
Proceedings on Privacy Enhancing Technologies ; 2016 (4):255–275

Pierre-Alain Fouque, Cristina Onete, and Benjamin Richard

Achieving Better Privacy for the 3GPP AKA Protocol
Abstract: Proposed by the 3rd Generation Partnership
Project (3GPP) as a standard for 3G and 4G mobile-network
communications, the AKA protocol is meant to provide
a mutually-authenticated key-exchange between clients and
associated network servers. As a result AKA must guar-
antee the indistinguishability from random of the session
keys (key-indistinguishability), as well as client- and server-
impersonation resistance. A paramount requirement is also
that of client privacy, which 3GPP defines in terms of: user
identity confidentiality, service untraceability, and location
untraceability. Moreover, since servers are sometimes un-
trusted (in the case of roaming), the AKA protocol must also
protect clients with respect to these third parties. Following
the description of client-tracking attacks e.g. by using error
messages or IMSI catchers, van den Broek et al. and respec-
tively Arapinis et al. each proposed a new variant of AKA, ad-
dressing such problems. In this paper we use the approach of
provable security to show that these variants still fail to guar-
antee the privacy of mobile clients. We propose an improve-
ment of AKA, which retains most of its structure and respects
practical necessities such as key-management, but which prov-
ably attains security with respect to servers and Man-in-the-
Middle (MiM) adversaries. Moreover, it is impossible to link
client sessions in the absence of client-corruptions. Finally, we
prove that any variant of AKA retaining its mutual authenti-
cation specificities cannot achieve client-unlinkability in the
presence of corruptions. In this sense, our proposed variant is
optimal.

Keywords: privacy, security proof, AKA protocol

DOI 10.1515/popets-2016-0039
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction

Authenticated key-exchange (AKE) protocols address a fun-
damental goal in cryptography, namely that of allowing two
parties to communicate securely over an insecure channel (like
the Internet, a radio-frequency channel, or a mobile telecom-
munications network). Such protocols are constructed in two

Pierre-Alain Fouque: Université de Rennes 1/ IRISA,
pa.fouque@gmail.com
Cristina Onete: INSA Rennes/IRISA, cristina.onete@gmail.com
Benjamin Richard: Orange Labs, benjaming.richard@orange.com

steps. First, the two parties exchange information that allows
them to establish several short-term session keys. These are
later used to secure and authenticate data exchanged between
the parties. AKE schemes ensure that sensitive data or services
are securely provided from a server to a legitimate client.

In the context of mobile networks, mobile services, such
as calls, SMS privileges, or Internet use, are granted to
clients over a secure channel, following an authenticated key-
exchange protocol called AKA1. This protocol was intro-
duced by the Third Generation Partnership Project (3GPP),
which wrote and has been maintaining the specifications of 3G
telecommunication systems. Note that mobile services must be
provided both in domestic, and in roaming scenarios, and only
to clients who are entitled to them. Moreover, the nature and
destination of such services should remain private.

The AKA protocol. The AKA scheme was developed at the
end of the previous century, and is symmetric-key only. The
mobile-network context imposes a peculiar architecture to the
AKA design. Thus, typical 3G and 4G networks involve three
types of participants. Mobile clients may subscribe to a sin-
gle operator, thus becoming entitled to mobile services. The
latter are provided across a secure channel, not by the opera-
tor, but by an intermediate local network operator that we call
a server. In domestic scenarios, the server and operator are
affiliated together, and can thus both be trusted. In the case
of roaming, the server is associated to a different operator and
only trusted to provided services, not to know the client’s long-
term secret values (known only to the client and the operator).
Servers do know the short-term secret values necessary for the
secure-channel establishment, in order to then provide the ser-
vice. The AKA setting requires three participants, unlike the
classical two-party AKE setting.

The AKA scheme relies on two long-term symmetric
keys. As a peculiarity of the subscriber-operator architecture,
clients are associated both with a unique client-key and with
their operator’s key. Since this key is shared between a po-
tentially very large number of users, the clients store a value
derived from both keys denoted TopC , and the subscriber key.
only a (one-way) function of this, and the client-key.

Three crucial constraints influenced the design of AKA
in the 1990s. At that time (and even to the present day)

1 Despite the similarity of the acronyms, the AKA protocol is only an
example of an AKE scheme. Other examples are for instance TLS/SSL or
PACE/EAC.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 256

SIM cards could not generate (pseudo)random numbers2. As
a result of this limitation, the freshness of each session had
to be guaranteed without user-generated nonces. As a sec-
ond constraint, note that the communication between servers
and operators is financially expensive, thus to be minimized.
We note that some communication between these two par-
ties is inevitable, since the server is untrusted, but must still
be able to authenticate to the client as legitimate. In the case
of AKA, operators minimize costs by generating batches of
authentication vectors, containing short-term authentication
and key-establishment values, but hiding the client’s long-
term secrets. Finally, the protocol is run over notoriously-noisy
communication-channels, and it must thus be robust with re-
spect to noise. As a result, AKA was designed to be stateful,
allowing the two parties to authenticate to each other by means
of a sequence number, which can be updated at each execution.
Resistance to noise translates to a tolerance interval for the au-
thenticated sequence number, which allows some leeway for
each executions. Finally, in case the two parties become desyn-
chronized, a procedure is provided to re-synchronize them.

In order to preserve client privacy, client are associated
with several identifiers. Apart from the permanent, unique
identifier called an IMSI, the client is also associated (by the
servers) with temporary identifiers TMSI, which are unique
per server. In an initial identification phase, the server must as-
certain the IMSI of the client, which the operator must know to
generate the authenticated key-exchange data. However, since
IMSI values are permanent and recognizable, clients can use
their TMSI values instead. A new TMSI value is sent en-
crypted, but not authenticated, as part of the secure-channel
data. Servers must store the TMSI values for each client that
authenticates to them; moreover, the TMSI value that was last
associated with a given IMSI is kept for a longer time, since it
may be demanded by another server. Finally, as a backup, in
case a TMSI value is not found, or not recognized, the server
will also accept an identification by IMSI.

AKA Requirements. Apart from several security require-
ments, such as guaranteeing the secure delivery of services,
as well as client-to-server and server-to-client authentication,
an important additional concern for 3G/4G communication is
that of client privacy. The 3GPP specifications [1] specifically
demand: “user identity confidentiality”, “user untraceability”,
and “user location confidentiality”, which are all formulated
with respect to passive third-party eavesdroppers. The first no-
tion requires that such an adversary may not learn the perma-
nent user identifier IMSI of a client; the second refers to an

2 However, the next-generation SIM cards are able – and in fact expected
– to be able to perform such computations [5].

adversary’s ability of learning whether a given client uses the
same, or different services3; and finally the third requires that
adversaries cannot learn a client’s location (since the servers
running the protocol are area-specific).

These explicit requirements ensure a minimal amount of
client privacy. The AKA protocol was moreover designed to
guarantee a measure of security against corrupted, or mali-
cious servers. This requirement is particularly relevant in the
case of roaming, in which case the server may be untrusted or
more vulnerable. We consider the three-party architecture with
possible server corruptions and formulate security with respect
to servers in two properties, namely: (i) state-confidentiality:
the property that servers cannot learn the client’s secret key, the
operator’s secret key, nor the client’s state; (ii) soundness: that
servers cannot in fact successfully run a key-exchange proto-
col with the client unless aided by the operator.

Protocol vulnerabilities. In this paper we focus on the (prov-
able) privacy of AKA, but also consider its security. Three
attacks in the literature, namely IMSI catcher attacks [8],
IMSI paging attacks [13, 27], and impersonation by server-
corruption [20], already prove that AKA does not offer the de-
sired degree of client privacy. IMSI catchers allow passive and
active adversaries to track clients by exploiting the fact that
during the protocol run, the server will require clients to send
their permanent identifier IMSI if the TMSI value cannot be
traced back to an IMSI. IMSI paging attacks exploit the lack
of authentication in the TMSI-reallocation message.

Zhang et Fang [20] note than in the case of roaming, the
local server providing mobile services may be poorly secured
and corruptible. An immediate consequence is that the data
transmitted over the secure channel by this server can be com-
promised; however, Zhang et Fang also showed that the danger
persists even after the client has left the area serviced by the
corrupted network, since the latter can impersonate the legiti-
mate server in a new, uncorrupted, strongly-secured network.

An older work by Ateniese et al. [4] examines the prob-
lem of untraceable mobility, in particular noting an informal
paradigm: nobody but the client should know both the client’s
identity and location at the same time. In this context, they pro-
vide solutions to achieving better privacy in 3-party settings;
however, these solutions are extremely generic, which makes
them hard to immediately to AKA. Moreover, note that server-
operator communication takes place across a channel that is
implemented differently in practice by different operators. The

3 The exact 3GPP wording allows two interpretations. One is that an
adversary must not distinguish between two possible services used by
the same user; the other interpretation is that adversaries must not know
whether a single, known service is provided to two different clients or to
the same client. We formalized this property following the first meaning.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 257

protocols proposed by [4] require this channel to be imple-
mented in a specific way. Finally, we note that, while highly
worthwhile, the goal of preventing operators from learning a
client’s operator is incompatible with the way authentication is
currently done in the AKA protocol (operators need to prepare
session information for servers, across a secure, and mutually
authenticated channel which forcibly reveals the identity – and
implicitly the location of the server).

Although the AKA protocol was designed to protect client
privacy, several attacks can be run on the physical layer or by
using side-channel information. Since we focus only on the
privacy of AKA at the protocol layer, this type of attacks are
out of scope. Another class of attacks that are out of scope
are those exploiting faulty TMSI reallocation choices (e.g.,
TMSIs not updated sufficiently often, or according to pro-
tocol), denial-of-service by jamming, or attacks enabled by
version-shifting (forcing the user to employ a weaker, more
vulnerable version of the protocol on 2G and 3G, rather than
4G) [27]. Such attacks, however, should encourage a closer ex-
amination of backward compatibility between AKA versions.

We outline further vulnerabilities, e.g. [20, 28, 29]. in Ap-
pendix A, and show that as a consequence, the AKA protocol
does not attain even the basic-most privacy requirements out-
lined by 3GPP. This suggests the need for stronger security.

Client indistinguishability. Motivated by a hightened con-
cern for client privacy, Arapinis et al. [22] were the first to
consider the notion of untraceability of clients with respect to
external adversaries. They exploited the fact that adversaries
can induce faulty behaviour (resynchronization) and then dis-
tinguish a client that is forced to perform this operation from a
fully synchronized one. They modified the protocol to address
this, and gave a formal-security proof using ProVerif. How-
ever, this proof idealizes the long-term state used in the pro-
tocol runs, making it unclear how far the guarantee holds for
the true scheme. As we show in this work, their variant does
not in fact guarantee user untraceability. The attack we present
breaks client-indistinguishability by exploiting the fact that an
adversary can forge the encrypted IMSI message proposed by
Arapinis et al. In work orthogonal to ours, Khan et al. [13] also
critically examined the variant of [22], pointing out impracti-
calities and security/privacy failures. An important criticism
addresses the PKI for clients and servers; as we explain be-
low, in our own variant, we minimize the modifications both
in terms of computation and administration costs.

Lee et al. [18] consider the untraceability of the 4G LTE
(Long-term Evolution) protocol (similar to AKA, but with a
different identifier- and key-management), but do not focus on
the handshake itself. Their main result is that in the absence
of server corruptions, LTE is (weakly) untraceable against an
active MiM adversary. They focus on the security of TMSI

values, and their retransmission, but surprisingly their model
cannot capture IMSI-catcher attacks (which directly impact
privacy without server corruptions). The reason is that Lee et
al. assume that the TMSI reallocation and usage is perfect in
the sense that a TMSI value will always lead to the legitimate
IMSI value, and that once the TMSI allocation process starts,
the IMSI will never again be demanded. This is not true for
the AKA procedure, for which, if the active attacker replaces
the TMSI with a random message, the server will demand the
client’s IMSI in clear. Lee et al. do not capture the attack by
Arapinis, since they do not model desynchronizations, and
they reduce the three-party setting to just two parties, by as-
suming that the server and the operator are the same entity4.
Their security proofs rely on an assumption on the underlying
cryptographic functions used in the protocol, but they did not
study whether TUAK and MILENAGE (the two current instan-
tiations of the cryptographic cipher suites) actually guarantee
the required properties.

