
Proceedings on Privacy Enhancing Technologies ; 2016 (4):294–314

Yaoqi Jia*, Guangdong Bai, Prateek Saxena, and Zhenkai Liang

Anonymity in Peer-assisted CDNs:
Inference Attacks and Mitigation
Abstract: The peer-assisted CDN is a new content distri-
bution paradigm supported by CDNs (e.g., Akamai), which
enables clients to cache and distribute web content on behalf
of a website. Peer-assisted CDNs bring significant bandwidth
savings to website operators and reduce network latency for
users. In this work, we show that the current designs of peer-
assisted CDNs expose clients to privacy-invasive attacks, en-
abling one client to infer the set of browsed resources of an-
other client. To alleviate this, we propose an anonymous peer-
assisted CDN (APAC), which employs content delivery while
providing initiator anonymity (i.e., hiding who sends the re-
source request) and responder anonymity (i.e., hiding who re-
sponds to the request) for peers. APAC can be a web service,
compatible with current browsers and requiring no client-side
changes. Our anonymity analysis shows that our APAC design
can preserve a higher level of anonymity than state-of-the-art
peer-assisted CDNs. In addition, our evaluation demonstrates
that APAC can achieve desired performance gains.

Keywords: Peer-assisted CDNs, Anonymity, Inference At-
tacks

DOI 10.1515/popets-2016-0041
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction

Content Delivery Networks (CDNs) were introduced a decade
ago. To distribute data to end users in a fast way, CDN op-
erators (e.g., Akamai [1] and CloudFlare [4]) assist sites to
deliver content to end users with their multiple data cen-
ters across the world. Complementary to these infrastructure-
based approaches, numerous CDNs have adopted peer-to-
peer techniques to distribute content, e.g., Swarmify [20],

*Corresponding Author: Yaoqi Jia: National University of Singapore,
E-mail: jiayaoqi@comp.nus.edu.sg
Guangdong Bai: National University of Singapore, E-mail: baiguang-
dong@comp.nus.edu.sg
Prateek Saxena: National University of Singapore, E-mail: pra-
teeks@comp.nus.edu.sg
Zhenkai Liang: National University of Singapore, E-mail:
liangzk@comp.nus.edu.sg

PeerCDN [17] Akamai NetSession [2], Squirrel [50], Coral-
CDN [44, 45], FlowerCDN [43] and Maygh [76].

On one hand, involving end users as peers (client-side
CDNs) to distribute data in peer-assisted CDNs reduces the
fetching time of resources and saves the bandwidth of CDNs’
servers. For instance, Akamai NetSession can offload over
70% of the traffic to peers with high reliability [77]. On
the other hand, in contrast to infrastructure-based systems in
which trusted centralized servers are deployed, untrusted peers
in peer-assisted CDNs can easily join the system. The compro-
mised or malicious peers can then a) modify content and in-
ject unauthorized content; b) delay or deny content delivery to
other peers; c) misreport their contributions to manipulate the
accounting for commercial services [29, 77]; d) infer which
peer they deliver/fetch a resource to/from, and what content
the peers have requested.

In practice, peer-assisted CDNs introduce various mea-
sures to tackle these security issues. For example, to protect
the authenticity and integrity of the content in peers, FireCo-
ral introduces the signing service to authenticate content, and
peers can verify the content with the hash information supplied
by the tracker [69]. In addition, Aditya et al. proposed RCA, a
reliable client accounting system for NetSession to discover all
misreportings and protocol violations by faulty or malicious
clients and quarantine these potentially colluding clients [29].
However, privacy leakage in peer-assisted CDNs has not been
actively studied yet, and anonymity is also seldom considered
by existing peer-assisted CDNs.

Although the majority of resources (e.g., images) served
on CDNs are publicly accessible for all users, a user’s online
activities (e.g., visiting personalized web pages and fetching
relevant resources) have been proven to be privacy-sensitive.
For example, a user’s digital identity can be revealed when
visiting social network websites [72]; visiting map service/po-
litical websites reflects a user’s geolocation/political orienta-
tion [52]. Revealing a user’s browsing history will significantly
leak the user’s privacy. To demonstrate this threat, we present
inference attacks on peer-assisted CDNs: by placing controlled
peers and observing the requested contents in the system, the
adversary can effectively infer content-access activities of be-
nign peers.

To demonstrate the effectiveness of the proposed infer-
ence attacks, we conduct inference attacks against widely used
peer-assisted CDNs, including Swarmify, BemTV and P2PSP.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 295

From our experiments, we find that in any of these systems,
when a peer (i.e., an initiator) sends a request for a specific
resource, the server assists the initiator to directly fetch the
content from another nearby peer (i.e., the responder) based
on locality, without any mechanism to conceal the initiator’s or
the responder’s identity. Therefore, the adversary who controls
a number of peers is capable of mounting inference attacks on
existing peer-assisted CDNs to identify the initiator or respon-
der of a forwarded request. Through the observed communi-
cation, the adversary can infer the user’s browsing history and
preferences. The adversary can then use this information for
spear phishing, personal targeted advertisements, and social
engineering attacks [54].

The primary goal of peer-assisted CDNs is to save the
server’s bandwidth and reduce client-side network latency.
It is quite challenging to conceal peers’ identities (IP ad-
dresses) to mitigate inference attacks as well as to preserve
reasonable responsiveness for the deployed site. On the other
hand, although anonymous mechanisms have been well stud-
ied in communication systems [8, 11, 21, 38, 41, 46, 57,
60, 64, 65], their previous applications rarely impose strin-
gent performance demands such as in a real-time caching sys-
tem. Their primary goal (e.g., onion routing [64], Tor [41],
Mixminion [38] and Crowds [65]) is to preserve high level
of anonymity. Directly adopting these approaches may intro-
duce non-negligible performance overhead for clients, e.g.,
the client-side communication overhead for circuit setup in
onion routing-based and Crowds-based systems. For instance,
Mixminion can introduce several-hour latency for message
transmission [38].

To address these challenges, we develop an Anonymous
Peer-assisted CDN (APAC) for web applications. APAC in-
volves client-side browsers as peers to distribute content with-
out requiring any software installation for users. Once users
visit the deployed site, APAC’s client-side code will assist
their browsers to join APAC as peers and serve resources to
other users. APAC is compatible with mainstream browsers
and requires negligible modification on the deployed websites.
In practice, the adversarial peers can exist uniformly in the
system or densely surround the victim. To achieve an ade-
quate level of anonymity in different scenarios, we introduce
a new region-based circuit selection algorithm to construct a
path (denoted as circuit) consisting of peers. Our APAC en-
capsulates the request with standard layered encryption and
the initiator can fetch the content via the constructed circuit.

Our goal is not to build a perfect anonymity-preserving
system, as it may introduce huge performance overhead, but
we aim to enable the system to make trade-off between per-
formance and anonymity, which is significantly beyond that of
current peer-assisted CDNs. Using a standard measure of de-
gree of anonymity [40], we show that APAC can preserve a

high degree of initiator/responder anonymity (i.e., at 0.8 de-
gree of anonymity recommended for anonymous communica-
tion systems by Diaz et al. [40]), with only two intermediate
peers for a circuit even if 35% of all peers are under the adver-
sary’s control. Our locality-aware APAC is tunable to select
intermediate nodes nearby the initiator/responder, which re-
duces the resource fetching time (network latency) for peers.
Our evaluation in a city-wide network shows that with two in-
termediate peers for a circuit, APAC can reduce 44.1% client-
side network latency and save 97.3% server-side bandwidth
when fetching 2 MB1 resources via peers, with 0.8 degree of
anonymity.
Contributions. Compared to regular CDN services, APAC
saves the bandwidth of the CDN’s edge server, and reduces the
latency for peer when the edge server and peers are not in the
same city. In contrast to single-hop peer-assisted CDNs such
as Swarmify, APAC provides an adequate level of anonymity
for peers, but it trades off the performance, e.g., network la-
tency. In summary, we provide the following contributions:
– We systematically analyze inference attacks on real-world

services, i.e., Swarmify, BemTV and P2PSP.
– We develop an anonymous peer-assisted CDN (APAC) for

web applications, which involves browsers as peers to dis-
tribute content. From our analysis, APAC can preserve high
level of initiator/responder anonymity even if 35% peers are
compromised.

– APAC is compatible with current browsers, and requires
no client-side installation. Our evaluation demonstrates that
APAC can bring desired network latency reduction for
peers and bandwidth savings for deployed sites. APAC
can customize and balance between three considerations:
anonymity, performance and compatibility with browsers.

2 Motivation & Problem
Statement

2.1 Background of Peer-assisted CDNs

Conventional CDN operators, e.g., Akamai [1] and Cloud-
Flare [4], distribute website contents around the world-wide
edge servers for faster loading of content resources. CDN op-
erators can increase the geo-density of edge servers up to a
point (e.g., placing edge servers in major cities of various

1 Since the averaged total size of transferred data when loading a site is
2268 KB [22], we use the fetching time of 2 MB resources as the repre-
sentative.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 296

1

2

3

4

Peer Server vP

Peer vA
Peer vB

Peer vc

Fig. 1. Illustration of content delivery in current
peer-assisted CDNs. Peer vA sends requests to
the peer server for resources R1 and R2 (in 1©).
The server responds to vA with a list of peers,
e.g., vB and vC having R1 and R2 respectively
(in 2©). vA connects with vB /vC , and fetches
resources from them (in 3© 4©).

1

2
3

Peer Server vP

Peer vA
(Adversary)

Peer vB
(Victim)

Fig. 2. Illustration of an inference attack
to infer the responder of a request. The
adversarial peer vA sends a request for
a resource R to the peer server (in 1©).
Based on locality, the server replies vA

with the nearby victim vB having R (in
2©). vA fetches R from vB (in 3©), thus

the adversary infers that the victim has
viewed R recently.

1

Peer vA
(Victim)

2 Peer vB
(Adversary)

Peer vC
(Adversary)

Fig. 3. Illustration of an inference attack
to infer the initiator of a request. The user
vA fetches resources from peer vB and
vC which are controlled by the adversary
(in 1© 2©). Therefore, by passively ob-
serving the requests from the victim, the
adversary can determine that the victim
is looking for (interested in) the requested
content.

countries), but fetching resources for users far away from an
edge server has major latency.

To address this challenge, various peer-assisted CDNs
have been proposed utilizing proxies or client-side software
(e.g., browsers) as peers [2, 15, 17, 20, 25, 29, 43–45, 50, 69,
70, 73, 76]. Previous studies have shown advantages of peer-
assisted CDNs: they can significantly reduce the cost of all par-
ties including Internet Service Providers (ISPs) [48, 53]. For
example, NetSession has over 25 million users in 239 coun-
tries and territories, and offloads 70−80% of the traffic to peers
without the trade-off of reliability [77]. In peer-assisted CDNs,
the peers are the clients that fetch and distribute content, e.g.,
browsers in Maygh [76] and client programs in NetSession [2].
In such design, a peer server coordinates peers to distribute
content. As Figure 1 illustrates, after communicating with the
peer server, peers can fetch content from other nodes.To re-
duce the network latency, the peer server typically assigns the
initiator a peer who has the requested resource as the respon-
der, based on the distance between their IP addresses or ge-
olocations (called a locality-aware peer selection algorithm).
Alternatively, the server directly responds with a list of peers
having the requested content, the initiator will contact these
peers in parallel. After receiving the content, the initiator can
serve it to other peers.

