
Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis

Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich
MIT CSAIL

1 Introduction
Many users would like their communications over the Internet
to be private, and for some users, such as reporters, lawyers, or
whistleblowers, privacy is of paramount concern. Encryption
software can hide the content of messages, but adversaries
can still learn a lot from metadata—which users are com-
municating, at what times they communicate, and so on—by
observing message headers or performing traffic analysis. For
example, if Bob repeatedly emails a therapist, an adversary
might reasonably infer that he is a patient, or if a reporter is
communicating with a government employee, that employee
might come under suspicion. Recently, officials at the NSA
have even stated that “if you have enough metadata you don’t
really need content” [8: ¶7] and that “we kill people based
on metadata” [5]. This suggests that protecting metadata in
communication is critical to achieving privacy.

State-of-the-art private messaging systems fall into two
broad categories, but neither can protect metadata for large
numbers of users. On the one hand are systems that provide
strong, provable privacy guarantees, such as Dissent [10] and
Riposte [2]. Although these systems can protect metadata,
they either rely on broadcasting all messages to all users, or
use expensive cryptographic constructions such as Private
Information Retrieval (PIR) to trade off computation for band-
width [9]. As a result, these systems have scaled to just 5,000
users [10] or hundreds of messages per second [2].

On the other hand, scalable systems like Tor, Pond [6],
OTR, and mixnets provide little protection against powerful
adversaries that can observe and tamper with network traffic.
To the extent these systems try to protect metadata, they require
a large number of users to provide any degree of privacy, so as
to increase the anonymity set for each user, and even then they
are susceptible to traffic analysis. Adding cover traffic to try
to obscure which pairs of users are communicating has been
shown to be expensive and to yield only limited protection
against a passive observer over time [3, 7], while adversaries
that can actively disrupt traffic (e.g., inject delays) can gain
even more information [1].

We propose Vuvuzela, the first system to provide scalable
point-to-point text messaging while guaranteeing metadata
privacy, achieving orders of magnitude more messages per
second than previous systems. Vuvuzela ensures that no ad-
versary will learn which pairs of users are communicating, as
long as just one out of N servers is not compromised, even for
users who continue to use Vuvuzela for years.1 Vuvuzela uses
only simple, fast cryptographic primitives, and preliminary
experiments suggest that it can scale to millions of users and
tens of thousands of messages per second.

1Vuvuzela cannot hide the fact that a user is connected to Vuvuzela’s
network, but we expect that users will simply run the Vuvuzela client in the
background at all times to avoid revealing the timing of their conversations.

Bob

Alice

Charlie

(1) Users access 
mailboxes 

(2) Honest server 
disconnects users 
from mailboxes and 
adds cover traffic

(3) Adversary can not 
tell who is talking to 
who by looking at 
mailbox access patterns

Figure 1: Overview of Vuvuzela’s conversation protocol.

Threat model. Vuvuzela’s design assumes an adversary that
controls all but one of the Vuvuzela servers (users need not
know which one), controls an arbitrary number of clients, and
can monitor, block, delay, or inject traffic on any network
link. Two users communicating through Vuvuzela should
have their communication protected if their two clients, and
any one server, are uncompromised. We also assume that the
Vuvuzela servers’ public keys are known to all users, and that
two users who wish to communicate know each other’s public
keys. Separate mechanisms are needed to let users discover
each other’s keys, but we consider these orthogonal to the
private communication problem in this paper.

2 System Design
Vuvuzela works by routing user messages through a chain
of servers, as shown in Figure 1, where each of the servers
adds cover traffic to mask the communication patterns of users.
Unlike prior systems, Vuvuzela’s design enables cover traffic
to scale to millions of users, and allows us to prove strong
guarantees about the level of privacy provided by cover traffic.
We achieve this using two key techniques.

First, Vuvuzela’s protocols are carefully structured to reveal
only a small, well-defined set of observable variables to an ad-
versary. For instance, Vuvuzela’s conversation protocol, used
for sending user messages, exposes just two variables: the total
number of users engaged in a conversation, and the total num-
ber of users not engaged in a conversation. It does not reveal
the users in either group. This is significantly smaller than the
number of variables exposed by previous systems, and enables
Vuvuzela to focus on minimizing the useful information that
an adversary can learn from these variables.

Second, Vuvuzela adopts ideas from differential privacy [4]
to state precise privacy guarantees, and to bound information
leakage over time by adding noise to the observable variables
with cover traffic. Vuvuzela ensures that regardless of whether



any given user is active or not, the value of every observ-
able variable has near equal probability of being observed
by an adversary. This means that the adversary cannot learn
who, if anyone, a given user is talking to. Somewhat counter-
intuitively, the amount of cover traffic required is constant—
independent of the number of users or messages—and we find
that it is manageable in practice. Adding noise to achieve dif-
ferential privacy is tractable for the small number of variables
exposed by Vuvuzela, but it was not feasible for prior systems
that expose many distinct variables.