Finally, the AKA scenario is one use-case of the more
generic constructions of anonymous, secure and authenticated
channels presented by Alwen et al. [3]. However, their security
model was conceived for, essentially, a two-party scenario (the
ideal resource has interfaces to the eavesdropper, clients, and
servers, but not operators). It is not clear, moreover, that Con-
structive cryptography (CC) supports adaptive corruptions. Fi-
nally, we note that the schemes of [3] rely on a primitive called
key-indistinguishable MACs (KI-MACs), esssentially MACs
that leak no information about the used keys. In our work, we
tried to keep as close as possible to the presently-used algo-
rithm suites used in AKA, namely TUAK and MILENAGE.
This precludes the use of KI-MACs. However, a main sub-
result of this paper is a sufficient security requirement for the
cryptographic algorithms. It would be interesting to explore
whether KI-MACs could be used to modify existing suites or
provide new ones.

Our contributions. We have two main contributions. The first
is to show that the AKA protocol and two more promising im-
provements in the literature do not guarantee client-privacy,
nor security with respect to the server. As a consequence, our
second main contribution is to present a variant of the AKA
which provably guarantees the following five properties:
– Wide-weak client-unlinkability: client sessions must be

unlinkable to a MiM attacker (no corruptions allowed);
– Key-indistinguishability: the derived session keys must be

indistinguishable from random to MiM adversaries;

4 In the absence of corruption, this treatment is justified, but it is incom-
plete in terms of real-world implementations.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 258

– Client/server-impersonation security: no MiM adversary
can impersonate either a client or a server;

– State-confidentiality: a malicious server cannot learn the
client’s long-term secret values;

– Soundness: without the operator’s help, no malicious
server can authenticate to the client.

As an additional main result, we also prove that achieving a
stronger degree of client-unlinkability (see below) is impossi-
ble while the AKA protocol retains its current structure. Conse-
quently, the degree of unlinkability we achieve is in that sense,
optimal.

A precise formalization. As an implicit, but significant contri-
bution we formalize the five security and privacy properties
outlined above. Consequently, we are able to describe two at-
tacks against AKA, one against client-unlinkability, the other
against soundness; then we also proceed to show that the pro-
posed AKA improvements of Arapinis et al. [21] and van den
Broek et al. [9] are not client-unlinkable.

This precise formalization also allows us to find a gap
in an impossibility result regarding client-unlinkability in
the presence of corruptions for mutually authenticated proto-
cols [24]. We formulate a different impossibility result, which
is more precise, and also more generic in the case of the AKA
protocol. Another main contribution of this paper is to extend
the narrow-forward-privacy impossibility result for a broader
class of protocols including AKA and its variants.

Our improvement. Our improved variant of the protocol
mostly retains the symmetric character of the current version.
We allow TMSI values to be backed up by IMSIs; however, we
bypass IMSI catcher attacks by sending IMSIs encrypted with
a public-key IND-CCA-secure encryption scheme. We assume
each operator has a PKE key-tuple, and each client stores the
public key of the operator; this minimizes key-management
problems. We note that, just as for the AKA protocol, we
only use the (encrypted) IMSI value as an alternative for the
randomly-chosen temporary identifier values TMSI. However,
we choose to update the current TMSI value by using authen-
ticated encryption (AES-GCM) as part of the server’s authen-
tication message. The PKE scheme is also used when mov-
ing from area to area: thus, if the client switches from one
server (in a given location) to another (in another location),
the TMSI is not used. This allows us to reveal only the cur-
rent area that the server is in, rather than the client’s past lo-
cation (as is the case for the current version of AKA); further-
more, we minimize the duration for which TMSI values must
be stored by servers. On the other hand, in order to preserve
client-unlinkability, we require that TMSI values are at least
as long (large) as the output of the PKE encryption.

We retain the structure of the authenticated key-exchange
part of AKA, using the client- and operator-state to authenti-
cate the two parties and the derived session keys. We show
that while this feature of the AKA protocol reamins in use, no
client-untraceability can be achieved in the presence of corrup-
tions. By removing the need for re-synchronization, we also
implicitly prevent attacks which link client sessions depending
on whether or not the re-synchronization procedure is used.

We note that our improvement follows guidelines by one
of the leading mobile service providers in Europe [23]. Table 1
compares our proposal to the AKA protocol and to the two
more promising variants we also analyze in this paper.

2 Privacy model

2.1 3GPP Privacy requirements

AKA Infrastructure. The mobile context for which the AKA
protocol was designed contains three entities: (1) clients,
which register with operators and are allowed to access a sub-
set of services; (2) operators, which know the secret parame-
ters of all their registered clients; and (3) local servers, which
are tasked with providing services to mobile clients, but are
not trusted to know the clients’ personal information. In the
AKA literature, opeators are usually called home local regis-
ters (HLR), while servers are known as VLR.

The security demands of 3G/4G networks are client-
centric, revolving around the following parameters related to
mobile clients (users) C:
IMSI : a permanent identifier, unique per customer and highly

trackable;
TMSI : a temporary identifier, unique per server, and updated

after each successful protocol run;
LAI : a unique local-area identifier per server; client store

(TMSI, LAI) tuples whenever a server issues a new TMSI;
skC : the client’s unique client key;
skop : the key of the operator C subscribes to;
SqnC,SqnOp,C : the client’s state SqnC has an equivalent op-

erator state SqnOp,C, which should not be “too far” from
the client’s state. The state is updated by the client upon
authenticating the server (correct verification of the au-
thentication challenge); the server updates state upon au-
thenticating the challenge (verification of the authentica-
tion response).

We refer the reader to Section 3.1 for more details about the
protocol description.

The identifier and key-management schemes are as fol-
lows. Clients may know the permanent value IMSI, the

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 259

Defeating: Security:
Attack n◦1 Attack n◦2 Attack n◦3 Prop. n◦1 Prop. n◦2 Prop. n◦3 Prop. n◦4 Prop. n◦5

3G AKA x [9] x [22] x x x x ? ?
Arapinis X [22] X [22] x X x x ? X∗ [22] 5

Van Den Broek X [9] x X X x x ? ?
Our variant X X X X X x X X

Attack n◦1: IMSI Catcher § 3.2. Prop. n◦1: Confidentiality of the previous location §2.
Attack n◦2: Linkability of failure messages § 3.2. Prop. n◦2: ww-unlink §2.2.
Attack n◦3 : Our traceability attack § ??. Prop. n◦3: nf-unlink §2.2.
Prop. n◦4: State-confidentiality & soundness §2.2. Prop. n◦5: Key-indistinguishability & Client- and Server-impersonation §2.2.

Fig. 1. Comparison between several AKA variants. For attacks, a X denotes the protocol resists the attack, while x denotes a vulnera-
bility; for properties, a x denotes the property is not achieved, while a X indicates security with respect to that property.

temporary identifiers TMSI and LAI, the keys skC, skop
and a function of skC and skop (they do not store skop
in clear, as discussed in section 3.1). Operators know
the tuple: (IMSI, skC, skop). Servers keep track of tuples
(TMSI, LAI, IMSI). Furthermore, both servers and operators
know the sequence number that the operator associated to each
client. The clients update their own sequence numbers, which
are highly related to the operator’s sequence number.

Very notably, servers must both authenticate and ex-
change session keys with mobile clients, despite not knowing
their secret material.

Client Privacy. The Third Generation Partnership Project
(3GPP), which designed the AKA protocol in the TS.33.102
specification [1], lists the following privacy requirements:
– user identity confidentiality: specifically, ”the property

that the permanent user identity (IMSI) of a user [...] can-
not be eavesdropped on the radio access link.”

– user untraceability: namely, ”the property that an in-
truder cannot deduce whether different services are de-
livered to the same user by eavesdropping on the radio
access link.”

– user location confidentiality: in particular, ”the property
that the presence or the arrival of a user in a certain area
cannot be determined by eavesdropping on the radio ac-
cess link.”

The requirements quoted above are quite informal; moreover,
the nomenclature is confusing, since in the provable-security
literature, untraceability refers to adversaries tracing clients in
distinct protocol runs (rather than it being service-related). We
discuss the three requirements below, then formalize them into
cryptographic requirements.

User identity confidentiality concerns only the client’s
permanent IMSI value (not, e.g. the client’s sequence num-
ber) with respect to passive attackers (rather than active ones).
However, mobile networks are notoriously prone to Man-in-

the-Middle (MiM) active attacks like the IMSI catcher [8],
which allows a third party (the MiM) to recover a client’s
IMSI. Another highly-trackable client-specific parameter is the
sequence number Sqn, whose updating procedure is very sim-
plistic and its output, predictable even without a secrey key. As
a consequence we require the stronger property of provable
unlinkability, which ensures that even an active MiM cannot
link two AKA protocol runs to the same client.

For user untraceability, no attacker must know whether
the same service (i.e. any message-exchange over the secure
channel) is provided to a client multiple times. From the
point of view of provable security, this is equivalent to key-
indistinguishability if the authenticated-encryption algorithms
are assumed to be secure.

User location confidentaility demands that eavesdroppers
A cannot detect the presence of a client in a given area; how-
ever, the definition does not specify what information A links
to each client (e.g. the IMSI, the sequence number, etc.). At-
tackers are aware of the current LAI; the difficulty lies in learn-
ing which clients enter the area. Unfortunately the AKA proto-
col always reveals the past location of any arriving client, mak-
ing unique (or rare) itineraries stand out. We formalize a strong
degree of location privacy as a part of client-unlinkability.

Our formalizations of client unlinkability and key-indis-
tinguishability consequently guarantee 3GPP’s three privacy
requirements.

Implicit requirements. As discussed in Section 1, the AKA
protocol implicitly addresses security with respect to mali-
cious servers, which are restricted as follows: (1) the servers
have no access to the tuple (skC, skop); (2) the (hence nec-
essary) operator-server communication must be minimized in
order to minimize costs.

We formulate the following two implicit requirements:
– State-Confidentiality: Servers must not learn any client-

related long-term state.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 260

– Soundness: Clients must reject authentication-challenges
not explicitly provided by the operator to the server.

2.2 Security models

Due to their orthogonality, it is hard to formalize key-
indistinguishability and client-unlinkability in the same
generic framework. Indeed, the unlinkability notion requires
the adversary to have access to clients without knowing
their identities. We follow established approaches [11, 26]
and associate clients in the unlinkability model with iden-
tifiers (handles) denoted VC (Virtual Client); this changes
the oracle syntax. Thus, we differentiate between the model
for security (including key-indistinguishability, client- and
server-impersonation resistance against MiM attackers, and
state-confidentiality and soundness with respect to malicious
servers), and that of client-unlinkability, using similar oracles
with a different syntax. Due to space restrictions, we include
only intuitive descriptions of the oracles, leaving the full for-
malization to the full version.

Setup and participants. We consider a set P of participants,
which are either a server Si or a mobile client Ci. Opera-
tors Op are not modeled as active parties: for all the games
except state-confidentiality and soundness, the operators Op
are black-box algorithms within the server S; in those two
games, Op are oracles, which the adversary (i.e. the server)
may query. We assume the existence of nC clients, nS servers,
and nOp operators. We assume that all “copies” of the operator
are synchronized at all times, though their outputs might de-
pend on which server queries them. We associate each client
with: long-term keys (skC, skop); an ephemeral state stC equal
to the sequence number SqnC; the identifiers IMSI (perma-
nent) and TMSI (temporary); and a tuple of a current-, and
a past local area identifier, denoted past.LAIP and curr.LAIP.
Servers are associated with a permanent local area identi-
fier LAI and a unique network identifier IDSi ; they also keep
track of a list of tuples (TMSI, IMSI) associated with clients.
Each of the at most nS servers has black-box access to al-
gorithms (or oracles for state-confidentiality and soundness)
Op1, . . . ,OpnOp , initialized with long-term keys (skOpi

) and
tuples (IMSI, skC,SqnOp,C). We also assume that the key
space of all operators is identical (otherwise it becomes eas-
ier to distinguish between clients of different operators).

