) results in 212 times better server’s computation.
Such a dramatic optimization is possible due to the pre-
cise construction of the new CPIR protocol.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 225

X4

X3

X2

X1

f0 f1

X1

f2 f3

X2

X1

f4 f5

X1

f6 f7

X3

X2

X1

f8 f9

X1

f10 f11

X2

X1

f12 f13

X1

f14 f15

X4

1 X3

X2

1 X1

1 0

0

Fig. 1. The complete binary decision tree that returns fx (left), and a branching program that returns 1 iff x ≤ 10 (right). In both
cases, len(P) = 4

We stress that the above results still require high
computation on the server side. Even the optimized
CPIR protocol is computationally too inefficient (in
Sect. 8, we talk about 214 operations per bit of database
data for the honest server).

Note that multi-server PIR protocols offer a weaker
privacy guarantee compared to the CPIR setting since
privacy only holds if at least one server remains hon-
est. It is a very interesting open question to define and
achieve communication optimality under such more re-
laxed privacy guarantees while at the same time achiev-
ing the computational complexity benefits that usually
accompany this setting.

Another interesting open question is to finding
other, perhaps application-dependent, trade-offs be-
tween the rate and server’s computation. See [14, 15, 31]
for some relevant work.

The major (computational) bottleneck in our con-
struction is the use of the Damgård-Jurik cryptosystem.
The major open question posed by the current paper is
to construct a computationally more efficient rate-1 ad-
ditively homomorphic cryptosystem.

1.4 Roadmap

In Sect. 2, we describe necessary preliminaries like
branching programs, public-key encryption, and CPIR.
In Sect. 3, we define the security and efficiency of a
LHE scheme. In Sect. 4, we give the new parameter-
ized construction of the new LHE scheme. In Sect. 5,
we outline our strategy in optimizing the parameters,
and state the communication complexity and the rate
given the optimal parameters; we also describe an effi-
cient algorithm for finding an integer approximation to
the optimal parameters. In Sect. 7, we describe how to
construct rate-optimal CPIR, OT, and SCOT protocols.
Finally, in Sect. 8, we comment on the computational
complexity of the CPIR protocol. Most of the mathe-
matical details are given in the appendix.

2 Preliminaries
Since we are often interested in the growth of a function
in several variables, we write the relevant variable as a
subscript in Landau notation, like in o`(` logn). Let k be
the security parameter, i.e., we assume that adversaries
work in probabilistic polynomial-time w.r.t. k. The cur-
rent recommendation is to take k ≥ 2048. If not speci-
fied, all logarithms take basis 2; we denote the natural
logarithm of x by ln x. If A is a probabilistic algorithm,
then we write a ← A(x; r), where r is the randomizer.
If r is omitted, then it is chosen uniformly at random.
For a predicate P (x), let [P (x)] = 1 if P (x) is true, and
= 0, otherwise. Denote [a] = {1, . . . , a}.

2.1 Branching Programs

A w-ary branching program [40] is a fanout-w directed
acyclic graph (V,E), where the non-terminal (that is,
non-sink) nodes are indexed by variables from some
variable set {X1, . . . , Xχ}, the sinks are labeled by `-
bit strings and the w outgoing edges of every internal
node are indexed by values from 0 to w− 1. We denote
by Lv the label of the node v, by ind(v) the index of the
(internal) node v. Since the new leveled LHE scheme
also computes labels of internal nodes, in our case the
difference between indexes and labels is strict. Usually,
it is assumed that a branching program has 1-bit sink
labels; then it can be assumed to have two terminal
nodes. A large-output branching program (with longer
sink labels) is thus sometimes called multi-terminal. A
binary branching program is commonly known as a bi-
nary decision diagram or BDD.

A branching program with 1 source computes a
function f : {0, 1}χ → {0, 1}`. Every assignment of the
variables selects one path from the source to a sink as
follows. The path starts from the source. If the current
path does not end at a sink, test the variable Xind(v) at
the endpoint v of the path. Select one of the outgoing

Optimal Rate Private Information Retrieval from Homomorphic Encryption 226

edges depending on the value of this variable, and ap-
pend this edge and its endpoint to the path. (For the
sake of concreteness, we assume that the leftmost edge
is chosen iff the variable is 0.) If the path ends at a
sink, return the label of this sink as the label of the
source. The branching program’s value is then equal to
the source label. See Fig. 1 for some examples.

For a branching program P , let len(P) be its length
(that is, the length of its longest path), size(P) be its
size (that is, the number of non-terminal nodes). Let
BP(f) be the minimal size of any branching program
computing f . A Boolean function f has a polynomial-
size branching program iff f belongs to L/poly [9], the
complexity class of logarithmic space machines with a
polynomial amount of advice. Branching program for
functions f : {0, 1}χ → {0, 1}` with non-Boolean output
can be constructed in a natural way.

P is a decision tree if the underlying graph is a tree.
P is leveled if its set of nodes can be divided into dis-
joint sets Vd such that every edge from a node in set Vd
ends in a node in set Vd−1. An oblivious branching pro-
gram is a leveled branching program in which all nodes
of the same level are indexed by the same variable Xi.
Each branching program can be efficiently transformed
into a leveled branching program of the same length
and quadratic size [36]; similarly, there exists an efficient
transformation that makes a leveled branching program
oblivious. In our applications, we start with a branch-
ing program that is oblivious and thus requires no addi-
tional transformation. We assume that the source is the
only member of the set Vm. Let size(P, d) be the number
of nodes P has on level d, thus size(P,m) = 1.

The class LBP contains all functions f : {0, . . . , w−
1}χ → {0, 1}` for which we have a large-output branch-
ing program with size that is polynomial on both pa-
rameters χ and |f({0, . . . , w − 1}χ)|.

Throughout the paper, Pf is a fixed leveled w-
ary branching program that implements f : {0, 1}χ →
{0, 1}`. For any node v, let len(v) be its length, i.e.,
len(v) = len(Pf) − d̄, where d̄ is the distance from the
source to v. Thus v ∈ Vlen(v), and the source has length
len(Pf). (E.g., on Fig. 1 (left), all sinks have length 0
and the source has length 4.)

For a non-sink v, let child(v, i) for i ∈ [0, w−1] be its
ith leftmost child, and Xind(v) be the index of v (that is,
ind(v) = i if v is indexed by Xi). Thus, len(child(v, i)) =
len(v)−1. Assume that the nodes of Pf are ordered from
1 to size(Pf) so that if there exists an edge u→ v then
v < u. Assume that Pf has n sinks. Hence, the first n
nodes v ≤ n are the sinks and the last node v = size(Pf)

is the source of Pf . Recall that the description of Pf also
contains the labels Lv of the sinks of Pf .

2.2 Public-Key Cryptosystem

A public-key cryptosystem Π = (Gen,Enc,Dec) consists
of three polynomial-time algorithms, a probabilistic key
generating algorithm (pk, sk)←r Gen(1k), a probabilis-
tic encryption algorithm c ← Encpk(x; r), and a deter-
ministic decryption algorithm x ← Decsk(c). It is re-
quired that if (pk, sk)←r Gen(1k), then for any x and r
from corresponding domains, Decsk(Encpk(x; r)) = x.

The rate of Π is the length ` of a plaintext divided by
the length of its ciphertext. The rate can be a function
of `. A cryptosystem is CPA-secure if for any x0 and x1

(possibly chosen by the adversary) of the same length,
given pk and an encryption Encpk(xβ ; r) for randomly
chosen β ∈ {0, 1} and r, no probabilistic polynomial-
time adversary can guess β with probability 1

2 +ε, where
ε is non-negligible in k.

2.3 Damgård-Jurik Cryptosystem

Assume ` is the length of the plaintexts in bits. The
Damgård-Jurik cryptosystem [11] allows to encrypt
plaintexts for arbitrary ` ≥ 1, so that the ciphertext
length is not more than ` + 2k. Therefore, it has rate
1− o`(1). The cryptosystem is defined as follows.

To generate the public and secret keys, one lets
N = pq to be a k-bit RSA modulus for two randomly
generated k/2-bit primes p and q. The value N is the
public key pk, and the factorization (p, q) of N is a part
(together with some additional information that makes
decrypting more efficient) of the secret key sk.

To encrypt an `-bit string x, one chooses a length
parameter s such that ` = s · k (or s = d`/ke if k - `),
chooses a randomizer r ←r Z∗N , and then outputs

c = EncsN (x; r)← (1 +N)xrN
s

mod Ns+1 .

Decryption can be done efficiently, see [11].
Clearly, the plaintext belongs to ZNs while the ci-

phertext belongs to ZNs+1 , that is, has the bitlength
≤
⌈
log2N

s+1⌉ ≤ (s + 1)k bits. Due to the choice of s,
the bitlength of the plaintext is at least (s − 1)k. The
rate of Damgård-Jurik is |x|/|c| ≥ (s − 1)/(s + 1). If
`→∞, then ` = |x| ≈ s · k, and the rate is ≈ 1− 1/s.

This cryptosystem is additively homomorphic, since

EncsN (x0; r0) · EncsN (x1; r1) = EncsN (x0 + x1; r0r1) .

Optimal Rate Private Information Retrieval from Homomorphic Encryption 227

Moreover, for c ∈ ZN ,

EncsN (x; r)c = EncsN (cx; rc) .

Recall that arithmetic in the first (resp., second) param-
eter of Enc is done modulo Ns (resp., N).

The CPA-security of the Damgård-Jurik cryptosys-
tem is based on the Decisional Composite Residuosity
(DCR) assumption of Paillier [33].

2.4 CPIR

In an (n, 1)-CPIR (computationally-private information
retrieval, [22]) protocol for `-bit strings, the server has a
database of n elements, ~f = (f0, . . . , fn−1), each fi being
` bits long, and the client has an input x ∈ {0, . . . , n−1}.
The client needs to obtain fx, while no probabilistic
polynomial-time server should obtain any information
about x. It is also required that the total communica-
tion complexity of the CPIR protocol is smaller than in
the trivial case where the server just sends the whole
database to the server.

A two-message CPIR protocol consists of the fol-
lowing three steps.

1. First, the client generates a secret/public key pair
(sk, pk)←r KGCPIR(1k), and sends to the server pk
and a query c = Quepk(n, `, x; r); the latter depends
on the security parameter k, the size of the database
n, the length of the database elements `, the client’s
input x, and some random coins r.

2. Second, the server replies with C ← Reppk(~f, c; r̂)
that depends on the server’s input ~f , the query c,
and another randomizer r̂.

3. Third, the client recovers fx ← Anssk(n, `, C), given
access to C, n, `, and the secret key sk.

It is required that for any valid key pair (sk, pk) ←r

KGCPIR(1k) and any valid inputs (~f, x) and randomiz-
ers (r, r̂),

Anssk(n, `,Reppk(~f,Quepk(n, `, x; r); r̂)) = fx .

The (CPA-)security notion is similar to the one of cryp-
tosystems, see, e.g., [25].

