
Proceedings on Privacy Enhancing Technologies ; 2016 (3):4–23

Rinku Dewri*, Toan Ong, and Ramakrishna Thurimella

Linking Health Records for Federated Query
Processing
Abstract: A federated query portal in an electronic
health record infrastructure enables large epidemiol-
ogy studies by combining data from geographically dis-
persed medical institutions. However, an individual’s
health record has been found to be distributed across
multiple carrier databases in local settings. Privacy reg-
ulations may prohibit a data source from revealing clear
text identifiers, thereby making it non-trivial for a query
aggregator to determine which records correspond to
the same underlying individual. In this paper, we ex-
plore this problem of privately detecting and tracking
the health records of an individual in a distributed in-
frastructure. We begin with a secure set intersection
protocol based on commutative encryption, and show
how to make it practical on comparison spaces as large
as 1010 pairs. Using bigram matching, precomputed ta-
bles, and data parallelism, we successfully reduced the
execution time to a matter of minutes, while retaining
a high degree of accuracy even in records with data en-
try errors. We also propose techniques to prevent the
inference of identifier information when knowledge of
underlying data distributions is known to an adversary.
Finally, we discuss how records can be tracked utilizing
the detection results during query processing.

Keywords: private record linkage, commutative encryp-
tion

DOI 10.1515/popets-2016-0013
Received 2015-11-30; revised 2016-03-01; accepted 2016-03-02.

1 Introduction
Many large epidemiology studies combine data from ge-
ographically dispersed sources. The HMO Research Net-
work consisting of 19 large health care delivery orga-

*Corresponding Author: Rinku Dewri: University of
Denver, E-mail: rdewri@cs.du.edu
Toan Ong: University of Colorado, Denver, E-mail:
Toan.Ong@ucdenver.edu
Ramakrishna Thurimella: University of Denver, E-mail:
ramki@cs.du.edu

nizations across the United States is an example of a
distributed network of medical data providers for such
studies. In a setting of widely dispersed providers, con-
cerns about individuals seen in multiple organizations
are little or none. Hence, no attempt is made to de-
tect overlapping patients. However, as large scale elec-
tronic health record networks are formed, regional nodes
must be able to detect and track data on an individual
from different local sources, ranging from disease reg-
istries, clinical and claims databases, electronic medical
records, cohort studies, and case control studies. Failure
to correctly identify the same patient seen at different
locations causes estimates of the incidence of diseases
to be misjudged, and negative outcomes to be under-
estimated [4]. Federated query tools can return more
precise estimates of the number of patients matching a
query once an initial linkage of overlapping patients is
complete [41]. Overlaps ranging from 5% to 35% have
been reported in multiple studies [16, 28, 41]. Linked
records also provide a richer data source by enabling
queries which can only be answered by collating a pa-
tient’s data split across multiple institutions.

1.1 Federated query processing

Consider a typical distributed architecture for federated
processing of health data queries (Figure 1). Partici-
pants of such an architecture establish regional “grid
nodes” containing databases of standardized electronic
health data. Authorized users can request data from
partner grid nodes via a web-based query portal. The
query portal transmits queries submitted by the user
to a federated query portal (FQP). The FQP contacts
each grid node selected by the user, and submits the
user’s query to those grid nodes. Query results are then
compiled on the FQP and presented to the user. The
FQP and each grid node maintain their own list of au-
thorized groups and users, and interact via an inter-
mediate authentication, authorization, and accounting
(AAA) component. The SAFTINet architecture [37] is
an example of such an architecture, and has been ap-
proved by multiple institutional review boards.

A regional grid node has a structure similar to the
larger network. A regional FQP (rFQP) receives queries

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 5

federated

query processor

(FQP)

query

portaluser

authentication

authorization

accounting

(AAA)

regional

grid node

regional FQP

regional

AAA

linkage agent

standardized

database

regional

grid node

regional

grid node
local query engine

d
a
ta

 s
o
u
rc

e

regional grid node
AAA

e
n
c
ry

p
te

d
 l
in

k
a
g
e
 a

tt
ri

b
u
te

s

li
n
k
a
g
e
 i
d
e
n
ti

fi
e
rs

Fig. 1. Schematic for a distributed architecture for federated query processing.

from the FQP and compiles/forwards the results from
multiple data providers in the region. Similarly, a re-
gional AAA (rAAA) component manages connections
between the rFQP and data providers. All query spe-
cific data in a result set are encrypted for consumption
only by the querying user; no other component in the
data flow can view the raw medical data (even when
de-identified). Prior to becoming a data source for the
rFQP, a data provider has to establish credentials with
the rAAA, collate and create a unified view of an in-
dividual’s record, convert electronic health data to re-
search limited data sets, convert local codes to stan-
dardized codes, and replace direct identifiers with ran-
dom identifiers. Altogether, each provider undergoes a
common ETL process.

1.2 Linkage agent

An essential part of establishing a regional grid node
is to resolve data overlap issues. The rFQP is required
to deduplicate and join query results obtained from the
data providers in order to ensure correctness. There-
fore, the rFQP is supported by a linkage agent that de-
tects the presence of distributed data records, and gen-
erates the information necessary to track such records
over time. Federal entities such as the CDC’s National
Center for Health Statistics in the USA, or other agen-
cies/institutions under their supervision, can play this
role. In the simplest setting, records can be tracked by
using a unique linkage identifier assigned to all records
pertaining to the same individual. The problem that we
address in this work is to detect distributed records in
databases containing records in the order of millions,

often with inconsistencies, and with the constraint that
the linkage agent is not authorized to view the content
of data records. We assume that the infrastructure is
collusion free, strictly regulated, and is kept under sys-
tematic review.

1.3 Organization

We describe a basic detection algorithm in Section 2,
followed by prior work done in this area in Section 3.
Since we will be presenting our experimental results in
conjunction with our proposals, we discuss our exper-
imental setup early on in Section 4. Section 5 details
our approach to perform linking using commutative ci-
phers, and our techniques to make it practical on large
data sets. Later, we propose improvements to this ap-
proach in Section 6, with an assessment of the privacy
and speed trade-off. We present the linkage performance
of a greedy algorithm in Section 7. Discussion on how
linkage results can be utilized by a rFQP is in Section
8. We conclude the paper in Section 9.

2 Detecting Distributed Records
The detection of distributed records is also known as
record linkage or record matching. Record linkage is the
process of identifying records about the same entity
from multiple databases. The task is trivially accom-
plished by assigning a unique primary key to each en-
tity, which then acts as an identifier for the entity across
multiple databases. When the entity is a person, person-

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 6

ally identifying information (PII) such as social security
numbers, name, address, sex, etc. may be used as iden-
tifiers, often in combination.

2.1 Linkage issues

Clear text record linkage is infeasible under a privacy
preserving setting. The reluctance to perform record
linkage using PII may emanate from multiple reasons—
(i) the databases under consideration are distributed
across multiple parties that are competing for the same
consumer base, (ii) sharing of PII outside the organi-
zational boundary is prohibited by regulations, or (iii)
potential privacy risks exist if a third party gains knowl-
edge of an entity’s inclusion in a particular database.
Therefore, private record linkage methods have been
pursued. Such methods attempt to facilitate record link-
age in such a way that no party is required to reveal clear
text PII of its consumer base, and no party can learn
the PII of a consumer that is exclusive to another party.

In a perfect world, a person’s PII at two different
databases will be exactly the same. In practice, data
sites can have inconsistent representations of the same
information, arising from data entry errors and differ-
ences in data coding systems. Non-exact (or approxi-
mate) matching is more appealing in this setting. For
example, instead of comparing full strings for equality,
a linkage method can break the strings into sets of bi-
grams (all 2 character substrings), and determine equal-
ity based on the extent of overlap of the bigram sets. In
the next few subsections, we will first discuss a basic
linkage algorithm based on bigram matching, and then
pursue a practical and privacy-preserving version of the
algorithm.

2.2 Similarity scores

Let B denote an ordered set of all possible bigrams,
constructed from characters in A B...Z 0 1...9 ∼
‘ ! @ # $ % ˆ & ∗ () − _ + = { } [] | \ : ; ” ′ <> , . ? /
and the blank space. A total of 4761 bigrams is possible
in B. Let DA and DB denote two databases sharing z
attributes, and owned by two sites SA and SB respec-
tively. The objective is to perform a privacy-preserving
join of the two databases based on the z attributes,
given that data attributes can have data entry errors.

Record similarity. Let rA and rB be two records
from DA and DB respectively. Every record has a

record identifier assigned by the owning site. The sim-
ilarity between the two records is measured as the
weighted similarity across the z shared attributes, given
as

S(rA, rB) =
z∑
i=1

wiSAttr(rA[i], rB [i]),

where wi is the weight of attribute i, rA[i] (rB [i]) de-
notes the value in attribute i of the record, and SAttr
is a similarity measure between two strings. Weight
assignments are typically performed based on the dis-
criminatory power of an attribute. For example, the sex
attribute has less discriminatory power (only 2 possible
values) compared to the day of birth (up to 31 possible
values) attribute.