Client-Unlinkability. Informally, a protocol Π is client-
unlinkable if no adversary can know whether two runs of Π
involve the same, or by two different clients. Sessions asso-
ciated with the same client are called linked. Following pre-
vious work by Vaudenay [26] and Hermans et al. [11], we
give the adversary access to a left-or-right oracle associating

an anonymized handle VC to one of two possible clients (in-
put by the adversary). We moreover account for client mobil-
ity, giving the adversary access to a relocation oracle. If an at-
tacker can distinguish between clients based on their location,
she wins the unlinkability game detailed below.

At the onset of this game, the set of clients is empty
and we choose the operators’ secret keys. The adversary can
initialise servers by choosing their locations, and it can cre-
ate clients to populate the system it attacks. Each newly-
created client has a past location past.LAIC set to ⊥, and an
adversarially-chosen current location. The adversary interacts
with clients by using the oracles below. Clients can be “drawn”
or “free”; at creation, all clients are “free”, and they may be-
come “drawn” if used as input to a left-or-right Client-Drawing
oracle6. Only free clients can be drawn. The left-or-right ora-
cle associates a handle VC to either the left or the right input
client, depending on a secret bit b. The adversary’s goal is to
guess this bit. The client-unlinkability property is more for-
mally defined below.
– The challenger randomly chooses b ∈ {0, 1} and instanti-

ates all the operators.
– The adversary uses the oracles below (depending on ad-

versarial class); the challenger answers the queries.
– The adversary outputs a guess d of the bit b.

The adversary wins if and only if d = b, and her winning
advantage against a protocol Π is:

Ac.unlink
Π (A) := |Pr[A wins Expc.unlink

A (1λ)]− 1
2 |.

Following [11, 26], we call an adversary narrow if she
cannot learn whether a protocol run was successful (she can-
not query Result). The opposite of narrow are wide adver-
saries. Adversaries are also classified in terms of their use of
the Corrupt oracle: attackers that cannot corrupt clients are
called weak; they are forward if any corruption query may only
be followed by more corruption queries (the adversary cannot
free or interact with clients or servers); or strong if their access
to oracles is unrestricted.

3GPP only formulates queries with respect to “eavesdrop-
pers on the radio link”, i.e. narrow/wide-weak adversaries that
are passive. In this paper, we also consider active weak attack-
ers and obtain a better privacy guarantee.

Formalization. We quantify adversaries in terms of: adver-
sarial class, which we abbreviate to α-c.unlink, with α ∈
{nw,ww, nf,wf} (for narrow/wide-weak, and narrow/wide-
forward adversaries); execution time is t; maximum number

6 We use this state to rule out trivial attacks in which an adversary can
distinguish a client simply because it is not in its original state (having
already started the protocol run beforehand).

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 261

qexec of sessions instantiated per client C; maximum number
qid of user identification per session; and the maximum num-
ber qG of queries to the function G. We formalize the follow-
ing definitions.

Definition 1. [Weak Unlinkability] A protocol Π
is (t, qexec, qid, qG , ε)-nw/ww-client-unlinkable if no
narrow/wide-weak-adversary running in time t, creating at
most qexec sessions with qid user-identifications per session,
and making at most qG queries to G, has an advantage
Advw.c.unlink

Π (A) ≥ ε.

We define forward adversaries similarly.

Oracles. The adversary may use the following oracles, in addi-
tion to a function G modeled as a PRF, which ”encompasses”
all the AKA cryptographic functions:

– CreateCl(Op, LAI): creates a new, legitimate, free client
labeled Ci at a location LAI for which a server is already
defined (else the oracle outputs⊥). The adversary is given
IMSI, stCi

, and the label Ci (used later to select clients).
– CreateS(LAI): creates a server Si at a new location LAI.
– Launch(VC,Sj): instantiates a new session (labeled by a

unique identifier s) between the client associated with VC
and the server Sj . It outputs s and an initial protocol mes-
sage m from Sj to VC.

– DrawCl(Ci,Cj): on input free clients Ci,Cj with a same
operator and LAI, generate a handle VC to be associated
with either Ci or with Cj depending on a secret bit b. The
value VC is output.

– FreeVC(VC): frees the two clients queried to get VC,
aborting any outstanding sessions.

– Relocate(VC, LAI∗): modifies the current location of the
two clients associated with VC to LAI∗, and aborts running
executions of VC.

– Send(P, s,m): sends message m in session s either to a
virtual client VC or to a terminal S, outputting a response
message m′.

– Execute(VC, S, s): simulates a protocol run between the
client associated with VC and the server S, outputting
transcript τ .

– Result(P, s): returns a bit indicating the accep-
tance/rejectance by party P of its partner in session s.

– Corrupt(C): returns the full state, identifiers, and location
information of client C.

MiM Security. The notion of key-indistinguishability requires
that the session keys computed in the handshake be indistin-
guishable from random bitstrings of equal length. We use an
(unanonymized) subset of the oracles above and give the ad-

versary the ephemeral state (the sequence number) of both
clients and servers. Corrupted parties are adversarially con-
trolled.

We consider multiple protocol executions, and talk about
party instances Pi, each corresponding to a single session
of party P. For key-indistinguishability, clients are associated
with unique identifiers UID and we abstract away location
data. Sessions have identifiers sid consisting of: the client’s
UID (and implicity skUID), the server identifier IDSi , the ran-
domness generated by the server, and the sequence number
used for the authentication. Each party instance also keeps
track of a partner ID pid; partners are defined as parties that
share the same session ID. Finally each party instance has
an accept/reject bit denoting whether they terminated in an
accepting state (authenticating their partner as legitimate and
computing the session keys).

The key-indistinguishability game begins by generating
the keys for all the operators and servers. Each server is as-
sumed to internally keep track of nOp operator algorithms,
which it queries in a black-box way. The algorithms may re-
turn different output depending on the server in which they
run, but they are synchronized with respect to client states. The
adversary may create clients, registering them with operators,
she may create party instances, may run concurrent sessions
with instances of servers and clients, may corrupt clients or
servers, and will finally issue a single Test query, which returns
either the real or the random keys of a fresh session. Namely,
neither partner must be corrupted or adversarially controlled,
and we also rule out trivial wins due to key-reveal queries. If
we consider server corruptions, the adversary may query oper-
ator algorithms initialized for that server.

The full formalization can be found in [10]. For key-
indistinguishability, the adversary’s advantage is:

AdvK.Ind
Π (A) := |Pr[A wins]− 1/2|.

Definition 2. [Key-indistinguishability.] A key-
agreement protocol Π is (t, qexec, qid, qserv, qOp, qG , ε)-key-
indistinguishable if no adversary running in time t, creating
at most qexec party instances with qid user identification per
instance, corrupting at most qserv servers, making at most qOp
OpAccess queries per operator per corrupted server, and at
most qG queries to G, has an advantage AdvK.Ind

Π (A) ≥ ε.

We define impersonation security in an analogous way for a
different notion of freshness (we rule out relay attacks). We de-
fer the precise definition of this property to the full paper [10].

Security w.r.t. servers. For the notions of soundness and
state-confidentiality, the adversary is a malicious, but legit-
imate, unique server S. Though 3GPP specifications allow
servers to communicate with each other, how they do this is

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 262

not apparent. We use the OpAccess oracle to give the server
access to operators on specific clients, but change the syntax
so that the oracle takes as input only a client identifier C, and
outputs material only for a single protocol session sid. The ad-
versary uses the Send, CreateCl, NewInstance, Execute, and
StReveal oracles as described in the key-secrecy model. We
additionally modify the Corruption oracle as follows:
– Corrupt(P) → skP: if P is a client, behave as before.

If P is an operator, return skop and the list of tuples
(UID, skUID, stOp,C) for all clients C subscribing with that
operator.

Key-indistinguishability addresses the security of session
keys with respect to MiM adversaries; by contrast, state-
confidentiality demands that long-term client state remains
confidential with respect to malicious servers. The game be-
gins with instantiating operators and clients. Then the adver-
sary interacts arbitrarily with these entities, finally outputting
a tuple of four values: a client identifier, a client key, an oper-
ator key, and a client or operator state, winning if at least one
of the latter four values is correct. Neither the target client, nor
its operator, must not be corrupted.

Definition 3. [State-Confidentiality.] A key-agreement
protocol Π is (t, qexec, qid, qOp, qG , ε)-state-confidential if no
adversary running in time t, creating at most qexec party
instances, with at most qid user identification per instance,
making at most qOp queries to any operator Op, and mak-
ing at most qG queries to the function G, has an advantage
AdvSt.conf

Π (A) ≥ ε.

In the Soundness game, no server must be able to make a
fresh client instance terminate in an accepting state without
help from the operator. This game resembles impersonation-
security, but with respect to a legitimate server with access
to operators. The adversary may interact with oracles in the
soundness game arbitrarily, but we only allow a maximum
number of qOp queries to the OpAccess oracle per client. The
adversary wins if there exist (qOp +1) fresh client instances of
a given client which terminated in an accepting state. Fresh-
ness is defined as in the impersonation game. The advantage
of the adversary is defined as:

AdvS.sound
Π (A) := Pr[A wins].

Definition 4. [Soundness.] A key-agreement protocol Π is
(t, qexec, qid, qOp, qG , ε)-server-sound if no adversary running
in time t, creating at most qexec protocol instances, with at
most qid user identification per instance, making at most qOp
queries to any operator Op, and making qG queries to the func-
tion G, has an advantage AdvS.sound

Π (A) ≥ ε.

3 The AKA protocol

3.1 Description of the AKA protocol

The AKA protocol used by 3G (and 4G) networks, which is
fully depicted in the full version, is used to establish secure
channels between mobile clients and servers. Ultimately, the
server must transmit mobile services to the client over the se-
cure channel.

Client Server Operator

1) User Identification

2) Pre-computed batch of AV

3) AKE

4) Re-synchronization

5) TMSI Re-allocation

Fig. 2. The five phases of the AKA Procedure.

This protocol is actively run by clients and servers in the
(selectively-active) presence of an operator. Servers and opera-
tors communicate over a secure and private channel; however,
the server is considered only partially trusted. Section 2 de-
scribes in detail the setup of the three parties.

The AKA protocol consists of five phases. The first phase,
user identification, is run by a client C and a server S on the in-
secure channel and it allows S to associate C to an IMSI value.
A user ID request is first sent from the server to the client. The
client’s response is a tuple (TMSI, LAI), consisting of a tempo-
rary identifier and the local area identifier in which C received
TMSI. If the LAI value corresponds to the LAI of S, then the
latter searches for a tuple (TMSI, IMSI) in its own database;
else S requests this tuple from the server S∗ associated with
LAI, over an unspecified channel. If no IMSI can be found,
then the server demands the IMSI in clear. This procedure is
the essential vulnerability leading to IMSI catcher attacks 3.2.

The second phase is run only optionally by the server S
and the client’s operator Op over a secure channel; its pur-
pose is to enable S to then run a batch of AKE sessions with
C. The server sends the client’s IMSI to Op, which gener-
ates a batch of vectors AV each providing material for one
out of a maximum of n sessions. For each vector, the oper-
ator’s state with respect to the client SqnS,C is augmented,
and then the following values are generated: a fresh random
value R; an server-authentication value MacS (for the val-
ues SqnS,C and R); a client-authentication value MacC (for
R only); the session keys CK and IK; and an anonymity key
AK. Of these six values, the last five are computed by us-

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 263

ing each time a different cryptographic algorithm, denoted
F1, . . . ,F5. In fact, the AKA protocol uses seven such algo-
rithms, but two of them, denoted F∗1 ,F∗5 , are only used in
the re-synchronization procedure. The seven algorithms are
generic, and can currently be instantiated in one of two ways,
one using AES (called MILENAGE), the other using Keccak
(called TUAK). Both F1 and F∗1 take as input the keys skC
and skop, the random value R, and a sequence number SqnS,C.
The other algorithms use the secret keys and the random value,
but not the sequence number. At the end of this phase, the
following values are sent to the server for each of the n ses-
sions: AV = (R,CK, IK,MacS,MacC,AMF,AK⊕SqnS,C), in
which AMF is the Authentication Management Field is a 16-
bit value used only in radio access specifications (for example
E-UTRAN or non-3GPP access to EPS).