The rate rate(Γ) of a two-message CPIR protocol Γ
is the number of “useful bits” (that is, log2 n+`) divided
by the total communication |Que|+|Rep| of the protocol.
We do not include pk to the communication, since the
same pk can (and will) be reused in many instantiation
of CPIR protocols. Even if pk not reused, its length is

minimal (e.g., |pk| = k = o`(1) bits in the next example)
and does hence not influence the rate significantly.

We remark that multi-server PIR protocols [7] do
not rely on computational assumptions and are usually
computationally more efficient than single-server CPIR
protocols. However, such protocols have strongly sub-
constant rate and moreover, are not secure unless some
of the servers are honest, an assumption that is not re-
alistic in many scenarios.

2.5 Basic CPIR

The new LHE scheme of Sect. 4 is based on a careful
recursion built on top of Lipmaa’s two-message (w, 1)-
CPIR protocol [25] for small w. The two main properties
that we use is that (i) it is based on additively ho-
momorphic encryption without any recursion (and thus
must have linear-in-n communication, [32]), and (ii) it’s
server communication has rate-(1−o(1)). Our construc-
tion in Sect. 4 is an efficient reduction of such a basic
CPIR protocol to one that has rate 1− o(1).

In this (w, 1)-CPIR protocol, the client generates
secret and public key (sk, pk), with pk = N , for the
Damgård-Jurik cryptosystem. She sends pk together
with a vector ~c = (c1, . . . , cw−1) of w − 1 ciphertexts

~c←Quepk(w, `, x;~r) := (EncsN ([i = x]; ri))w−1
i=1

to the server, where [i = x] ∈ {0, 1} is equal to 1 iff
i = x, s = d`/ke, ri ←r Z∗N , and ~r = (r1, . . . , rw−1).
Note that |ci| = (s+ 1)k and thus |~c| = (w− 1)(s+ 1)k.
Let ~f = (f0, . . . , fw−1) be the server’s database. The
server answers, for random r̂ ←r Z∗N , with

C ← Reppk(~f,~c; r̂) := EncsN (f0; r̂) ·
w−1∏
i=1

cfi−f0
i ,

that is,

C = EncsN (fx;
w−1∏
i=1

rfi−f0
i · r̂) .

Since r̂ is random, then C is a random encryption
of fx. The client obtains fx by decrypting C,

fx ← Anssk(w, `, C) := Decssk(C) .

Clearly, the server’s answer is a random encryption of
fx. Since the server only sees encrypted messages, the
CPA-security of (w, 1)-Lipmaa’s CPIR protocol imme-
diately follows from the CPA-security of the Damgård-
Jurik cryptosystem, and thus, from the DCR assump-
tion. Here, for s = d`/ke (and ignoring pk),

|Que| = (w − 1)(s+ 1)k and |Rep| = (s+ 1)k , (2)

Optimal Rate Private Information Retrieval from Homomorphic Encryption 228

and thus it has rate
logw + `

|Que|+ |Rep| ≈
1
w

.

However, its server-rate is (logw+ `)/|Rep| = 1− o`(1).
Due to the construction of the Damgård-Jurik cryp-

tosystem, x and fx must be encrypted by using the same
length parameter s: if x was encrypted by using a pa-
rameter z < s, then the server’s answer would encrypt
fx mod Nz and thus the server would not recover the
whole value fx. More discussion on this issue is pro-
vided in [26]. There it was also shown that there exists a
function Compress = CompresssN that takes as an input
Encs+1

N (x; r) and outputs EncsN (x mod Ns; r∗), where
s ≥ 1, and r∗ is a randomizer that depends on N , r and
s. In fact, CompresssN (c) = c mod Ns+1.

3 LHE: Definitions
We introduce leveled homomorphic encryption for LBP,
following the terminology of Gentry [16]. However, the
definition will be somewhat different. The differences
are motivated by both the applications (where such a
definition makes sense, see Sect. 7) and by the construc-
tion (that achieves this definition, see Sect. 4). We first
recall the following definition (Def. 2.1.5 from [16]).

We say that a family of homomorphic encryption
schemes {Π(m) : m ∈ Z+} is leveled fully homomorphic
if, for all m ∈ Z+, they all use the same decryption
circuit, Π(m) compactly evaluates all circuits of depth
at most m (that use some specified set of gates), and
the computational complexity of Π(m)’s algorithms is
polynomial in k, m, and (in the case of the evaluation
algorithm) the size of the circuit.

In practice, this definition means that each Π(m) can
have a different private/public key pair (sk(m), pk(m)).
This is since the public moduli, used when encrypting,
(and thus also the public key) depend on m.

The new (slightly stronger) definition requires the
existence of a single key pair (sk, pk) usable for any m.
Since the public key does not fix m, it has to be the
client — who sends her message first — who picks the
value m while encrypting the messages. The value m
gives an upper bound on the length of the large-output
branching program that the server can evaluate on these
ciphertexts. Optimal rate is achieved if m is equal to
the actual length of the evaluated large-output branch-
ing program. For this reason, in the definition we will
concentrate on the case of level m branching programs.
Since the rate in our case will be defined as the total

length of the client’s and the server’s messages, it is
natural that the client has to choose the parameter m,
based on her knowledge of the server’s input, to opti-
mize the rate. Similar problem exists in leveled FHE.

The following definition formalizes this intuition.

Definition 1. A (single-key) leveled LBP-homo-
morphic encryption (LHE) scheme is a four-tuple of ef-
ficient algorithms (KG,Enc,Eval,Dec), such that
(i) the randomized key generation algorithm KG(1k)

creates a secret key and public key pair (sk, pk),
(ii) given a message x, the branching program length

m, and a randomizer r, the randomized encryp-
tion algorithm Encmpk(x; r) returns a ciphertext c,

(iii) given a leveled branching program Pf of length
m, a fresh ciphertext c (equal to Encmpk(x; r) for
some plaintext x and randomizer r) and a ran-
domizer r̂, the randomized evaluation algorithm
Evalpk(Pf , c; r̂) returns an evaluated ciphertext C,

(iv) given an evaluated ciphertext C and the branching
program length m, the deterministic decryption al-
gorithm Decmsk(C) returns a plaintext x.

The computational complexity of these four algorithms
must be polynomial in k, m, and (in the case of Eval)
the size of the branching program.

It is required that for any valid key pair (sk, pk), message
x, randomizers r and r̂, and a polynomial-size branching
program Pf of length m,

Decmsk(Evalpk(Pf ,Encmpk(x; r); r̂)) = Pf (x) .

A leveled LHE scheme must satisfy two security re-
quirements, CPA-security and branching program pri-
vacy (similar to circuit-privacy, [16, 17]). The first one
is defined similarly to the case of arbitrary public-key
cryptosystems, though one has to take into account the
presence of Eval, see [16, 17], for a formal definition.
However, to achieve optimal rate we allow the outputs
of Encm and Eval to come from different distributions;
we just require that the output of Eval does not re-
veal any unnecessary information about the evaluated
branching program except its length.

Definition 2. (Perfect) branching program privacy
guarantees that for any (sk, pk), any m, any valid c pro-
duced by Encmpk, and any two equal-length branching pro-
grams P0 and P1 such that P0(Decmsk(c)) = P1(Decmsk(c)),
it holds that Evalpk(P0, c) and Evalpk(P1, c) have the
same distribution.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 229

We require that the LHE scheme Π be communication-
efficient in the sense that its rate

rate(Π) := |x|+ |Pf (x)|
|Encmpk(x; r)|+ |Evalpk(Pf ,Encmpk(x; r); r̂)|

is as large as possible. Informally, Π is optimal-rate, if
the rate is 1− o`(1) as a function of `.

The rate takes into account the value |Enc|, since it
is possible to choose parameters so that |Eval| is very
small while |Enc| is very large. It is also a natural mea-
surement of the rate in many applications like (n, 1)-
CPIR. Similarly, the communication complexity of a lev-
eled LHE scheme is equal to |Enc|+ |Eval|.

4 Construction
In what follows, we propose a leveled LHE scheme
that securely computes the values of any function f :
{0, . . . , w−1}χ → {0, 1}`, f ∈ LBP, with the rate as in
Eq. (1). Here,m is the length of a polynomial-size w-ary
leveled branching program Pf that implements f . Since
in the intended applications, ` � χmk, the rate will
approach 1 when ` increases. In the current section, the
leveled LHE scheme will be parameterized; the claimed
communication complexity and the rate will be achieved
in Sect. 5 where we propose the optimal values of the
parameters. For related notations about LBP, and the
Lipmaa’s CPIR protocol, we refer to Sect. 2.

4.1 High-Level Strategy

Following [20], the general strategy of our construction
is as follows. Recall that in a w-ary branching program
Pf , the label (that we denote by Lv) of a node v, indexed
by Xind(v), is equal to Lchild(v,Xind(v)). If privacy has to be
preserved, this operation can be executed by applying
the Rep function of a basic (w, 1)-CPIR protocol to a
query Que(. . .) corresponding to the value of Xind(v),
and to the database ~f(v) = (Lchild(v,0), . . . ,Lchild(v,w−1)).
Instead of sending Lv to the client, the server stores Lv
so that it can be later be used recursively to compute
the label of v’s parent. Finally, the server returns to the
client only the value of Lsize(Pf) and the client uses the
function Ans recursively to obtain fx from this.

This general strategy was introduced in [22], albeit
with an inefficient basic (w, 1)-CPIR protocol (that re-
sulted in super-polylogarithmic communication for the
recursive construction), and it has been used in many
subsequent works. At every node in the branching pro-

Lchild (v, w-1), 1

Lchild (v, w-1), 2

…

Lchild (v, w-1), t[d]

Lchild (v, 0), 1

Lchild (v, 0), 2

…

Lchild (v, 0), t[d] Rep

Rep

…

Rep

Lv, 1

Lv, 2

…

Lv, t[d]

Lchild(v*,0), 1

Lchild(v*,1), 2

Lchild(v*,2), 3

…

Lchild(v*,w-1), t[d+1]

|L
ch

ild
(v, i) |=

td s
d k

|L
v | = td

 (s
d +1

)k = td
+1 s

d
+1 k

…

cind (v)

Computation of Lv Computation of Lv*

Fig. 2. Local computation of ~Lv

gram Pf to be evaluated, we use an efficient (w, 1)-CPIR
protocol, preceded and succeeded with well-chosen non-
cryptographic operations (more precisely, splitting and
concatenating bit-strings), to obtain optimal rate.

4.2 Detailed Description

We utilize a two-message (w, 1)-CPIR protocol with
a short reply |Rep|. More precisely, we use Lipmaa’s
(w, 1)-CPIR protocol Γ = (KGCPIR,Que,Rep,Ans) (see
Sect. 2). We recall that then, |Que| and |Rep| are as in
Eq. (2), where s = d`/ke. We also need the existence of
the Compress function (see Sect. 2). We will summarize
in Fig. 3 the required properties of this CPIR protocol.