2.2 Inference Attacks & Real-world
Examples

As shown in Figure 1, a typical peer-assisted CDN does not
conceal the initiator’s/responder’s identity (IP address) for
each request. By observing the forwarded requests from the
controlled peers in the system, the adversary can effectively
infer the initiator/responder of each request, and further in-
fer the victim’s browsing history and preferences (as shown in
Figure 2 and 3). We term such attacks as inference attacks. In

an inference attack, when any of the adversarial peers is the
responder/initiator of a request, the adversary can definitely
determine which peer is the initiator/responder of the request.
By profiling a user’s browsing history and preferences with
the inference attack, the adversary can infer the victim’s dig-
ital identity [72] and precise geolocation [52], as well as fur-
ther abuse the sensitive information for spear phishing, per-
sonally targeted advertisements, or even social engineering at-
tacks [54].

Inference attacks in peer-assisted CDNs have not been
carefully studied. We analyze inference attacks on three real-
world services, including Swarmify, BemTV and P2PSP, to
show the prevalence and effectiveness of such attacks2.
Swarmify. Swarmify [20] assists the deployed site to deliver
content to users from other peers based on locality. It re-
quires sites to include a service-specific library based on We-
bRTC [26] and deploy optional changes on resources. Al-
though all communications between peers in Swarmify are
encrypted, our study demonstrates that it does not guarantee
anonymity for peers.

We have mounted an inference attack as follows. We first
deployed Swarmify on a website and set 10 images and 2
videos as the targeted resources. For the first time, we launched
a Chrome browser as the victim’s peer. The victim’s peer ran-
domly fetched part of resources (unknown to the attacker)
from the remote server. To infer what content the victim has
requested, we located the adversarial node nearby the victim’s
peer in the same local area network (LAN), and used Wire-
shark [28] to eavesdrop on the network traffic from/to the con-

2 Previous work [76, 77] mentions that peers can learn the IP addresses
of the connect peers in numerous peer-assisted CDNs, e.g., NetSession,
FireCoral, FlowerCDN and Maygh. Thus, these services are conceptually
vulnerable to inference attacks too.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 297

trolled node. When the malicious peer requested all resources,
we clearly observed that the peer server replied with the vic-
tim’s IP address and instructed the malicious node to fetch
particular resources from the victim’s peer. Therefore, the at-
tacker can infer the responder’s identity (the victim’s IP ad-
dress) and what content the responder holds. For the second
time, the adversarial peer first fetched and buffered all con-
tent from the site. When the victim’s peer requested several
resources, the controlled peer was instructed to distribute the
particular resources to the victim’s peer. Observing the traffic
from the controlled peer, the adversary identified the victim’s
IP address and the requested resources. Hence we conclude
that Swarmify is vulnerable to inference attacks.
BemTV & P2PSP. BemTV [3] is a hybrid CDN and P2P
infrastructure for streaming live videos over HTTP, which is
also built upon WebRTC with the aim of utilizing clients’ web
browsers to relay the streamed media files. BemTV requires
additional setup on the server side to manage connections be-
tween peers, but this is completely transparent to peers.

We have tested BemTV to live-stream a sample video that
had been accessed by several computers located within a uni-
versity network infrastructure. While streaming out the me-
dia files, we observed the incoming and outgoing traffic of re-
quests from a computer that acted as an adversary. For each
media file, the attacker was able to figure out which specific
users (determined by the mapping of IP address) fetched/de-
livered the media content from/to the adversarial peer. Based
on this information, the adversary is capable of determining
who is the initiator/responder and further infer the exact video
that the victim is watching. In addition, it turns out that Be-
mTV does not guarantee the content integrity between peers
in the network, which opens up possibilities for content pollu-
tion attacks [47, 51, 61]. Besides BemTV, we have also carried
out inference attacks on another video streaming service called
P2PSP [16]. We find that P2PSP suffers the same anonymity
issues as BemTV does.
Key findings. Our analysis (in Appendix B) reveals that ex-
isting peer-assisted CDNs (including Swarmify, BemTV and
P2PSP) cannot preserve an adequate level of anonymity when
over 20% peers in the network are malicious. Our analysis
is conservative, as we assume that the peer-assisted CDN’s
server randomly assigns a peer having the requested resource
as the responder for the request. In reality, if the CDN is
locality-aware and instructs the peers to fetch content from
nearby peers, it is even easier for the adversary to identify
the peers near her controlled peers. Hence the existing peer-
assisted CDNs provide much worse anonymity for users than
that in our conservative analysis.

2.3 Problem Statement

In this paper, for a particular message (i.e., resource request),
we call the peer who initiates the request the initiator, and call
the peer who responds the request the responder. We define
initiator/responder anonymity to mean that the adversary can-
not identify the initiator/responder among peers for a resource
request. The assumptions on the adversary are:
– Internal: The adversary controls some of peers, which are

part of the system and can observe the information about
forwarded packets.

– Partial: The adversary controls a limited number of peers
(e.g., a fraction f), and cannot perform any traffic analysis
on the rest of the system.

– Non-adaptive: The adversary places nodes first, and then the
system constructs a circuit for the request. Once the request
is in progress, the adversary cannot alter the placement of
peers.

We consider an honest-but-curious adversary, which follows
the protocol and places nodes randomly in the network or
nearby a victim to increase their chance to determine whether
the victim initiates/responds a request. We assume that exist-
ing accounting mechanisms [29] can be deployed to discover
protocol-violating peers, e.g., massively sending or delaying/-
denying content delivery requests [29]. Sybil attacks [39, 42,
74] and denial-of-service attacks (DOS) [63] are out of scope
in this paper.

The adversary’s goal is to identify the initiator/responder
of a request with high probability. At the beginning of the re-
quest, any benign peer is indistinguishable as the initiator/re-
sponder. When the request is in progress, the adversarial peers
may be chosen as hops for the request. Hence the adversary
can make some observations of the request and gain more
knowledge to infer the initiator/responder with higher prob-
ability. An anonymous system is required to guarantee that the
adversary’s observations give minimal advantage to determine
the initiator/responder. Such an adversary’s advantage can be
quantified as an entropy metric — the amount of uncertainty in
determining the initiator/responder of a request to be a specific
victim node. Considering the initiator anonymity, we define
the system’s entropy as:

Definition 2.1. Given a request in the system, where Ψ is the
set of peers, and pu is the probability that the peer u is the ini-
tiator of the request, the entropyH(I) for the system is defined
by:

H(I) = −
∑
u∈Ψ

pu log2 (pu) (1)

If the adversary has no a priori information on the request,
the system preserves the maximum entropy HM . With some

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 298

observations, e.g., the responder is adversarial and monitors
the forwarded packets, the adversary has higher probability to
infer the initiator, as well as the system’s entropy decreases.
Let O be the set of all observations for the adversary. When
an observation o ∈ O occurs with the probability P (o), the
corresponding entropy is H(I|o).

Definition 2.2. The conditional entropy of the system on ob-
serving O is defined by:

H(I|O) =
∑
o∈O

P (o) ·H(I|o) (2)

The advantage gained by the adversary with observation O is
the difference in the entropy before and afterO, that is: HM −
H(I|O). The degree of anonymity is defined as the normalized
value of this difference in certainty of the adversary’s guesses
about a victim being the initiator:

Definition 2.3. The degree of initiator anonymity provided by
a system is defined by:

D(I|O) = 1− HM −H(I|O)
HM

= H(I|O)
HM

(3)

The larger D(I|O) is, the higher level of anonymity a system
provides. D(I|O) = 0 or D(R|O) = 0 means absolutely no
anonymity, i.e., the adversary knows with 100% the initiator
or responder of a request; When the initiator or responder is
not identifiable among all peers, D(I|O) = D(R|O) = 1.
To preserve an adequate level of anonymity, the degree of
anonymity for a system is at least ε (ε = min{D(I|O)}). In
this paper, we set ε as 0.8, which is suggested by a previous
study [40]. Hence, if D(I|O) and D(R|O) in a system are
over 0.8, we consider the system preserve an adequate level
of initiator/responder anonymity. Analogous to H(I|O) and
D(I|O), we define H(R|O) and D(R|O) to quantify the re-
sponder anonymity in a system.

3 Anonymous Peer-assisted
CDN

In this section, we present our anonymous CDN system APAC
that provides protections against inference attacks as well as
balances the performance overhead. To build practical anony-
mous peer-assisted CDNs, we have three goals below.
Anonymity: In a peer-assisted CDN, the adversary may con-
trol a fraction f of peers. The adversarial peers can be uni-
formly scattered in the network or densely surround the vic-
tim. When a benign peer sends/responds a request to another
peer to fetch/deliver a resource, our system should conceal its

identity and the linkability to the requested resource. There-
fore, other peers do not know who is the initiator/responder of
the request.
Performance: Peer-assisted CDNs are designed to assist cus-
tomers (e.g., sites) to save bandwidth of servers and reduce
latency of delivering content to users. Our system should not
sacrifice this merit. Therefore, one important goal for us is to
balance performance and anonymity.
Compatibility: Our design should introduce no (or minor)
changes on websites and clients, such that our system can
be easily deployed on various web applications and is user-
friendly. Compared with other peer-assisted CDNs (e.g., Net-
Session) that require the end users to install standalone soft-
ware, our system can attract more users to join as peers for
content delivery.

3.1 Design of APAC

Overview. APAC consists of two primary components: a peer
server run by the site operator, and the client-side code imple-
mented in JavaScript and executed in each peer, i.e., a user’s
web browser. Independent of the site’s content server (or the
CDN’s edge server), the peer server does not directly deliver
content, but maintains the connections with peers and coor-
dinates peers to fetch data either from the content server or
other peers. At the beginning, when peers request resources,
the peer server instructs them to retrieve the content from the
content server. The peers who have retrieved the content will
store it and be ready to distribute it. When the total number
of joined peers and the number of peers having resources are
sufficient to preserve the required anonymity based on proper
configurations, the peer server will construct circuits for new
requests. The server chooses nodes based on our selection al-
gorithm, and arranges them into a path (or circuit), through
which the request and content will be transmitted. Then the
initiators of requests fetch content from other peers via the cir-
cuits. After receiving the content from other peers, peers first
verify its integrity, then store and serve it to other peers. We
detail the functionalities and implementation in Section 4. As
Figure 4 illustrates, analogous to current peer-assisted CDNs,
APAC can be deployed for different edge (content) servers,
and serves users far from the nearest edge server. We show the
performance of APAC in a city-wide scale in Section 5. Next,
we demonstrate how APAC achieves the three design goals.
Anonymity: We introduce a new region-based circuit selec-
tion algorithm that APAC’s peer server uses to construct cir-
cuits for requests. A circuit consists of three categories of
nodes: nodes nearby the initiator and the responder, and nodes
chosen globally (not included in the first two categories). To
provide initiator/responder anonymity, APAC’s peer server

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 299

Edge (Content) Server

Peer

APAC Peer Server

APAC APAC

Fig. 4. The overview for the deployment of APAC.

communicates with peers and constructs a circuit for each re-
quests, instead of letting the initiator to construct the circuit in
conventional onion routing-based approaches, which only pre-
serve initiator anonymity. Each request in APAC is encrypted
as a layered encryption packet with the keys of selected nodes
for the circuit in the peer server, and is transferred through the
circuit. In this way, the initiator and responder know what re-
source is requested, but cannot identify each other. Any inter-
mediate node only knows its predecessor and successor, but
does not know the transmitted content, or determine which
peer is the initiator or responder. In contrast to the current peer-
assisted CDNs, in which controlling one node in a request is
enough to identify the initiator/responder, it is difficult for the
adversary to infer the initiator when only controlling the re-
sponder or several intermediate peers. To preserve higher level
of anonymity, APAC can set a longer length for the circuit.
APAC can also be adjusted to select all intermediate nodes
globally to avoid choosing disproportionate number of adver-
sarial peers.