The sequence number SqnS,C is notably not sent in clear
to the server, but rather blinded by the value AK.

The third phase of the protocol, authenticated-key-
exchange, is a mutual authentication and key agreement be-
tween the server and the client over the insecure channel. The
server chooses the next vector available (if phase 2 was run,
then this is the first tuple; else, for returning clients phase 3 is
run directly, with the next authentication vector), and sends an
authentication challenge consisting of the random value R and
an authentication string Autn = (SqnS,C ⊕AK)‖AMF‖MacS.
The client uses R to compute AK, then it recovers SqnS,C and
verifies MacS. If the verification succeeds, and if the recovered
Sqn is within a distance of ∆ (a pre-defined constant) of the
client’s own state SqnC, then the client computes CK, IK, and
the response MacC, sending this latter value to S; else, if the
two sequence numbers are too far apart, then the client forces a
re-synchronization procedure, which is the fourth phase of the
protocol. If no re-synchronization is needed, then the client
updates SqnC := SqnOp,C, and S verifies the received authen-
tication value with respect to the MacC sent by Op. If the ver-
ification succeeds, then the server sends an acknowledgement
to Op and goes directly to phase five. If the verification fails,
then the protocol is aborted.

The fourth phase of the protocol, resynchronization, is run
by all three parties. The client essentially retraces the opera-
tor’s steps, using its own sequence number SqnC and comput-
ing the values Mac∗S and AK∗⊕ SqnC by using algorithms F∗1
and F∗5 (rather than F1 and F5), but keeping the same ran-
dom value R. If the authentication string Mac∗S verifies for the
Sqn value Op recovers, then Op resets its sequence number
to SqnC and sends to the server another batch of authentica-
tion sessions. The protocol restarts. We note that this phase is
executed only optionally.

Finally, the fifth phase of AKA, TMSI re-allocation, is
run by the server and client. As the first message of the record
layer, the server sends an (unauthenticated) encryption of a

new TMSI value to the client C, using the session key CK com-
puted in phases 3 or 4. The encryption is done by means of the
A5/3 algorithm detailed in TS 43.020 [2], run in cipher mode.
The new TMSI value, called TMSInew, is only permanently
saved by the server if the client acknowledges the receipt; else,
both values TMSInew and the old TMSIold are retained and can
be used in the next authentication procedure.

3.2 Some Privacy breaches in AKA

In this section, we present some vulnerabilities, both of the
original AKA protocol, and of two promising improved vari-
ants of it. We begin by analyzing two client-unlinkability flaws
in AKA: the first one, based on generating, then interpreting
failure messages; the second, based on capturing, then track-
ing permanent identifiers (IMSI). These weaknesses have been
partially described by Arapinis et al. [21, 22]. Then, we dis-
cuss concrete attacks against two improved variants of AKA.

Flaws in the AKA protocol

Linkability of failure messages.
Arapinis et al. [22] showed a practical attack against the

AKA protocol, relying on the study of failure messages. The
target client is here denoted C. The adversary wants to test
whether a specific client is indeed C or another potential client
C∗. By replaying an old authentication vector (in phase 3 of
the protocol) which has already been used with C, the ad-
versary forces the target client to send a desynchronization
message, initiating phase 4 of the protocol. By contrast, if the
adversary sends the message to C∗, the expected error mes-
sage will be an error in the MAC verification. By analyzing
the error, the adversary will distinguish between clients, thus
breaking client-unlinkability.

C A C A S
User Request

←−−−−−−−−−−−−−
User Request

←−−−−−−−−−−−−−
TMSIo‖LAI

−−−−−−−−−−−−−→
TMSIo‖LAI

−−−−−−−−−−−−−→
Rand‖LAI
−−−−−−−−−−−→

Permanent User Request
←−−−−−−−−−−−−−−−−−

Permanent User Request
←−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMSI−−−−−−−−−−−−−→ IMSI−−−−−−−−−−−−−→
If IMSI = IMSIv
then Cv is found.

Principle of Traceability of
IMSI catcher a victim client Cv

Fig. 3. Attacks based on TMSI.

IMSI catchers and TMSI problems. In the identification
phase of AKA, the temporary TMSI values are meant to
hide permanent IMSIs. However, even a weak active adver-
sary can introduce noise in the communication, changing the

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 264

sent TMSI to something the server will not recognize. The
server’s backup procedure is then to ask for the IMSI value
in clear. This attack, depicted in Figure 3 and called an “IMSI
catcher” [8], is the best known threat to mobile users’ privacy.
This allows mass-surveillance attackers to track multiple users
at a time.

Another problem stems from the TMSI re-allocation pro-
cedure in phase 5. Upon authentication, the server sends a new
TMSI value TMSInew in the record layer; however, the up-
date is only done if the client acknowledges it. If this mes-
sage is dropped, the server will accept both the old TMSI value
TMSIold and the new TMSInew for the next protocol run. Thus,
the same TMSI will be replayed across sessions.

An adversary can also force a Denial-of-Service by send-
ing a random value instead of the server’s encryption of the
new TMSI; since the encryption is unauthenticated, the client
interprets this as a new (and bogus) TMSI.

Finally, note that, since the client sends in clear the LAI
of its last-visited location, an adversary can also differentiate
distinct itineraries.

Improved AKA variants

We proceed to show that two more promising improvements
of AKA are still vulnerable to client-unlinkability attacks.
The Arapinis variant. Arapinis et al. [22] propose an AKA
variant which is supposed to ensure client unlinkability by
avoiding failure-message-based linking, as described in the
previous section. They propose to make error messages in-
distinguishable by encrypting with the operator’s public keya
message including the IMSI, a constant “Fail” string, a random
value R and the current sequence number SqnC. The latter is
encrypted with an unlinkability key UK = fskC (R) in order to
authenticate the error message. The operator deduces the type
of failure by decrypting the error message, and deriving the
IMSI and the client’s sequence number.

In this variant, IMSI catcher attacks are addressed by en-
crypting the IMSI with the same probabilistic PKE scheme
used on error messages, thus removing the need for tempo-
rary identifiers TMSI. For the analysis, Arapinis et al. model
servers and operators as a single party, thus failing to take into
account the costs of server-operator communication and secu-
rity with respect to servers.

Despite this security proof, the variant Arapinis et al. pro-
pose is unfortunately not client unlinkable, since clients can
be traced as long as the adversary knows all IMSI values. Note
that IMSI values were designed not to be private (and are al-
ways known by servers).

We exploit the fact that any party that knows the IMSI
value of a client can construct a valid encryption of the IMSI
and test whether it was the appropriate value for a given client.
This attack proceeds as follows in our model (we give de-

tails in the full version of our paper): (1) the adversary cre-
ates two clients (receiving their IMSI values); (2) it uses the
Client-Drawing oracle to draw one of them, depending on the
bit b; (3) A then forwards the user ID request from the server
to the client, but blocks the client’s reply; (4) instead, it en-
crypts the IMSI of the first client (the victim client), and sends
it to server; (5) finally the protocol is allowed to proceed. If the
client accepts the server’s challenge message, consisting of R
and Autn, then A guesses that this is the victim client; else, it
guesses that the Client Drawing oracle chose the other client.
In particular, letting Π be the protocol proposed by Arapinis et
al., it holds that:

Lemma 1. There exists a (t, 1, 0, 0)-narrow-weak client-
unlinkability adversary A against Π running in time t, cre-
ating one session, corrupting no servers, and making no ad-
ditional query to the related internal cryptographic functions,
which wins with advantage 1

2 (and probability 1) the client-
unlinkability game.

The van den Broek variant. Van den Broek et al. [9] recently
proposed an IMSI catcher countermeasure; in this improved
variant, avoid sending the IMSI in clear by replacing (IMSI,
TMSI) tuples by an upgradeable pseudonym denoted PMSI.
Their modified identification phase is exclusively done by
means of these pseudonyms. The PMSI is chosen by the oper-
ator and sent with the authentication challenge in the prepara-
tion phase, encrypted together with the sequence number with
a new secret key that is assumed to be shared by clients and
their operators. The ciphertext is used as the random value R
in the authentication challenge. Indeed, a successful session of
the AKA protocol, ending in the establishment of new session
keys, can only be attained if the PMSI is correctly updated.
This variant is described in detail in [9].

From a practical point of view, using the operator at each
key-exchange session is costly, and something that the origi-
nal AKA design tries to avoid. Furthermore, though this vari-
ant successfully prevents IMSI catchers, it does not address
client unlinkability. The pseudonym PMSI can be intercepted
in one session; if this session is then aborted, the PMSI can be
replayed in a second session, thus leading to user linkability.
Furthermore, the protocol is vulnerable to the attack based on
linking failure messages, as presented by Arapinis et al. Thus,
if Π denotes the protocol proposed by van den Broek et al., it
holds that:

Lemma 2. There exists a (t, 2, 1, 0)-adversary A against the
narrow-weak-client-unlinkability of Π running in time t, ini-
tiating two protocol sessions, and making no query to the
internal cryptographic function G, which has an advantage
Advww-unlink

Π (A) = 1
2 (and a probability of 1) to win the game.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 265

4 Our proposal: PrivAKA
The attacks described in the previous section emphasize the
existing gap between what mobile AKE protocols can offer,
and the security and privacy guarantees that they should offer.
We consequently describe a new AKA variant which provides
the security and privacy (in particular, wide-weak unlinkabil-
ity) guarantees formalized in our security model.

We use the original AKA three-party infrastructure and
take into account practical concerns, in particular minimizing
the contact between servers and operators during the protocol
executions.

4.1 Description of our variant

Instead of five phases, our variant only consists of three.
Our protocol is designed to require no re-synchronization
(phase 4 in AKA), and we include the TMSI reallocation
(which was phase 5 in AKA) as part of the key-exchange
phase (phase 3). In our construction, we use a public-key
encryption scheme PKE= (PKE.KGen,PKE.Enc,PKE.Dec),
such that each operator has a certified public and secret key-
pair denoted as (pkeOp, skeOp). We assume that the client
stores only its own operator’s public key (and its certificate)
internally. In particular, we do not give encryption keys to
the servers in order to minimize key-management issues. We
also use a secure authenticated encryption scheme AE =
(AE.KGen,AE.Enc,AE.Dec). Though these can be instanti-
ated generically, we use AES-GCM [7] for the AE scheme
and e.g. Cramer-Shoup [6] for the PKE scheme. We depict our
variant in Figure 6, and indicate in the grey boxes the differ-
ences to the classical AKA procedure.

We also refer the reader to Appendix C, which contains
an evaluation of our modifications to the original AKA proce-
dures; these are also summarily depicted in Figure 7.

Identification. Just as for AKA, we begin with an identifica-
tion phase run by the client and the server over the insecure
channel. The server sends an identification request which in-
cludes a random value that we denote Rid. The client com-
putes a response depending on a flag flagTMSI managed by the
client. If the user stays in the same LAI, flagTMSI := 0 and
the response is a fresh TMSI value generated in that area; else,
if the user changes area, or if flagTMSI = 1 (which happens
e.g. upon aborts), it encrypts with the operator’s public key
an evaluation of F5 with the client key and the operator key,
on input: the random value Rid, the client’s IMSI, and an in-
dex idxC, which is explained for the Preparation phase below.
The client also appends the IMSI, Rid, and idxC inside the en-

cryption. For both types of responses, the client also sends the
identity of its operator Op.

Upon receiving a string of the form (m,Op), the server
first checks whether the message m is a TMSI present in its
database; if so, it retrieves the IMSI to which this value corre-
sponds; else, it assumes that m is a ciphertext, and it sends it
to the operator Op for decryption.

Intuitively, encrypting the IMSI prevents IMSI catcher at-
tacks; moreover, even if all IMSI values are known, no MiM
adversary can encrypt a valid identification response for a new
Rid, since F5 is a PRF whose key is unknown to the adversary.
In order to guarantee client unlinkability, however, we also re-
quire that TMSI values have the same length as the output of
the PKE scheme. If this requirement is not fulfilled, then a dis-
tinguisher can use the length of the messages to single out one
specific client e.g. one that moves into a new area. Whereas
this type of attack seems less likely, it is easily feasible and
highly usable in contexts of mass surveillance.