Attribute similarity. We will measure the similar-
ity between rA and rB in a given attribute i based on
the number of bigrams common in that attribute in
the two records. Let α and β be the sets of bigrams
obtained from rA[i] and rB [i] respectively. Then, the
similarity is computed with the Dice’s coefficient, given
as

Sattr(rA[i], rB [i]) = 2 | α ∩ β |
| α | + | β | .

2.3 Greedy matching

A crucial step towards successful record matching is
data standardization. This involves first converting at-
tribute values to the same case (e.g. all uppercase) and
format (e.g. date format and no punctuations). Sec-
ond, attributes may be converted into sub-attributes,
and linkage can be performed using the sub-attributes,
with weights assigned such that matches on different
parts carry different significance. For example, a name
attribute can be converted into a first, middle and last
name component, and then the last name is given more
weightage than the rest. Finally, attributes and/or sub-
attributes on which matching will be performed have
to be chosen. Independence of attributes (e.g. ZIP code
is not independent of city) and data quality in the at-
tributes are considered in such decisions.

A matching algorithm performs a pairwise compar-
ison of the records at two sites, and assigns a similarity
score to each pair. The record pairs are then divided
into three groups—matches, non-matches and undecid-
ables. Matches are those pairs whose scores exceed a
given upper threshold, non-matches have scores below a
lower threshold, and remaining pairs are undecidables.
We focus below on a procedure to find matching pairs

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 7

of records, although the method is not very different
for other types. The algorithm we consider is greedy in
linking; a linked record is not considered for linking in
remaining matching attempts.

1. Choose a record rA from DA.
2. For all rB in DB , compute S(rA, rB).
3. Let r∗B =argmaxrB

S(rA, rB). Ties are resolved by
picking the first record found with the maximum
score.

4. Given an upper threshold Tupper, if S(rA, r∗B) ≥
Tupper, then output (rA, r∗B) as a match and remove
r∗B from DB .

5. Remove rA from DA and repeat from step 1 until
DA is empty.

The core of this algorithm is in the computation of the
matching score, which in turn requires the computation
of the set intersection size of two bigram sets. The fo-
cus of this work is to make this computation efficient
and privacy-preserving. As such, optimizing matching
performance is not a priority in this work.

2.4 Using hashing

The use of cryptographic hash functions to protect iden-
tifying attributes have been proposed in the medical
informatics community. Unfortunately, even minute dif-
ferences in the attributes produce significant changes in
the hash output for such functions. Hashing bigrams in-
stead of full attribute values are also not useful in pre-
venting inferences. To use a hash function for bigram
set matching, each site will have to use the same hash
function, and share any keys necessary for the function.
Since the space of all bigrams is rather small, a site can
enumerate over all possible bigrams and precompute the
hash values for all bigrams. If hash values are leaked, a
dictionary attack is simple to execute. Otherwise, the
frequency of hash values observed at different sites can
help distinguish between the bigrams.

3 Related Work
Most of the statistical underpinnings of record linkage
are described in the seminal work by Fellegi and Sunter
[15], who approached it as a parameter estimation prob-
lem to balance linkage error and human intervention.
Extensive surveys, such as the one performed by Win-

kler [42], cover this traditional record linkage literature,
which we shall omit in this review and focus on the
emerging private record linkage domain.

Early proposals on performing private record link-
age by applying one-way hash functions to identifiers
can be found in the works by Dusserre et al. [13] and
Grannis et al. [19]. However, Agrawal et al. invalidated
the security guarantees of such a method on grounds
of the possibility of dictionary or frequency-based at-
tacks [3]. With access to a dictionary of possible inputs,
any party can compute the hash value of each possi-
ble input, and identify the inputs corresponding to the
outputs revealed by other parties.

Churches and Christen address the problem of input
errors by breaking strings into a set of n-grams [8, 9].
Two attributes will be regarded the same if their n-
gram sets have a “significant” overlap. The authors re-
sort to a trusted third party to do the matching of the
n-gram sets. Other methods have argued for the use of
phonetic codes of words [24]. The n-gram approach has
been shown to be superior to the phonetic method, and
performs reasonably better than exact matching on real
world patient identifier data [10]. These positive results
have attracted the attention of developers/researchers
implementing electronic health records sharing infras-
tructures for regional research projects. However, this
approach provides no privacy guarantees since exact
strings can be easily reconstructed from their n-grams.
It is also susceptible to dictionary and frequency attacks
if shared hash functions are used to encode the n-grams.

In order to counter the risk of reconstruction,
Schnell et al. proposed a technique using Bloom filters
for private linkage [39]. A Bloom filter is a binary ar-
ray (values either 0 or 1) of a fixed size. Bits in the
Bloom filter are set based on the output of hash func-
tions applied to the n-grams. Bloom filters are then com-
pared for similarity, instead of the n-grams. Kuzu et
al. recently demonstrated an attack that can utilize a
global dataset with demographic data (often available
publicly) to determine what input strings were used
to create the Bloom filter encodings [26]. In a follow
up study, the authors demonstrated that the attack is
feasible in practice, but the speed and precision of the
attack may be worse than theoretical predictions [27].
Methods such as encoding n-grams from multiple identi-
fiers into a single Bloom filter may provide resistance to
such attacks, but can adversely impact linkage perfor-
mance. Recently, Neidermeyer et al. proposed an easier
attack and demonstrated that Bloom filter encodings
can be broken without the need for high computational
resources [31]. Unfortunately, the use of basic bloom fil-

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 8

ters is still being proposed in the medical informatics
community as a privacy preserving method [34, 38]. In
order to address frequency attacks on basic bloom fil-
ters, Durham et al. propose combining multiple Bloom
filters by using a statistically informed method of sam-
pling [11]. The method makes frequency attacks diffi-
cult, but requires the tuning of a security parameter
that can affect linkage results. Note that Bloom filters
can generate false positives (even though with a very
small probability), owing to which the correctness of in-
tersecting two n-gram sets may be affected. As such,
we are motivated to compare n-gram sets without in-
troducing a data structure that approximates the sets.

The proposal to use cryptographic primitives such
as commutative encryption and homomorphic encryp-
tion for record linkage is not new. Agrawal et al. first
proposed using commutative encryption to privately
compute intersections of sets [3]. Malin and Airoldi use
the protocol to find common values in the attributes
of two records, but claimed that its use is not scalable
for approximate matching using n-grams [30]. Adam et
al. assume that unique patient identifiers are already
present in the distributed records, and propose perform-
ing query joins on commutatively encrypted versions of
those identifiers [1]. Lazrig et al. use homomorphic en-
cryption on a similar problem [29]. Note that the private
detection of distributed health records must be made
in order to establish unique and uniform record identi-
fiers across multiple data sources. Inan et al. claim that
cryptographic operations are often slow for use in prac-
tical record linkage of large data sets. Towards this end,
they propose separating data records into small subsets
and then perform linkage only within a subset using ho-
momorphic encryption [22, 23]. While encryption based
techniques are known to provide stronger security and
privacy guarantees, earlier works have disregarded its
practical significance (or applied it in a limited man-
ner) on grounds of heavy computation and communica-
tion complexity. To the best of our knowledge, this work
provides the first evidence that, with careful implemen-
tation, record linkage using commutative encryption is
very much achievable on large data sets, and that too
using commodity hardware.

We note that a number of other proposals to per-
form private set intersection (PSI) exists in the “secure
multiparty computation” community. However, we see
a fundamental difference in the nature of the problem
in this work and that treated in the area. Much of the
research in PSI protocols is aimed at reducing the com-
munication and computation cost of performing the in-
tersection of two sets with “large” number of elements;

our problem requires efficient protocols to perform many
private intersections of small sets, with elements from
a small domain. Pinkas et al. recently reported on the
practical applicability of PSI protocols [32]. Based on
the timing and bandwidth values reported in their work,
PSI protocols are not yet suitable for performing the
multiple set intersections (in the order of 1010) nec-
essary during the linking of two realistic data sets. It
has been observed that secure protocols designed specif-
ically for an application domain (under domain specific
assumptions that can be made for the secure compu-
tation task) can be more amenable for practical usage
than using a generic algorithm. For instance, Wang et
al. recently demonstrated the use of garbled circuits to
securely compute the edit distance between two genome
sequences [40]. Their method involves the use of a set
difference size computation, which can help determine
a close approximate of the edit distance in the case of
human genomes.

4 Experimental Setup
The data sets referred to in the subsequent sections
are derived from a North Carolina Voters Registra-
tion database obtained in 2012 (ncsbe.gov/ncsbe/data-
statistics). This database contains 7,088,370 individual
records with demographic data. We use the name and
street address attributes in this study. The name at-
tribute is a concatenation of the first name, the middle
name, and the last name. Similarly, the street address is
composed of the house number, street direction, street
name, and the street type, concatenated in that order.
We standardized all records to use upper case charac-
ters, and removed any blank space appearing in a name
or a street address. This database also reflects input
errors typically seen in the real world.