For a given circuit, by controlling the first relay, the re-
sponder and at least half of the intermediate peers alternatively
in the circuit, the adversary can determine the initiator [75].
We show that an adversarial placement of peers (e.g., placing
more peers nearby the victim) does not give significant advan-
tage over a randomized placement by an honest-but-curious
adversary (details in Appendix A). Even in the analysis of the
worst case that the adversary can learn the distance between
any two controlled peers, our system can still preserve an ad-
equate level of anonymity with proper configurations (details
in Section 3.4.1).
Performance: We design APAC to be locality-aware to
achieve good performance. With APAC’s peer server, we can
avoid the non-negligible overhead for the circuit setup on the
client. Furthermore, based on the locality information of all
peers maintained by the server, we utilize the region-based
circuit selection algorithm to balance the anonymity and per-
formance. Instead of randomly choosing intermediate peers,
our algorithm can reduce the network latency by selecting
peers nearby the initiator/responder. By adjusting the maxi-
mum length of the circuit and the distribution factors (control-
ling the number of intermediate nodes in each region), APAC

Algorithm 1: Region-based Circuit Selection Algo-
rithm in APAC

input : N− number of peers, vinit− initiator, vres−
responder, R− requested resource, Lmax− the
maximum number of intermediate nodes (or relays),
αinit, αres(0 ≤ αinit + αres ≤ 1)− distribution
factors, Ninit− number of peers nearest to vinit,
Nres− number of peers nearest to vres, SR− set of
peers having R, NR = |SR|, G− topology graph of
peers

output : cir−selected circuit
1 vres ← randomSelect(SR)
2 l← random(1, Lmax)
3 cirinit ← 〈〉; cirim ← 〈〉; cirres ← 〈〉
4 if bαinitlc ≥ 1 then
5 G′ ← removeFrom(G, {vres})
6 Sinit ← selectNearest(G′, vinit, Ninit)
7 cirinit ← randomSelectNodes(Sinit, bαinitlc)

8 if bαreslc ≥ 1 then
9 G′ ← removeFrom(G, Sinit)

10 Sres ← selectNearest(G′, vres, Nres)
11 cirres ← randomSelectNodes(Sres, bαreslc)

12 if l − bαinitlc − bαreslc ≥ 1 then
13 G′ ← removeFrom(G, Sinit ∪ Sres)
14 Sim ← getNodes(G′)
15 cirim ←

randomSelectNodes(Sim, l − bαinitlc − bαreslc)
16 cir ← concatenate(vinit, cirinit, cirim, cirres, vres)
17 return cir

can provide significant network latency reduction and band-
width savings as well as preserve a high degree of anonymity.
We discuss the design of circuit construction in the next sec-
tion, and evaluate the performance in Section 5.
Compatibility: We provide a web overlay with WebRTC [26]
supported by mainstream browsers (e.g., Firefox and Chrome)
to achieve the peer-to-peer communication and data transmis-
sion among different peers (browsers). Thus when visiting a
deployed website as usual, the user’s browser will automati-
cally join APAC as peers to fetch/distribute content from/to
other peers in a transparent manner. Meanwhile, APAC’s
client-side code only requires the retrofitted website to spec-
ify the targeted resources. No specification means all static re-
sources on the page can be distributed via peers. We demon-
strate the details in Section 4.

3.2 Circuit Construction
The key technique of our approach is the locality-aware cir-
cuit selection algorithm. Given a set of parameters of the
anonymity requirements and threat levels, the algorithm se-
lects a circuit with optimized performance. In this section we

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 300

Notation Description
lcir The circuit’s length (number of nodes

including the initiator and responder
in the circuit - 1)

l, Lmax Number of intermediate peers or re-
lays (l = lcir − 1), the maximum l

Sinit The set of Ninit peers nearest to the
initiator

Sres The set of Nres peers nearest to the
responder

S, SR, Sim The set of all peers in the system, the
set of peers having a resource R, S −
Sinit − Sres

N , Ninit, Nres, NR Number of peers in S, Sinit, Sres, SR

αinit, αres Fraction of nodes for the circuit in
Sinit, Sres

f , fR, finit, fres, fim Fraction of peers are compromised in
the system, SR, Sinit, Sres, Sim

Table 1. Notations for anonymity analysis.

discuss the algorithm, and discuss parameter selection in the
next section.

When other peers have already cached the requested re-
sources, a peer can fetch content from them. We propose the
circuit selection algorithm for APAC to choose intermediate
peers from three categories: near-initiator, globally random
(not nearby the initiator/responder) and near-responder nodes
as a circuit for each request. Every request in APAC is encap-
sulated in layers of encryption (like onions) and transferred via
the circuit.

Algorithm 1 describes our region-based circuit se-
lection algorithm. In APAC, the peer server main-
tains certain information about the current network
(e.g., the total number of peers). The input parameters
Lmax, αinit , αres, N, NR, Ninit, and Nres are decided
by the peer server based on the trade-off between anonymity
and performance, defined in Table 1.
– The peer server randomly chooses one peer as the responder

from the set of peers having the requested resource R (line
1),

– Based on the range from 1 to Lmax, the number of interme-
diate nodes (l) is determined (line 2).

– According to the distribution factor αinit, the peer server
randomly picks nodes nearby the initiator as the first part of
the circuit3 (line 4 - 7).

3 The distances between the chosen peers and the initiator/responder are
measured based on the peers’ geographical coordinates, which can be ob-
tained via navigator.geolocation [9] or using the GeoIP service to map
network addresses to physical locations.

Graph G

initiator
responder

2
6

3

4
1

5

Fig. 5. A 8-node (6-relay) circuit from the initiator to the responder
in APAC.

Fig. 6. The network latency reduction (based on the loading
time without APAC) decreases when increasing the degree of
anonymity of the system.

– According to another distribution factor αres, the peer
server selects nodes nearby the responder as the last part
of the circuit (line 8 - 11).

– The remaining nodes of the circuit are randomly chosen
from the rest of all peers (line 12 - 15).

– The peer server concatenates all the nodes (including the
initiator, intermediate nodes and responder) in sequence as
the circuit for the request (line 16).

Figure 5 demonstrates a 8-node circuit constructed by the peer
server in APAC.

3.3 Parameters Selection

Depending on the requirement of anonymity/performance for
the deployed web application, the input parameters for Algo-
rithm 1 can be adjusted based on the analysis in Section 3.4
and 5. In this section, we briefly illustrate the primary factors
to select these parameters.
The maximum number of intermediate nodes Lmax. The
distribution of peers in the network, the required anonymity,
the fraction of adversarial peers and other factors affect the se-
lection of Lmax. As an in-advance conclusion, to achieve bet-
ter anonymity, the system is supposed to select largerLmax (as
shown in Figure 7, 8 & 9). On the other hand, to achieve bet-
ter performance of the system, the smaller Lmax is preferred
(as shown in Figure 14). As Figure 6 shows, by adjusting the
setting of APAC at the sweet spot, the system can preserve
an adequate level of anonymity (i.e., 0.8 degree of anonymity)

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 301

with minor performance overhead4. In our experiment, setting
two intermediate nodes for the circuit makes the system at the
sweet spot.
Distribution factors αinit & αres. To provide higher level of
anonymity for peers even when adversarial peers are densely
near the initiator/responder, the system can select smaller
αinit/αres and Ninit/Nres to diversify the intermediate
nodes on the circuit. Thus the probability to choose an adver-
sarial node as the intermediate node is approximate to f , which
does not give the adversary significant advantage. APAC can
enlarge αinit & αres to reduce client-side network latency for
peers (as shown in Figure 16 & 17).
The other parameters N, NR, Ninit &Nres. By increasing
the total number of peers N and the number of peers having
requested resources NR, the system can preserve higher level
of anonymity, but it requires more users to join the system to
start the content delivery via peers. To reduce the client-side
network latency, the system can set small Ninit & Nres to let
intermediate nodes nearby the initiator/responder.

The security parameters such as the maximum number
of intermediate nodes Lmax and distribution factors αinit &
αres can be tuned to adjust the anonymity level of APAC. To
achieve higher level of anonymity for peers, the developer can
select larger Lmax to increase the length of a circuit and larger
N /NR to increase the threshold of starting using APAC, as
well as choose smaller αinit/αres and Ninit/Nres to diversify
the intermediate nodes on the circuit. To preserve initiator/re-
sponder anonymity for peers, currently peers cannot overrule
the security parameters set by the developer; otherwise, adver-
sarial nodes may choose low level of anonymity to easily infer
the identity of the initiator/responder for a circuit. In the ex-
treme scenario where a peer seeks an even higher privacy guar-
antee, it can opt out APAC to directly fetch resources from the
resource server as fallback.

3.4 Anonymity Analysis

In this section, we analyze the anonymity of APAC in a math-
ematical way and demonstrate the way to choose proper pa-
rameters for the circuit selection algorithm based on the re-
quirement of anonymity.

4 The figure is based on our anonymity analysis in Section 3.4 (Figure 7)
and performance analysis in Section 5 (Figure 14). We consider that 100
peers (35% are adversarial) join APAC in one city, increasing the circuit’s
length can provide higher level of anonymity to benign peers but introduce
more network latency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
f

0.4

0.6

0.8

1.0

D(I|O)

Lmax = 0

Lmax = 1

Lmax = 2

Lmax = 3

Lmax = 4

Lmax = 5

Lmax = 6

D(I|O) = 0.8

Fig. 7. Effect of varying Lmax: Increasing the maximum number
of intermediate nodes increases the degree of initiator anonymity.

50 100 150 200
N

0.6

0.7

0.8

0.9

1.0

1.1

D(I|O)

f= 0.25, Lmax = 2

f= 0.25, Lmax = 3

f= 0.35, Lmax = 2

f= 0.35, Lmax = 3

f= 0.45, Lmax = 2

f= 0.45, Lmax = 3

D(I|O) = 0.8

Fig. 8. Effect of varying N : Increasing the total number of joined
peers increases the degree of initiator anonymity.

3.4.1 Analysis of Initiator Anonymity

Considering the initiator vinit issues a request for a resource
R, the peer server sets up a (l + 2)-node circuit based on the
selection algorithm (in Algorithm 1), and the responder vres

delivers R. Our analysis follows the definitions in Section 2.3
and the notations in Table 1.

In APAC, each intermediate node in a circuit only knows
its predecessor and successor. To identify the initiator of a cir-
cuit and link the requested resource to it, the adversary has to
infer the circuit’s length, control the responder (i.e., to know
which resource is requested) and the first relay (i.e., to identify
the predecessor as the initiator). The padding for each encryp-
tion layer makes the adversary difficult to infer the relative
positions of the controlled peers in a circuit. Thus to confirm
one of the controlled nodes is the first relay (only when the
adversary knows the length), the adversary has to control the
responder and some intermediate nodes in the circuit to re-
construct the circuit. For a given circuit, by controlling the
first relay, the responder and at least half of the intermediate
peers alternatively in the circuit, the adversary can determine
the initiator [75]. However, we consider the worst case that the
adversary can learn the distance between any two controlled
peers by passively logging forwarded requests and transmit-

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 302

0.2 0.4 0.6 0.8 1.0
fR

0.65

0.70

0.75

0.80

0.85

0.90

D(I|O)

fres= 0.35, Lmax = 2

fres= 0.35, Lmax = 3

fres= 0.35, Lmax = 4

fres= 0.45, Lmax = 2

fres= 0.45, Lmax = 3

fres= 0.45, Lmax = 4

D(I|O) = 0.8

Fig. 9. Effect of varying fR: Increasing the number of adversarial
peers having the requested resource decreases the degree of
initiator anonymity.

ted data as well as timing attacks5. Thus by determining the
correct circuit’s length as well as compromising the first relay
and the responder, the adversary can infer that the first relay’s
predecessor is the initiator.