We design the TMSI reallocation in such a way as to en-
sure that if the client remains in the same LAI (flagTMSI= 0),
the server of that area can find the tuple (TMSI, IMSI) in its
database. The fresh randomness Rid prevents replays, whereas
the IND-CCA security of the PKE scheme makes encryption
probabilistic and indistinguishable from random.

Preparation. This second phase is run over a secure chan-
nel, between the server and the operator. If the server received
a valid TMSI in the previous phase, phase 2 begins with the
server sending the corresponding IMSI to the operator; else,
the server forwards the received ciphertext and the associated
Rid. If the encryption verifies for the given IMSI and the fresh
randomness, the operator prepares batches of authentication
vectors which differ from the standard AKA output as follows:
– We associate each server with a unique identifier ResS,

which is used as input to each cryptographic function.
This limits the use of server corruption attacks [19] only
to the corrupted area. We also use the value AMF which
is sent in clear, as an additional input.

– We use the sequence number SqnOp,C as input to all func-
tions except F5. This guarantees freshness for all the val-
ues even if the randomness R is repeated.

– We introduce an operator index idxOp,C to prevent re-
plays of a challenge using an old sequence number. As our
proofs indicate, this value is essential in preventing desyn-
chronizations. The client also keeps track of a matching
index, denoted idxC, which is updated in terms of idxOp,C.
The client also updates this index whenever it aborts. We
note that operators always begin by updating idxOp,C to
the value idxC received in the identification string.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 266

Authenticated key-exchange. The final, third phase of our
protocol is run between the client and the server. We note be-
forehand that if any verification fails on the client side, the
client aborts, updating its index idxC. The server sends a ran-
dom value R, the authentication string Autn, and an authen-
ticated encryption of the new TMSI and the index idxOp,C,
using the session keys (CK, IK). The client proceeds as in
the original AKA procedure, recovering AK, then checking
MacS. If the authentication cannot be verified, the procedure is
aborted, the new TMSI is disregarded. Else, the user computes
(CK, IK) and decrypts the authenticated encryption string to
find the TMSI value and the operator’s index idxOp,C. Then, C
checks the freshness of the sequence number, i.e. it verifies if
one of the following two conditions is correct:
– SqnC = Sqn{i}.
– SqnC = inc(Sqn{i}) and idxOp,C = idxC + 1,

If the protocol is run normally, the first of these conditions
is the one that will hold. However, if the previous session is
aborted after receiving the server’s authentication challenge,
then the two sequence numbers may become desynchronized
by one step (the second condition). At the next session, the
server will re-use the authentication string, but with an updated
index. Further desynchronization is prevented since sending
the new TMSI requires fresh authentication (updated index).
If the first condition holds, then the client’s internal index is
reset; else, the index is incremented by 1. The client updates
the sequence number only upon successful authentication and
if the first condition holds. If neither condition verifies, the
procedure is aborted.

If the verification succeeds, the user computes a response
Res := F2(keys,R{i}, Sqn{i},ResS,AMF), sends Res, then
stores the TMSI and the new index value. The server checks
Res against the prepared value MacC (else, if no response is
received, the procedure is aborted).

One notable exception to the original AKA protocol is
that whenever an abort occurs on the server’s side, the sec-
ond phase – preparation – is used instead of simply querying
the next vector in the prepared batch. Though this might seem
more inefficient, we note that an abort only occurs in the pres-
ence of an adversary, which is considered to be a rare event.
We detail the procedure upon aborts in Figure 4.

Cryptographic algorithms. In our variant, we modified the
underlying cryptographic functions to also take as input the se-
quence number and the new value ResS. In the full paper [10],
we show how to modify the two algorithm suites, TUAK and
MILENAGE, to take this into account. Our variant moreover
no longer needs functions F∗1 ,F∗5 , which were used for re-
synchronizations.

Server Operator

AV{i}
”Aborted Protocol Message”

−−−−−−−−−−−−−−−−−−−−−→
Recover the related sequence number
Sqn{i}.
If SqnOp,C = Sqn{i} : idxOp,C + +. If
SqnOp,C 6= Sqn{i}: idxOp,C = 1 and
SqnOp,C = Sqn{i}.
Then it forges a batch of n authentica-
tion vectors as usual.

{AV{i}}n
i=1

←−−−−−−−−−−−−−−−−−−−−

Fig. 4. Procedure after an abort.

4.2 Privacy and Security Analysis

In this section, we outline the security properties of the AKA
variant. Due to space restrictions, we only include the theo-
rems, deferring the proofs to the full paper [10]. We replace
all calls to any of the cryptographic algorithms F1, . . . ,F5 by
calls to a pseudorandom function G, which is keyed with skC
(except for the state-confidentiality property, see below). This
is intuitively possible for both known instantiations of the al-
gorithms suites (MILENAGE and TUAK), since these func-
tions are meant to produce independent output.

The following five statements are proved under some
properties (indistinguishability, pseudorandomness and un-
forgeability) of the internal cryptographic functions. Notably,
for the key-confidentiality property, we require the pseudoran-
domness of the function G when keyed with skC and when
keyed with the operator key skop. The former property can be
proved for both MILENAGE and TUAK (see [10]), but the lat-
ter does not hold for MILENAGE.

We formulate security with respect to an adversary A
which runs in time t, creates at most qexec party instance, with
at most qid user identification per instance, corrupts at most
qserv servers, makes at most qOp OpAccess queries per opera-
tor per corrupted server, and at most qG , qAE, qPKE queries to
respectively the functions G, AE and PKE. For the legitimate-
and-malicious adversary, we quantify A in terms of the max-
imal number qOp of queries to the oracle OpAccess, and the
similar qexec, qid, qG , qAE, qPKE queries. The function G is
defined as above.

Theorem 1 (ww-unlink− K.Ind− C.Imp− S.Imp.). For the
protocol Π using the unitary function G described above, the
following properties hold:
ww-unlink: For any (t, qexec, qid, qG , qAE, qPKE)-adversary
A against the weak privacy ww-unlink-security of the pro-
tocol Π winning with advantage Advww-unlink

Π (A), there ex-
ist (t′ ∼ O(t), q′ = 2 · qexec + qG)-A1 against the pseu-
dorandomness of the function G, an (t′′ ∼ O(t), q′′ =
qexec + qAE)-adversary A2 against the ae-security of the

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 267

function AE, (t′′′ ∼ O(t), q′′′ = qexec · qid + qPKE)-
adversaries A3 against the indistinguishability of the function
PKE, (t, qexec, qid, 0, 0, qG , qAE, qPKE)-adversary A4 against
the key-indistinguishability of the protocol Π such that:

Advww-unlink
Π (A) ≤ AdvK.Ind

Π (A4) + 2 · 1 + (qexec · qid)2

2|TMSI| +

q2
exec

2|R|
+ (qexec · qid)2

2|Rid|
+ nC ·

(
10 · Advprf

G (A1) +

+5 · Advae
AE(A2) + Advind−cca2

PKE (A3)
)
.

K.Ind: For any (t, qexec, qid, qserv, qOp, qG , qAE, qPKE)-
adversary A against the key-indistinguishability of Π winning
with advantage AdvK.Ind

Π (A), there exist a (t′ = O(t), q′ =
qG + 2 · qexec + 5 · qserv · qOp)-prf-adversary A1 on G, a
(t′ = O(t), q′ = qexec + qAE)-ae-adversary A2 on AE, and a
(t′ = O(t), q′ = qexec · qid + qPKE)-ind-cca2-adversaryA3 on
PKE such that:

AdvK.Ind
Π (AG0) ≤ nC ·

((qexec · qid)2

2|Rid|
+

(qexec + qserv · qOp)2

2|R|

+2Advprf
G (A1) + Advae

AE(A2) + Advind−cca2
PKE (A3)

)
.

C.Imp: For any (t, qexec, qid, qserv, qOp, qG , qAE, qPKE)-
adversaryA against the C.Imp-security of Π winning with ad-
vantage AdvC.Imp

Π (A), there exist a (t′ ≈ O(t), q′ = qG + 2 ·
qexec + 5 · qserv · qOp)-prf-adversary A1, a (t′ = O(t), q′ =
qexec + qAE)-ae-adversary A2 on AE and a (t′ = O(t), q′ =
qexec · qid + qPKE)-ind-cca2-adversary A3 on PKE such that:

AdvC.Imp
Π (AG0) ≤ nC ·

(
Advprf

G (A1) + Advae
AE(A2)

+Advind−cca2
PKE (A3) + (qexec · qid)2

2|Rid|

+(qexec)2

2|R|
+ qexec

2|Res| + 1
2κ + qexec · qid

2|ID|
)
.

S.Imp: For any (t, qexec, qid, qserv, qOp, qG , qAE, qPKE)-
adversary A against the S.Imp-security of Πwinning with ad-
vantage AdvS.Imp

Π (A), there exist a (t′ ≈ O(t), q′ = qG + 2 ·
qexec + 5 · qserv · qOp)-prf-adversary A1, a (t′ = O(t), q′ =
qexec + qAE)-ae-adversary A2 on AE and a (t′ = O(t), q′ =
qexec · qid + qPKE)-ind-cca2-adversary A3 on PKE such that:

AdvS.Imp
Π (AG0) ≤ nC ·

(qexec
2|MacS|

+ 1
2κ + Advprf

G (A1)

+Advae
AE(A2) + Advind−cca2

PKE (A3)
)
.

S.sound: For any (t, qexec, qOp, qG , qAE, qPKE)-adversaryA
against the S.sound-security of the protocol Π,winning with
advantage AdvS.sound

Π (A), there exist a (t′ ≈ O(t), q′ = qG +
2 · qexec + 5 · qOp)-prf-adversary A1 on G, a (t′ = O(t), q′ =
qexec + qAE)-ae-adversary adv2 on AE and a (t′ = O(t), q′ =
qexec + qPKE)-ind-cca2-adversary A3 on PKE such that:

AdvS.sound
Π (A) ≤ nC ·

(qexec
2|MacS|

+ 1
2κ + Advprf

G (A1)

+Advae
AE(A2) + Advind−cca2

PKE (A3)
)
.

Theorem 2 (St.conf − resistance.). For any (t, qexec,

qid, qOp, qG , qG∗ , qAE, qPKE)-adversary A against the
St.conf-security of the protocol Π, winning with advantage
AdvSt.conf

Π (A), there exist a (t′ ≈ O(t), q′ = qG +5 · qOp +2 ·
qexec)-prf-adversaryA1 onG, a (t′ = O(t), q′ = qexec+qAE)-
ae-adversaryA2 on AE, a (t′ = O(t), q′ = qexec ·qid +qPKE)-
ind-cca2-adversary A3 on PKE, and (t′ ≈ O(t), q′ = qG∗)-
prf-adversary A4 on G∗ such that:

AdvSt.conf
Π (A) ≤ nC ·

(
2−|skC| + 2−|skop| + 2 · 2−|SqnC|

+Advprf
G (A1) + Advae

AE(A2)

+Advind−cca2
PKE (A3) + Advprf

G∗(A4)
)
.

MILENAGE and TUAK asG. In our full paper [10], we prove
that the calls to both our updated MILENAGE and TUAK al-
gorithms can be modeled as the unitary function G that we
use for our proofs. The last step in our proof is to show that
both algorithm suites exhibit the PRF property we require for
G, when instantiated with the key skC. However, as opposed
to TUAK (whose symmetric design allows a lot more lee-
way), the MILENAGE algorithms do not have the PRF prop-
erty when G is used with key skop.

4.3 Narrow-Forward Privacy is
Impossible

Our variant of AKA preserves the structure of the original pro-
tocol, but also provably attains wide-weak client unlinkability.
In this section we show that this degree of client-unlinkability
is optimal with respect to the structure of AKA. In particular,
narrow-forward privacy is impossible.