Assume that all parties know w (the arity of the
branching program) and m = len(Pf). For every level
d ∈ [m], let sd be a level-specific length parameter that
is used in the basic (w, 1)-CPIR protocol of that level.
Optimal parameters sd, for d ∈ [m], will be fixed in
Sect. 5. Recall k is the security parameter. For some ti,
every node v has a label ~Lv of bitlength

|~Lv| = tlen(v)slen(v)k . (3)

Let smax
i be the maximum of sd, where d ranges among

levels that have a node indexed by Xi. Sometimes,
but not always, one can assume that the encrypter
knows the values smax

i . If he does not, we set smax
i :=

maxd∈[m]{sd}. In the optimal case, see Sect. 5, all values
sd are equal, and thus it does not matter whether the
encrypter knows smax

i . However, we first have to estab-
lish the optimality.

In the new LHE scheme (see Fig. 3 for a full de-
scription), on input x (plus pk and public parameters
like m and smax

i), the encrypter writes x =
∑
xiw

i

Optimal Rate Private Information Retrieval from Homomorphic Encryption 230

System parameters: Let f : {0, . . . , w − 1}χ →
{0, 1}` be a function in LBP. Let Pf be a
polynomial-size leveled w-ary branching program,
w ∈ Z+, that implements f , and let m = len(Pf).
Let Γ = (KGCPIR,Que,Rep,Ans) be a (w, 1)-CPIR
protocol that has the Compress function, plaintext
size ` = s · k, |Que(w, `, . . .)| = (w − 1)(s+ 1)k and
|Rep| = (s+ 1)k, where k is the security parameter.

Key generation KG(1k): generate a key pair (sk, pk)
via KGCPIR(1k).

Encryption Encmpk(x; ·):
For i = 1 to χ:
– let ~ci ← Quepk(w, smax

i · k, xi;~ri) for random ~ri.
Return c← (~c1, . . . ,~cχ).

Evaluation Evalpk(Pf , c; r̂):
Parse c as c = (~c1, . . . ,~cχ).
For v = n+ 1 to size(Pf):
– d← len(v);
– For z ← 1 to td:

– Pick random r̂v,z;
– Let ~f(v,z) = (Lchild(v,0),z, . . . ,Lchild(v,w−1),z);
– Lv,z ← Reppk(~f(v,z);~cind(v); r̂v,z);

– ~Lv ← (Lv,1, . . . ,Lv,td);
Return ~C ← ~Lsize(Pf);

Decryption Decmsk(~C):
Parse ~C ← (C1, . . . , Ctd);
For z = 1 to td: xz ← Anssk(w, smk, Cz);
Write ~x = (x1, . . . , xtd);
If d = 0 then return ~x else return Decm−1

sk (~x);

Fig. 3. The new leveled LHE scheme Π = (KG,Enc,Eval,Dec).

with xi < w, and then for each xi computes ~ci ←
Quepk(w, smax

i ·k, xi; ·) by using a fresh randomizer. The
vector of those queries is the LHE encryption of x that
is sent to the server. Note that xi corresponds to an
assignment to the formal variable Xi.

The server evaluates, by using function Eval, a
branching program Pf on encrypted x. Evalpk(Pf , c; r̂)
inputs a w-ary leveled branching program Pf and the
queries ~ci corresponding to assignments to all Xi. Re-
call that the choice of Pf fixes ~Lv for all sinks v ≤ n,
where n is the total number of sink nodes in Pf . Eval
recursively computes ~Lv for all non-sink nodes whose
children already have assigned labels ~Lchild(v,i). Finally,
Eval returns the label ~Lsize(Pf) of the source.

Up to now, the construction is not very different
from those in [20, 26]. The crux of the new construction
is in how exactly ~Lv is evaluated. Namely, at every non-
sink node v, Eval does the following. (See Fig. 2; we

will soon define all notation used there.) Let d = len(v);
since v is a non-sink node, d ∈ {1, . . . ,m}. Recall from
Eq. (3) that ~Lv has bit-length tdsdk and thus ~Lchild(v,i)
has bit-length td−1(sd−1 + 1)k. For the evaluation to
succeed, we set recursively

t0s0k = ` , and
tdsdk = td−1(sd−1 + 1)k for d ∈ [1,m] .

(4)

For the sake of simplicity, in our theoretical analysis
we allow ti to be non-integers. In practice, one must
use appropriate integer ceiling functions. If ` is large
enough, the latter causes a very small change; we will
give a numerical example in Sect. 7.1.

Eval writes

~Lchild(v,i) = (Lchild(v,i),1, . . . ,Lchild(v,i),td)

and
~Lv = (Lv,1, . . . ,Lv,td) ,

where |Lchild(v,i),z| = sdk and due to the properties of the
underlying (w, 1)-CPIR protocol, |Lv,z| = |Reppk()| =
(sd + 1)k. (We note that later, when v will play the role
of a child of some other node v∗, ~Lv will be divided into
td+1 parts, see Fig. 2.)

For each z, Eval then computes Lv,z by applying the
Reppk(·) algorithm on the intermediate database

~f(v,z) := (Lchild(v,0),z, . . . ,Lchild(v,w−1),z)

and ~cind(v), see Fig. 3. After that, ~Lv is set equal to the
concatenation of the replies of td parallel CPIR proto-
cols, where the zth (w, 1)-CPIR protocol is applied to
client’s input xind(v) and the database ~f(v,z). Intuitively,
~Lv is a “garbled” version of ~Lchild(v,xind(v)).

This means that at the end of the protocol, ~Lsize(Pf)
is equal to the m-times recursive (and parallel) appli-
cation of Rep to fx. From this, the decrypter can ob-
tain fx from ~Lsize(Pf) by recursively applying Anssk to
it. In our case, ~Lsize(Pf) (and the intermediate values)
is interpreted as a concatenation of td bitstrings, and
Anssk is applied to each piece separately. The answers
are concatenated again, and the result is given as an
input to Anssk of the next level. The algorithms KG(1k),
Encmpk(x; ·), Evalpk(Pf , c; r̂), and Decmsk(C) are formally
described by Fig. 3. The required constraints are satis-
fied by Lipmaa’s (w, 1)-CPIR, see Sect. 2.

Theorem 1. Let Π be the leveled LHE scheme from
Fig. 3. Π is perfectly branching program private. If Γ is
CPA-secure, then Π is CPA-secure.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 231

Proof. The correctness of the construction is obvious.
The branching program privacy is clear, since the de-
crypter only sees a number of (m−1)-times application
of Rep to an output of Que, and it is guaranteed by the
definition of privacy that the input to the query does
not depend on the branching program.

Next, if an adversary is able to break the CPA-
security of the leveled LHE scheme, then via a stan-
dard hybrid argument she is also able to break the CPA-
security of the underlying CPIR protocol.

Theorem 2. Let Π be the leveled LHE scheme from
Fig. 3. The computation of Evalpk is dominated by∑m

d=1 td · size(Pf , d) · TRep(sd, w), where TRep(sd, w) is
the computational complexity of Reppk with given pa-
rameters. Write ~s = (s1, . . . , sm). The communication
|Enc|+ |Eval| of Π is equal to

com(χ,w,m,~s, k, `) =(w − 1)k

(
χ∑
i=1

smax
i + χ

)
+

` ·
m−1∏
d=0

(
1 + 1

sd

)
.

(5)

Proof. The computational complexity is obvious. For
the communication complexity, clearly,

|Encmpk(x; r)| =
χ∑
i=1

(w − 1)(smax
i + 1)k

=(w − 1)(
χ∑
i=1

smax
i + χ)k

bits. For d > 0,

td =sd−1 + 1
sd

td−1 =
d−1∏
i=0

si + 1
si+1

· t0

=
d−1∏
i=0

(si + 1) ·
d∏
i=1

1
si
· `

s0k

= `

(sd + 1)k ·
d∏
i=0

(
1 + 1

si

)
.

Thus, |Evalpk(Pf , c; r̂)| = tmsmk is equal to

tmsmk = `

(sm + 1)k ·
m∏
d=0

(
1 + 1

sd

)
· smk

=` ·
m−1∏
d=0

(
1 + 1

sd

)
.

This gives the claimed communication complexity.

5 Finding Optimal Parameters
Next, we find the optimal parameters that result in
the best possible rate for the leveled LHE scheme from
Sect. 4. More precisely, our goal is to find optimal length
parameters sd, as a function of `. As we will see, this
optimization problem has quite an unexpected solution.

We now briefly summarize our strategy. First, we
show by using standard methods of multivariable cal-
culus that the communication is minimized when the
length parameters sd used at every level are all equal,
s1 = · · · = sm =: s. Second, we show that the opti-
mal s is defined as the unique positive root of a certain
degree-(m+1) polynomial. Third, since there is no gen-
eral algebraic solution to this polynomial (except for
m < 4), we find a Puiseux series for the unique positive
root s (and also for the communication and rate, given
optimal s). Fourth, we describe an efficient logm-time
algorithm to find an integer approximation for the op-
timal value s. As we will show, this results in rate that
is very close to 1 in practically relevant scenarios.

5.1 Rewording the Optimization Problem

In App. A, we show that
∂com
∂s1

= · · · = ∂com
∂sm

= 0 .

Since all si are positive, then the global minimum is
reached if s1 = . . . = sm =: s for some s. (See App. A
for a proof; to establish this result we need to assume
that the underlying branching program is oblivious and
that χ = m.) In particular, this means that the optimal
communication complexity does not depend on the fact
whether the encrypter knows the values smax

i . Since all
sd-s are equal, we denote

com(χ,w,m, s, k, `) :=com(χ,w,m, s, . . . , s, k, `)

= (w − 1)χ(s+ 1)k +
(

1 + 1
s

)m
· ` .

(6)

Now, ∂com/∂s = (w − 1)χk − m(s + 1)m−1/sm+1 · `.
Denoting

σ := (w − 1)χk
m`

, (7)

∂com/∂s = 0 if and only if s is a root of the univariate
polynomial fm(·, σ), where

fm(x, y) := yxm+1 − (x+ 1)m−1 . (8)

According to the Descartes’ rule of signs, fm(·, σ) has
exactly one positive real root for each m > 0. Thus, this
unique positive real root s minimizes the function com.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 232

5.2 Computing Puiseux Series

The famous theorem of Abel-Ruffini states that poly-
nomial equations of degree n ≥ 5 are not solvable by
radicals (see, e.g., [35]). In particular, by using Galois
theory we can show that the polynomial fm(x, 1) is not
solvable in radicals for say m = 4 (see Sect. 6); one can
prove a similar result for any even m ≥ 4.

Since we are interested in a solution s of fm(s, σ) for
all m and well-chosen σ, we apply the classical Newton-
Puiseux method [39] which can be used given any poly-
nomial f . The polynomial fm(x, y) ∈ R[x, y] can be con-
sidered as an algebraic curve on a plane. The Puiseux
series are power series with fractional exponents. Com-
puting a power series expansion for y can be seen as
solving a polynomial equation in one variable over the
field of Puiseux series. Since the field of formal Puiseux
series is algebraically closed (see Theorem 3.1 from [39]),
a root can always be found. Although this method in-
volves a power series substitution and solving equations
at the determination of each expansion coefficient, it is
rather simple in our case of the unique root, demanding
only two iterations.