We assume that OI is the observation that the adver-
sary can identify the initiator for a circuit with the probability
P (OI) thatOI occurs. Based on the derivation in Appendix A,
the degree of initiator anonymity can be computed as:

D(I|O) = H(I|O)
HM

= (1− P (OI)) log2 ((1− f)N)
log2N

(4)

In practice, the adversarial peers can exist uniformly in
the system or densely around the initiator/responder. Next, we
discuss the degree of initiator anonymity in these two scenar-
ios.
Randomly placing peers in the system. In this case, the frac-
tions of adversarial peers are equal in three different regions,
i.e., finit = fres = f . If fR = f , the probability for the
adversary to identify the initiator of the circuit (proved in Ap-
pendix A) P (OI) = 1

Lmax

∑Lmax

l=1
f2

Lmax−l+1 . Therefore, the
degree of initiator anonymity can be represented as:

D(I|O) =

(
1−

1
Lmax

Lmax∑
l=1

f2

Lmax − l + 1

)
log2 ((1− f)N)

log2 N

(5)

To quantify the effects of Lmax and N to the degree of ini-
tiator anonymity, we plot Equation 15 as Figure 7 and 8. Let
N = 100, Lmax = 0, 1, 2, 3, 4, 5, 6, Figure 7 shows that in-
creasing the maximum circuit length can increase the degree of
initiator anonymity. The first plot (Lmax = 0) represents the
degree of anonymity for current peer-assisted CDNs (deriva-
tion in Appendix B). We can see that the system does not hold
0.8 degree of anonymity even when f < 0.2. On the contrary,

5 To precisely determine the distance between two peers is difficult but
possible for the adversary with timing attacks [31, 36]. To show the
effectiveness of APAC against the adversary, we analyze the initiator
anonymity in this worst case.

APAC preserves 0.8 degree of anonymity when Lmax = 2
and over 35% peers are compromised. As shown in Figure 8,
increasing the total number of joined peers can slowly increase
the initiator anonymity. From Figure 7 and 8, we can see that
when Lmax ≥ 2 and N ≥ 100, APAC can preserve the sug-
gested degree of anonymity (i.e., 0.8), even if 35% of all peers
are under the adversary’s control.
Placing peers nearby the initiator/responder. For a targeted
peer, the adversary may increase fR by storing the requested
resource in more controlled peers and enlarge finit/fres by
locating controlled peers nearby the initiator/responder. As we
discussed in Section 3.1, without considering the worst case,
the placement of peers nearby the initiator/responder does not
help the adversary to gain significant advantage. Next we dis-
cuss the influence of this placement of peers in the worst case.
If the first relay is in the initiator’s region or the responder’s
region (l1 > 0 or l1 = l2 = 0 & l3 > 0 as shown in
Equation 9), then P (OI) = 1

Lmax
·
∑Lmax

l=1
finitfR

Lmax−l+1 or

P (OI) = 1
Lmax

∑Lmax

l=1
fresfR

Lmax−l+1 . The degree of initiator
anonymity can be computed as (using fres as the representa-
tive):

D(I|O) =

(
1−

1
Lmax

Lmax∑
l=1

fresfR

Lmax − l + 1

)
log2 ((1− f)N)

log2 N

(6)

To quantify the effects of fR and Lmax to the degree
of initiator anonymity, we plot Equation 6 as Figure 9. Let
N = 100, f = 0.35, as shown in Figure 9, increasing fR

and fres can decrease the initiator anonymity. However, if
we set αinit and αres properly, which makes l1 = 0 and
l3 = 0, then P (OI) = 1

Lmax
·
∑Lmax

l=1
fimfR

Lmax−l+1 . If we
also set Ninit = Nres = 0, then fim = f . Hence increas-
ing fres does not directly decrease D(I|O). On the contrary,
when fres or finit increases, fim may decrease accordingly
as f is the same. In this case, if fim = 0.35, the first, second
and fourth plots in Figure 9 can represent the degree of ini-
tiator anonymity accordingly. Thus when Lmax = 2, APAC
can preserve over 0.8 degree of the initiator anonymity if fR is
around 0.45.

3.4.2 Analysis of Responder Anonymity

Analogous to initiator anonymity, in order to identify the re-
sponder of a given circuit, the adversary has to determine the
circuit’s length as well as control the last relay and the initia-
tor. We assume that OR is the observation that the adversary
can identify the responder for a circuit with the probability
P (OR) that OR occurs. The degree of responder anonymity

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 303

can be computed as (details of the derivation in Appendix A):

D(R|O) = H(R|O)
HM

= (1− P (OR)) log2 ((1− f)N)
log2N

(7)
The analysis for the two scenarios: adversarial peers uni-

formly exist in the system and more adversarial peers near
the initiator/responder, is similar to the analysis for the de-
gree of initiator anonymity. As a result, if we properly tune
the parameters, e.g., Lmax = 2, N = 100, bαinitlc = 0 and
bαreslc = 0, APAC can preserve 0.8 degree of initiator/re-
sponder anonymity even if 35% of all peers are adversarial
and have different distributions.

4 Implementation of APAC

In this section, we discuss the implementation details of
APAC. We implement APAC with 2600+ lines of code as
well as several libraries and frameworks. APAC’s client-side
code is written in JavaScript with 1000+ lines of code, apart
from three libraries [5, 18] The peer server is also written in
JavaScript with 1600+ lines of code based on Node.js platform
and PeerServer [18]. APAC is compatible with mainstream
browsers (e.g., Chrome, Firefox and Opera) and various oper-
ating systems (e.g., Mac OS, Linux and Windows). Similar to
other peer-assisted CDNs (e.g., Swarmify), APAC is designed
not to violate the same-origin policy — APAC is deployed
“per website” along with the client-side scripts.

4.1 Components in APAC

In APAC, the communications between the peer server and
peers are over HTTPS (e.g., TLS protocol [23]), and the data
transmission among peers are over WebRTC which uses DTLS
protocol [7] as shown in Figure 10. TLS and DTLS protocols
ensure that communication channels are secure and the adver-
sary cannot eavesdrop or tamper with any message in the com-
munications among peers and servers. APAC utilizes Session
Traversal Utilities for NAT (STUN) [19] to deal with Network
Address Translator (NAT) [14] traversal. In this way, even be-
hind NAT a peer can communicate with another peer with a
public IP address or also behind NAT.
Resources in APAC. Similar to other CDNs, e.g., Swarmify
and NetSession, only static resources (e.g., files, images and
videos) are delivered in APAC. To ensure content integrity,
we use flat naming mechanism for resources, i.e., naming the
resource with its hash value. Alternatively, we can attach the
hash value for each resource request, then the peer can verify
the content with the value at the client side. Since the content

Peer Server vP

Peer vA

HTTPS HTTPS

STUN STUN
DTLS

Peer vB

Fig. 10. Overview of the communication channels in APAC.

server is trusted, the peer only needs to verify the integrity of
the resource fetched from other peers. To preserve authentic-
ity, peers are limited to fetch resources provided/authenticated
by the content server from other peers. The content server in
APAC is the website’s server or the CDN’s edge server, which
stores the website’s pages and resources. To retrofit a website
to deploy APAC, developers only need to append APAC’s
client-side code on pages. Optionally, developers can explic-
itly specify several shared resources instead of sharing all re-
sources in the page.
Peer Server in APAC. The peer server is in charge of main-
taining the connections with peers, the properties of each peer
(e.g., identity, IP address, peer key, locality and names of
stored resources) and the properties of each resource (e.g., lo-
cation in the content server and identities of peers having the
resource). Meanwhile, when a peer requests a resource, the
peer server either assists the peer to fetch the content from the
server or constructs a circuit for the peer to retrieve the re-
source from another peer. Key management and path choosing
are done by the peer server, and peer servers can be distributed
to improve fault tolerance.
Peers in APAC. To achieve our third goal (compatibility),
APAC is designed to support a plug-and-play style join-
ing/leaving without any solicited action. When a user visits
the retrofitted site, APAC’s client-side code automatically as-
sists the user’s browser to join APAC as peers to fetch/de-
liver content from/to other peers, without any additional in-
stallation of extensions or software. Users leave APAC’s
network when closing tabs, like Swarmify.6 The client-side
code is purely based on JavaScript and compatible with all
mainstream browsers. With WebRTC [26], the code enables
browser-based real-time communication and data transmission
for peers. It also helps peers to store the requested contents
in indexedDB [13] (i.e., a high-performance client-side stor-
age), which enables peers to directly load the same resources
from indexedDB without issuing new requests. With data URI

6 To support opt-out in APAC for users, the website can host two copies,
i.e., the original one and the retrofitted one. A user can explicitly choose
which one to visit via setting preferences in the site’s first page.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 304

Peer vA
(Initiator)

Peer vB
(Intermediator)

Peer Server vP

1
2

7

Peer vC
(Responder)

3 4

6 5

Fig. 11. Overview of how a peer fetches content from another
peer via three nodes in APAC.

scheme [6] 7, the client-side code appends the content fetched
from the server, another peer or indexedDB to the specific lo-
cation in the visiting page.

4.2 Content Delivery in APAC

In this section, we illustrate how peers fetch content from the
content server, other peers and indexedDB in APAC.
Initiation of peers. When a user first visits the site deployed
with APAC, the client-side code will negotiate with the peer
server to assist the user’s browser to join the system as a
peer. The user’s browser issues an initiation request to the
peer server with the current IP address or coordinates ob-
tained from navigator.geolocation [9]. After receiving the re-
quest, the server recognizes the user’s browser as a new peer,
and responds the peer with an identity and a peer key (sym-
metric key). Meanwhile, the server records the peer with its
properties, i.e., identity, IP address, peer key and locality (de-
rived from IP addresses or coordinates). As for the peer key,
after a period of time, each peer will communicate with the
peer server to update a new key. After the initiation, the new
peer can take advantage of the service provided by APAC to
fetch/deliver resources from/to other peers.
Fetching content from the content server. When the total
number of peers and the number of peers having the requested
resource do not meet the requirement for anonymity (the input
parameters in the circuit selection algorithm), the peer server
will instruct peers to retrieve resources directly from the con-
tent server. In this case, the peer server responds the peer with
the requested resource’s original URL on the content server.
Then the peer issues another request to the content server to
retrieve the resource. After receiving the resource, the peer
stores it in indexedDB, appends it to the page and updates the
caching status to the peer server.

7 The data URI scheme encodes data with base64, which introduces cer-
tain overhead. We use other serialization techniques for data transmission
to reduce the overhead, and only use URI scheme when appending the
data to web pages.