A linking experiment requires two data sets, one
corresponding to each site. We create such pairs of data
sets based on two parameters–%overlap : percentage of
overlapping records in the two data sets, and %error :
the percentage of records that undergo synthetic error
insertion. First, we sample (uniformly at random) the
database for enough records to create two data sets with
100,000 records in each, ensuring that the required num-
ber of overlapping records exists in the two sets. Next,
synthetic errors are inserted in a randomly selected set
of records (based on %error) in one of the data sets.
In each record chosen for error insertion, up to three
changes are made, decided randomly based on a proba-

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 9

bility of 0.6, 0.3 and 0.1 for one, two and three changes
respectively. A change is randomly chosen to be one of
many possibly operations: insert a character in an at-
tribute, delete a character, substitute a character, trans-
pose two characters, swap two sub-attributes (e.g. first
name and last name), and remove a sub-attribute (e.g.
street direction). These error types, although simple in
nature, reflect the most common forms of typing errors
[5]. Since it is not known which records in the origi-
nal data set have actual data entry errors, these manu-
ally inserted errors will be our only source to evaluate
how the linking method performs on records with er-
rors. Using this process, we created ten data set pairs
with the following (%overlap,%error) values: (1,10),
(5,10), (10,10), (15,10), (20,10), (25,5), (25,10), (25,20),
(25,30), and (25,50).

We ran the linking experiments in two different ma-
chine platforms: (I) a 2014 assembled system with a
3.5GHz Intel Xeon E3-1246v3 CPU, 2×4GB 1600MHz
DDR3 RAM, and running XUbuntu 14.04.3 LTS, and
(II) a 2010 Mac Pro with a 2.8 GHz Intel Xeon W3530
CPU, 2×4GB 1066MHz DDR3 RAM, and running Mac
OS X 10.10.3. Default processes are running in the back-
ground during timing experiments. Timing results in
these two platforms will help us observe the impact of
a few years of hardware advancement. Both processors
support up to eight hardware threads using the Intel
hyper-threading technology. As such, our implementa-
tion makes use of data parallelism and divides work
equally between eight hardware threads. All programs
are written in C, use the POSIX threading API and the
GNU multi-precision (GMP) arithmetic library, and are
compiled using gcc version 4.8.4 (Apple LLVM version
6.1.0 in the Mac Pro) with the -Ofast and -march=native
options.

Since a linking algorithm needs to compare all
record pairs across two sites for a possible match, a pro-
cess known as “blocking” is often employed to reduce
the comparison space to a subset of records that al-
ready agree on a simple attribute or a derived attribute
(e.g. name initials) [7]. Attributes used for blocking are
required to be fairly complete (not missing in many
records), relatively cleaner, and preferably have a small
domain of values that can be automatically corrected
without ambiguity (e.g. city name). Figure 2 shows that
performing name initials based blocking on the North
Carolina population creates subsets of less than 100,000
records, while using the ZIP code for blocking can pro-
duce much smaller subsets of less than 50,000 records.
Therefore, although we do not perform any blocking in
this study, our data set size of 100,000 records is justi-

Zip code

F
re

q
u
e
n
c
y

27030 27551 27924 28217 28520 28728

0
2
5
0
0
0

5
0
0
0
0

Name initials

F
re

q
u
e
n
c
y

N6 SC MF FI L VN RQ JT EW BZ
0

4
5
0
0
0

9
0
0
0
0

Fig. 2. Impact of blocking on the North Carolina voter’s registra-
tion database (7,088,370 records).

fied. Only a few empirical evaluations in record linkage
have been reported to employ such large data sets; how-
ever, the methodology in such settings are based on hash
functions and bloom filters (see Appendix B).

5 Linking Using A Fixed Key Set
As noted in Section 2.4, the use of a shared key to hash
bigrams serves no purpose. Therefore, we need a hashing
procedure that can support individual secrets (keys) at
each site. A commutative encryption scheme such as the
Pohlig-Hellman exponentiation cipher is relevant here.
The Pohlig-Hellman algorithm [33] is primarily an iter-
ative algorithm to compute a discrete logarithm: given g
and h from a finite field GF (p), find integer 1 ≤ x ≤ p−1
such that h = gx mod p. When g is a primitive root
of p, the solution x is unique. The algorithm is effec-
tive only when p is the product of small prime numbers,
i.e. p is smooth. Using the Pohlig-Hellman algorithm, as
well as other known algorithms to compute discrete log-
arithms, it is computationally infeasible to find x when
p is a “large” safe prime, i.e. p = 2q + 1, where q is also
a prime number.

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 10

5.1 Pohlig-Hellman exponentiation cipher

The Pohlig-Hellman exponentiation cipher EK(m) of a
message 1 ≤ m ≤ p − 1 when using the parameter 1 ≤
K ≤ p − 2 is EK(m) = mK mod p, where p is a large
safe prime and K is such that gcd(K, p − 1) = 1. K is
also known as the key, and is never released to another
site.

In our context, each bigram bi ∈ B is mapped to a
unique value 1 ≤ gi ≤ p − 1 such that gi is a primitive
root of p. We denote this mapping by H. For a given key
K, the cipher for bi is then EK(bi) = (H(bi))K mod p.
Using primitive roots to represent bigrams ensures that
the same cipher is not obtained for the same bigram
from two different keys.

5.2 Determining common bigrams

Let rA and rB denote two records at sites SA and SB re-
spectively, and α = {bα1 , ..., bαm} and β = {bβ1 , ..., bβn

}
be the sets (no duplicates) of bigrams corresponding to
the values of an attribute in rA and rB respectively. SA
and SB have decided on the mapping H and the prime
p. A trivial protocol to privately compute | α ∩ β | is as
follows.

1. For every (bi, bj) ∈ α× β,
(a) SA and SB pick their secret keys KA and KB

respectively.
(b) SA computes lA = EKA

(bi), SB computes lB =
EKB

(bj), and exchange their computed values.
(c) SA computes l′A = EKA

(lB), SB computes l′B =
EKB

(lA), and exchange their computed values.
(d) SA and SB conclude bi matches bj if l′A = l

′

B .
2. SA and SB determine | α ∩ β | as the number of

matches found in step 1.

Correctness. The above protocol is correct because
modular exponentiation is commutative. For (bi, bj) ∈
α× β, bi = bj if and only if l′A = l

′

B . If bi = bj ,

l
′

A = EKA
(EKB

(bj))

=
(
H(bj)KB mod p

)KA mod p

= (H(bi))KBKA mod p

=
(
H(bi)KA mod p

)KB mod p

= EKB
(EKA

(bi)) = l
′

B .

Further, since H maps bigrams to different primitive
roots, and different primitive roots will generate differ-
ent values after the modular exponentiation with the

same key, two different bigrams will not be encoded to
the same value.

Privacy. We consider a “honest but curious” attacker
model where H, p and the bigram distribution in the
data set is public knowledge, and every site honestly
follows protocol steps, but is curious to infer additional
information, if possible. The semi-honest assumption is
not unrealistic since parties participating in a health
data exchange infrastructure are likely to be tied by
multiple regulations, some of which may legally force
them to maintain a code of conduct. Without loss of
generality, site SA can attempt to learn the bigrams
in site SB ’s set by analyzing the cipher values. Since
all bigrams are represented by primitive roots, there
will always be an exponent corresponding to every bi-
gram that will generate a given cipher value. SA can
verify if an exponent satisfies the properties of a key
(gcd(K, p − 1) = 1), but this would require solving a
hard discrete logarithm problem to find the exponent
in the first place. Knowledge of the bigram distribution
is also not useful since SB picks a random secret key
KB for each comparison.

We note that the computation of the set intersec-
tion in the protocol relies on the ability to compare two
cipher text values (their equivalence implies plain text,
or bigram, equivalence). As such, a semantically secure
method of generating cipher texts will not be applicable
in this protocol. In general, although Pohlig-Hellman
resists known-plaintext attacks, guarantees are not pos-
sible for chosen-plaintext or chosen-ciphertext attacks.
Therefore, we have to require that the linkage agent
does not have access to either the encryption or the
decryption agent of sites. We will later visit the case
of known-ciphertext attacks and provide techniques to
deter them. Private set intersection protocols with se-
mantic security guarantees are available in the secure
computation literature, e.g. [17], but suffer from the
practical issues discussed in Section 3.

Considerations. Although the above process works
in theory, there are limitations to consider when work-
ing with large data sets. For example, consider one of
our data sets: 100,000 records in each site, with an av-
erage of 16 bigrams per record in the name attribute.
As per the aforementioned protocol, there will poten-
tially be 2.56 × 1012 bigram comparisons to be done!
Assuming that p is a 2048-bit (256 bytes) prime, this
amounts to the exchange of approximately 2.56 × 1012

comparisons×4 transfers per comparison×256 bytes per
transfer = 2.3 petabytes of data. Also, with an average

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 11

of 2.7 milliseconds per modular exponentiation (aver-
age time for 10000 operations of the mpz_powm_sec
function in the GMP library, executed in our XUbuntu
platform), the modular exponentiations alone will re-
quire more than 54 years when run using eight hardware
threads. While the computation time can be improved
by using cryptographic transformations based on ellip-
tic curves, the communication cost will be impractically
high even with the corresponding smaller key size (224
bits).