More precisely, the Puiseux series of g(x) is a series
of type g(x) =

∑∞
i=0 aix

i/n, where n is some integer.
We use the Newton-Puiseux algorithm [39] to find the
Puiseux series for the unique positive root s of fm. By
the previous discussion, this will also be the Puiseux
series for the value of s that minimizes com. First, it
is known [39] that the Puiseux series exists, i.e., s =∑∞

i=0 aiσ
i/n for some ai and n. We find this series by

assuming that

s = c0σ
γ0 + c1σ

γ0+γ1 + c2σ
γ0+γ1+γ2 + . . . ,

and then finding ci and γi one by one. The exponents γi
are defined as certain slopes of the Newton polygon [39]
for fm(s, σ) = 0. After a while we form a hypothesis
about the general formula for ci and prove it.

See Appendix B for a more detailed description of
the Newton-Puiseux algorithm and for the proofs of the
following theorems.

Theorem 3. Let σ be as in Eq. (7). The Puiseux series
of the unique positive root s of fm(·, σ) is

s =
∞∑
i=0

ciσ
(i−1)/2 =σ−1/2 + m− 1

2 −

m2 − 1
8 ·

√
σ +O(σ) ,

(9)

where

ci = (−1)i+1 (m− 1)
2ii!

((i− 1)(m+ 1))!!
((i− 1)(m− 1))!! .

Denote by

s(i) :=
i−1∑
j=0

cjσ
(j−1)/2

the sum of the first i elements of this Puiseux series. In
practice (see Sect. 5.3), it suffices to know the values

s(1) = σ−1/2 and s(2) = σ−1/2 + (m− 1)/2 .

Knowing the Puiseux series of s, we may substitute
it into the communication function com of Eq. (6), de-
riving thus the Puiseux series for the communication.

Theorem 4. Let f : {0, . . . , w− 1}χ → {0, 1}` be com-
putable by a polynomial-size w-ary branching program
Pf of length m. Consider parameters fixed in the cur-
rent section. The leveled LHE scheme of Sect. 4 for f
has communication

`+ 2
√

(w − 1)χmk`+ w − 1
2 χ(m+ 1)k +O(`−1/2)

and rate

1− 2
√

(w − 1)χmk
`

+O(`−1) .

See App. C for a detailed statement (with a precise se-
ries expression) and a proof. According to the preceding
discussion, the above rate is the best possible that one
can achieve by using the leveled LHE scheme of Sect. 4,
given that the underlying branching program is oblivi-
ous and χ = m. However, in the upper bound of Thm. 4
we only need the branching program to be leveled.

5.3 Algorithm for Approximation of Root

Next, we propose a simple algorithm that finds the best
integer approximation to the unique positive root s of
Eq. (8) in ≈ log2m steps. Clearly, in our application,
an integer approximation is sufficient. Let σ be as de-
fined in Eq. (7). First, we show that for partial sums
s(1) = σ−1/2 and s(2) = σ−1/2 + (m − 1)/2 as defined
after Thm. 3, fm(s(1), σ) is negative and fm(s(2), σ) is
positive. Since 0 < s(1) < s(2), we know that the only
positive root s of fm(x, σ) is in the interval (s(1), s(2)) of
length (m − 1)/2. We compute the integer approxima-
tion to s (that is sufficient for our purposes) by using
binary search over this interval, see Fig. 4.

Lemma 1. fm(s(1), σ) < 0 and fm(s(2), σ) ≥ 0. More-
over, f1(s(2), σ) = 0 and fm(s(2), σ) > 0 for m > 1.

Proof. The case m = 1 is trivial. Assume that m ≥ 2.
Then fm(s(1), σ) < 0, since σxm+1 = xm−1 < (1+x)m−1

for x = s(1) = σ−1/2.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 233

1. sL ← bs(1)c, sH ←
⌈
s(2)
⌉
.

2. While sH > sL + 1:
– sM ← b(sL + sH)/2c.
– If fm(sM , σ) > 0 then sH ← sM

else sL ← sM .
3. If com(χ,w,m, sL, k, `) < com(χ,w,m, sH , k, `)

then return s← sL
else return s← sH .

Fig. 4. Finding integer approximation to root s

It remains to show that fm(s(2), σ) ≥ 0. Since

fm(x, σ) = xm+1/s2
(1) − (x+ 1)m−1 ,

it suffices to show sm+1
(2) /s2

(1) ≥ (s(2) + 1)m−1. This fol-
lows from the following estimation:(
s(1)

s(2)

)2(
1 + 1

s(2)

)m−1

=
(

1− m− 1
2s(2)

)2(
1 + 1

s(2)

)m−1

≤e−
m−1
s(2) e

m−1
s(2) = 1.

Theorem 5. The algorithm on Fig. 4 finds the best in-
teger approximation of s in ≈ log2((m− 1)/2) ≈ log2m

steps. Its computational complexity is dominated by ≈
log2m evaluations of fm.

Proof. The algorithm finds the unique unit interval
[s∗, s∗ + 1] in the original interval that contains the
root. It does so by using binary search. The number of
the steps is clearly (approximately) logarithmic in the
length of the interval, (m− 1)/2.

6 On Solvability in Radicals
By using well-known methods of the Galois theory,
see [27] for more details, we now give a proof sketch
that the Galois group of

g(x) := f4(x, 1) = x5 − (x+ 1)3

is the symmetric group S5. Since S5 is not a solvable
group, this means that g(x) is not solvable in radicals.

First, some background. Let F be a field and f(x) ∈
F [X] be a polynomial of degree n. A splitting field E/F
of a polynomial f over F is the smallest field extension
E, F ⊂ E, over which the polynomial f decomposes
into linear factors, i.e., exist α1, . . . , αn ∈ E such that

f(x) = k(x− α1) . . . (x− αn)

and
E = F (α1, . . . , αn) .

A polynomial f is called separable if it has n distinct
roots in the splitting field E/F of f over F . A split-
ting field of a separable polynomial f is called Galois
extension. The group AutF (E) of all automorphisms γ
of a Galois extension E/F that fix F pointwise, i.e.,
γ(x) = x for each x ∈ F , is called the Galois group of the
extension E/F and is denoted by Gal(E/F). The Galois
group Gal(f(x)) of the polynomial f is then the Galois
group of Gal(E/F). Thus, elements of Galois group are
interpreted as permutations of the roots of some poly-
nomial that decomposes over E. It is a well known fact
that the Galois group Gal(f(x)) is isomorphic to a sub-
group of the symmetric group Sn.

While it is hard to determine Galois groups in gen-
eral, special arguments can be exploited sometimes.
By discriminant of polynomial f(x) we call the value
Df = δ2, where

δ = Π1≤j<i≤n(αi − αj) .

The Galois group Gal(E/F) ≤ Sn is contained in the
group of even permutations An if and only if Df is
a square in F . Now, consider the polynomial g(x) :=
f4(x, 1) ∈ Z[X]; it has discriminant 3017 = 7 · 431.
Clearly, g(x) is irreducible modulo 2, so it is irreducible
over Q.

The Dedekind theorem (see [27], Thm. F13) states
that if a polynomial g(x) ∈ Z[x] is factored into irre-
ducible factors modulo a prime not dividing the dis-
criminant, then the Galois group Gal(g(x)), considered
as a subgroup of Sn, contains a permutation whose cy-
cle type corresponds to the degrees of the irreducible
factors. According to Sylow Theorems (see [27], p. 100),
S5 has plenty different subgroups. Since

g(x) ≡ (x2 + x+ 2)(x3 + 2x2 + x+ 1) (mod 3) ,

by the Dedekind theorem, Gal(g(x)) contains a permu-
tation of the roots with the cycle type (2, 3), i.e., two
cycles with length 2 and 3 respectively.

Since the order of a permutation of the cycle type
(2, 3) is 6, and since the degree of the irreducible poly-
nomial g(x) is 5, the Galois group of g(x) over Q has
order divisible by 5 · 6 = 30. As Gal(g(x)) embeds into
S5, |Gal(g(x))| is either 30, 60, or 120. Since g(x)’s dis-
criminant is not a rational square, Gal(g(x)) is not the
only subgroup of order 60, that is A5. Because there
are no subgroups of S5 with order 30, this proves that
Gal(g(x)) = S5.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 234

7 Applications

7.1 Rate-Optimal CPIR

Given the new leveled LHE scheme, the construction of
a rate-optimal (n, 1)-CPIR is straightforward. Follow-
ing [26], in the (n, 1)-CPIR protocol, we let the client
first generate a new Damgård-Jurik public and secret
key pair, and then send to the server the public key
together with an encryption of every individual bit of
the index x. The server represents her database ~f as a
compact leveled branching program Pf that computes
the function f where f(x) := fx, and then evaluates se-
curely the client’s query on top of it, i.e., Pf has n sink
nodes, each with an `-bit label. The client obtains the
encrypted source value, and then decrypts it.

When using the new leveled LHE scheme, the com-
putational and communication complexity of the CPIR
protocol are as per Thm. 2. Thus, the resulting CPIR
protocol has both optimal rate (when using the param-
eters derived in Sect. 5), and (given the database is suf-
ficiently redundant) sublinear-in-n computational com-
plexity. If the database is not redundant, then the server
represents it as an w-ary tree of length m.

In most of the applications of the LHE, w = 2,
which is also often the optimal case. The following corol-
lary shows however that this not always the case.

Corollary 1. Assume that the DCR assumption [33]
is true. There exists a CPA-secure (n, 1)-CPIR protocol
with communication

`+ 1.72 · log2 n ·
√
k`+ 2(log2

5 n+ log5 n)k +O(`−1/2)

and rate

1− 1.72 · log2 n ·
√
k/`+O(`−1) .

Proof. Follows from preceding discussion and Thm. 4
by setting m = χ = logw n, and considering the full
w-ary decision tree (note that it is leveled). Thus, the
(n, 1)-CPIR protocol has communication

`+ 2
√
w − 1

log2 w
log2 n ·

√
k`+O(1) .

Since w is an integer, the second coefficient in this series
is minimized when w = 5.

7.1.1 Numerical Examples

Next, we provide examples with concrete parame-
ters. Consider the setting of (n, 1)-CPIR, where each

database element is a movie, and a paying client wishes
to obtain privately one movie. Differently from Eq. (4),
we also assume here that all the intermediate values td
are integers, that is,

t0 = d`/(s · k)e , and

td =
⌈(

1 + 1
s

)
td−1

⌉
for d ∈ [1,m] .