Fetching content from other peers. Content delivery via
peers can start to operate when the system is sufficient to pre-
serve the required anonymity as discussed in Section 3.4. We
illustrate how peer vA fetches a resource R from vC via a 3-
node circuit (as shown in Figure 11) step by step.
– 1©: Peer vA issues a request for a resource R to the peer

server vP ;
– 2©: After receiving the request, vP first searches for online

peers having R. Then vP sets up a 3-node circuit based on
the configuration, constructs the packet below with layered
encryption, and responds vA with the packet.{

IDvB ,KR,
{
IDvC , NoncevB ,{

Rname,KR, NoncevC

}
KvC

}
KvB

}
KvA

(8)

KvA , KvB and KvC are peer keys for vA, vB and vC

respectively. IDvB and IDvC are the identities for vB

and vC . KR is the key generated by vP for vA and vC

to encrypt/decrypt R. Rname is the requested resource’s
name. NoncevB and NoncevC contain the timestamp and
padding, which make any intermediate node difficult to de-
termine its relative position on the circuit. With Advanced
Encryption Standard (AES) [37], the data (i.e., Rname, KR

andNoncevC) is encrypted byKvC (denoted by {...}KvC
),

KvB and KvA layer by layer.
– 3©: Peer vA receives the packet, decrypts it with KvA , and

obtains IDvB (i.e., the next peer to contact), KR and the
remaining cipher text. Then vA forwards the remaining data
to vB .

– 4©: While receiving the packet from vA, vB obtains IDvC

and NoncevB by decrypting it with KvB . After verify-
ing the timestamp in NoncevB , vB forwards the remaining
packet to vC .

– 5©: Peer vC receives the packet from vB , strips off the layer
withKvC , and obtainsRname,KR andNoncevres . vC ver-
ifies the timestamp in Noncevres and searches Rn in its in-
dexedDB. If the timestamp is not out of date and R exists in
the indexedDB, vC responds to vB with

{
R,NonceR

}
KR

.
Otherwise, vC responds to vB with an empty packet.

– 6©: After receiving the response from vC , vB directly for-
wards the packet to vA.

– 7©: When receiving
{
R,NonceR

}
KR

from vB , vA de-
crypts it with KR and obtains R. vA verifies the integrity
of R. If the obtained packet is empty or R is bogus, vA is-
sues another request for R to vP . Otherwise, vA stores R
in its indexedDB and issues a request to vP to update the
status that vA has R.

Fetching content from indexedDB. Once a peer successfully
fetches a resource from the content server or another peer (with
verifying the integrity) and stores it in the indexedDB, the peer
will directly load the resource from its indexedDB instead of

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 305

1KB 10KB 100KB 1MB 2MB
101

102

103

Resource Size

T
ra

ffi
c

S
iz

e
(K

B
) BASELINE

APAC

Fig. 12. Total outgoing network traffic size of a server in response
to a request in APAC setting (APAC) and in the client-server
setting (BASELINE), measured in KB.

issuing a new request afterwards. APAC is compatible with
the current browser cache, i.e., the default cache and HTML5
application cache. The APAC’s client-side code typically ap-
pends resources using data URI scheme. Since these cache
mechanisms support to cache resources with data URI scheme,
they can help to speed up the loading time for these resources.

5 Performance Evaluation

To demonstrate the effectiveness of APAC, we evaluate the
network throughput of the deployed site’s server, and the net-
work latency of fetching resources in APAC. We investigate
the following research questions in this section.
– What is the bandwidth saving of APAC compared with non-

peer-to-peer client/server system?
– What is the latency reduction of APAC with various con-

figurations (e.g., circuit’s length and distribution factors)?

5.1 Measurement Setup

We have deployed APAC on a website that provides images
of different sizes in a range of 1 KB - 2 MB. APAC supports
all standard text and media formats, e.g., html, JavaScript, jpg,
ogg and mp4. Since the majority of requests in popular web-
sites are for images [76], we use images as the representatives
of distributed resources in our experiment. Both the site’s con-
tent server (i.e., edge server) and the peer server are located
in City A8. Considering a typical scenario that peers and the
content/peer server are in different cities, we place peers in

8 In this paper, City A represents New York City, and B represents Sin-
gapore. In our evaluation, we deployed one peer server, which is adequate
for our experiments of 100 peers. For a large scale of users, e.g., 1 million,
multiple peer servers can be deployed to handle requests in parallel.

City B different from City A. We launch over 100 different
browser instances with located across City B. When browsing
the same site deployed with APAC, these browsers join the
system as peers.

To measure the network throughput, we deploy a perfor-
mance measurement tool called iftop on the content server
as well as the systems hosting browser instances. To measure
the client-side network latency in various situations, we ad-
just the settings in the circuit selection algorithm. We vary the
number of nodes on the circuit from 2 (no intermediate node)
to 6 by changing Lmax, and diversify the locations of interme-
diate nodes (tuning distribution factors αinit and αres) in City
B. We demonstrate how these settings for circuit construction
affect the performance of APAC.
Comparison to other CDNs. CDN operators can increase the
geo-density of edge servers up to a point (e.g., placing edge
servers in major cities of various countries), but fetching re-
sources for users far away from an edge server has major la-
tency. Considering this typical scenario, we place peers and the
peer/content server (or CDN’s edge server) in different cities
in our experiment setting. In this setting, compared to regu-
lar CDN services that clients directly fetch resources from the
CDN’s edge server, APAC can reduce network bandwidth and
network latency. We show the details of bandwidth savings in
Figure 12 and 13, and network latency reduction in Figure 14.
For example, when every circuit has up to 4 nodes, APAC
can reduce 97.3% bandwidth for the CDN’s edge server and
reduce 27.4% to 44.1 network latency of fetching 2 MB re-
sources for peers. Naturally, a single-hop peer-assisted CDN,
such as Swarmify, can achieve higher network latency re-
duction (e.g., 69.4% for Swarmify case) than APAC does.
However, it does not preserve the anonymity guarantee which
APAC aims to provide. We provide the detailed comparison
on latency reduction in Figure 14.

5.2 Bandwidth Saving

First, we measure how much bandwidth can be saved by de-
ploying APAC on the server side. We record the total size of
network packets that go out from the content/peer server after
the circuit (Lmax = 2 for this experiment) has been estab-
lished and the initiator starts fetching a specific resource (la-
beled as APAC). As a baseline, we also measure the size of
outgoing network traffic from the content server in the typical
client-server environment (labeled as BASELINE). We de-
fine the bandwidth saving (labeled as BS) as the percentage
reduction from BASELINE.

Figure 12 shows the total size of outgoing network traffic
from the server in client-server and APAC settings. The total
size of outgoing packets from the server in APAC (APAC)

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 306

Fig. 13. When the number of requests increases, the total outgo-
ing network traffic for BASELINE significantly increases, but the
traffic for APAC only slowly increases.

is much smaller than the size of network traffic in the nor-
mal client-server setting (BASELINE), and this applies to
all resources with different sizes. The reason is that peers in
APAC can fetch a large fraction of resources from other peers
instead of the server. When the initiator fetches a resource of
2 MB1, APAC can save 97.3% of the server’s bandwidth9.
When the total number of requests increases, APAC can sig-
nificantly save the bandwidth as shown in Figure 1310.

5.3 Network Latency

Next, we measure the network latency when fetching content
in APAC with different peer placements. According to the
statistics until 15th February 2016 [22], the averaged total size
of transferred data when loading a site is 2268 KB. Thus in
our experiment, we use the loading time of 2 MB resources
(i.e., images) as the representative. With fixing the size of the
resource to 2 MB, we evaluate APAC under the settings where
the initiator, responder and intermediate nodes are located in:
1) the same LAN, 2) the same WLAN and 3) different LANs
but in the same city (i.e., City B, labeled as “WAN-City”).
We then vary the length of circuit as well as distribution fac-
tors and compare those results with a baseline: the network
latency for a browser in City B to directly fetch the resource
from the content server without APAC11. Analogous to BS,
we define the client-side network latency reduction NLR as
the percentage reduction from BASELINE. The higher the
percentage of NLR is, the better is the performance (0% =
BASELINE). All our results are the average of 30 runs with
95% confidence intervals for each of them.

9 BASELINE = 2020 KB, APAC = 55.1 KB, and BS = 97.3%.
10 We set the requirement for the total number of peers as 100, thus the
content delivery via peers starts to operate when 100 peer join the system.
11 During the initial investigation, we observed the baseline latency
(BASELINE) to be 9420 ms.

Swarmify 2-node 3-node 4-node 5-node 6-node
0

20

40

60

80

N
L

R
(%

)

LAN

WLAN

WAN-City

Fig. 14. Network latency reduction (NLR) of an initiator peer in
Swarmify and APAC under three network configurations, as com-
pared to the baseline. All data are based on a resource with size
of 2 MB and averaged over 30 runs with 95% confidence intervals
for each of them.

Varying the circuit’s length. In Figure 14, “Swarmify” repre-
sents the Swarmify system, and “2-node” represents the non-
anonymous peer-to-peer setting in APAC, i.e., 2 nodes with-
out any intermediate nodes. Since they do not have any inter-
mediate nodes to route data, they have the largest network la-
tency reduction, i.e., 69.4% for Swarmify in WAN and 76.1%
for APAC in LAN respectively. Due to the implementation
issue, Swarmify does not properly support P2P data transmis-
sion in LAN and WLAN, so the NLR for Swarmify in LAN
and WLAN are quite small in Figure 14. We have reported
this issue to their developer team. Since APAC involves
more intermediate nodes than a single-hop non-anonymous
system like Swarmify, APAC naturally shows a less latency
improvement than Swarmify. This is illustrated in Figure 14,
for a 4-node circuit where APAC provides a latency reduction
(49.7%) lower than the performance obtained for Swarmify
(69.4%) and non-anonymous setting (76.1%). Notably, APAC
still outperforms the baseline. In general, with the increase of
the circuit’s length, the network latency reduction decreases,
as more hops are required to route the transmitted data. In
the three configurations, the latency in LAN is the smallest,
as all the peers in the circuit are nearby. Since the bandwidth
in WLAN is limited, the latency in WLAN is larger than the
other two settings.

We also evaluate the setup latency of a circuit for various
number of intermediate nodes. As Figure 15 shows, the setup
latency of a circuit is only a small fraction of the network la-
tency. For example, the setup latency of a circuit for 2 to 6
nodes is 11.6 ms, 83.8 ms, 152.7 ms, 227.3 ms, and 308.5 ms
respectively in the LAN setting. The percentage of the network
latency for each of them is 0.52%, 2.28%, 3.22%, 3.77%, and
3.98% respectively.
Varying the distribution factors αinit and αres. In addition
to adjusting the circuit’s length, we can also tune the distri-
bution factors αinit and αres to reduce the latency in APAC.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 307

2-node 3-node 4-node 5-node 6-node
0

1

2

3

4

P
er

ce
n

ta
ge

(%
)

LAN

WLAN

WAN-City

Fig. 15. The percentage of the network latency for setup overhead
of a circuit in three configurations.

3-0-0 2-1-0 2-0-1 1-2-0 1-1-1 1-0-2 0-3-0 0-2-1 0-1-2 0-0-3
0

10

20

30

N
L

R
(%

)

Fig. 16. Network latency reduction (NLR) varies when intermedi-
ate nodes are in different regions. “a-b-c” means the number of
nodes in the initiator’s region (a = bαinitlc), nodes randomly cho-
sen (b = l − bαinitlc − bαreslc) and nodes in the responder’s
region (c = bαreslc).