5.3 Precomputing for a fixed key set

In order to make the above protocol practical on a large
data set, we restrict the domain of keys at each site to
a smaller set, and then precompute lookup tables for
the modular exponentiations. Later, during the record
comparison phase, a site picks keys from its set, and
refers to pointers in the precomputed tables instead
of performing the modular exponentiations. We next
elaborate on the setup and execution of this protocol.

Key generation. Each site generates a set of w ran-
dom keys, denoted by KSA and KSB for SA and SB
respectively. We will use Kj

A to denote the jth key with
site SA. Similarly, Kj

B for site SB . Each key K follows
the requirements stated earlier: 1 ≤ K ≤ p − 2 and
gcd(K, p − 1) = 1. The set size w need not be same
at each site as assumed here. It can be appropriately
chosen based on the distribution of the bigrams ap-
pearing in an attribute. We shall discuss this in a later
subsection.

Level-1 precomputation. The first level of precom-
putation is performed independently at each site. SA
and SB decide on w (secret) permutations of the or-
dered bigram set B. A permutation π is a mapping of the
sequence 1, ..., |B| to a shuffling of the same sequence.
Therefore, each permutation produces a different shuf-
fling of the elements in B. The element at index i in B is
at index π(i) in the shuffling resulting from the permu-
tation π. Let π1

A, π
2
A, ..., π

w
A, and π1

B , π
2
B , ..., π

w
B denote

the permutations decided by SA and SB respectively.
Then, site SA computes ordered set

L1A = {EKj
A

(bπ(i)) |i ∈ {1, ..., |B|},

Kj
A ∈ KSA, π = πjA}

and SB computes ordered set

L1B = {EKj
B

(bπ(i)) |i ∈ {1, ..., |B|},

Kj
B ∈ KSB , π = πjB}.

We can index into an element of these sets by pro-
viding the permuted index of the bigram and a key
index. For example, L1A(p, q) is the level-1 cipher for
a bigram bi ∈ B for which πqA(i) = p. SA and SB
then exchange L1A and L1B respectively. With knowl-
edge of the permutation functions, a site can still refer
to a specific bigram of choice; however, without their
knowledge, no site can infer which underlying bigram is
referred to by the permuted index.

Level-2 precomputation. The second level of pre-
computation is specific to a pair of sites. Therefore,
a site has to perform this precomputation for every
other site with which it seeks to link records. Level-2
precomputation is the generation of ciphers using each
key in a site’s key set, and for values in the level-1
precomputation obtained from another site. Therefore,
SA computes ordered set

L2A = {EKj
A

(lB) | lB ∈ L1B ,Kj
A ∈ KSA}

and SB computes ordered set

L2B = {EKj
B

(lA) | lA ∈ L1A,Kj
B ∈ KSB}.

Indexing into elements of these sets require a per-
muted bigram index, a key index from SA and a key
index from SB . For example, L2A(p, q, r) is a level-2 ci-
pher created using the rth key at site SA, and for a
bigram bi for which πqB(i) = p.

Observe that, by nature of the commutativ-
ity of modular exponentiation, L2A(πjB(i), j, k) =
L2B(πkA(i), k, j), for all i ∈ {1, ..., |B|}. If SA obtains
L2B , it can cross-reference values in it with those in
L2A, and reverse the permutations used in L1B . There-
fore, SA and SB do not exchange their level-2 precom-
putations, but instead send them to the linkage agent.

Using precomputed tables. With L2A and L2B
available with the linkage agent, it can determine the
number of bigrams common in an attribute of two
records from sites SA and SB . Unlike the protocol in
Section 5.2, SA and SB now provide lookup indices
for their bigram sets, and the linkage agent uses those
indices to lookup the precomputed ciphers for the bi-
grams. It then computes the intersection size of those
sets for use in the matching algorithm. The steps of the
process are summarized below.

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 12

1. SA has α = {bα1 , ..., bαm} and SB has β =
{bβ1 , ..., bβn

}.
2. For each bigram bi ∈ α, SA chooses a j ∈
{1, ..., |KSA|}, and sends 〈πjA(i), j〉 to the linkage
agent. Similarly, for each bigram bi ∈ β, SB chooses
a j ∈ {1, ..., |KSB |}, and sends 〈πjB(i), j〉 to the link-
age agent. Let VA and VB denote the set of tuples
sent by SA and SB respectively.

3. For each (〈pA, qA〉, 〈pB , qB〉) ∈ VA × VB , the link-
age agent concludes that there is a match if
L2A(pB , qB , qA) = L2B(pA, qA, qB).

4. |α ∩ β| is the number of matches found in step 3.

The correctness of the above protocol is based on
the observation that ∀bi ∈ B, L2A(πjB(i), j, k) =
L2B(πkA(i), k, j). We revisit the privacy aspect in Sec-
tion 5.4.

Implementation. We implemented the precompu-
tation with randomly generated permutation functions
and a 2048-bit safe prime. Primality is tested using
the mpz_probab_prime_p function in the GMP library,
which is based on the Miller-Rabin primality test. Prim-
itive roots for the H mapping are obtained by first
randomly sampling a number, and then testing if it is a
primitive root. For p = 2q+1, an integer 1 ≤ g ≤ p−1 is a
primitive root if g2 mod p 6= 1 and gq mod p 6= 1. Keys
are also generated by first randomly sampling a num-
ber, and then testing for co-primality with p− 1. With
4761 possible bigrams in B and w = 50, each of L1A and
L1B will be 4761 × 50 × 2048 bits = 58.1MB. Each of
L2A and L2B will then be 50×58.1MB = 2.8GB. With
data parallelism over eight hardware threads, the level-1
precomputations for each site take approximately 162
seconds, and level-2 precomputations take 2.2 hours in
the XUbuntu platform. This timing includes the time
required to write the computed values to a file.

While two level-2 precomputation tables can easily
fit in memory during record matching, we will not be
able to get much advantage from the shared L3 cache
of modern multi-core CPUs. It would therefore be ad-
vantageous if the precomputed tables can be reduced
in size. We employ a bit stripping method where a site
determines the minimum number of low-order bits that
needs to be retained in its level-2 precomputed values in
order to keep them unique, and removes all remaining
bits. We observed that retaining the low-order 48 bits
(6 bytes) was sufficient to guarantee uniqueness in our
precomputed tables, which reduced the size of L2A and
L2B to 68.1MB each. Once again, elliptic curve cryp-
tography may be opted for to improve on the timing of

the precomputation and generate smaller sized encryp-
tions. However, neither of the two is a practical concern
in our implementation (Pohlig-Hellman cipher with bit
stripping).

We convert each of our data sets into a format as
would be seen by the linkage agent. In each record, the
name and address strings are first converted to sets of
bigrams; bigrams are then replaced by their index in
B. A key index is chosen for each bigram, and accord-
ingly the corresponding permutation function is applied
to the bigram indices. The permuted bigram index and
the key index is the final representation of a bigram in
the data set. We use 24 bits for this representation–a
11-bit key index and a 13-bit permuted bigram index.
A site is assumed to perform a bulk transfer of the trans-
formed representation of its data set in advance to the
linkage agent. Hence, the transfers referred to in step 2
of the above protocol are in fact done before the match-
ing process begins. This would be an average transfer of
8.5MB for each of our data sets. Appendix A illustrates
the various steps involved in the entire workflow.

5.4 Frequency smoothing

Using a fixed key set allows us to precompute the data
required for record matching, and significantly decrease
the data bandwidth usage. However, it also makes avail-
able the distribution characteristics of the bigrams. Fig-
ures 3(a) and 3(d) show the frequency of bigrams ap-
pearing in the name and street address attributes of
one of the (25,10) data sets. Only bigrams with a fre-
quency of more than 1000 are shown. This frequency
information is public knowledge in our attacker model.
The linkage agent can learn the frequency of different
bigrams (from the permuted bigram index) on a per key
basis. Permuted bigram indices with two different key
indices cannot be correlated since different permutation
functions are used across keys. When a site picks a key
uniformly at random from its fixed set, the occurrence
of bigrams also gets uniformly distributed. As a result,
for each key, the linkage agent observes a frequency dis-
tribution very similar to the underlying bigram distri-
bution, thereby making the protocol susceptible to a
frequency attack.