Communicating via mailboxes. To minimize observable
variables, Vuvuzela does not let users communicate directly,
but instead uses a mailbox design, where servers never have
to initiate connections back to clients. The way two users
communicate in this protocol is reminiscent of a “dead drop.”
Users pick some mailbox as a meeting spot, and perform an
exchange operation on that mailbox. The exchange operation
places a new message in a mailbox, and retrieves whatever
message was placed there by another user. If two users per-
form an exchange on the same mailbox, they receive each
others’ messages. This protocol repeats in rounds, which we
expect to be on the order of tens of seconds. Thus, if Alice
and Bob want to communicate, then each round, each of them
exchanges the message they want to send (if any) with the
mailbox, and each will receive the other’s message as a result.

Masking observable variables. The above mailbox ap-
proach forms the basis of our protocol, but still allows an
adversary to observe three sets of variables, which we briefly
describe how to eliminate or mask:

1. Which users participated in the protocol each round. To elimi-
nate this variable, all users always perform an exchange with
a mailbox, even if they are not in an active conversation.

2. Which mailbox each user accessed. To eliminate the observ-
able connection between the sender of a message, the mailbox
that the message is placed in, and the eventual recipient of
the message, the Vuvuzela servers form a mixnet that shuffles
the messages (Figure 1). As long as one server is uncompro-
mised, adversaries cannot link each message to a mailbox. To
ensure that the adversary cannot learn anything from the IDs
of the mailboxes accessed, each pair of communicating clients
chooses a pseudo-random mailbox ID each round, using a
shared secret based on their public keys and the round number.

3. How many mailboxes were accessed by two users. While it
may seem that unlinking users from mailboxes is enough to
achieve privacy, an adversary can still learn something from
statistics about messages exchanged. E.g., if the adversary
suspects that Alice and Bob are talking, she can try knocking
Bob offline and seeing whether the total number of mailboxes
with two accesses decreases. To mask this variable, each
server adds cover traffic messages to random mailboxes (some
paired, some not). We use results from differential privacy to
set the amount of traffic so that, if at least one server is honest,
its traffic is enough to mask the activity of any single user.

0 s

10 s

20 s

30 s

40 s

50 s

60 s

0.0 500.0k 1.0M 1.5M 2.0M

En
d-

to
-e

nd
 la

te
nc

y 
fo

r
on

e 
co

nv
er

sa
ti
on

 r
ou

nd

Number of online users, equal to number of messages / round

Figure 2: Performance of Vuvuzela’s conversation protocol with three servers.
Every user sends a message every round; two-thirds of them are active con-
versations, and one-third is not (but each of these inactive users still sends a
message to a random mailbox).

3 Preliminary Results
To understand whether this design is viable, we implemented
a prototype of Vuvuzela, and ran it on Amazon’s 36-core EC2
servers (since our prototype is CPU-heavy). With 1 million
simulated users, we achieved a throughput of 15,000 messages
per second and a latency of 44 seconds, as shown in Figure 2.

To achieve these results, the amount of cover traffic we
needed to add was equivalent to about 300,000 users per Vu-
vuzela server, or half the traffic in this case. However, this
amount is constant regardless of the number of users, allowing
Vuvuzela to scale further. We can further increase throughput
by using multiple physical machines per Vuvuzela server.

We believe these results are encouraging, since they indicate
Vuvuzela can scale to a reasonable number of users, and its
latency may be acceptable for email-like messaging or chat.

References
[1] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and trade-

offs in anonymity providing systems. In Proc. of the Workshop on
Information Hiding, pages 245–257, Pittsburgh, PA, Apr. 2001.

[2] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous
messaging system handling millions of users. In Proc. of the 36th IEEE
Security and Privacy, San Jose, CA, May 2015.

[3] G. Danezis. Measuring anonymity: a few thoughts and a differen-
tially private bound. In Proc. of the DIMACS Workshop on Measuring
Anonymity, May 2013.

[4] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9
(3-4):211–407, 2014.

[5] M. Hayden. The price of privacy: Re-evaluating the NSA. Johns Hop-
kins Foreign Affairs Symposium, Apr. 2014. https://www.youtube.
com/watch?v=kV2HDM86XgI&t=17m50s.

[6] A. Langley. Pond, 2015. https://pond.imperialviolet.org/.
[7] N. Mathewson and R. Dingledine. Practical traffic analysis: Extending

and resisting statistical disclosure. In Proc. of the Privacy Enhancing
Technologies Workshop, pages 17–34, May 2004.

[8] A. Rusbridger. The Snowden leaks and the public. The New York Review
of Books, Nov. 2013.

[9] L. Sassaman, B. Cohen, and N. Mathewson. The Pynchon gate: A secure
method of pseudonymous mail retrieval. In Proc. of the Workshop on
Privacy in the Electronic Society, Arlington, VA, Nov. 2005.

[10] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in
numbers: Making strong anonymity scale. In Proc. of the 10th OSDI,
Hollywood, CA, Oct. 2012.

https://www.youtube.com/watch?v=kV2HDM86XgI&t=17m50s
https://www.youtube.com/watch?v=kV2HDM86XgI&t=17m50s
https://pond.imperialviolet.org/

	Introduction
	System Design
	Preliminary Results