For a 5-node circuit, we place the initiator and responder in
two different regions (different LANs across City B), and we
diversify the locations of intermediate peers to change αinit

and αres. As Figure 16 illustrates, setting more intermediate
nodes around the initiator/responder (increasing αinit/αres)
for a circuit, the system further reduces the network latency.
Thus for the circuit construction, the system can select larger
αinit and αres to reduce performance overhead. For the best
case in our experiment, the system can reduce 27.8% latency
only by adjusting the distribution factors. The system can be
set as not “locality-aware” and randomly chooses all interme-
diate nodes (i.e., 0-3-0 setting) for the circuit. This configura-
tion causes the worst performance, but it enables the system to
preserve the best level of anonymity comparing to other set-
tings.
Overall performance. We evaluate the overall performance in
APAC for the deployed site, when 100 peers (browsers) have
joined APAC and are available for content delivery. We set
the maximum number of intermediate nodes on a circuit as 2
(Lmax = 2), and record each 50 different resource requests in
APAC when all intermediate nodes are randomly chosen (0-2-
0/0-1-0 for bαinitlc = bαreslc = 0) and all relays are nearby
the initiator (2-0-0/1-0-0 for bαinitlc = l) respectively. The

0 10 20 30 40 50

20

40

60

requests

N
L

R
(%

)

0-2-0/0-1-0
2-0-0/1-0-0

Fig. 17. The network latency reduction (NLR) for 50 re-
quests(sorted in ascending order) when 100 joined peers are in
APAC.

average NLR for the 0-2-0/0-1-0 and 2-0-0/1-0-0 settings are
27.4% and 44.1% respectively. The 0-2-0/0-1-0 setting has the
considerable network latency reduction, though it holds the
worst performance comparing to other settings analogous to
Figure 16. The 0-2-0/0-1-0 setting provides the higher level
of anonymity than the 2-0-0/1-0-0 one, which makes the ad-
versary that places peers near the victim gain limited advan-
tage over the honest-but-curious adversary as discussed in Sec-
tion 3.4.1. As Figure 17 demonstrates, the latency reduction
in the 2-0-0/1-0-0 setting is much larger than the other one,
which reflects that tuning distribution factors αinit and αres

can assist APAC to provide reasonable performance.
Key findings. As we discussed in Section 3.4, when the cir-
cuit has up to two relays (Lmax = 2), and adversarial peers
uniformly exist in the network (f = finit = fres = fR),
APAC can preserve the adequate degree of initiator/responder
anonymity (i.e., 0.8). As we show in this section, with interme-
diate peers up to 2 (Lmax = 2) and proper setting for distri-
bution factors (αinit/αres), APAC can save 97.3% bandwidth
for the site’s server and reduce 27.4%/44.1% network latency
of fetching 2 MB resources for peers within one city. There-
fore, APAC can preserve initiator/responder anonymity with
considerable bandwidth saving and latency reduction.

5.4 Performance under Churn

By default, APAC is deployed without any browser exten-
sions, so once a user closes the tab for the retrofitted site,
her browser (or peer) will leave APAC’s network. If the peer
happens to be a node in a circuit, its departure will break
down the circuit, and the initiator has to issue another request.
Therefore, as a part of the dynamics of peer participation or
churn [68], the departure of peers in the duration of a request/-
circuit (i.e., from the creation of the circuit to its teardown)
influences the success of data transmission through the circuit.
To quantify the success rate of circuits under Churn, we math-

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 308

� � � � � ��
��

���

���

���

���

������� ����

� = �

� = �

� = �

� = �

� = �

�������� = ���

Fig. 18. The success rate decreases when the length of the circuit
increases.

2 4 6 8 10
t'

0.80

0.85

0.90

0.95

1.00

Success Rate

λ = 70, k = 0.65

λ = 70, k = 0.35

λ = 95, k = 0.65

λ = 95, k = 0.35

λ = 120, k = 0.65

λ = 120, k = 0.35

Psuccess = 0.8

Fig. 19. The success rate increases when the stay time follows
the Weibull distribution with larger λ and smaller k. (The circuit
has 2 intermediate nodes.)

ematically analyze this issue based on a previous study con-
ducted by Liu et al. [55]. It shows that the time users spend on
a web page follows Weibull distribution [27]. We assume that
the stay time of users on the deployed site’s pages also follows
Weibull distribution, and we detail our analysis in Appendix C.

As an in-advance conclusion, we show that the success
rate of a circuit decreases when its length l or its duration t′

increases in Figure 18. We can see that if data transmission
via a circuit is finished quickly (i.e., the circuit has short du-
ration), e.g., a small-size resource transferred in a high-speed
network, the success rate of the circuit is quite high, e.g., over
90% when the median stay time is 39.8 s and t′ = 2. This in-
dicates that over 90% requested resources can be successfully
transmitted via circuits for the first time without issuing addi-
tional requests. In some cases, e.g., fetching 2 MB resources
via a 4-node circuit, the duration of the circuit is similar to the
fetching time directly from server (9.42 s), the success rate is
still around 80%. If the site can incentivize users to stay longer
on the page, the success rate can increase a lot, e.g., over 95%
with 42.1 s median stay time (as plotted in Figure 19). Alter-
natively, the site operator can create several backup circuits for
one request, and the complete data transmission through any
circuit is counted as the success for the request. This can dras-
tically increase the success rate, e.g., over 2 backup circuits
can make the success rate over 99% (details in Appendix C).

5.5 Load on Peers

We consider CPU and bandwidth for APAC to evaluate the
load on peers. The size of the client side code of APAC is 9.5
KB, and 68KB when including all additional libraries. This
is significantly smaller than the average-transfer data (2268
KB [22]) when loading websites. APAC would not affect the
client-side performance much. Notably, most of the JavaScript
files are static and cached.

We instrumented the htop and iftop tools [10, 12] to mea-
sure the average CPU usage and bandwidth for peers in a 3-
node circuit for 10 times. Each client runs on a machine with
a typical PC configuration — Intel i7-2600 CPU of 3.4 GHz
and 8 GB memory. We find that APAC only incurs a reason-
able 0.88% of CPU overhead and 4.21MB bandwidth per cir-
cuit for the clients. Further, the site operator can also limit the
maximum number (e.g., 10) of joining circuits for one peer in
one cycle of completing data transmission in a circuit, to avoid
exhausting the peer’s available bandwidth.

6 Related Work

In this section, we discuss recent work related to security &
privacy in peer-assisted CDNs and anonymous communication
systems.
Security & Privacy in Peer-assisted CDNs. Numerous peer-
assisted CDNs have been proposed in recent years [2, 17,
20, 29, 43–45, 50, 69, 70, 73, 76]. In contrast to traditional
infrastructure-based CDNs, peer-assisted CDNs offload con-
tent delivery tasks on clients (peers) to save the bandwidth of
servers [48, 53], and reduce the latency of fetching content at
the client side. For instance, NetSession can offload 70− 80%
of the traffic to the peers [77]. For the thorough evaluation on
Etsy, Maygh is able to reduce the 95th-percentile bandwidth
due to image content at the operator by over 75% [76].

Meanwhile, researchers also propose solutions to pre-
serve the integrity and authenticity of content [29, 69, 76].
For example, FireCoral introduces signing service and tracker
components to authenticate and verify content [69]. On the
other hand, no systematic studies of inference attacks on peer-
assisted CDNs have been conducted yet and few defenses
against such attacks are deployed on peer-assisted CDNs. In
this work, we systematically analyze inference attacks on peer-
assisted CDNs, and have mounted attacks on three popular
systems, i.e., Swarmify, BemTV and P2PSP. Furthermore, we
propose APAC to mitigate this class of attacks with minor per-
formance overhead. We raise the bar significantly beyond what
the current peer-assisted CDNs have.
Anonymous Communication Systems. To achieve user

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 309

Init. Anony. : Initiator Anonymity, Resp. Anony.: Responder Anonymity.

System’s Name No
Instal-
lation

Init.
Anony.

Resp.
Anony.

Locality-
aware

Onion
Routing/Tor-based

Systems [30, 41, 64,
71]

7 3 7 Partially

Crowds [65], &
Morphmix [66],

etc. [46, 56–59, 62]

7 3 7 7

Hidden Service [21],
I2P [11] &

Freenet [8],
etc. [24, 32, 49, 67]

7 3 3 7

APAC 3 3 3 3

Table 2. Comparison with Low-latency Anonymous Communica-
tion System

anonymity, anonymous communication systems are designed
to hide user identity from third parties. Anonymous com-
munication systems can be classified into high-latency and
low-latency systems. High-latency anonymous communica-
tion systems e.g., Mixminion [38] and Mixmaster [60] are de-
signed to be against a global passive adversary who can ob-
serve all traffic in the network. However, the high-latency mes-
sage transmission (e.g., several hours) makes them unsuitable
to be implemented in peer-assisted CDNs.

As Table 2 shows, there are four design considerations for
low-latency communication systems from the system’s per-
spective. Onion routing/Tor-based systems [30, 41, 64, 71],
semi-centralized systems [33, 34], and p2p low-latency anony-
mous systems [8, 11, 21, 24, 32, 46, 49, 56–59, 62, 65–
67] provide initiator anonymity. For instance, MorphMix cre-
ates paths on an unstructured overlay to forward communi-
cations; ShadowWalker is based on a random walk over re-
dundant structured topologies and Pisces uses social networks
to achieve anonymous communications. Further, Hidden Ser-
vice [21], I2P [11], Freenet [8], and other approaches [24, 32,
35, 49, 67] also preserve responder anonymity.

Nevertheless, the primary goal for these approaches is to
preserve high level of anonymity. They typically require users
to install client-side software and are not locality-aware by de-
fault12. In Tor-based approaches, typically the initiator cre-
ates/constructs the circuit and selects the intermediate nodes
for each request. Therefore these approaches preserve initiator
anonymity, but cannot hide the responder’s identity. Further-
more, together with the peer-to-peer anonymous communica-

12 The relay selection algorithm in Tor can be adjusted to be locality-
aware [30].

tion systems, these systems introduce non-negligible circuit
setup latency when the initiator indirectly communicates with
intermediate nodes to set up the circuit. For example, the cir-
cuit setup latency for a 4-hop circuit in ShadowWalker is 1820
ms [57]. Therefore, we cannot directly apply previous mech-
anisms (as shown in Table 2) to achieve our predefined three
goals. In APAC, we utilize the peer server (instead of peers)
to construct the circuit for each request, which avoids the non-
negligible overhead and preserves responder anonymity. Fur-
ther, based on the locality information of all peers maintained
by the server, we optimize the onion routing’s circuit selec-
tion algorithm in APAC by introducing distribution factors,
which can be tuned to locate intermediate peers nearby the
initiator/responder to reduce network latency. Comparing to
previous low-latency approaches, APAC can achieve all the
primitives listed in the table.

7 Conclusion

In this paper, we systematically study inference attacks on
peer-assisted CDNs. Further, we developer an anonymous
peer-assisted CDN called APAC, which preserves a high de-
gree of anonymity that is significantly beyond what current
peer-assisted CDNs have. Our performance evaluation shows
that the locality-aware APAC can bring desired network la-
tency reduction for content fetching and bandwidth savings for
deployed sites.

8 Acknowledgements

We thank the anonymous reviewers of this paper for their help-
ful feedback, and our shepherd Mohamed Ali (Dali) Kaafar for
his insightful comments and suggestions for preparing the fi-
nal version of the paper. We thank Enrico Budianto for his help
on our experiments and Loi Luu for his constructive feedback
on this paper. This work is supported by the Ministry of Ed-
ucation, Singapore under Grant No. R-252-000-560-112 and
the National Science Foundation of US under Grant No. CNS-
1318872. All opinions expressed in this work are solely those
of the authors.

References

[1] Akamai. http://www.akamai.com/. Accessed: 2015.
[2] Akamai netsession interface. http://www.akamai.com/client.

Accessed: 2015.
[3] Bemtv. http://bem.tv/. Accessed: 2015.

Unauthenticated
Download Date | 10/23/16 6:38 PM

http://www.akamai.com/
http://www.akamai.com/client
http://bem.tv/

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 310

[4] Cloudflare. https://www.cloudflare.com/. Accessed: 2015.
[5] crypto-js: Javascript implementations of standard and secure

cryptographic algorithms. https://code.google.com/p/crypto-
js/. Accessed: 2015.