In order to control this privacy risk, we pro-
pose using a frequency smoothing technique. Frequency
smoothing will ensure that bigrams reported with a
given key index will be indistinguishable from each other
based on the frequency of occurrence of permuted bi-
gram indices. To do so, we distribute high frequency

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 13

0
2
0
0
0
0

(a)

Bigrams in names

F
re

q
u
e
n
c
y

AA TC GG NK BO IS EW

0
4
0
0

8
0
0

(b)

Bigrams in names

F
re

q
u
e
n
c
y

AA TC GG NK BO IS EW

0
4
0
0

8
0
0

(c)

Bigrams in names

F
re

q
u
e
n
c
y

AA TC GG NK BO IS EW

0
1
5
0
0
0

3
5
0
0
0 (d)

Bigrams in street address

F
re

q
u
e
n
c
y

BA OD SI LO TS 10 64

0
4
0
0

8
0
0

(e)

Bigrams in street address

F
re

q
u
e
n
c
y

BA OD SI LO TS 10 64

0
4
0
0

8
0
0

(f)

Bigrams in street address

F
re

q
u
e
n
c
y

BA OD SI LO TS 10 64

Fig. 3. (a), (d) The raw distribution of bigrams appearing more than 1000 times in the name and street address attributes of one of
the (25,10) data sets. (b), (e) The distribution of the same bigrams in key #1. (c), (f) The distribution in key #10. Dashed horizontal
line reflects average of non-zero values.

bigrams over a large number of keys, and low frequency
bigrams over a smaller number. Let fi be the frequency
of bigram bi ∈ B in a given attribute of a data set.
Let ftarget be the frequency we seek to achieve for bi-
grams reported with a given key index. Note that this
is only achievable for bigrams whose frequencies are at
least ftarget. The choice of a key for bigram bi is then
restricted to key numbers 1 through d fi

ftarget
e. As such,

a lower numbered key is always more frequently used
than a higher numbered one. The minimum number of
keys necessary to perform frequency smoothing is then
dmax(fi)
ftarget

e, which is how the size w of a key set can be de-
cided. For our data sets, we chose ftarget = 1000, which
is the minimum frequency of a bigram that appears in
at least 1% of the total number of records (=100,000).
This produced a key set size of w = 38.

Figures 3(b) and 3(e) show the frequency distribu-
tion as seen in key 1 when frequency smoothing is used.
Bigrams now demonstrate a relatively uniform distri-
bution, with an average frequency of 842.9 and 827.5
in the name and street address attributes respectively.
Similar results are observed in other keys as well (key
10 depicted in Figures 3(c) and 3(f)).

5.5 Exposure risk from key indices

Observe that the number of bigrams appearing in key
1 (Figures 3(b) and 3(e)) is much higher than that ap-
pearing in key 10 (Figures 3(c) and 3(f)). Depending on

the bigram frequency distribution in an attribute, cer-
tain keys may get used for a much smaller set of bigrams
than others. Therefore, the set of bigrams appearing (or
not appearing) with a given key index can be inferred
from the key index. If a certain key is used with only
one bigram, then use of the key index immediately re-
veals the presence of the bigram without uncertainty.
We therefore compute the expected exposure of each
bigram in an attempt to evaluate the privacy risk of the
protocol. The expected exposure for a bigram bi in an
attribute is

Exp(bi) =
w∑
j=1

Pr(bi|Kj
site)η(bi,Kj

site),

where η(bi,Kj
site) is the number of times bigram bi is

used with key Kj
site at a site, and Pr(bi|Kj

site) is the
probability that bigram bi is in use when key Kj

site is in
use. The probability is computed using Bayes’ rule as

Pr(bi|Kj
site) =

Pr(Kj
site|bi) Pr(bi)∑

t Pr(Kj
site|bt) Pr(bt)

,where

Pr(Kj
site|bi) =

{
1/d fi

ftarget
e , j ≤ d fi

ftarget
e

0 , otherwise
, and

Pr(bi) = fi/
∑

k
fk.

For percentage expected exposure, we divide
Exp(bi) with the total number of occurrences of bi
(= fi), and then multiply by 100. Figure 4 depicts the
expected exposure of bigrams in the name and street ad-
dress attributes in one of the data sets. Certain “very”

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 14

0
5

1
0

1
5

2
0

Bigrams in names

%
 E

x
p

e
c
te

d
 e

x
p

o
s
u

re

AA BB ID TE PH EJ TL YN SP OS HU LY

AN

ER
AR

ONLE
EL

0
1

0
2

0
3

0
4

0

Bigrams in street address

%
 E

x
p

e
c
te

d
 e

x
p

o
s
u

re

BA EC CE WH DL UN FR SS AV 60 13 06

RD

DR

STER

IN AR

Fig. 4. Expected exposure of bigrams appearing more than 1000 times in one of the (25,10) datasets.

high frequency bigrams have a comparatively higher ex-
posure risk than most other bigrams. For example, the
bigram ‘RD’ has a 37.9% probability of being correctly
inferred based simply on the key indices used along with
it. This happens because, as a result of the frequency
smoothing, key numbers higher than 27 are only used
with this bigram. Note that exposure of a few bigrams is
not sufficient to reconstruct the underlying strings, un-
less the strings are composed mostly of high frequency
bigrams. In the data sets we use, a small 0.0087 fraction
of the strings have at least half (and at most 80%) of
their bigrams in the set of ten most frequent bigrams
of the data set. Expected exposure is observed to be
less than 5% if a bigram is not in the ten most frequent
set. Therefore, we consider frequency smoothing to be a
viable technique that leaves an acceptable residual risk.

Our approach to estimating the risk from frequency
analysis involves finding the exposure probability of
each individual bigram using inference techniques based
solely on the knowledge of the algorithm and the bigram
frequency information. The higher the probability of ex-
posure, the higher is the chance that a bigram will be
correctly inferred by an adversary. As such, other bi-
gram based approaches can also estimate the exposure
probability within their own context for the purpose of
comparative studies.

5.6 Linkage timing

Table 1 lists the wall clock execution times of the record
matching algorithm (Section 2.3) when applied to our
ten data set pairs. Default processes are running in the
background during timing experiments. Recall that the
algorithm has quadratic complexity in the number of
records (pairwise comparisons). In addition, with the

key set approach, every bigram in an attribute of a
record has to be compared with every bigram in the
attribute of a record on the other site. This makes the
algorithm quadratic in the number of bigrams in an at-
tribute’s value. Nonetheless, with the precomputations
in place, and the reduced size of the precomputed ta-
bles, we could compare 100,000 records from one site
with 100,000 records from another site in less than two
hours. This is irrespective of the extent of overlap or the
extent of error present in the data sets. The execution
time is higher by a factor of two or more in the older
Mac OSX platform.

6 Using A Single Key Per Site
While results so far indicate that record matching on
large data sets can be efficiently and privately done
using a key set, the benefits of having a single key de-
mands a closer scrutiny. A single key per site approach
has two significant advantages.

1. Since there is only one key per site, the precom-
puted level-2 tables are much smaller in size. With
4761 bigrams and 6 bytes per cipher, each level-2
precomputed table is approximately 28KB in size.
Therefore, the tables can fit entirely in the L1-cache
of a CPU core, resulting in much faster lookups.

2. Since all bigrams from a site are now encoded using
the same key, the set intersection size (|α ∩ β|) can
be obtained in time linear in the size of the two sets
by using a hash table.

However, the downside of the approach is that the bi-
gram distribution in an attribute is exactly revealed.

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 15

Table 1. Time (in hours) to match records using the finite key set approach. w = 38 keys are used with frequency smoothing.

%Overlap, %Error (dataset of 100,000 records at each site)
1, 10 5, 10 10, 10 15, 10 20, 10 25, 5 25, 10 25, 20 25, 30 25, 50

Platform-I 1.51 h 1.48 h 1.44 h 1.40 h 1.36 h 1.33 h 1.33 h 1.33 h 1.33 h 1.32 h
Platform-II 3.16 h 3.11 h 3.02 h 2.97 h 2.89 h 2.91 h 2.88 h 2.77 h 2.76 h 2.74 h

0
1
0
0
0
0

3
0
0
0
0

(a) No dummy records

Bigrams

F
re

q
u
e
n
c
y

OA WH GO YE HN LY MI ER

0
1
0
0
0
0

3
0
0
0
0

(b) 5 clusters

Bigrams

F
re

q
u
e
n
c
y

YJ DG HM OT YA UR JO AR

0
1
0
0
0
0

3
0
0
0
0

(c) 10 clusters

Bigrams

F
re

q
u
e
n
c
y

EJ IO UE MS HN SS TO AN

0
1
0
0
0
0

3
0
0
0
0

(d) 30 clusters

Bigrams

F
re

q
u
e
n
c
y

OA SB YR NR OH EW TT AN

EL,LE,AN,ON,AR,ER

HA,LA,MA,RA,IC,HE,NE,RE,CH,TH,LI,RI,

AL,IL,LL,AM,IN,NN,RO,ES,IS

AN,AR,ER

RI,IN,LE,NE,EL,LL,EN,ON

HA,LA,MA,RA,RE,CH,TH,LI,AL,AM,ES

IE,TE,DA,IC,ND,BE,HE,IL,NN,RO,OR,IS,ST

ANERARONLEELLLNEENRIINHAMA... RE

Fig. 5. Frequency distribution of bigrams (that appear at least 1000 times) with and without cluster smoothing and dummy records.
Distributions shown are for the name attribute in a (25,10) data set.