(10)

For tm defined accordingly, and recalling that here w =
5 and χ = m = logw n (and, w.l.o.g., assuming that n is
a power of w), this changes the communication function
from Eq. (6) to

com(n, s, k, `) := 4m(s+ 1)k + tms · k . (11)

Assume that k = 2048, ` = 106k (about 256
Megabytes), m = χ = 7, and w = 5. (Thus n =
wm = 57 = 78 125, which allows to select between
more movies than any of the current commercial on-
line store is offering.) The algorithm on Fig. 4 starts
with the interval (sL, sH), where sL = 500 (communi-
cation of 2111545344 bits) and sH = 503 (2107731968
bits). After only 2 steps, the interval is (sL, sH), where
sL = 502 (2109710336 bits) and sH = 503, and thus
the algorithm outputs sH = 503 as the desired in-
teger approximation of the optimal length parameter
s. This results in communication of 2107731968 bits.
The achieved rate is 0.971661. The preceding theoret-
ical analysis, i.e., with communication function as in
Eq. (6) and not as in Eq. (11), would give that the com-
munication is 2105572921 bits and the rate is 0.972657;
thus, our earlier theoretical analysis is very precise.

In Tbl. 1, we have tabulated the resulting rate (to-
gether with the final value of s) for some other values
of `. In all cases, k = 2048, m = χ = 7, w = 5, and thus
n = wm = 57 = 78 125. The case ` = 107k corresponds
to the realistic size of a Bluray movie, while the cases
` = 200k, ` = 1200k, and ` = 6.95 · 104k correspond to
the rate 1/4 (as achieved by the CPIR protocol of [18]),
1/2 (as achieved by the CPIR protocol of [26]), and 0.9,
respectively. In all cases, the approximation algorithm
from Fig. 4 determinates after 2 steps.

7.2 Rate-Optimal Oblivious Transfer

A 1-out-of-n oblivious transfer (OT) protocol is a 1-out-
of-n CPIR protocol that also satisfies server’s privacy.
That is, even a malicious client will get information only
about one database element, and not more. There exist
various security definitions for OT, and for simplicity
we only consider the following one. A 1-out-of-n OT

Optimal Rate Private Information Retrieval from Homomorphic Encryption 235

` s rate

200k = 409.6KB 10 0.271013
1200k = 2.4576MB 20 0.511077
104k = 20.48MB 53 0.765346
6.95 · 104k ≈ 142.3MB 135 0.901275
105k = 204.8MB 162 0.915617
106k = 2.048GB 503 0.971661
107k = 20.48GB 1585 0.991067

Table 1. The final value of s and the rate for some `

protocol is semi-simulatable [29], if it is a CPIR protocol
(i.e., it satisfies client’s CPA privacy), and in addition,
it satisfies server’s privacy in the sense of simulatability.
That is, we make a comparison to the ideal model, where
there exists a TTP that gets the client’s input x, server’s
input ~f , and outputs fx. See [29] for more details.

Naor and Pinkas [29] proposed an efficient trans-
formation from any 1-out-of-n CPA-secure CPIR pro-
tocol to a semi-simulatable 1-out-of-n OT protocol that
makes one call to the CPIR protocol, and a logarithmic
number of calls to 1-out-of-2 OT protocols and a linear
number of calls to a pseudorandom function.

More precisely, assume the server’s database is ~f =
(f1, . . . , fn), where |fi| = ` and the client input is x =
(x1, . . . , x`), where xi ∈ {0, 1}. The server first selects
randomly 2` keys (k0

1, k
1
1), . . . , (k0

` , k
1
`), where |k

j
i | = κ,

and computes f ′1, . . . , f ′n, where

f ′x = fx ⊕
⊕̀
i=1

PRF(kxi

i , x)

for i ∈ [n]. (See [29] for possible optimizations.) The
two parties first run the optimal-rate CPIR protocol to
transmit f ′x; then they run ` 1-out-of-2 OT protocols to
transmit the corresponding keys kxi

i . It is known that
1-out-of-2 OT protocols can be constructed with a con-
stant rate [30]; moreover, the key size is much smaller
than the `. It is easy to see that this transformation
preserves the rate.

Corollary 2. Assume that the DCR assumption [33]
is true, there exists a 1-out-of-2 OT protocol for κ-
bit strings with communication complexity Θ(κ), and
there exists a pseudorandom function PRF : {0, 1}κ ×
{1, . . . , n} → {0, 1}`. Then there exists a two-message
semi-simulatable (n, 1)-OT protocol (with computational
server’s privacy) with the same asymptotic communica-
tion and rate as the CPIR protocol of Cor. 1.

Proof. Follows from Cor. 1 and [29].

The Naor-Pinkas transformation only offers computa-
tional server privacy due to the reliance on pseudoran-
dom number generators. Aiello, Ishai, and Reingold [1]
proposed another rate-preserving CPIR-to-OT trans-
formation that results in information-theoretic server’s
privacy. Their transformation assumes that the CPIR
protocol uses a homomorphic public-key cryptosystem
where the plaintext group has a prime order. Laur and
Lipmaa [23] modified the Aiello-Ishai-Reingold transfor-
mation to work with the Damgård-Jurik cryptosystem.
However, the Laur-Lipmaa transformation — that relies
on concrete properties of the Damgård-Jurik cryptosys-
tem — is not rate preserving. We leave the construc-
tion of a CPIR-to-OT transformation that is simultane-
ously rate-preserving, guarantees information-theoretic
server’s privacy, and works on top of Damgård-Jurik
cryptosystem, as an open problem.

Finally, to achieve the stronger security notion of
simulatability [5], instead of using the Naor-Pinkas
transformation, the encrypter can accompany each
of his χ ciphertexts with a standard zero-knowledge
proof [10, 11] that it encrypts a Boolean value, and
then prove that their sum encrypts 1. The total com-
munication complexity of the zero-knowledge proofs is
Θ(χsk) = Θ(logn ·

√
`k) = o`(`). (This approach works

when w = 2, in the case w > 2 one can use efficient
range proofs [4, 6, 24].) The main drawback of this ap-
proach, compared to the Naor-Pinkas transformation, is
reliance on zero-knowledge proofs. This either increases
the number of rounds, or forces one to rely on the ran-
dom oracle model.

7.3 Rate-Optimal SCOT

A 1-out-of-n strong conditional oblivious transfer
((n, 1)-SCOT, [2]) protocol for functionQ (s.t.Q(x, y) ∈
[n]) implements securely the following functionality:

FQ−SCOT(x, (y, f1, . . . , fn)) = (fQ(x,y),⊥) .

That is, on client’s input x and server’s input ~f , the
client obtains fQ(x,y) and the server outputs nothing.
In the case of OT, Q(x, y) = x. The semi-simulatable
security of the SCOT is defined similarly like the semi-
simulatable security of OT.

One can use the new rate-optimal leveled LHE
scheme to construct an efficient SCOT protocol for the
functionality FQ−SCOT(x, (y, ~f)), where Q ∈ LBP has
a polynomial-size large-output branching program P ′Q,
as follows. Let PQ be the large-output branching pro-
gram, obtained from P ′Q by just replacing each leaf value

Optimal Rate Private Information Retrieval from Homomorphic Encryption 236

i ∈ {1, . . . , n} with fi. It is easy to see that applying the
new LHE scheme with PQ results in a SCOT protocol
that implements FQ−SCOT.

Corollary 3. Make the same three assumptions as in
Cor. 2. Then there exists a semi-simulatable (n, 1)-
SCOT protocol (with computational server’s privacy)
with the same asymptotic communication complexity
and rate as the CPIR protocol of Cor. 1.

Proof. Follows from Cor. 2 and preceding discussion.

The rate efficiency in a SCOT protocol is equally im-
portant for practical use when the data size is large.
We note that optimal-rate SCOT can find applications
in a similar setting as our optimal-rate CPIR (but for
more complex content selection strategies); for instance
consider a client that wishes to watch one out of q vari-
ants of a video stream where each variant has inserted
different style of advertisements. If Q(x) is a BP that
produces the index of the video stream variant based
on client preferences x then, using our SCOT, the client
can stream the video that matches her advertisement
preferences without revealing them to the server.

In a recent paper [21], the authors showed how
to construct an optimal-rate asymmetric fingerprinting
protocol from a rate optimal SCOT for the relation
Q(x, y) = [x ≤ y], thus answering an open question
related to efficient asymmetric fingerprinting codes.

8 On Computational Complexity
In this section, we will analyze the computation com-
plexity of the new CPIR protocol (analysis of the LHE
can be done similarly). We show that the new CPIR pro-
tocol is significantly more computation efficient for the
server than the protocols from [25, 26], an that one can
further improve it significantly while decreasing the rate
only by a small factor. We emphasize that the following
analysis is theoretical, since we lack an implementation.

The server’s computational complexity of the pre-
viously known variants of the (n, 1)-CPIR proto-
col from [25, 26] and of the resulting leveled LHE
schemes [20] is quite high, due to the need to encrypt
larger and larger plaintexts during the processing of the
branching program. Since one Damgård-Jurik encryp-
tion with `-bit modulus takes time Ω(`2 log ` log log `),
when using FFT-based multiplication (in our applica-
tions, ` is large enough for FFT-based multiplication to

perform faster than Karatsuba), elongation of plaintexts
is extremely detrimental to computational complexity.

In the new CPIR protocol, we encrypt many shorter
plaintexts. Next, we will give an estimate on the server’s
computation. It is dominated by n − 1 encryptions.
More precisely, assuming that an encryption (resp., an
exponentiation) with plaintext length sdk takes time
TEnc(sd, k) (resp., Texp(sd, k)), the server’s computation
is dominated by

m∑
d=1

tdw
m−d(TEnc(sd, k) + (w − 1)Texp(sd, k))

bit-operations.
According to [13], after several optimizations, a sin-

gle Damgård-Jurik encryption takes k/4 + 2sd mul-
tiplications (modulo Nsd+1). Finally, an exponentia-
tion takes 1

2sdk multiplications. Assuming that one
uses FFT-based multiplication, a multiplication modulo
Nsd+1 takes time T∗(sd, k) = Ω((sdk)1.58 log(sdk)). (For
the sake of simplicity, we omit the log log(sdk) term.)

To estimate the server’s computation, we note that
for large `, td = Θ(

√
`/k). Thus, in bit operations, the

server’s computational complexity is dominated by
m−1∑
d=0

(TEnc(sd, k) + (w − 1)Texp(sd, k))wm−d−1td

=Θ((TEnc(s, k) + (w − 1)Texp(s, k))
√
`/k)·

m−1∑
d=0

wm−d−1 = Θ(Texp(s, k)
√
`/k · n)

=Θ(
√
`/k · kT∗(s, k)

√
`/k · n)

=Θ(`1.5
√
kn · log(`k)) .

For example, the server computation in the CPIR
protocol of [25] with the parameters (k = 2048, ` =
106 · k, n = 57) given in Sect. 7.1.1, is (when generously
forgetting all constants and the log log-term) at least
`2n log ` ≈ 283.0676 bit-operations. The rate-1/2 variant
of this CPIR, proposed in [26], has server’s computation
of at least (`/ logn)2n/ logn · log(`/ logn) ≈ 278.3152 bit-
operations. With the same parameters, the new CPIR
protocol has server computation ≈ 273.5408. While this
number is still huge, omitting small constant factors, it
is approximately 210 (resp., 25) times smaller than the
computation in the CPIR protocol of [25] (resp., [26]).