[6] The "data" url scheme. http://tools.ietf.org/html/rfc2397.
Accessed: 2015.

[7] Datagram transport layer security. https://tools.ietf.org/html/
rfc4347. Accessed: 2015.

[8] Freenet: The free network. https://freenetproject.org. Ac-
cessed: 2015.

[9] Geolocation api specification. http://www.w3.org/TR/
geolocation-API/. Accessed: 2015.

[10] htop - an interactive process viewer for unix. http://hisham.
hm/htop/. Accessed: 2016.

[11] I2p: The invisible internet project. https://geti2p.net/en/.
Accessed: 2015.

[12] iftop: display bandwidth usage on an interface. http://www.ex-
parrot.com/pdw/iftop/. Accessed: 2016.

[13] Indexed database api. http://www.w3.org/TR/IndexedDB/.
Accessed: 2015.

[14] Network address translation. http://en.wikipedia.org/wiki/
Network_address_translation. Accessed: 2015.

[15] Octoshape. http://www.octoshape.com/. Accessed: 2015.
[16] P2psp. http://www.p2psp.org/webrtc-streaming/. Accessed:

2015.
[17] Peercdn. https://peercdn.com/.
[18] The peerjs library. http://peerjs.com/. Accessed: 2015.
[19] Session traversal utilities for nat (stun). https://tools.ietf.org/

html/rfc5389. Accessed: 2015.
[20] Swarmify. http://www.swarmify.com/. Accessed: 2015.
[21] Tor: Hidden service protocol. https://www.torproject.org/docs/

hidden-services.html.en. Accessed: 2015.
[22] Total transfer size & total requests. http://httparchive.org/

trends.php. Accessed: 2016.
[23] The transport layer security (tls) protocol. https://tools.ietf.

org/html/rfc5246. Accessed: 2015.
[24] Tribler. http://www.tribler.org/. Accessed: 2015.
[25] Velocix. http://www.velocix.com/. Accessed: 2014.
[26] Webrtc. http://www.webrtc.org/. Accessed: 2015.
[27] The weibull distribution. http://reliawiki.org/index.php/The_

Weibull_Distribution. Accessed: 2015.
[28] Wireshark. https://www.wireshark.org/. Accessed: 2015.
[29] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B. M.

Maggs, and B. Wishon. Reliable client accounting for p2p-
infrastructure hybrids. In NSDI, 2012.

[30] M. Akhoondi, C. Yu, and H. V. Madhyastha. Lastor: A low-
latency as-aware tor client. In IEEE S&P, 2012.

[31] R. Annessi and M. Schmiedecker. Navigator: Finding faster
paths to anonymity. In IEEE Euro S&P, 2016.

[32] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker. Bitblender:
Light-weight anonymity for bittorrent. In AIPACa, 2008.

[33] P. Boucher, A. Shostack, and I. Goldberg. Freedom systems
2.0 architecture. Zero Knowledge Systems, Inc, 2000.

[34] J. Boyan. The anonymizer: Protecting user privacy on the
web. Computer-Mediated Communication Magazine, 1997.

[35] F. Burgstaller, A. Derler, S. Kern, G. Schanner, and A. Reiter.
Anonymous communication in the browser via onion-routing.

[36] F. Cangialosi, D. Levin, and N. Spring. Ting: Measuring and
exploiting latencies between all tor nodes. In IMC, 2015.

[37] J. Daemen and V. Rijmen. The design of Rijndael: AES-the
advanced encryption standard. 2002.

[38] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a type iii anonymous remailer protocol. In IEEE
S&P, 2003.

[39] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. An-
derson. Sybil-resistant dht routing. In ESORICS. 2005.

[40] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards
measuring anonymity. In PET, 2003.

[41] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The
second-generation onion router. In USENIX Security, 2004.

[42] J. R. Douceur. The sybil attack. In Peer-to-peer Systems.
2002.

[43] M. El Dick, E. Pacitti, and B. Kemme. Flower-cdn: a hybrid
p2p overlay for efficient query processing in cdn. In EDBT,
2009.

[44] M. J. Freedman. Experiences with coralcdn: A five-year
operational view. In NSDI, 2010.

[45] M. J. Freedman, E. Freudenthal, and D. Mazières. Democra-
tizing content publication with coral. In NSDI, 2004.

[46] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. In CCS, 2002.

[47] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen. Internet cache
pollution attacks and countermeasures. In ICNP, 2006.

[48] C. Huang, A. Wang, J. Li, and K. W. Ross. Understanding
hybrid cdn-p2p: why limelight needs its own red swoosh. In
NOSSDAV, 2008.

[49] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson.
Privacy-preserving p2p data sharing with oneswarm. In
CCR, 2010.

[50] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentral-
ized peer-to-peer web cache. In PODC, 2002.

[51] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, and Z. Liang.
Man-in-the-browser-cache: Persisting https attacks via
browser cache poisoning. Computers & Security, 2015.

[52] Y. Jia, X. Dong, Z. Liang, and P. Saxena. I know where
you’ve been: Geo-inference attacks via the browser cache.
IEEE Internet Computing, 2014.

[53] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
internet service providers fear peer-assisted content distribu-
tion? In SIGCOMM, 2005.

[54] S. Le Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena,
and E. Kirda. A look at targeted attacks through the lense of
an ngo. In USENIX Security, 2014.

[55] C. Liu, R. W. White, and S. Dumais. Understanding web
browsing behaviors through weibull analysis of dwell time. In
SIGIR, 2010.

[56] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and
D. S. Wallach. Ap3: Cooperative, decentralized anonymous
communication. In SIGOPS European Workshop, 2004.

[57] P. Mittal and N. Borisov. Shadowwalker: peer-to-peer anony-
mous communication using redundant structured topologies.
In CCS, 2009.

[58] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Gold-
berg. Pir-tor: scalable anonymous communication using
private information retrieval. In USENIX Security, 2011.

[59] P. Mittal, M. Wright, and N. Borisov. Pisces: Anonymous
communication using social networks. In NDSS, 2012.

[60] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmas-
ter protocol-version 2. 2003.

Unauthenticated
Download Date | 10/23/16 6:38 PM

https://www.cloudflare.com/
https://code.google.com/p/crypto-js/
https://code.google.com/p/crypto-js/
http://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc4347
https://freenetproject.org
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/
http://hisham.hm/htop/
http://hisham.hm/htop/
https://geti2p.net/en/
http://www.ex-parrot.com/pdw/iftop/
http://www.ex-parrot.com/pdw/iftop/
http://www.w3.org/TR/IndexedDB/
http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation
http://www.octoshape.com/
http://www.p2psp.org/webrtc-streaming/
https://peercdn.com/
http://peerjs.com/
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5389
http://www.swarmify.com/
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://www.tribler.org/
http://www.velocix.com/
http://www.webrtc.org/
http://reliawiki.org/index.php/The_Weibull_Distribution
http://reliawiki.org/index.php/The_Weibull_Distribution
https://www.wireshark.org/

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 311

[61] G. Nakibly, J. Schcolnik, and Y. Rubin. Website-targeted
false content injection by network operators. arXiv preprint
arXiv:1602.07128, 2016.

[62] A. Nambiar and M. Wright. Salsa: a structured approach to
large-scale anonymity. In CCS, 2006.

[63] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of
network-based defense mechanisms countering the dos
and ddos problems. CSUR, 2007.

[64] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing. J-SAC, 1998.

[65] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web
transactions. TISSEC, 1998.

[66] M. Rennhard and B. Plattner. Introducing morphmix: peer-to-
peer based anonymous internet usage with collusion detec-
tion. In WPES, 2002.

[67] V. Scarlata, B. N. Levine, and C. Shields. Responder
anonymity and anonymous peer-to-peer file sharing. In
ICNP, 2001.

[68] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-
peer networks. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pages 189–202. ACM,
2006.

[69] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freed-
man. Bringing p2p to the web: Security and privacy in the
firecoral network. In IPTPS, 2009.

[70] L. Vu, I. Gupta, K. Nahrstedt, and J. Liang. Understanding
overlay characteristics of a large-scale peer-to-peer iptv sys-
tem. TOMCCAP, 2010.

[71] T. Wang, K. Bauer, C. Forero, and I. Goldberg. Congestion-
aware path selection for tor. In FC. 2012.

[72] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A practical
attack to de-anonymize social network users. In IEEE S&P,
2010.

[73] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and
B. Li. Design and deployment of a hybrid cdn-p2p system for
live video streaming: experiences with livesky. In MM, 2009.

[74] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao. Dsy-
bil: Optimal sybil-resistance for recommendation systems. In
IEEE S&P, 2009.

[75] J. Zhang, H. Duan, W. Liu, and J. Wu. Anonymity analysis of
p2p anonymous communication systems. Computer Com-
munications, 2011.

[76] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram. Maygh:
Building a cdn from client web browsers. In EuroSys, 2013.

[77] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Dr-
uschel, B. Maggs, B. Wishon, and M. Ponec. Peer-assisted
content distribution in akamai netsession. In IMC, 2013.

A Degree of Initiator/Responder
Anonymity in APAC

Initiator Anonymity. In our analysis, we consider the worst
case for the system that the adversary can learn the distance
between any two controlled peers by passively logging and
timing attacks. We assume that peers are compromised inde-

pendently. LetOI be the observation that the adversary can de-
termine the initiator for a given circuit with probability P (OI).
For a given circuit in APAC, the probability of identifying the
initiator of the circuit equals to the probability that the adver-
sary determines the correct circuit’s length as well as controls
the first relay and the responder. Due to the distribution factors
αinit and αres, the first relay may be in Sinit, Sim or Sres.
Based on Algorithm 1, for a circuit in APAC, the responder
is randomly chosen in SR. Following the notations in Table 1,
for a given circuit with l intermediate nodes, the probability of
controlling the first relay and the responder can be computed
as:

P (QI |L = l) =

finitfR if l1 ≥ 1
fimfR if l1 = 0, l2 ≥ 1
fresfR if l1 = l2 = 0, l3 ≥ 1

(9)

where l1 = bαinitlc, l2 = l − bαinitlc − bαreslc, l3 =
bαreslc, and fim = fN−finitNinit−fresNres

N−Ninit−Nres
.

In APAC, the length of the circuit is variable, and number
of intermediate nodes is randomly chosen from 1 to Lmax.
Thus the probability that the number of intermediate nodes
is l can be computed as P (L = l) = 1

Lmax
. For a spe-

cific circuit with l relays, when the adversary controls the
first relay and the responder, he still cannot precisely deter-
mine the predecessor of the first relay as the initiator, as he
does not know the exact length of the circuit. Therefore, l,
l + 1,..., Lmax can be considered as the number of interme-
diate nodes, and the probability that the adversary guesses the
correct length is P (L′ = l|(QI |L = l)) = 1

Lmax−l+1 . The
probability that OI occurs when L = l can be represented as
P (OI |L = L) = P (L′ ∩QI |L = l) = P (QI |L = l)P (L′ =
l|(QI |L = l)) = P (QI |L = l) 1

Lmax−l+1 . Generally, for a
specific circuit, the probability that the adversary can identify
the initiator is:

P (OI) =
Lmax∑
l=1

P (L = l)P (OI |L = l)

= 1
Lmax

Lmax∑
l=1

P (QI |L = l)
Lmax − l + 1

(10)

Under this condition, the adversary can precisely to determine
which peer is the initiator. Thus the entropy for identifying the
initiator is H(I|OI) = 0.