6.1 Dummy records

One method to smooth out the differences in the fre-
quency is to introduce extra bigrams. However, intro-
ducing bigrams in a real record can affect the matching
score, thereby affecting the linkage performance. There-
fore, extra bigrams have to be introduced in records of
their own, which we call dummy records. The number of
extra bigrams inserted into a dummy record should be
close to the average bigram set size of an attribute. For
example, on an average, there are 16 bigrams in a name
and 13 bigrams in a street address. In an ideal situation,
the total number of dummy occurrences to include for a
particular bigram bi should be equal to the difference of
its frequency with that of the most frequently occurring
bigram, i.e. maxj(fj)−fi. By doing so, the ciphers of all
bigrams will be seen maxj(fj) times during the match-
ing phase, thus producing a flat frequency distribution.
Unfortunately, doing so will produce an excessively large

number of dummy records because of the heavy-tailed
nature of the distribution (Figure 5(a)).

6.2 Cluster smoothing

An alternative method is to introduce dummy bigrams
such that a given bigram becomes indistinguishable
from a few other bigrams (instead of every other bi-
gram). We start this process by first applying a clus-
tering algorithm (k-means) to divide the bigrams into k
clusters based on the proximity of their frequency val-
ues. Let Ct denote the set of bigrams in cluster number
t. Then, for a bigram bi ∈ Ct, the number of additional
occurrences to be inserted is f ′

i = maxbj∈Ct
(fj) − fi.

This process results in groups of bigram ciphers, with
all bigrams in a group having the same frequency of oc-
currence. Figures 5(b)-(d) show the frequency distribu-
tion of the bigrams in the name attribute when dummy

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 16

Table 2. Number of dummy records generated for a given cluster
size in one of the (25,10) data sets.

Number of clusters Number of dummy sets
Name Street Address

5 37252 29510
10 14825 12630
20 8419 8507
30 5219 6185
50 3528 4422
75 2021 2773
100 1277 1837

records are created after cluster smoothing with 5, 10
and 30 clusters respectively. The plots also show how
bigrams get grouped for different cluster sizes.

Our process of creating dummy records is as follows.
Once the f ′

i values for each bigram are computed for a
certain attribute, we create dummy bigram sets for the
attribute by sampling bigrams from B with probabilities
proportional to the number of times a bigram remains to
be inserted. A new set is started once a predetermined
number of dummy bigrams (randomly picked between
µ − 2 and µ + 2, where µ is the average number of bi-
grams in the attribute of a given data set) have been
inserted into a set. Ideally, one dummy record is com-
posed of one dummy set for each attribute. However,
there is no guarantee that the number of dummy sets
will be equal in all attributes of the data set. In that
case, we merge the dummy sets of an attribute such
that all attributes have the same number of dummy
sets. Elements from the largest set are inserted into the
remaining sets in increasing order of size, until the num-
ber of dummy sets left is equal to the smallest number
of dummy sets observed in an attribute. The dummy
records are then interspersed into the data set. A site
can track dummy records by their record identifiers. Ta-
ble 2 lists the number of dummy sets that needs to be
created to smoothen the frequencies in a cluster. Higher
number of clusters allow for smaller groups. Smaller
groups result in smaller adjustments in frequency, and
therefore produce fewer dummy records.

6.3 Expected exposure

Smaller groups also imply a higher probability of cor-
rectly guessing the underlying bigram. For example, in
Figure 5(b), the chance that a cipher value corresponds
to the bigram ‘AN’ is 1

6 , whereas that in Figure 5(c) it is
1
3 . The probability of correctly guessing a bigram bi from
the cipher value is therefore 1/|C|, where bi is in cluster

0
2

0
4
0

6
0

8
0

1
0

0

Bigrams

%
 E

x
p

e
c
te

d
 e

x
p

o
s
u

re

AN CH SO WA AC LD KA NO IR EF

no dummies
5 clusters
10 clusters
30 clusters

more frequent less frequent

Fig. 6. Expected exposure in top 200 bigrams for names in a
(25,10) data set.

C. Figure 6 shows the percentage expected exposure of
the 200 most frequently occurring bigrams in a name of
a (25,10) data set. Clearly, when there are no dummy
records, the exposure risk of a bigram depends on how
many other bigrams have the same frequency value. As
the number of clusters is decreased, the risk in most bi-
grams starts to decrease as well. Certain high frequency
bigrams have comparatively higher exposure risk since
k-means grouping was based on simple absolute differ-
ence in frequency values. On an average, the top 200
bigrams were found to have an exposure risk that is
4.95 times higher than that in the key set approach. As
mentioned earlier, the exposure of a few bigrams is not
sufficient to reconstruct the underlying strings, unless
the strings are composed mostly of high frequency bi-
grams. The 90th percentile of the percentage exposure
values depicted in the plot is 7.69% for the case of 10
clusters. About 1% of the strings have at least half of
their bigrams in the set of 20 most frequent bigrams in
this setting.

It should be noted that including dummy records
only during linkage is not sufficient to guarantee pri-
vacy. Dummy records ought to appear some times as
a result to some query. The encrypted sensitive data
in the corresponding result record could include meta-
data to signify that the record should be ignored, or the
query issuer can be provided statistics to help correct
inference results.

Given that linkage is performed at an external site,
the method of hashing using a shared key can also ben-
efit from techniques such as permutation of the bigram
set and frequency smoothing using dummy records.
However, under such a method, different encoded ver-
sions of a data set have to be maintained corresponding

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 17

Table 3. Time (in minutes) to match records using the single key approach. Number of clusters used = 10.

%Overlap, %Error (dataset of 100,000 records at each site + ∼ 12,500 dummy records)
1, 10 5, 10 10, 10 15, 10 20, 10 25, 5 25, 10 25, 20 25, 30 25, 50

Platform-I 11.53 m 11.32 m 11.39 m 9.41 m 9.64 m 10.61 m 9.78 m 10.56 m 8.60 m 9.49 m
Platform-II 26.69 m 26.49 m 25.86 m 25.09 m 24.07 m 23.77 m 23.72 m 23.72 m 23.17 m 23.51 m

Table 4. Estimated matching time. s: seconds, m: minutes, h:
hours.

No. of
records at
each site

Number of hardware threads (example
processor)

12
(E5-2643v3)

16
(E5-2667v3)

20 (E5-
2687Wv3)

1,000 0.039 s 0.029 s 0.023 s
10,000 3.9 s 2.9 s 2.3 s
100,000 6.5 m 4.8 m 3.9 m
500,000 2.7 h 2.0 h 1.6 h
1,000,000 10.8 h 8.1 h 6.5 h

to the different keys that a party shares with other par-
ties. Our approach is asymmetric in this regard—every
site can privately choose its own key(s), and encode its
data independent of the party with whom linkage is per-
formed.

6.4 Linkage timing

As hypothesized, using a single key provides significant
improvements in the linkage time. Overall, using 10
clusters, the linkage process took less than 12 minutes
in Platform-I for every data set pair (Table 3). This
is an improvement by a factor of eight over the multi-
key approach. These timings also include the unproduc-
tive time spent trying to find matches with/for dummy
records. Platform-II runs are at least a factor of two
slower. The price paid for this significant speed-up is in
the (small but positive) increase of the expected expo-
sure risk. Moving forward, we estimated the execution
time for other data set sizes, and when a larger number
of hardware threads are available (Table 4). The esti-
mation is based on the average duration to match one
record pair in Platform-I for the (25,10) data sets. With
an average of 16 bigrams in a name and 13 bigrams in
a street address, these timings reflect an average of 58
lookups per record pair. The numbers imply that we can
perform matching on a trillion (106 × 106) record pairs
in less than 12 hours using an affordable server. Fur-
ther, we can link two databases with 10 million records
in each, and blocked on an average of 100,000 records,
in less than 11 hours. This is a conservative extrapola-

tion since we only consider the ratio of the number of
available cores in these estimations. Other features such
as the per-core cache amount and the I/O bus speed are
typically better in servers configured with the example
processors; therefore, larger improvements in the link-
age timing can be expected.

7 Linkage Performance
We ran the greedy matching algorithm (Section 2.3)
to our ten data set pairs. The matching is performed
based on the name and street address attributes, and
scores are computed using equal weights on the two at-
tributes. A threshold value of Tupper = 0.7 is used. For a
data set pair, the algorithm reports the identifiers of the
record pairs for which a potential match is detected. We
determine four sets from this output: (i) true positive
(TP): detected matches that are true matches, (ii) true
negative (TN): undetected matches that are not true
matches, (iii) false positive (FP): detected matches that
are not true matches, and (iv) false negative (FN): un-
detected matches that are true matches. Based on these,
we compute two metrics for performance evaluation.

Precision = |TP |
|TP |+ |FP |

Recall = |TP |
|TP |+ |FN |

Precision (or positive predictive value) is the fraction of
detected matches that are correct. Recall (or sensitiv-
ity) is the fraction of correct matches that the method
is able to detect. Table 5 lists the precision and recall
values obtained by the algorithm on different data set
pairs. We have used the fixed key set approach with
w = 38 keys to generate the bigram sets. Precision val-
ues demonstrate an upward trend as the amount of over-
lap increases between two data sets. On the other hand,
the number of records having errors (%error) do not
seem to have an influence on the precision of the algo-
rithm. In other words, the presence of more records with
errors do not lead to spurious matches. Recall values in-
dicate that the algorithm detected almost all matching

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 18

Table 5. Precision and recall of greedy matching algorithm on different data set pairs.