Our result covers similar ground as that by Paise and Vau-
denay [24], as we address protocols with mutual authentica-
tion. We extend the impossibility result to symmetric-key AKE
protocols which also use public-key primitives. We also ex-
plain why the original impossibility result in [24] is imprecise,
and presents some problems.

The result of [24]. Paise and Vaudenay showed an impossi-
bility result for authentication (rather than AKE) protocols,
but the extension to AKE is easy. In the terminology of our
paper, [24] proved that server-authentication essentially pre-
cludes narrow-forward client-unlinkability. Their attack fol-
lows these steps: (1) the adversary A creates two clients; (2)
A runs an honest protocol session between one of them (cho-
sen uniformly at random depending on a secret bit b) and the
server, but stops the last message from the server to the client;
(3) A corrupts both clients, learning their long-term state; (4)

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 268

bits of sec. Nonces (RID, R) Keys (sk, skop) IMSI Fi output Index idx TMSI Sqn
64 217 / 345 128 / 128 50 / 50 128 / 153 32 / 64 427 / 587 89 / 89

128 281 / 409 153 / 153 50 / 50 185 / 217 32 / 64 520 / 680 153 / 153
256 409 / 537 281 / 281 50 / 50 313 / 345 32 / 64 776 / 936 281 / 281

Fig. 5. Parameter sizes (in bits) for our proposal with at most 20 million clients per operator; for each entry, the left value indicates the
size for a maximum of 232 adversarial queries of each type, whilst the right figure is calculated for 264 queries.

A distinguishes between the clients by simulating the protocol
with the intercepted message.

However, this attack makes a tacit assumption on the
client’s behaviour, namely that if a session is aborted, the state
is either not updated or it is updated in a consistent way de-
pending on the client’s internal state. Say that upon an abort,
the client reverts to a random state; assumming the adversary
cannot use the very short time-frame before reverting to ran-
dom,A only gets the random state in response. Simulating the
protocol with the received message will not match that state,
thus reducing the adversary’s success probability to 1

2 .
Another way to bypass this result is to update the client

state before the “last message” is sent to the client; if such an
update is done at every execution, the attack presented in [24]
fails. This is, however, a rather artificial twist: indeed, mutual
authentication implies that the prover must somehow identify
the server’s state as “valid” before it reaches a state which pre-
cludes it from verifying the server’s authentication.

Two new attacks. In the AKA protocol, it is the server which
first authenticates to the client. The values used in authenti-
cation are the sequence number SqnOp,C and the nonce R.
The value SqnOp,C is ephemeral, being updated at every ses-
sion; however, it is a long-term state, and compatible with the
client’s own state SqnC. In particular, corrupting a client yields
SqnC allowing the verifier to link the client with the corre-
sponding SqnOp,C value.

For a better comprehension of our attacks and their im-
pact, we define the following notations: we divide a party’s
state (for both clients and operators) into a static state stat.stP
and an ephemeral state eph.stP. Thus, an operator’s static state
may contain operator-specific information, such as the secret
key for a PKE scheme, but it will also include state shared
with clients, i.e. stat.stOp,C for a client C. The same for the
ephemeral state eph.stOp,C which for the AKA protocol con-
sists of the sequence number SqnOp,C.

We propose the following attack:
– The adversary A creates two clients C and C′ with the

same operator Op and the same location LAI.
– A uses DrawCl on C,C′ and receives the handle VC, cor-

responding to either C (if the hidden bit b = 0), or C′
(otherwise).

– A runs an honest execution between the server S at
LAI and the client VC until A receives the message
R,Autn = (SqnOp,C⊕AK)‖AMF‖MacS from the server.
Denote Autn[1] := SqnOp,C ⊕ AK, Autn[2] = AMF, and
Autn[3] := MacS.

– A corrupts C and learns SqnC, skC, and skop.
– By using the values R, skC, and skop, the adversary com-

putes a value AKC and retrieves Sqn∗ := Autn[1]⊕AKC.
Note that if b = 0, then AKC = AK and Sqn∗ = SqnOp,C,
while if b = 1, then Sqn∗ 6= SqnOp,C′ with overwhelming
probability.

– The adversary verifies MacS, on input (skC, skop,Sqn∗).
If this verification succeeds, the adversary outputs a guess
d = 0 for the bit b; else, it outputs 1.

For the analysis note that with overwhelming prob-
ability MacS will not verify if it was computed
for C′, i.e. f1(skC′ , skop,R,AMF,SqnOp,C′) 6=
f1(skC, skop,R,AMF,Sqn∗). The key vulnerability here is
that, while SqnOp,C is never sent in clear, the masking authen-
tication key AK only depends on the client’s static state. We
also use the fact that the validity of the sequence number is
confirmed by the value MacS.

While using the MacS verification certainly helps an at-
tacker, our second attack (a variation of the first one) does not
use the MAC value at all. The attack is run exactly in the same
way, until we reach the final step. At that point:
– A compares the obtained value Sqn∗ with the recovered

sequence number of C, namely SqnC, verifying if |Sqn∗−
SqnOp,C| ≤ ∆. Note that in the actual attack presented
above, the client’s state SqnC should be exactly equal to
the operator’s state with respect to that client; however,
our attack is even stronger in the sense that we do not
need to control the executions of the protocol in order to
obtain exact equality.

Analysis and Impact. Since the original AKA protocol is not
even weak-client-unlinkable, it is not surprising that this pro-
tocol is not narrow-forward unlinkable either. However, the
same attack works on our variant of the protocol and indeed,
on any other extension or improvement of the original proce-
dure which retains the characteristic of exchanging a message

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 269

of the type f(eph.stOp,C, stat.stOp,C, X) in the presence of a
function Match; or exchanging that same message together
with a message g(eph.stOp,C, stat.stOp,C, Y), such that:
– f is reversible and takes as input eph.stOp,C, stat.stOp,C =

stat.stC, and a set X of publicly-known variables, giving
arbitrary values in the set {0, 1}∗7;

– Match takes as input two ephemeral state values eph.stC′

and eph.stOp,C and it outputs a boolean value: 1 if C = C′
and 0 otherwise8;

– g takes as input the state values eph.stOp,C, stat.stC and
a set Y of public values, and which has the property
that, for randomly chosen x and stat.stC′ it holds that
g(x, stat.stOp,C′ , Y) 6= g(eph.stOp,C, stat.stOp,C, Y)9.

5 Practical considerations

In this section, we discuss some of our design choices for the
improvement we propose of the AKA protocol. We also pro-
vide a detailed analysis of our countermeasures and their intu-
itive effects in Appendix C.

As opposed to the proposal of van den Broek et al. [9], we
opted to continue using (TMSI, LAI) tuples in the identifica-
tion phase. This infrastructure is maintained strictly by servers,
with no operator contribution; thus it is efficient and inexpen-
sive. Moreover, TMSI values and their correspondence to the
client’s IMSI is easy to find. In our proposal, we bypass IMSI
catcher attacks by never sending IMSIs in clear, and we add
a symmetric authentication step in the encryption, thus pre-
cluding the client-unlinkability attack we found against [22].
We use an IND-CCA public-key encryption scheme with a
minimal, operator-only PKI. A client only stores the public
key (and certificate) of its own operator, thus minimizing key-
management problems. For the TMSI reallocation, we add an
implicit authentication, preventing IMSI paging and DoS at-
tacks. We also add a freshness index, which prevents replays
of challenges based on old sequence numbers.

Our variant, however, can only guarantee client-
unlinkability if the size of the TMSI is equal to that of the
output of the PKE scheme in the first identification message.
This is a non-trivial requirement as servers must keep track
of all the TMSIs they issue; while using a shorter TMSI does
not leak anything about the IMSI value, it does allow mass-

7 In our previous example, this is the string Autn1, which depends on
eph.stOp,C = SqnOp,C, on stat.stOp,C = (skC, skop), and on the ran-
dom value R which is public.
8 In our case, the Match function returns 1 if and only if |SqnOp,C −
SqnC′ | ≤ ∆.
9 In our example, this function is f1, and the output value is MacS.

surveillance organisms to track users down by distinguishing
between the length of the encrypted IMSI as opposed to the
TMSI length. On the positive side, servers may store TMSI
values for a shorter while, since as soon as the user leaves the
area, the TMSI becomes obsolete.

In Figure 5 we indicate minimal parameter sizes for our
variant, for at most 20 million clients (per operator). For the
TMSI, we used the best-case scenario, in which the PKE
scheme output equals the plaintext length10. It is clear in Fig-
ure 5 that some parameters, such as the size of the IMSI and
the sequence number, do not depend on the number of queries,
as also indicated in our security theorem. Some values are in-
directly affected by the number of queries: for instance, the
output of the underlying functions is lower-bounded by the re-
quirement of the size of Res, i.e., the client’s response, output
by F2, which in turn depends on the number of queries.

We assume that clients are aware of their current LAI,
thus avoiding being traced by their location. This is not a very
strong assumption, since mobile devices are often equipped
to detect the LAI. Finally, we bypass distinguishing attacks
that exploit the re-synchronization phase by ensuring that
sequence numbers cannot be desynchronized. To minimize
server-operator communication, our variant ensures that op-
erators are contacted only if the protocol is abnormally run or
an adversary is detected. We also simplify the AKA structure,
including only three communication phases rather than five.

References

[1] 3GPP. 3G Security; Technical Specification Group (TSG) SA;
3G Security; Security Architecture. TS 33.102, 3rd Genera-
tion Partnership Project (3GPP), June 2013.

[2] 3GPP. 3rd Generation Partnership Project; Technical Specifi-
cation Group Services ans System Aspects; Security related
network functions (Release 12). TS 43.020, 3rd Generation
Partnership Project (3GPP), June 2014.

[3] J. Alwen, M. Hirt, U. Maurer, A. Patra, and P. Raykov. Anony-
mous authentication with shared secrets. In Proceedings of
LatinCrypt, volume 8895 of LNCS, pages 219–236. Springer-
Verlag, 1999.

[4] G. Ateniese, A. Herzberg, H. Krawczyk, and G. Tsudik. Un-
traceable mobility or how to travel incognito. In Elsevier
Computer Networks, volume 31, pages 871–884. Elsevier,
1999.

[5] BSI. A Proposal for: Functionality classes for random number
generators. AIS 20 / AIS 31. Version 2.0 , Bundesamt fur

10 This is an optimistic estimate, as the ciphertext-to-plaintext ratio is
mostly higher than 1 (for ElGamal, it is 2). However, once the PKE
scheme is chosen, the TMSI size is computable as the value we give times
the ciphertext-to-plaintext length ratio.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 270

Sichercheit in der Informationstechnik (BSI), 2011.
[6] R. Cramer and V. Shoup. A practical public key cryptosystem

provably secure against adaptive chosen ciphertext attacks.
In Advances in Cryptology – CRYPTO 1998, volume 1462 of
LNCS, pages 13–25. Springer, 1998.

[7] David A. McGrew and John Viega. The Security and Per-
formance of the Galois/Counter Mode of Operation (Full
Version). IACR Cryptology ePrint Archive, 2004:193, 2004.

[8] D.Strobel. IMSI Catcher. In 2007, Seminar Work, Ruhr-
Universitat Bochum, 2007.

[9] Fabian van den Broek and Roel Verdult and Joeri de Ruiter.
Defeating IMSI Catchers. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, USA, October 12-6, 2015, pages 340–351, 2015.

[10] P. A. Fouque, C. Onete, and B. Richard. Achieving Better Pri-
vacy for the 3GPP AKA Protocol. Cryptology ePrint Archive,
Report 2001/112, 2016.

[11] Jens Hermans and Andreas Pashalidis and Frederik Ver-
cauteren and Bart Preneel. A New RFID Privacy Model.
In Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Bel-
gium, September 12-14, 2011. Proceedings, pages 568–587,
2011.

[12] Jens Hermans and Andreas Pashalidis and Frederik Ver-
cauteren and Bart Preneel. A New RFID Privacy Model. In
V. Atluri and C. Diaz, editors, Esorics, volume 6879, pages
568–587, 2011.

[13] M. S. A. Khan and C. J. Mitchell. Another look at privacy
threats in 3G mobile telephony. In Proceedings of ACISP,
volume 8544 of Lecture Notes in Computer Science, pages
386–396. Springer, 2014.