When the adversary does not have the observation OI

as above, it is impossible for the adversary to directly
identify the circuit’s initiator. From the adversary’s per-
spective, the initiator anonymity set is (1 − f)N . There-
fore the entropy under this situation is: H(I|¬OI) =
−
∑(1−f)N

i=1
1

(1−f)N log2
1

(1−f)N = log2 ((1− f)N). From
the adversary’s observation O (i.e., OI and ¬OI), the over-
all entropy for the system can be represented as H(I|O) =

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 312

(1 − P (OI)) log2 ((1− f)N). For the ideal case, every peer
has the equal probability of 1

N to be identified as the initiator.
The maximum entropy HM = log2N . Therefore, the degree
of initiator anonymity for the system can be computed as:

D(I|O) = H(I|O)
HM

= (1− P (OI)) log2 ((1− f)N)
log2N

(11)

Responder Anonymity. Analogous to derivation for degree
of initiator anonymity, we can derive Equation 7 for degree
of responder anonymity. We briefly illustrate the derivation
for degree of responder anonymity. Let OR be the observa-
tion that the adversary can determine the responder for a given
circuit with probability P (OR) to occur. For a given circuit
in APAC, the probability of identifying the responder of the
circuit equals to the probability that the adversary determines
the correct circuit’s length and controls the last relay and the
initiator. Following the notations in Table 1, we show the dif-
ference between P (QR|L = l) and P (QI |L = l) below. For
a given circuit with l intermediate nodes, the probability of
controlling the last relay and the initiator can be computed as:

P (QR|L = l) =

fresf if l3 ≥ 1
fimf if l3 = 0, l2 ≥ 1
finitf if l3 = l2 = 0, l1 ≥ 1

(12)

where L1, l2, l3 and fim are defined same as Equation 9, and
we assume that every peer is equally to be the initiator for a
request.

In APAC, the length of the circuit is variable, and num-
ber of intermediate nodes is randomly chosen from 1 to Lmax.
Analogous to Equation 10, for a specific circuit, the probabil-
ity that the adversary can identify the responder can be repre-
sented as P (OR) = 1

Lmax

∑Lmax

l=1
1

Lmax−l+1P (QR|L = l).
From the adversary’s observation O (i.e., OR and ¬OR), the
overall entropy for the system can be computed as H(R|O) =
(1− P (OR)) log2 ((1− f)N). Therefore, the degree of re-
sponder anonymity for the system can be computed as:

D(R|O) = H(R|O)
HM

= (1− P (OR)) log2 ((1− f)N)
log2N

(13)
The adversary’s advantage on placement of peers. In the
normal analysis, for a 8-node circuit (l = 6) as shown in Fig-
ure 5, the initiator, intermediate peers and responder are vinit,
v1, v2, v3, v4, v5, v6, and vres respectively. By controlling
v1 (nearby the initiator), v3 (globally), v5 (nearby the respon-
der) and vres, the adversary can definitely determine that vinit

is the initiator. Referring to the notations in Table 1, we as-
sume that the adversary controls a fraction f of N peers in
APAC, a fraction finit/fres of Ninit/Nres peers nearby the
initiator/responder are adversarial, and fR is the fraction of ad-
versarial peers having the requested resource. If the adversary
randomly places adversarial peers in APAC, then f = finit =

fres, and the adversary has the probability Prand = f3fR to
infer the initiator. If the adversary places more peers around
the initiator/responder to increase finit/fres, she has the prob-
ability Pnear = finitfres

fN−finitNinit−fresNres

N−Ninit−Nres
fR to de-

termine the initiator. Let f = fR = 0.35, N = 1000,
Ninit = Nres = 300, we find that the adversary’s advantage
of using the second strategy over the first one is quite limited:
∆adv = max{Pnear} − Prand = 0.0154− 0.0150 = 0.004,
where Pnear = max{Pnear} when finit = fres = 0.39.

B Degree of Anonymity in
Current Peer-assisted CDNs

For a given request in peer-assisted CDNs, the initiator can
be identified when the responder is adversarial. We assume
that OI is the observation when the responder of a particular
request is under the adversary’s control with the probability
P (OI) that OI occurs. Analogous to Section A, we can derive
the same Equation 11, but the meaning of P (OI) is different.
The entropy for the system with different observations (OI and
¬OI) can be computed as:

H(I|O) = P (OI)H(I|OI) + (1− P (OI))H(I|¬OI)
= (1− P (OI)) log2 ((1− f)N)

(14)
where N is the number of all peers. When OI occurs, the ad-
versary can definitely identify the initiator, thus H(I|OI) =
0; otherwise, from the adversary’s perspective, the initiator
anonymity set is (1 − f)N . The probability that a benign
peer in the system is the initiator is 1

(1−f)N . Thus the en-
tropy for the system when ¬OI occurs is H(I|¬OI) =
−
∑(1−f)N

i=1
1

(1−f)N log2
1

(1−f)N = log2 ((1− f)N). For

the ideal case, every peer has the equal probability of 1
N to

be identified as the initiator. The maximum entropy HM can
be calculated as HM = −

∑N
i=1

1
N log2

1
N = log2N . There-

fore, the degree of responder anonymity can be computed as:

D(I|O) = H(I|O)
HM

= (1− P (OI)) log2 ((1− f)N)
log2N

(15)
When the adversarial peers are uniformly scattered in the sys-
tem, then an adversarial peer having the resource has the prob-
ability f to be chosen as the responder, i.e., the probability
that the responder is adversarial P (OI) = fR = f . As the
first plot (Lmax = 0) in Figure 7 shows, the degree of initia-
tor anonymity is less than 0.8 when f ≥ 0.2. Analogous to
the initiator anonymity, the current peer-assisted CDNs can-
not preserve an adequate degree of responder anonymity when
over 20% peers are adversarial.

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 313

50 100 150 200
t

0.2

0.4

0.6

0.8

1.0
Cumulative Distribution Function (CDF)

λ = 50, k = 0.65

λ = 50, k = 0.80

λ = 70, k = 0.65

λ = 70, k = 0.80

λ = 90, k = 0.65

λ = 90, k = 0.80

Fig. 20. λ becomes larger and k turns smaller, when more users
stay longer on the page.

� � � � � ��
��

����

����

����

����

���� ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

λ = ��� � = ����

����� = ���

Fig. 21. The stay rate decreases when the duration of a circuit and
k increase, as well as λ decreases.

C Analysis of Churn in APAC

A user joins APAC when visiting the deployed site from her
web browser, and leaves APAC when closing the tab. As an in-
herent property of peer-to-peer systems, the dynamics of peer
participation, or churn [68], especially the stay time of peers,
affect the success rates of data transmission for circuits. To
provide a mathematical understanding of users’ page-leaving
behaviors, Liu et al. analyzed page-visit stay time for 205,873
different pages for which they had captured upwards of 10,000
visits, and showed that the time users spend on a web page
follows Weibull distribution [55]. Based on their finding, we
can assume that the stay time13 of users on our deployed site
also follows Weibull distribution. We further calculate the stay
rate of users in the duration of a circuit, and then compute the
success rate of the circuit, i.e., all intermediate nodes and the
responder stay in the network till data transmission via the cir-
cuit is completed.

The cumulative distribution function for the Weibull dis-
tribution is

ω(t|k, λ) = 1− exp
(
−
(t
λ

)k
)
t ≥ 0 (16)

with t, λ and k are the stay time (dwell time), the scale and
shape parameters, respectively. As shown in Figure 20, the

13 In this paper, we treat Dwell time studied in Liu et al.’s work as the
stay time of users on a page.

� � � � ��
��

����

����

����

����

����

������� ����

�� = �

�� = �

�� = �

�� = �

�� = �

��������� = ���

Fig. 22. The success rate increases when the number of created
circuits increases.

longer of the average stay time is, the larger λ is and the
smaller k is. For a (l + 2)-node circuit created at time T , we
assume that the duration of the circuit is t′ and the average
number of page visits is Nv . It takes t′ seconds for the cir-
cuit to complete data transmission, and thus the minimal du-
ration requirement for all nodes in this circuit is t′. For users
who visit the site t seconds ahead the creation of the circuit,
(1− ω(t+ t′|k, λ))Nv of them are remaining after the tear-
down of the circuit, and (1− ω(t|k, λ))Nv users stay on the
page at least till T . Since the peer server selects nodes for the
circuit at T , we can compute the stay rate for users existing at
T and lasting for t′ below:

Pstay(t′|k, λ) =
∫ +∞

0 (1− ω(t+ t′|k, λ))Nv dt∫ +∞
0 (1− ω(t|k, λ))Nv dt

(17)

Furthermore, the probability that all intermediate nodes and
the responder stay for t′ or the success rate of the circuit is14:

Psuccess(t′, l|k, λ) = Pstay(t′|k, λ)l+1 (18)

Based on the study of Liu et al. [55], λ for 80% of stay-time
distributions is no more than 70, and the median value of k
vary from 0.65 to 0.80. Figure 21 shows that when the duration
t′ and k are larger, or λ is smaller, then the stay rate is lower,
more users existing at T may leave before the teardown of
the circuit. For λ = 70 and k = 0.65, 0.80 (representing that
the median stay time is 39.8 s or 44.3 s15), the stay rate is
always over 90% when the duration of the circuit is 9.42 s
(i.e., the fetching time of a 2 MB resource from the remote
server). Figure 18 presents that with λ = 70 and k = 0.65 (the
median stay time is 39.8 s), the longer length of the circuit may

14 We assume that the number of peers for the creation of a circuit is
large enough to ignore the probability that the same peer is selected as the
intermediate node for multiple circuits.
15 The median stay time for Weibull distribution is:

Tmedian(k, λ) = λ (ln 2)
1
k (19)

Unauthenticated
Download Date | 10/23/16 6:38 PM

Anonymity in Peer-assisted CDNs: Inference Attacks and Mitigation 314

cause the success rate of data transmission lower. For a 4-node
circuit, the success rate is always over 75% even if t′ = 10.
If the duration t′ is short enough (e.g., 2 s), the success rate
is always over 90%, which means over 90% circuits can be
successfully completed. For the retrofitted site of APAC, the
site can incentivize users to stay longer on the page, then the
stay-time distribution can have larger λ and smaller k, further
the success rate becomes higher, e.g., over 95% when λ = 120
and k = 0.35 (the median stay time is 42.1 s) in Figure 19.

Once the site operator observes that the distribution of
stay time does not provide a proper success rate for a circuit
(e.g., 80%), the site operator can suspend the circuit-based
data transmission and reuse the client-server mode. Alterna-
tively, as a relaxation of anonymity, the site operator can create
several backup circuits for one request, and the complete data
transmission through any circuit is counted as the success for
the request. In this case, the success rate can be represented as:

P ′success(Nc, t
′, l|k, λ) = 1− (1− Psuccess(t′, l|k, λ))Nc

(20)
with the number Nc of circuits for one request. Figure 22
shows that with λ = 70, k = 0.65 and l = 2, 1 backup
circuit16(in total 2 circuits) for one request can drastically in-
crease the success rate (e.g., over 90%). For over 2 backup cir-
cuits, the success rate of one request is always over 99% even
the duration is 10 s. In the worst case, as a relaxation of com-
patibility, the site can employ APAC in an extension and ask
users to install it. The extension checks whether the client is in
any circuit whenever the client is attempting to leave APAC. If
so, the extension will take over and complete data transmission
for the pending circuits.

16 In Figure 22, we use the same-length circuits as backup circuits for one
request. In fact, the peer server can set up backup circuits of any length
(not larger than Lmax).

Unauthenticated
Download Date | 10/23/16 6:38 PM