%Overlap, %Error
1, 10 5, 10 10, 10 15, 10 20, 10 25, 5 25, 10 25, 20 25, 30 25, 50

Dataset of 100,000 actual records at each site
Precision 0.592 0.882 0.940 0.964 0.974 0.981 0.981 0.982 0.982 0.984
Recall 0.994 0.993 0.995 0.995 0.994 0.995 0.994 0.992 0.988 0.985

Within the records with input errors
Precision 0.727 0.901 0.957 0.980 0.986 0.990 0.989 0.989 0.988 0.989
Recall 0.962 0.966 0.980 0.979 0.973 0.972 0.972 0.970 0.969 0.972

record pairs. We also looked at the precision and recall
values with respect to the subset of records in which
an error was inserted. Once again, precision increases
with the extent of overlap, but is not influenced by the
percentage error. Also, most matching record pairs with
errors in them are detected. This would imply that the
bigram matching process works quite well for records
with input errors. The exact same precision and recall
values are obtained when using the single key approach
with 10 clusters. In other words, in the single key ap-
proach, no matches were found for dummy records. For
the small fraction of matching record pairs missed by
the algorithm, we observed that most of them either
had an entire attribute removed as part of the error in-
sertion process, or had significant changes been made to
an attribute’s value as a result of multiple error inser-
tions. We emphasize that validation of linkage results is
a crucial step for the matches to be admissible [12]. Al-
though difficult to perform across sites due to privacy
concerns, special regulatory permissions are sought to
perform a small scale validation.

8 Tracking Linked Records
The task of a linkage agent is to identify data records
distributed across multiple sites but belong to the same
individual. It needs to be invoked when new sites enter
the data exchange system, or a new patient record is
entered into an already linked site. Linkage information
is also required to join distributed records during query
processing. We briefly discuss the role of the linkage
agent in each of these situations. We assume that sites
have a pre-decided set of attributes on which linkage is
to be performed.

8.1 Site entry

Prior to using data from a site, its records need to be
linked with records from other participating sites. This
linkage is performed with every site for which there is a
possibility of record overlap, which are typically sites in
the same region. The new site and the sites with which
linkage is necessary have to perform the necessary pre-
computations in preparation for the linkage. The new
site provides the encoded (permuted bigram indices)
attribute values to the linkage agent. Once the precom-
putation results are made available to the linkage agent,
the record matching can happen. The output produced
by the matching process can be used in one of two ways.

Cross-site linkage identifier. Matched record pairs
can be assigned the same linkage identifier across sites.
If a record on one site has already been assigned a
linkage identifier, it is reused as an identifier for the
matched record on the new site. Records at the new
site that are not matched with any record on any other
site are assigned new linkage identifiers. As sites un-
dergo pairwise linking, the linkage identifiers propagate
and become the primary key for the distributed records.
Therefore, if a site gains knowledge of the presence of
an identifier at another site, it can infer the identity
of the patient at the other site. This membership in-
formation may be sensitive information, not authorized
for disclosure. The linkage agent can also learn that a
patient visits two sites, but the identity of the patient
is hidden from the agent. Another issue with cross-site
identifiers is that every site has to be updated in the
event that an identifier has to be refreshed.

Per-site linkage identifier. In this scheme, the link-
age agent assigns a unique linkage identifier to each
record, but retains the association between them as
equivalence sets. Identifier refresh only involves an up-
date with the relevant site. Per-site identifiers can also
help prevent the inference of site membership from

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 19

leaked identifiers. However, the association data avail-
able at the linkage agent becomes critical to track the
distributed records during query processing.

8.2 Record entry

Linkage invocations due to new site entries will be rare
after initial system setup. Comparatively, new records
will be created more frequently. All entries correspond-
ing to one individual are maintained as one record.
When a new record is created, its encoded attributes are
sent to the linkage agent as an update operation to the
data it communicated during the first linkage. The link-
age agent attempts to match the new record with other
sites. If a match is found, then an identifier is assigned
(for the cross-site scheme, the matched record’s iden-
tifier is used), and the process stops; otherwise a new
identifier is assigned. Gruenheid at al. propose using in-
cremental graph clustering to handle update operations
on linked databases [21].

8.3 Joining records

A crucial task of the regional federated query proces-
sor is to join results from multiple data sources, either
to remove duplicate counts, or answer cross-site queries.
After the query processor collects the query results from
individual sites, it accesses the linkage results to per-
form this join. This is trivially done if cross-site link-
age identifiers are in use. Otherwise, the query proces-
sor communicates with the linkage agent to determine
which linkage identifiers correspond to the same record.
Records resulting after the join can be assigned different
identifiers for use by the querying user. Such identifiers
will also allow the user to refer back to an individual’s
data during a longitudinal study.

9 Conclusion
The detection of distributed health records is impor-
tant to resolve data duplication and facilitate complex
join queries. However, the presence of strict regulations
on the sharing of patient identifiers, as well as inconsis-
tencies in the data, make this a non-trivial task. Meth-
ods utilizing hash functions and basic Bloom filters have
gained popularity for their ease of use, albeit their pri-
vacy guarantees are weakly founded. On the other hand,
cryptographic methods are known for their strong guar-

antees, but have been claimed unsuitable for linking
large health databases because of high computation and
communication costs. Through this work, we have in-
validated such claims and shown that by precomputing
repetitive cryptographic operations, parallelizing com-
putations over a small number of hardware threads, and
truncating large encryption outputs, it is in fact possi-
ble to execute a quadratic record matching algorithm
on data sets as large as 100,000 records each, and ob-
tain results in less than 10 minutes with insignificant
communication cost. Our methods do not require shar-
ing of secret keys, and make frequency attacks futile by
smoothing frequencies or introducing dummy records.
We hope that these feasibility results will prompt the
adoption of cryptographic primitives in the design of
fast and private record linkage components.

In terms of future work, extension of our techniques
to Internet-scale linkage will be an interesting direction.
We have provided evidence that large data sets (even
up to a million records per site) can be handled within
a reasonable time frame. Nonetheless, we assume that
linking is done pairwise between sites. At the Internet-
scale, where the number of records or the number of sites
can be much larger, it will be worthwhile to explore if
the proposed techniques can be extended for multiparty
linking with sub-quadratic complexity. We are also yet
to apply our technique to link actual medical data sets,
where decisions on the quantity and quality of attributes
necessary for productive linking has to be made. As an
immediate extension, we plan to asses the suitability of
Elliptic curves in our techniques with the objective of
further improving the linkage time.

Acknowledgement
We thank Dr. Michael Kahn at the Anschutz Medical
Campus (University of Colorado-Denver) for providing
insights into the SAFTINet infrastructure, the data du-
plication problem, and the privacy hurdles faced by the
medical informatics community in record linkage.

References
[1] N. Adam, T. White, B. Shafiq, J. Vaidya, and X. He. Pri-

vacy preserving integration of health care data. In AMIA
Annual Symposium Proceedings, pages 1–5, 2007.

[2] N. Adly. Efficient record linkage using a double embedding
scheme. In International Conference on Data Mining, pages

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 20

274–81, 2009.
[3] R. Agrawal, A. Evfimievski, and R. Srikant. Information

sharing across private databases. In ACM SIGMOD Inter-
national Conference on Management of Data, pages 86–97,
2003.

[4] H. Brenner. Application of capture-recapture methods for
disease monitoring: Potential effects of imperfect record
linkage. Methods of Information in Medicine, 33(5):502–
506, 1994.

[5] P. Christen. Probabilistic data generation for deduplication
and data linkage. In International Conference on Intelligent
Data Engineering and Automated Learning, pages 109–116,
2005.

[6] P. Christen. Febrl -: an open source data cleaning, dedu-
plication and record linkage system with a graphical user
interface. In ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pages 1065–68,
2008.

[7] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Transactions on
Knowledge and Data Engineering, 24(9):1537–1555, 2012.

[8] T. Churches and P. Christen. Blind data linkage using n-
grams similarity comparisons. In Advances in Knowledge
Discovery and Data Mining, pages 121–126, 2004.

[9] T. Churches and P. Christen. Some methods for blindfolded
record linkage. BMC Medical Informatics and Decision
Making, 4:9, 2004.

[10] E. Durham, Y. Xue, M. Kantarcioglu, and B. Malin. Private
medical record linkage with approximate matching. In AMIA
Annual Symposium Proceedings, pages 182–186, 2010.

[11] E. A. Durham et al. Composite bloom filters for secure
record linkage. IEEE Transactions on Knowledge and Data
Engineering, 26(12):2956–2968, 2013.

[12] S. B. Dusetzina et al. Linking data for health services re-
search: A framework and instructional guide. Technical
Report 14-EHC033-EF, Agency for Healthcare Research and
Quality (US), 2014.

[13] L. Dusserre, C. Quantin, and H. Bouzelat. A one way public
key cryptosystem for the linkage of nominal files in epidemi-
ological studies. MedInfo, 8 (Pt 1):644–647, 1995.