8.1 Optimization by Parallelization

Since the server’s computation is super-linear in `, a sim-
ple solution to reduce it is to execute the CPIR protocol

Optimal Rate Private Information Retrieval from Homomorphic Encryption 237

λ ` = 104 · k ` = 106 · k

s rate log.comp s rate log.comp

1 53 0.765346 22.8 503 0.971661 26.4
10 53 0.653937 17.7 503 0.952116 21.3
50 52 0.332403 14.1 502 0.837672 17.7

250 — — — 502 0.527264 14.1

Table 2. The value of s, rate and logarithm of server’s computa-
tion (per database bit) for some ` and λ

in parallel λ times on `′ := (`/λ)-bit chunks of the data,
for a well-chosen λ; this results in server computation
of Θ(`1.5k0.5λ−1.5n log(`k/λ)). Crucially, see Eq. (6), the
client’s communication does not depend on ` while the
server’s communication is linear in `. Thus, asymptot-
ically, the modified λ-parallel CPIR protocol will have
exactly the same communication and thus also the rate
as in Eq. (6), as long as `′ is not too small.

In concrete terms, one has to take into account that
the fact that the values td must be integers has a larger
influence on the rate if td is smaller (i.e., λ is larger).
More precisely, the communication complexity of the
λ-parallel CPIR is equal to

comλ(χ,w,m, s, k, `) := (w − 1)χ(s+ 1)k + λt′ms · k ,

where for s computed as on Fig. 4, t′m is computed re-
cursively from

t′0 =
⌈
`′/(s · k)

⌉
, and

t′d =
⌈(

1 + 1
s

)
t′d−1

⌉
for d ∈ [1,m] .

Here, we assume that λ | `.
Using the same parameters as in Sect. 7.1.1 (k =

2048, n = 57, and either ` = 104 · k or ` = 106 · k;
we note that the case λ > s does not make sense),
we calculated the rate and logarithm of the server’s
computation for some values of λ, see Tbl. 2. More
precisely, the last column of Tbl. 2 has the value
log2(`1.5k0.5λ−1.5n log(`k/λ)) − log2(`n), i.e., the num-
ber of server’s bit-operations per database bit (clearly,
the database has `n bits).

If ` = 106 ·k, then even with λ = 250 the new CPIR
has rate > 1/2. On the other hand, for ` = 106k, the
250-parallel version is ≈ 226.4−14.1 = 212.3 times faster
than the 1-parallel version, and thus ≈ 212 · 25 ≈ 217

times faster than the rate 1/2 CPIR protocol of [26].
As seen from Tbl. 2, the 250-parallel version spends

≈ 261−47 = 214 ≈ 16 000 bit-operations per database
bit. To compare, a single 2048-bit exponentiation (when

using FFT-based multiplication) takes approximately
20482 · log2 2048 ≈ 225 bit-operations. Hence, in the par-
allel version of the CPIR protocol, the server roughly
has to compute a single 2048-bit exponentiation per
each 2048 database bits.

The preceding discussion indicates that the actual
rate function (and not only the fact that it is 1−o(1)) of
the CPIR protocol matters: if the rate function would be
even slightly smaller, it might happen that using (say)
λ = 250 would result in the much worse rate. With the
new CPIR protocol, choosing a large λ introduces only
a minor change to the rate.

8.2 Further Work

We expect that one can apply many more optimizations,
but we leave their study (together with an optimized im-
plementation) for a future work. We only mention that
one can implement the λ-parallel version on λ different
servers, as done say in [34] in the context of the CPIR
protocol from [18]. This reduces the computation of ev-
ery single server by an additional factor of λ; however,
in this case the client’s communication complexity will
increase λ times to λ(w− 1)χ(s+ 1)k ≈ 2λ ·

√
`k log2 n.

See [14, 15, 31] and references therein for other possible
optimizations. We will leave it as an another open ques-
tion to construct a version of the new CPIR protocol
that has the best trade-offs between rate and server’s
computation.

To conclude, we think that the new CPIR proto-
col (if considered as a reduction that utilizes an existing
cryptosystem) by itself is also computationally efficient.
The main bottleneck is clearly in the underlying cryp-
tosystem. Hence, an important open question posed by
the current work is to construct an optimal-rate ad-
ditively homomorphic cryptosystem with significantly
faster computational (encryption) complexity compared
to the Damgård-Jurik cryptosystem.

Acknowledgements
We would like to thank Amir Herzberg and anonymous
reviewers for useful comments. This research was per-
formed while Leonardos and Tang were at the Univer-
sity of Athens. Kiayias, Leonardos and Tang were sup-
ported by ERC project CODAMODA. Lipmaa was sup-
ported by the Estonian Research Council, and Euro-
pean Union through the European Regional Develop-

Optimal Rate Private Information Retrieval from Homomorphic Encryption 238

ment Fund. Pavlyk was supported by the institutional
research funding IUT20-57 of the Estonian Ministry of
Education and Research.

References
[1] Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Trans-

fer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer,
Heidelberg, Innsbruck, Austria (May 6–10, 2001)

[2] Blake, I.F., Kolesnikov, V.: Strong Conditional Oblivious
Transfer and Computing on Intervals. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer,
Heidelberg, Jeju Island, Korea (Dec 5-9 2004)

[3] Cachin, C., Micali, S., Stadler, M.: Computational Private
Information Retrieval with Polylogarithmic Communication.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 402–414. Springer, Heidelberg, Prague, Czech Republic
(May 2–6, 1999)

[4] Camenisch, J., Chaabouni, R., shelat, a.: Efficient Protocols
for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer,
Heidelberg, Melbourne, Australia (Dec 7–11, 2008)

[5] Camenisch, J., Neven, G., shelat, a.: Simulatable Adap-
tive Oblivious Transfer. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg,
Barcelona, Spain (May 20–24, 2007)

[6] Chaabouni, R., Lipmaa, H., shelat, a.: Additive Combina-
torics and Discrete Logarithm Based Range Protocols. In:
Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol.
6168, pp. 336–351. Springer, Heidelberg, Sydney, Australia
(Jul 5–7, 2010)

[7] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private
Information Retrieval. In: FOCS 1995. pp. 41–50. IEEE,
Milwaukee, Wisconsin, USA (Oct 23–25 1995)

[8] Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.:
Between a Rock and a Hard Place: Interpolating between
MPC and FHE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013 (2). LNCS, vol. 8270, pp. 221–240. Springer, Heidel-
berg, Bangalore, India (Dec 1–5, 2013)

[9] Cobham, A.: The Recognition Problem for the Set of Per-
fect Squares. In: FOCS 1966. pp. 78–87. IEEE Computer
Society, Berkeley, California (Oct 23–25, 1966)

[10] Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding
Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 174–187. Springer, Heidelberg, Santa Barbara,
USA (Aug 21–25 1994)

[11] Damgård, I., Jurik, M.: A Generalisation, a Simplification
and Some Applications of Paillier’s Probabilistic Public-Key
System. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
119–136. Springer, Heidelberg, Cheju Island, Korea (Feb 13–
15, 2001)

[12] Damgård, I., Jurik, M.: A Length-Flexible Threshold Cryp-
tosystem with Applications. In: Safavi-Naini, R. (ed.) ACISP
2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg,
Wollongong, Australia (Jul 9-11, 2003)

[13] Damgård, I.B., Jurik, M.J., Nielsen, J.B.: A Generalization
of Paillier’s Public-key System with Applications to Elec-
tronic Voting. Int. J. Inf. Sec. 9(6), 371–385 (2010)

[14] Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: Prac-
tical Multi-Server PIR. In: Oprea, A., Safavi-Naini, R. (eds.)
ACM CCSW 2014. ACM Press, Scottsdale, Arizona, USA
(Nov 7, 2014)

[15] Devet, C., Goldberg, I.: The Best of Both Worlds: Combin-
ing Information-Theoretic and Computational PIR for Com-
munication Efficiency. In: Cristofaro, E.D., Murdoch, S.J.
(eds.) PETS 2014. LNCS, vol. 8555, pp. 63–82. Springer,
Heidelberg, Amsterdam, The Netherlands (Jul 16–18, 2014)

[16] Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D.
thesis, Stanford (Sep 2009)

[17] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lat-
tices. In: Mitzenmacher, M. (ed.) STOC 2009. pp. 169–178.
ACM Press, Bethesda, Maryland, USA (May 31 — Jun 2,
2009)

[18] Gentry, C., Ramzan, Z.: Single-Database Private Information
Retrieval with Constant Communication Rate. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer,
Heidelberg, Lisboa, Portugal (2005)

[19] Groth, J., Kiayias, A., Lipmaa, H.: Multi-Query
Computationally-Private Information Retrieval with Constant
Communication Rate. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer,
Heidelberg, Paris, France (May 26–28, 2010)

[20] Ishai, Y., Paskin, A.: Evaluating Branching Programs on
Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 575–594. Springer, Heidelberg, Amsterdam,
The Netherlands (Feb 21–24, 2007)

[21] Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang,
Q.: Communication Optimal Tardos-based Asymmetric Fin-
gerprinting. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol.
9048, pp. 469–486. Springer, Heildeberg, San Franscisco,
CA, USA (Apr 20–24, 2015)

[22] Kushilevitz, E., Ostrovsky, R.: Replication is Not Needed:
Single Database, Computationally-Private Information Re-
trieval. In: FOCS 1997. pp. 364–373. IEEE Computer Soci-
ety, Miami Beach, Florida (Oct 20–22, 1997)

[23] Laur, S., Lipmaa, H.: A New Protocol for Conditional Dis-
closure of Secrets And Its Applications. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–225.
Springer, Heidelberg, Zhuhai, China (Jun 5–8, 2007)

[24] Lipmaa, H.: On Diophantine Complexity and Statistical
Zero-Knowledge Arguments. In: Laih, C.S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg, Taipei, Taiwan (Nov 30–Dec 4, 2003)

[25] Lipmaa, H.: An Oblivious Transfer Protocol with Log-
Squared Communication. In: Zhou, J., Lopez, J. (eds.) ISC
2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg,
Singapore (Sep 20–23, 2005)

[26] Lipmaa, H.: First CPIR Protocol with Data-Dependent
Computation. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg, Seoul,
Korea (Dec 2–4, 2009)

[27] Lorenz, F.: Algebra. Volume I: Fields and Galois Theory.
Universitext, Springer (Dec 8, 2005)

Optimal Rate Private Information Retrieval from Homomorphic Encryption 239

[28] Meyer, C.D.: Matrix Analysis and Applied Linear Algebra.
SIAM, 1 edn. (Jun 1, 2001)

[29] Naor, M., Pinkas, B.: Oblivious Transfer And Polynomial
Evaluation. In: STOC 1999. pp. 245–254. ACM Press, At-
lanta, Georgia, USA (May 1–4, 1999)

[30] Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols.
In: SODA 2001. pp. 448–457. ACM Press, Washington, DC,
USA (Jan 7–9, 2001)

[31] Olumofin, F.G., Goldberg, I.: Revisiting the Computational
Practicality of Private Information Retrieval. In: Danezis,
G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer,
Heidelberg, Gros Islet, St. Lucia (Feb 28–Mar 4, 2011)