[14] Michael Burrows and Martín Abadi and Roger M. Need-
ham. A Logic of Authentication. ACM Trans. Comput. Syst.,
8(1):18–36, 1990.

[15] Mihir Bellare and David Pointcheval and Phillip Rogaway.
Authenticated Key Exchange Secure against Dictionary At-
tacks. In Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of
Cryptographic Techniques, pages 139–155, 2000.

[16] Mihir Bellare and Phillip Rogaway. Entity Authentication
and Key Distribution. In D. R. Stinson, editor, Advances in
Cryptology - CRYPTO ’93, volume 773 of LNCS, pages 232–
249. Springer, 1993.

[17] Mihir Bellare and Ran Canetti and Hugo Krawczyk. A Mod-
ular Approach to the Design and Analysis of Authentication
and Key Exchange Protocols. In Proceedings of the ACM
Symposium on the Theory of Computing, pages 419–428,
1998.

[18] Ming-Feng Lee and Nigel P. Smart and Bogdan Warin-
schi and Gaven J. Watson. Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf.
Sec., 13(6):513–527, 2014.

[19] Muxiang Zhang. Provably-Secure Enhancement on 3GPP
Authentication and Key Agreement Protocol. IACR Cryptol-
ogy ePrint Archive, 2003:92, 2003.

[20] Muxiang Zhang and Yuguang Fang. Security analysis and
enhancements of 3gpp authentication and key agreement
protocol. IEEE Transactions on Wireless Communications,
4(2):734–742, 2005.

[21] Myrto Arapinis and Loretta Ilaria Mancini and Eike Ritter
and Mark Ryan. Privacy through Pseudonymity in Mobile
Telephony Systems. In 21st Annual Network and Distributed
System Security Symposium, NDSS, 2014.

[22] Myrto Arapinis and Loretta Ilaria Mancini and Eike Ritter and
Mark Ryan and Nico Golde and Kevin Redon and Ravis-
hankar Borgaonkar. New privacy issues in mobile telephony:
fix and verification. In the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 205–216, 2012.

[23] S. provider. Personal communication with one of europe’s
largest service providers, 2015.

[24] Radu-Ioan Paise and Serge Vaudenay. Mutual Authentica-
tion in RFID: Security and Privacy. In Proc. on the 3rd ACM
Symposium on Information, Computer and Communications
Security (ASIACCS), pages 292–299. ACM, 2008.

[25] Ran Canetti and Hugo Krawczyk. Universally Composable
Notions of Key Exchange and Secure Channels. In Ad-
vances in Cryptology - EUROCRYPT 2002, volume 2332 of
LNCS, pages 337–351, 2002.

[26] Serge Vaudenay. On Privacy Models for RFID. In ASI-
ACRYPT ’07, volume 4883, pages 68–87, 2007.

[27] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P.
Seifert. Practical attacks against privacy and availability in
4g/lte mobile communication systems. In Proceedings of
NDSS. Internet Society, 2016.

[28] Ulrike Meyer and Susanne Wetzel. A man-in-the-middle
attack on UMTS. In Proceedings of the 2004 ACM Workshop
on Wireless Security, Philadelphia, PA, USA, October 1,
2004, pages 90–97, 2004.

[29] Zahra Ahmadian and Somayeh Salimi and Ahmad Salahi.
New attacks on UMTS network access. In 2009 Wireless
Telecommunications Symposium, WTS 2009, Prague, Czech
Republic, April 22-24, 2009, pages 1–6, 2009.

A A full review of related work

Though initially the designers of AKA provided a security
proof using BAN logic [14], subsequent vulnerabilities belied
the purported guarantees. The attacks of [28, 29] indicate that
servers can be impersonated within the protocol run; the sec-
ond paper also indicates that well-known weaknesses of the
GSM protocol, e.g., weak encryption and the lack of mutual
authentication, can pose security problems for AKA. Zhang
and Fang [20] pointed out that the use of sequence numbers,
together with potential corrupted server redirection, allow at-
tackers to illicitly trace and impersonate clients.

A known privacy problem of the AKA protocol is the
“IMSI catcher” attack [8], which exploits the fact that the per-
manent identifier IMSI is sent as a back-up for a faulty tuple
(TMSI, LAI). By either observing such faulty behaviour (due
to transmission errors or to server database problems), or by
causing it, MiM attackers can easily track clients, in violation

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 271

of the user-identity confidentiality requirement. This is a prob-
lem in all generations of mobile communication networks. Van
den Broek et al. [9] addressed IMSI catchers by replacing IMSI
values by unlinkable pseudonyms PMSI. We discuss this vari-
ant in detail in Section 3.2.

Arapinis et al. [22] showed that failure messages (in au-
thentication/resynchronization) can be used to trace users. A
follow-up paper [21] identifies ways in which a specific im-
plementation deviates from 3GPP recommendations, enabling
the linkability of client sessions.

Though several improvements of AKA have been pro-
posed, only two analyse the resulting security. Thus, [19] de-
scribes AP-AKA, a stateless protocol which can thwart replay-
based impersonation and lowers the impact of server corrup-
tions, but at the cost of no privacy at all. A second variant [22]
retains the stateful nature of AKA, but model (in the proof) the
state as random. We show some weaknesses of [22] in Sec-
tion 3.2.

Secure AKE models. Bellare and Rogaway first proposed a
security model for AKE [16], also in a symmetric setting.
Their framework was later extended with the contribution of
Pointcheval [15]. A further model for generic session-oriented
protocols was proposed in [17] and extended in [25]. Although
we use BPR-methodologies in our analysis, we cannot sim-
ply “import” their model, and use a slightly modified version
thereof.

Privacy models. The privacy model due to Vaudenay [26]
was the first to define several degrees of untraceability in the
presence of corruptions. Though this framework was specifi-
cally designed for RFID privacy, his approach features attacks
which are universal in authentication scenarios. In particular,
Vaudenay captured adaptive corruptions, and classified adver-
saries in terms of their behaviour upon corruption. The AKA
protocol is all the more adapted to his framework since it uses
only symmetric keys, as does RFID authentication.

His framework was later refined and extended by Her-
mans et al. [12], who used Vaudenay’s classification of ad-
versaries according to two criteria: (i) whether the adversary
is aware of the result of authentication sessions (wide adver-
saries) or not (narrow adversaries); (ii) any constraints in the
corruption behaviour (the adversaries range from weak –no
corruptions– to forward –corruptions “end” the game– and
strong). In our work, we use the game-based definition of Her-
mans et al.

Two important impossibility results indicate that strong
privacy requires key exchange [26] and that in symmetric-
key authentication protocols, if the server authenticates to the
client during the protocol, there exists an attack that allows
an adversary to distinguish between two clients [24]. In par-
ticular, simply dropping the last message of the server to one

of two clients, then corrupting the clients, and finally simu-
lating them with the and dropped message lets the adversary
distinguish between those clients. This attack, however, tac-
itly assumes that (a) clients do not “reset” if the authentication
session is aborted, or alternatively that (b) the adversary can
actually corrupt the clients before they time out.

B Proof Sketches

We prove each security statement in several game hops:

Proof of ww-unlink.

G0 : the ww-unlink-game stipulated in Section 2.
G0 ⇒ G1: In G1, we abort if two honest server instances out-

put the same random values R or Rid. The two games
are equivalent up to a collision term (qexec+qserv·qOp)2

2|R| +
(qexecqid)2

2|Rid|
(note that Rid is chosen by the server, whereas

R is chosen by the operator, and can be batch-queried on
corruption).

G1 ⇒ G2: In G2, we abort if one of three events happens:
– Event 1: The adversary A has forged the user identi-

fication answer on behalf of a target client C.
– Event 2: The adversary A has forged the authentica-

tion challenge for a client C.
– Event 3: The adversary A has forged the authentica-

tion response of an honest client C.
Any of these events can lead to the following attack: the
adversary A chooses one of two clients (C0 or C1) to in-
put to the DrawCl oracle, receiving the virtual handle VC.
Then A acts as a MiM between the client VC and the
server. For each event, the adversary will forge one spe-
cific message with respect to one of the two clients (say
C0), then forward the rest of the messages in that session.
If the client is authenticated, then A guesses it was the
client with respect to which the message was forged (in
this case, C0). Else, A guesses it was the other client.
We calculate the probability of causing each of the three
events. To prompt (event 1), A can either guess/forge
the identifier TMSI allocated through authenticated en-
cryption (AE), or guess/forge the symmetric encryption
of the corresponding IMSI and a unique (honestly gener-
ated) Rid. Both possibilities imply breaking either the key-
indistinguishability property, or the pseudorandomness of
G.
For events 2,3, A could always try to replay an old au-
thentication challenge. This is only accepted by the client
if the recovered sequence number is either: (i) the client’s
current sequence number; (ii) the previous sequence num-
ber, but with an incremented index. For (i), the challenge

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 272

Client Server Operator
(skC, skop, pke), (SqnC, idxC), (TMSIo, LAIo) (TMSI) (skC, skop, ske), (SqnOp,C, idxOp,C)

User Identity Request
Rid

←−−−−−−−−−−−−−−−−−−−

1©
User Identity Answer

ID‖Opid

−−−−−−−−−−−−−−−−−−−−→

2©
Auth. Vectors Request

Val
−−−−−−−−−−−−−−−→

3©
Auth. Vectors Answer

{AV{i}}ni=1←−−−−−−−−−−−−−−−

4©
Auth. Challenge

R{i}‖Autn{i}‖ AE.EncCK,IK(TMSIn‖idx{i})
←−−−−−−−−−−−−−−−−−−−

5©
Auth. Response

Res
−−−−−−−−−−−−−−−−−−−→

6©
Update Sequence Number
−−−−−−−−−−−−−−−→

7©
Instructions:

Client Server Operator

1©: Compute the identifier:
If flagTMSI := 0 then ID = TMSI.
Else, ID = PKE.Encpke(f5(keys, Rid, IMSI, idxC)‖Rid‖IMSI‖idxC).

flagTMSI := 1.
———————————————————————
5©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.
Compute: IK, CK;
Retrieve the received index and the new TMSI.
If abort caused or the AE does not verify, set flagTMSI := 1 and

increment: idxC := idxC + 1.

Else, check validity of Sqn{i}, i.e if one of the following

conditions is correct:

– SqnC = Sqn{i}.

– SqnC = inc(Sqn{i}) and idx{i} = idxC + 1.

If the first condition is accepted: reset the index idxC,

update the sequence number SqnC = inc(SqnC) .

If the second condition is accepted: idxC=idxC+1 .

Compute Res := F∗1 (keys, R{i}, Sqn{i}, ResS, AMF).

Update the internal index. Allocate the new TMSI.
flagTMSI := 0.

2©: Process the identifier ID:
If the identifier is a TMSI then Val =
IMSI. Otherwise, Val = (ID, Rid).
———————————–
4©: Store {AV{i}}n

i=1.
Choose AV{i} one by one in order.
Then, it sends the authentication
challenge and the new couple

(TMSIn, idx{i}) encrypted and

authenticated by the session keys.
———————————–
6©: If the authentication of the

client is verified (Res ?= MacC), then
they ask to the server the update
of its sequence number. Otherwise,
the protocol is aborted.

3©: Verify the identity of the client with Val.

If this holds, retrieve idxC, set idxOp,C := idxC

Generate (R{1}, ..., R{n}). Denote: keys := (skC, skop).
For each i = 1, . . . , n, compute:
MacS ← F1(keys, R{i}, Sqn{i}, ResS, AMF),

MacC ← F∗1 (keys, R{i}, Sqn{i}, ResS, AMF),

CK← F3(keys, R{i}, Sqn{i}, ResS, AMF),

IK← F4(keys, R{i}, Sqn{i}, ResS, AMF),

AK← F5(keys, R{i}, ResS),
Autn{i} ← (Sqn{i} ⊕ AK)‖AMF‖MacS,

Sqn{i} ← inc(Sqn{i−1}) ,

AV{i} := (R{i}, CK, IK, Autn{i}, MacC, idx{i}), with
Sqn{1} := SqnOp,C,

idx{1} := idxOp,C , ∀i 6= 1, idx{i} = 0 .