[32] Ostrovsky, R., Skeith III, W.E.: Communication Complex-
ity in Algebraic Two-Party Protocols. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 379–396. Springer,
Heidelberg, Santa Barbara, USA (Aug 17–21, 2008)

[33] Paillier, P.: Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg,
Prague, Czech Republic (May 2–6, 1999)

[34] Papadopoulos, S., Bakiras, S., Papadias, D.: pCloud: A Dis-
tributed System for Practical PIR. IEEE Trans. Dependable
Sec. Comput. 9(1), 115–127 (2012)

[35] Pesic, P.: Abel’s Proof: An Essay on the Sources and Mean-
ing of Mathematical Unsolvability. MIT Press (Feb 27, 2004)

[36] Pippenger, N.: On Simultaneous Resource Bounds. In: FOCS
1979. pp. 307–311. IEEE Computer Society Press, San
Juan, Puerto Rico (Oct 29–31 1979)

[37] Stern, J.P.: A New And Efficient All Or Nothing Disclo-
sure of Secrets Protocol. In: Ohta, K., Pei, D. (eds.) ASI-
ACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg, Beijing, China (Oct 18–22, 1998)

[38] Stewart, J.: Multivariable Calculus. Cengage Learning, 7
edn. (Jan 1, 2011)

[39] Walker, R.J.: Algebraic Curves. Springer (Oct 4, 2013)
[40] Wegener, I.: Branching Programs and Binary Decision Di-

agrams: Theory and Applications. Monographs on Discrete
Mathematics and Applications, Society for Industrial Mathe-
matics (2000)

A Derivation of Global Minimum
Here we give some details and explanations to Section 5.
To determine a minimum of the multivariable commu-
nication function com we use the generalization of the
second derivative test for multivariable functions [38].

Assuming that the rest of the parameters are fixed,
the function com of Eq. (5) has a critical point at
~s = (s1, . . . , sm), if the gradient (the vector of partial
derivatives) of the function com ∇com(χ,w,m,~s, k, `)
is 0 at ~s, i.e.,

∂com/∂s1 = · · · = ∂com/∂sm = 0 .

Recall m = χ. Assume for the sake of simplicity
that the branching program is oblivious. Without this
assumption, the number of ciphertexts with some length
parameter can depend on the result of the following op-
timization, and this results in a vicious circle. This may
mean that there exist cases of non-oblivious branching
programs, where the derived result is not optimal. How-
ever, as emphasized before, in all our applications we in
fact have oblivious branching programs.

Under this assumption, the client will send one ci-
phertext with every possible length parameter sd. Thus,
it is easy to see that

∂com
∂sj

=(w − 1)k − `

s2
j

·
∏m
i=1:i 6=j(si + 1)∏m

i=1:i 6=j si

=(w − 1)k − `

(sj + 1)sj
·
∏m
i=1(si + 1)∏m

i=1 si
= 0

hence,

(sj + 1)sj = `

(w − 1)k ·
∏m
i=1(si + 1)∏m

i=1 si
,

for every j. Then, for every i 6= j,

si(si + 1) = sj(sj + 1) .

and thus either si = sj , or si = −1 − sj . But since si
and sj both have to be positive, we get that

s1 = · · · = sm =: s

for some s.
Substituting equal values of si into com we find ~s

as a root of polynomial fm(s, σ) (Eq. (8)). Let ~s ∗ be
a solution of Eq. (8). Next step is to determine if a
critical point ~s ∗ is a local/global minimum of com. The
following test can be applied at the critical point of com:
if the Hessian matrix which describes the local curvature
of a function of many variables

H(m,~s) :=

∂2com
∂s1∂s1

∂2com
∂s1∂s2

. . . ∂2com
∂s1∂sm

∂2com
∂s2∂s1

∂2com
∂s2∂s2

. . . ∂2com
∂s2∂sm

...
...

. . .
...

∂2com
∂sm∂s1

∂2com
∂sm∂s2

. . . ∂2com
∂sm∂sm

is positive definite at ~s ∗, then com attains a local mini-
mum at ~s ∗. Clearly, a local minimum of a convex func-
tion is also a global minimum. A continuous twice dif-
ferentiable function of several variables is convex on a
convex set if and only if its Hessian matrix is positive
semidefinite on the interior of the convex set (see [28],
Sect. 7.6). Since a positive definite matrix H(m,~s ∗) is

Optimal Rate Private Information Retrieval from Homomorphic Encryption 240

also positive semidefinite, com(χ,w,m,~s, k, `) is a con-
vex function on a convex domain ~s > 0 and ~s ∗ =
(s ∗, . . . , s ∗) is indeed its global minimum.

We will not define positive and semipositive definite
matrices. Instead, we apply the Sylvester’s criterion of
positive definitiveness: a matrix M is positive definite
iff the determinants associated with all upper-left sub-
matrices of M are positive, [28]. We first compute

∂2com
∂s2

i

=
2`
∏
κ6=i(sκ + 1)
s2
i

∏
κ sκ

and

∂2com
∂si∂sj

=
`
∏
κ6=i,κ 6=j(sκ + 1)
sisj

∏
κ sκ

for i 6= j .

Note that those values do not depend on m. All upper-
left submatrices of H(m,~s) are circulant matrices with
determinants of next form∣∣∣∣∣∣∣∣∣∣∣∣

a b b
... b

b a b
... b

· · · · · · · · ·
. . . · · ·

b b b
... a

∣∣∣∣∣∣∣∣∣∣∣∣
= b(a− b)κ

(1
b

+ κ

a− b

)
,

where κ ∈ {0, . . . ,m− 1},

a =∂2com(χ,w,m,~s ∗, k, `)
∂s2

1
= . . .

=∂2com(χ,w,m,~s ∗, k, `)
∂s2

m
= 2`(s∗ + 1)κ−1

(s∗)κ+2 and

b =∂2com(χ,w,m,~s ∗, k, `)
∂si∂sj

= `(s∗ + 1)κ−2

(s∗)κ+2 ,

for all i, j ∈ {0, . . . , κ− 1}. Since a, b > 0 and a− b > 0,
the Hessian matrices H(m,~s ∗) are positive definite for
all m > 1 and ~s ∗ is an absolute minimum of com.

B Proof of Thm. 3
Proof. Given a polynomial f(x, y), it is always possible
to solve it for y in terms of x by means of a fractional
power series y =

∑∞
i=0 cix

Σi
j=0γj , so called Puiseux se-

ries. This method is based on the algebraic closure of
the field of fractional power series (the Puiseux’s Theo-
rem), while the proof of Puiseux Theorem can be given
constructively by the Newton polygon method. We give
first a general description of the Newton-Puiseux algo-
rithm and then apply it to Eq. (8). More details can be
found in Chapter IV, Sect. 1-3 of [39].

Let

f(x, y) = a0(x) + a1(x)y + · · ·+ an(x)yn

be a polynomial of degree n > 0, with an 6= 0. We will
recursively construct a solution y(x), a Puiseux series in
x, of the equation f(x, y) = 0. The solution y(x) must
have the form y(x) = c0x

γ0 + y1(x) for

y1(x) = c1x
γ0+γ1 + c2x

γ0+γ1+γ2 + · · · ,

with cj 6= 0, γj ∈ Q, for all j. In order to get necessary
conditions for c0 and γ0, we substitute y(x) = c0x

γ0 +
y1(x) for y in f(x, y), getting

f(x, y(x)) =
∑

bijx
iyj1 = 0 .

The terms of lowest order must cancel, whence we
obtain c0. One can determine the possible value for γ0 by
considering the Newton polygon of f . This is the small-
est convex polygon in the affine plane over Q, which
contains all the points Pi = (i, j) from the expansion of
f(x, y(x)). Those faces of the Newton polygon, s.t. all
the Pi’s lie on or above the corresponding line, have
possible values for γ0 as their negative slopes. After γ0

and c0 have been determined, the same process is per-
formed on y1(x), which must be a root of the equation
f1(x, y1) = f(x, c0xγ0 + y1) = 0. The Newton polygon
may again be used to derive necessary conditions on
c1 and γ1. This recursive process can be iterated until
the desired number of terms is computed, or no further
splitting of solutions is possible.

Now, we rewrite Eq.(8) as

fm(s, σ) :=
m+1∑
i,j=0

bijs
iσj = 0 (12)

and construct the solution s(σ) of Eq. (12) recursively
as a Puiseux series. Let s(σ) = c0σ

γ0 + c1σ
γ0+γ1 +

c2σ
γ0+γ1+γ2 + . . . , with ci 6= 0, γi ∈ Q, γi > 0 for all i,

which can be also rewritten as

s(σ) = σγ0(c0 + s1) ,

where

s1 = c1σ
γ1 + c2σ

γ1+γ2 + c3σ
γ1+γ2+γ3 +

To find γ0 we construct polygon in the affine plane over
Q, which contains all the points Pi = (i, j), where (i, j)
are the pairs of indices (i, j) of fm(s, σ) =

∑
bijs

iσj .
Those faces of the polygon, such that all the Pi’s lie on or
above the corresponding line, have possible values for γ0

as their negative slopes. Since, fm(s, σ) has a non-zero
bij iff (i, j) = (i, 0) for i ∈ [0,m−1], or (i, j) = (m+1, 1),
the Newton polygon in this case has one non-horizontal
slope, from (m− 1, 0) to (m+ 1, 1). It’s equation is

y = −γ0x+ β0 = 1
2x−

m− 1
2 .

Optimal Rate Private Information Retrieval from Homomorphic Encryption 241

Hence γ0 = − 1
2 , β0 = −m−1

2 and

s(σ) = σ−1/2(c0 + s1) .

To find c0 we substitute σ−1/2(c0 + s1) for s into

fm(s, σ) = σsm+1 − (s+ 1)m−1 ,

getting

fm(s, σ) =σ(σ−1/2(c0 + s1))m+1−

(σ−1/2(c0 + s1) + 1)m−1

=σ−
m−1

2

m+1∑
i=0

(
m+ 1
i

)
cm+1−i
0 si1−

m−1∑
i=0

(
m− 1
i

)
σ−

i
2

i∑
j=0

(
i

j

)
ci−j0 sj1

=σ−
m−1

2

(m+1∑
i=0

(
m+ 1
i

)
cm+1−i
0 si1−

m−1∑
j=0

(
m− 1
j

)
cm−1−j
0 sj1

)
−

m−2∑
i=0

(
m− 1
i

)
σ−

i
2

i∑
j=0

(
i

j

)
ci−j0 sj1 .

Now, let the terms of lowest order σ−(m−1)/2 be equal
to zero. Then

cm+1
0 − cm−1

0 = 0,

or c0 ∈ {−1, 0, 1}. Since Eq. (12) has exactly one pos-
itive real root, we skip c0 = −1, considering c0 = 1.
Thus,

s(σ) = σ−1/2(1+s1) = σ−1/2(1+c1σγ1+c2σγ1+γ2+. . .) .