End for.
————————————————————
7© : Update the sequence number:

SqnOp,C ← inc(SqnOp,C). Reset the index idxOp,C.

Fig. 6. Our fixed AKA Procedure.

is fresh and the client may at most guess it. Achieving
(ii) implies that A must forge the authentication of an in-

cremented index starting from AE output either with the
wrong index, or with the wrong session keys. Finally, for

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 273

fresh R, the best A can do to forge Res is to guess it or
break the pseudorandomness of G. This yields:∣∣ Pr[AG1 wins]− Pr[AG2 wins]

∣∣ ≤ 2 · 1 + (qexec · qid)2

2|TMSI|

+4nC · (Advae
AE(A) + 2Advmac

G (A))
+3AdvK.Ind

Π (A) .

G2 ⇒ G3: In G3 we replace the output of all the inter-
nal functions (G,AE,PKE) by truly random, but consis-
tent values. The security loss is related to the advantage
against the pseudorandomness of G and the related secu-
rity of the functions PKE and AE.

G3: At this point, protocol transcripts are consistent, but ran-
dom, and with unique randomness, thus A can at most
guess the bit b.
Security Statement. This yields the following result:

Advww-unlink
Π (A) ≤ AdvK.Ind

Π (A4) + 2 · 1 + (qexec · qid)2

2|TMSI| +

q2
exec

2|R|
+ (qexec · qid)2

2|Rid|
+ nC · (10 · Advprf

G (A1) +

+5 · Advae
AE(A2) + Advind−cca2

PKE (A3)).

Proof of K.Ind.

G0: We consider the K.Ind game with server corruptions.
G0 ⇒ G1: In G1 we extend the corruption oracle to give the

adversary access to the operator key skop. There is no se-
curity loss (this is trivial since in game G1, A has more
information).

G1 ⇒ G2: In G2,A can only interact with a single client. For
the reduction, the adversary in G2 can simulate queries
perfectly for the adversary in G1 as long as it guesses the
target (tested) client. This yields a security loss of 1

nC
.

G2 ⇒ G3: In G3, we abort if two honest server instances out-
put same random values R or Rid. As before, we lose
(qexec+qserv·qOp)2

2|R| + (qexecqid)2

2|Rid|
.

G3 ⇒ G4: In G4 A only plays against one server. ThusA can
no longer corrupt servers and query operators; however,
note that server corruptions are not used to the adversary
anyway, because they contain a different ResS. Thus, we
lose at most the advantage of breaking the pseudorandom-
ness of G.

G4 ⇒ G5: In G5, we replace the output of (G,AE,PKE) by
truly random, consistent values. The reduction goes as in
the previous proof.

G5: In this game,Amust distinguish real from random keys if
the transcripts are truly random, for unique R,Rid values.
Thus, A can at most guess.

Security Statement. This yields the following bound:

AdvK.Ind
Π (AG0) ≤ nC · (

(qexec · qid)2

2|Rid|
+

(qexec + qserv · qOp)2

2|R|
+2Advprf

G (A1) + +Advae
AE(A2) + Advind−cca2

PKE (A3).

Proof of C.Imp.

G0: This is the C.Imp game outlined in the full version [10].
This is a classical client-impersonation attack by an active
MiM that can corrupt servers.

G0 ⇒ G2: Use the same game hops as for K.Ind. In G2, A
interacts with only one client.

G2 ⇒ G3: In G3 A only interacts with a single uncorruptible
server. The security loss is given by the collision on two
outputs of the same function G with two different inputs
(at least ResS differs). The security loss is thus bounded
by the advantage of a best distinguisher against the pseu-
dorandomness of G.

G3 ⇒ G4: In G3 we replace the output of (G,AE,PKE) by
truly random, consistent values, as in the previous proof.

G4 ⇒ G5: In G5, we abort if two honest server instances
output the same values R or Rid. The loss is (qexec)2

2|R| +
(qexecqid)2

2|Rid|
.

G5: Now A plays the game against a single client and server,
with only truly random, but consistent values, for unique
R and Rid values. There are three options: (1) re-using a
value already received from the honest client; (2) guess-
ing the key skC; (3) guessing the response Res. The
first option yields no result, since it implies there exists
a previous client instance with the same session id sid
as the client. The second option happens with a prob-
ability of 2−|skC|. The third option occurs with a prob-
ability of 2−|Res| + 2−|ID| per session, thus a total of
qexec · (2−|Res| + qid · 2−|ID|).

Security Statement. This yields the following result:

AdvC.Imp
Π (AG0) ≤ nC · (Advprf

G (A1) + Advae
AE(A2)

+Advind−cca2
PKE (A3) + (qexec · qid)2

2|Rid|
+ (qexec)2

2|R|

+ qexec
2|Res| + 1

2κ + qexec · qid
2|ID|

).

Proof of S.Imp.

Game G0 : This is the S.Imp-game with server corruptions,
equivalent to the C.Imp game.

G0 ⇒ G4: We use the same game hops from the previous
proof of the C.Imp-security to reach to G4, in which A
can interact with a single client and a single server, and
all output from (G,AE,PKE) is truly random and consis-
tent.

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 274

Game G4 : Now A plays the game with a single client Ci,
which only accepts AG4 , if the authentication challenge
is verified. Assume that this happens against instance Ci
of the target client, for some target session sid. The MAC
value MacS computed by Ci is purely random, but con-
sistent. Now A can: (a) forward a value already received
from the honest server for the same R; Sqn; skop; skC,
of which skC is unknown; (b) guess skC; or (c) guess the
response. As in the previous proof, this yields:

Pr[AG4 wins] = 2−|skC| + qexec · 2−|MacS|.

Security statement: This yields the following result:

AdvS.Imp
Π (AG0) ≤ nC · (

qexec
2|MacS|

+ 1
2κ + Advprf

G (A1)

+Advae
AE(A2) + Advind−cca2

PKE (A3)).

Proof of St.conf.

G0: This is the St.conf game as outlined before.
G0 ⇒ G1: In G1 we only include one operator. The security

loss is the advantage against the pseudorandomness of G
when keyed with skC.

G1 ⇒ G2: In G2,A can only interact with a single client. An
interesting difficulty is simulating queries for non-target
clients affiliated to the target operator. We can do this by
requiring that the AKA algorithms behave as a PRF when
keyed with skop (this function is called G∗). The adver-
sary requires oracles to both G∗ and G.

G2 ⇒ G3: In G3, we replaceG andG∗ by truly random, con-
sistent values. We lose the advantage against the pseudo-
randomness of G or G∗.

G3: Now A plays the game against a single client C, using
truly random values. She can output at least one correct
long-term secret for C only by guessing it, namely with
probability: 1

2|skC|
+ 1

2|skOp|
+ 2

2|Sqn| .

Security Statement. This yields the following result:

AdvSt.conf
Π (AG0) ≤ nC · 2−|skC| + 2−|skop| + 2 · 2−|SqnC|

+Advprf
G (A1) + Advae

AE(A2)

+Advind−cca2
PKE (A3)) + Advprf

G∗(A4).

Proof of S.sound.

G0: This game resembles S.Imp, but we play against a mali-
cious server.

G0 ⇒ G1: We define game G1 as the modification of the
S.Imp game in which A can corrupt operators and get up

to qOp authentication vectors; the adversary’s goal is to
authenticate qOp + 1 times. We show that for every adver-
sary winning game G0 with some probability, there exists
an adversary winning game G1 with the same probability.

G1: By the construction of G1 the success probability of the
adversary is now only at most the S.Imp bound.

Security Statement. This yields the following result:

AdvS.sound
Π (AG0) ≤ nC · (

qexec
2|MacS|

+ 1
2κ + 2 · Advprf

G (A1)

+Advae
AE(A2) + Advind−cca2

PKE (A3)).

C Evaluation

In proposing our variant of AKA we explicitly or implicitly
addressed several attacks. We discuss these below, referring
the reader to Figure 7 for a better overview.
Server Corruptions : The original AKA protocol only offers

a degree of key-indistinguishability and impersonation se-
curity, only in the absence of server corruptions. Since
servers are trusted to run the authenticated key-exchange
step, corrupting a server compromises any security of a
channel this server establishes; however, in the AKA rou-
tine, this flaw is exacerbated, since the corruption results
can be re-used later in non-vulnerable areas. This is an
active, and rather complex attack, but it is highly paral-
lelizable and has a great security impact. To mitigate this
risk, we added a server-specific, unique, publicly-known
identifier ResS, which is now given as input to all the cryp-
tographic functions.

Client Confidentiality : IMSI catcher attacks compromise
the client’s identity in a direct way (the adversary learns
a static identifier). This attack can be run (with a re-
duced success probability) even by passive attackers, and
it is highly parallelizable. The consequence is that mul-
tiple clients can be tracked simultaneously in a mass-
surveillance operation. We mitigate such risks by ensur-
ing that no static identifier is leaked through, by using a
PKE scheme, in which only the operators have secret and
public keys.

Client Unlinkability : Even if the adversary cannot track a
user back to a permanent identifier, she can still try to dis-
tinguish between two chosen users, e.g. by causing some
unusual protocol steps. Attacks like distinguishing be-
tween two different failure messages (which are actively
triggered by the adversary), injecting a message and then
seeing its effect in a protocol run (which is accepted if

Unauthenticated
Download Date | 10/23/16 6:36 PM

Achieving Better Privacy for the 3GPP AKA Protocol 275

Added countermeasures Cost Attacks it Prevents Attack Impact

Client sends encrypted IMSI

- Needs IND-CCA PKE
encryption

- Simple PKI (only op-
erators)

Client Confidentiality:

(IMSI Catchers)

Trace many users
- Parallelizable
- Passive/Active

Large TMSI size
Client unlinkability:

Distinguish TMSI/IMSI msg.

Trace 1 user:
- Non-parallelizable
- Active only

Authenticate TMSI realloca-
tion (see also: index)

New reallocation alg.

Client unlinkability:

(Denial-of-Service)

Trace many users
- Parallelizable
- Active only

Client unlinkability:

Distinguish TMSI/IMSI

Trace 1 user
- Non-parallelizable
- Active only

Index idxC, idxS New 1-bit state variable

Client unlinkability:

Prompt resynch, distinguish

Trace 1 user
- Non-parallelizable
- Active only

S.Imp-resistance:

Challege is un-replayable

Impersonate servers
- Parallelizable
- Active only

Introducing ResS
- New server identifier
- Changed crypto algs.

S.Imp-resistance

k.ind-security

S.sound-security

(Server Corruptions)

Break sec. channel

- Parallelizable
- Needs corruptions
- Active only

Use only current LAI - Clients must know LAI
- Clients store ResS

Location privacy:

(Track past LAI)

Trace 1 user per LAI
- Non-Parallelizable
- Passive

Fig. 7. Assessment of our AKA variant: cost and effect of coutermeasures.

the chosen client is compatible with the injected message,
and rejected otherwise), or distinguishing between mes-
sages of distinct lengths allow client linkability. While not
as versatile, nor as parallelizable as client confidentiality
attacks, these threat nevertheless allow an insidious ad-
versary to track a user that is singled-out for mass surveil-
lance. In our variant, we make protocol executions for dif-
ferent users indistinguishable from one another, at the cost
of larger TMSI values, a new index variable, using IND-
CCA PKE encryption, and making the operator intervene
in the case of an error.

Denial of Service : Apart from being a means of breaking
client-unlinkability, DoS attacks can also facilitate IMSI
catchers, and add to the complexity of AKA. One way of
causing a DoS in AKA is to send a random string instead

of the TMSI reallocation message. The client will parse
this as some TMSI value, which, when reused, will not be
traceable by the server. The latter then requests the IMSI
in clear. We mitigate this DoS attack by using authenti-
cated encryption for the TMSI reallocation and ensuring
that no desynchronizations can occur.

Itinerary tracking : One disadvantage of AKA is that the
client’s past location is revealed during the protocol, al-
lowing to track up to 1 user per LAI at any one time. We
bypass this difficulty by only using current LAI values.

Unauthenticated
Download Date | 10/23/16 6:36 PM