In the next recursive step of Newton-Puiseux algo-
rithm γ2 and c2 will be determined. In particular, γ2 is
a slope of Newton polygon for f (1)

m (s1, σ), where

f (1)
m (s1, σ) = σ(m−1)/2fm(σ−1/2(1 + s1), σ) .

is obtained from fm(σ−1/2(1 + s1), σ) multiplying it
with σ−β0 = σ(m−1)/2. To construct Newton polygon
for f (1)

m (s1, σ), we rewrite this polynomial as

f (1)
m (s1, σ)

=
m+1∑
i=0

(
m+ 1
i

)
si1 −

m−1∑
i=0

(
m− 1
i

)
σ

m−1−i
2 (s1 + 1)i

=

(
sm+1

1 + (m+ 1)sm1 +
m−1∑
i=0

(
m+ 1
i

)
si1

)
−(

(s1 + 1)m−1 +
m−2∑
i=0

(
m− 1
i

)
σ

m−1−i
2 (s1 + 1)i

)
,

which is equal to

=sm+1
1 + (m+ 1)sm1 +
m−1∑
i=1

((
m+ 1
i

)
−

(
m− 1
i

))
si1−

m−2∑
i=0

(
m− 1
i

)
σ

m−1−i
2

i∑
j=0

(
i

j

)
sj1 .

This polynomial f (1)
m (s1, σ) =

∑
bijs

i
1σ

j has a non-zero
coefficient bij iff

(i, j) = (x, 0) for x ∈ [1,m+ 1], or
(i, j) =

(
x, m−1−y

2
)
for x ∈ [0, y] and y ∈ [0,m− 2].

As seen from Fig. 5, the Newton polygon of f (1)
m (s1, σ)

consists of a single segment with only two vertices, one
on each axis. This segment has equation

y = −γ1x+ β1 = −1
2x+ 1

2 .

According to algorithm, such situation allows to com-
pute the rest ci by letting different powers of σ cancel.
By the Newton-Puiseux algorithm [39], from now on the
powers of σ are going to jump by the denominator of
γ1; in other words

γ1 = γ2 = γ3 = · · · = 1
2 .

Now, we can calculate the rest of the ci directly from
the function obtained from substitution of

s1 = c1σ
1/2 + c2σ

2/2 + c3σ
3/2 + . . .

into f
(1)
m (s1, σ) and equating to zero successively all

terms which contain σ of degree n
2 , for all n ≥ 1.

Next we have to do some technical computations.
After substitution we get

f (1)
m (s1, σ) = σ

m−1
2 fm(σ−1/2(s1 + 1), σ)

= (s1 + 1)m+1 − (s1 + 1 + σ1/2)m−1 ,

where

s1 + 1 =
∞∑
i=0

ciσ
i/2 , s1 + 1 + σ1/2 =

∞∑
i=0

c′iσ
i/2 ,

and c′i = ci for i 6= 1, and c′1 = c1 + 1.
Recall, that if n is a natural number and i and a0

are invertible, then(
∞∑
k=0

akX
k

)n
=
∞∑
k=0

bkX
k ,

Optimal Rate Private Information Retrieval from Homomorphic Encryption 242

i

j

0 1 2 3 4 5 6 7
0

0.5
1

1.5
2

2.5

Fig. 5. Newton polygon for f (1)
m , where m = 6

where b0 = an0 , and

bi = 1
ia0
·

i∑
k=1

(kn− i+ k)akbi−k, i ≥ 1 .

Since

(s1 + 1)m+1 =
∞∑
i=0

δiσ
i/2 ,

(s1 + σ1/2 + 1)m−1 =
∞∑
i=0

δ′iσ
i/2 ,

where δ0 = δ′0 = 1,

δi = 1
i

i∑
k=1

(k(m+ 1)− i+ k) ckδi−k , (13)

δ′i = 1
i

i∑
k=1

(k(m− 1)− i+ k) c′kδ′i−k , (14)

for i > 0, we get

f (1)
m (s1, σ) =

∞∑
i=0

(
δi − δ′i

)
σi/2 .

Collecting terms with σi/2, i ≥ 1 in f (1)
m (s1, σ), we get

equations for calculating the rest of ci+1. More precisely,
we first collect terms that correspond i = 1, and then
derive a recursive formula for the case i > 2. Via this
recursive formula, we compute ci for small i, and then
guess ci.

Thus, consider terms containing σ1/2: δ1 = δ′1. Ac-
cording to Eq. (13) and (14)

δ1 − δ′1 = (m+ 1)c1 − (m− 1)(c1 + 1) = 0 ,

and

c1 = m− 1
2 , δ1 = (m+ 1)c1 = (m− 1)(m+ 1)

2 .

We assume recursively that δj = δ′j for all j < i.
Then, assuming i ≥ 2, 0 = i(δi − δ′i) =

∑i
k=1(k(m +

1) − i + k)ckδi−k −
∑i

k=1(k(m − 1) − i + k)c′kδ′i−k =

((m+1)−i+1)c1δi−1 +
∑i

k=2
(
k(m+1)−i+k

)
ckδi−k−

((m−1)−i+1)c′1δ′i−1−
∑i

k=2
(
k(m−1)−i+k

)
c′kδ
′
i−k =

(m+2−i)c1δi−1−(m−i)(c1+1)δi−1+2
∑i

k=2 kckδi−k =
2ici + 2

∑i−1
k=1 kckδi−k − (m− i)δi−1. Hereof,

ci = −1
i

(
(i− 1)δi−1

2 +
i−1∑
k=2

kckδi−k

)
. (15)

From Eq. (15) we can compute ci, given that we have
already computed cj and δj (using Eq. (13)) for j ≤ i.
For example, for i = 2 we get

c2 = −δ1

4 = − (m− 1)(m+ 1)
22 · 2! ,

and

δ2 =1
2

2∑
k=1

(
k(m+ 1)− 2 + k

)
ckδ2−k

=(m− 1)(m+ 1)(m2 − 2m− 1)
22 · 2! .

Further, for i = 3,

c3 =1
3 ·

(
(1− 3)δ2

2 −
2∑
k=2

kckδ3−k

)

=(m− 1)2m(2m+ 2)
23 · 3! ,

and

δ3 =1
3 ·

3∑
k=1

(
k(m+ 1)− 3 + k

)
ckδ3−k

=(m− 1)(m+ 1)(m2 − 3m− 2)(m2 − 3m)
23 · 3! ,

and so on.
The process can be continued to calculate more

terms. However, the already calculated terms give us
a good guess about the nature of both ci and δi.

Thus,

ci = (−1)i+1 (m− 1)
2ii!

((i− 1)(m+ 1))!!
((i− 1)(m− 1))!! , (16)

Moreover,

δi = (m− 1)(m+ 1)
2i · i!

i−1∏
j=0

(m2 − i(m+ 1) + 1 + 2j).

Verifying that these two equations satisfy the recur-
sions Eq. (13) and Eq. (15) is rather tedious, and since
it plays no importance in practice, we will omit it.

Optimal Rate Private Information Retrieval from Homomorphic Encryption 243

C Proof of Thm. 4
Proof. Recall that the communication function of our
leveled LHE scheme, com(χ,w,m, s, k, `), is given by
Eq. (6), where

s =
∞∑
i=0

ciσ
i−1

2 ,

and ci are defined as in Thm. 3. Substituting the ex-
pression for s (see Eq. (9)) into com(χ,w,m,~s, k, `), we
will get required communication.

For that, we first find

s−1 =
∞∑
j=0

c′jσ
j+1

2

from the condition ss−1 = 1, obtaining

c′i = (−1)i (m− 1)
2i · i!

((i+ 1)m+ (i− 3))!!
((i+ 1)(m− 1))!! .

In particular, c′0 = 1, c′1 = −(m− 1)/2,

c′2 =(m− 1)(3m− 1)
22 · 2! ,

c′3 =− (m− 1)2m(2m− 1)
22 · 3! ,

and so on. Then 1 + s−1 =
∑∞

i=0 diσ
i/2, where d0 = 1,

dk = c′k−1 for k ≥ 1. Raising power series 1 + s−1 to the
m-th power, we obtain(

∞∑
i=0

diσ
i/2

)m
=
∞∑
i=0

uiσ
i/2 ,

where u0 = 1, up = 1
p

p∑
t=1

(tm−p+t)dtup−t. In particular,

u1 = m, u2 = 0, and so on. Then

com(χ,w,m,~s, k, `)

=(w − 1)kχ

(
1 + σ−1/2 + c1 +

∞∑
i=1

ci+1σ
i
2

)
+

`

(
1 +

∞∑
j=1

ujσ
j
2

)

=`+ 2
√

(w − 1)χmk`+ 1
2χk(m+ 1)(w − 1)+

1√
`

((w − 1)χk)3/2c2√
m

+ 1
`

((w − 1)χk)2c3
m

+

∞∑
i=3

Ciσ
i
2 ,

where Ct are defined as Ct = (w − 1)kχct+1 + `ut, and
t ≥ 3. Thus,

com(χ,w,m,~s, k, `) =`+ 2
√

(w − 1)χmk`+
1
2χk(m+ 1)(w − 1) +O(`−1/2) .

The rate is equal to

(χ log2 w + `) · com−1(χ,w,m,~s, k, `) .

To find com−1, we write

com−1(χ,w,m,~s, k, `) =
∞∑
i=0

ai`
2−i

2 ,

then from com(χ,w,m,~s, k, `) · com−1(χ,w,m,~s, k, `) =
1 we get a0 = . . . = a3 = 0, a4 = 1, a5 =
−2
√

(w − 1)χmk, a6 = 1
2 (7m − 1)(w − 1)χmk, and so

on, thus

(`+ χ logw) · com−1(χ,w,m,~s, k, `)
=(`+ χ logw)·(

1
`
−

2
√

(w − 1)χmk
`
√
`

+ χk(7m− 1)(w − 1)
2`2 +

O(`−5/2)
)

=1−
2
√

(w − 1)χmk
√
`

+

χ (k(7m− 1)(w − 1)/2 + log2 w)
`

+O(`−
3
2) .

	Optimal Rate Private Information Retrieval from Homomorphic Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Applications
	1.3 Computation
	1.4 Roadmap

	2 Preliminaries
	2.1 Branching Programs
	2.2 Public-Key Cryptosystem
	2.3 Damgård-Jurik Cryptosystem
	2.4 CPIR
	2.5 Basic CPIR

	3 LHE: Definitions
	4 Construction
	4.1 High-Level Strategy
	4.2 Detailed Description

	5 Finding Optimal Parameters
	5.1 Rewording the Optimization Problem
	5.2 Computing Puiseux Series
	5.3 Algorithm for Approximation of Root

	6 On Solvability in Radicals
	7 Applications
	7.1 Rate-Optimal CPIR
	7.1.1 Numerical Examples

	7.2 Rate-Optimal Oblivious Transfer
	7.3 Rate-Optimal SCOT

	8 On Computational Complexity
	8.1 Optimization by Parallelization
	8.2 Further Work

	A Derivation of Global Minimum
	B Proof of Thm. 3
	C Proof of Thm. 4