[14] S. Duvall, R. Kerber, and A. Thomas. Extending the Fellegi-
Sunter probabilistic record linkage method for approximate
field comparators. Journal of Biomedical Informatics,
43(1):24–30, 2010.

[15] I. Fellegi and A. Sunter. A theory for record linkage. Jour-
nal of the American Statistical Association, 64:1183–1210,
1969.

[16] J. T. Finnell. In support of emergency department health
information technology. In AMIA Annual Proceedings Sym-
posium, pages 246–250, 2005.

[17] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 1–19, 2004.

[18] S. J. Grannis, J. M. Overhage, S. Hui, and C. J. McDonald.
Analysis of a probabilistic record linkage technique without
human review. In AMIA Annual Symposium Proceedings,
pages 259–63, 2003.

[19] S. J. Grannis, J. M. Overhage, and C. McDonald. Analysis
of identifier performance using a deterministic linkage al-

gorithm. In AMIA Annual Symposium Proceedings, pages
305–309, 2002.

[20] S. J. Grannis, J. M. Overhage, and C. McDonald. Real
world performance of approximate string comparators for
use in patient matching. Studies in Health Technology and
Informatics, 107(Pt 1):43–7, 2004.

[21] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremen-
tal record linkage. Proceedings of the VLDB Endowment,
7(9):697–708, 2014.

[22] A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco.
A hybird approach to private record linkage. In International
Conference in Data Engineering, pages 496–505, 2008.

[23] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. Pri-
vate record matching using differential privacy. In Interna-
tional Conference on Extending Database Technology, pages
123–134, 2010.

[24] A. Karakasidis and V. S. Verykios. Privacy preserving record
linkage using phonetic codes. In Balkan Conference in Infor-
matics, pages 101–106, 2009.

[25] A. Karakasidis and V. S. Verykios. Secure blocking + Secure
matching = Secure record linkage. Journal of Computing
Science and Engineering, 5(3):223–235, 2011.

[26] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin. A
constraint satisfaction cryptanalysis of bloom filters in pri-
vate record linkage. In International Conference on Privacy
Enhancing Technologies, pages 226–245, 2011.

[27] M. Kuzu, M. Kantarcioglu, E. Durham, C. Toth, and B. Ma-
lin. A practical approach to achieve private medical record
linkage in light of public resources. Journal of the American
Medical Informatics Association, 20(2):285–292, 2013.

[28] D. V. LaBorde, J. A. Griffin, H. K. Smalley, P. Keskinocak,
and G. Matthew. A framework for assessing patient
crossover and health information exchange value. Journal
of American Medical Informatics Association, 18(5):698–
703, 2011.

[29] I. Lazrig et al. Privacy preserving record matching using
automated semi-trusted broker. In Annual Working Confer-
ence in Data and Applications Security and Privacy, pages
103–118, 2015.

[30] B. Malin and E. Airoldi. Confidentiality preserving audits of
electronic medical record access. Studies in Health Technol-
ogy and Informatics, 129(1):320–324, 2007.

[31] F. Niedermeyer, S. Steinmetzer, M. Kroll, and R. Schnell.
Cryptanalysis of basic bloom filters used for privacy preserv-
ing record linkage. Journal of Privacy and Confidentiality,
6(2):59–79, 2014.

[32] B. Pinkas, T. Schneider, and M. Zoner. Faster private set
intersection based on ot extension. In 23rd USENIX Confer-
ence on Security Symposium, pages 797–812, 2014.

[33] S. C. Pohlig and M. E. Hellman. An improved algorithm
for computing logarithms over GF(p) and its cryptographic
significance. IEEE Transactions on Information Theory,
24(1):106–110, 1978.

[34] S. M. Randall, A. M. Ferrante, J. H. Boyd, J. K. Bauer,
and J. B. Semmens. Privacy-preserving record linkage on
large real world datasets. Journal of Biomedical Informatics,
50:205–212, 2014.

[35] P. Ravikumar, W. W. Cohen, and S. E. Fienberg. A secure
protocol for computing string distance metrics. In PSDM
held at ICDM, pages 40–46, 2004.

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 21

[36] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elma-
garmid. Privacy preserving schema and data matching. In
ACM SIGMOD International Conference on Management of
Data, pages 653–64, 2007.

[37] L. M. Schilling et al. Scalable Architecture for Federated
Translational Inquiries Network (SAFTINet) technology in-
frastructure for a distributed data network. eGEMs (Gen-
erating Evidence & Methods to improve patient outcomes),
1(1):1027, 2013.

[38] K. Schmidlin, K. M. Clough-Gorr, and A. Spoerri. Privacy
Preserving Probabilistic Record Linkage (P3RL): A novel
method for linking existing health-related data and main-
taining participant confidentiality. BMC Medical Research
Methodology, 15(46):open access, 2015.

[39] R. Schnell, T. Bachteler, and J. Reiher. Privacy-preserving
record linkage using bloom filters. BMC Medical Informatics
and Decision Making, 9:41, 2009.

[40] X. S. Wang et al. Efficient genome-wide, privacy-preserving
similar patient query based on private edit distance. In 22nd
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 492–503, 2015.

[41] G. M. Weber. Federated queries of clinical data repositories:
The sum of the parts does not equal the whole. Journal of
American Medical Informatics Association, 20:e155–e161,
2013.

[42] W. E. Winkler. The state of record linkage and current
research problems. Technical report, Statistical Research
Division, U.S. Census Bureau of the Census, 1999.

[43] M. Yakout, M. J. Atallah, and A. K. Elmagarmid. Efficient
private record linkage. In International Conference in Data
Engineering, pages 1283–1286, 2009.

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 22

Appendix A: Private linkage workflow

Generate key(s) and

permutation function(s)

Perform level-1

precomputation

Disseminate (e.g. using a

public server) level-1

precomputation results

Perform level-2

precomputations

Create linkage data

(encoded linkage

attributes with frequency/

cluster smoothing)

Send linkage data to

linkage agent

Obtain level-1

precomputation results

of other sites

Send level-2

precomputations

to linkage agent

Link site data with other sites

Send linkage identifiers to site

Annotate database with linkage identifiers

Public knowledge: bigram map H

S
it

e
L
in

k
a
g

e
 A

g
e
n

t
S

it
e

Obtain linkage data and level-2

precomputations from sites

Receive linkage identifiers from

linkage agent

Unauthenticated
Download Date | 10/23/16 5:54 PM

Linking Health Records for Federated Query Processing 23

Appendix B: Data sets used in recent studies related to private record
linkage

Grannis et al. [18–20] Patient registry records from two hospital registries in Indiana, and linked to a subset of the Death
Master File; 6,000 record pairs

Agrawal et al. [3] No experimental evaluation; computation and communication cost is estimated
Churches and Christen
[8, 9]

No experimental evaluation; states that the method incurs very high data transmission overheads,
which the authors believe can be handled by modern high-bandwidth research networks

Ravikumar et al. [35] Cora (http://www.cs.umd.edu/~sen/lbc-proj/data/cora.tgz) dataset consisting of 2,708 scientific
publications and 5,429 links

Scannapieco et al. [36] British Columbia voter’s list (1,000 records); personal and business data maintained by an Italian
public administration agency, with two tables of 7,846 and 7,550 records in the former, and 20,000
records in the latter; duplicates are inserted artificially

Inan et al. [22, 23] Census-Income Adult data set from UCI machine learning repository; experiment performed on two
subsets of the data, with 20,108 records in each; subsets are generated such that overlap is known

Adly [2], Yakout et al.
[43]

British Columbia voter’s list; Adly used datasets with 4,000, 10,000 and 20,000 records, generated
by sampling from the list; manually controlled and identified the percentage of similar records
between each set pair

Schnell et al. [39] Two German private administration databases, each with about 15,000 records
Durham et al. [10] Created 100 datasets with 1,000 records in each from the identifiers and demographics within the

patient records in the electronic medical record system of the Vanderbilt University Medical
Center; data sets to link to are generated from these 100 sets using a “data corrupter”

DuVall et al. [14] Used the enterprise data warehouse of the University of Utah Health Sciences Center; 118,404
known duplicate record pairs, identified using the Utah Population Database

Karakasidis et al. [25] Used the FEBRL synthetic data generator [6] for performance and accuracy experiments
Kuzu et al. [26] A sample of 20,000 records from the North Carolina voter’s registration list; to evaluate the effect

of typographical and semantic name errors, the sample was synthetically corrupted
Durham et al. [11] Ten independent samples of 100,000 records from the North Carolina voter’s registration list; each

sample was independently corrupted to generate samples at the second party
Dusetzina et al. [12] Individuals in the North Carolina Central Cancer Registry (NCCCR) diagnosed with colon cancer

linked to enrollment and claims data for beneficiaries in privately insured health plans in North
Carolina; 104,360 record pairs

Gruenheid et al. [21] Cora dataset; Biz dataset consisting of multiple versions of a business records dataset, each with
4,892 records

Randall et al. [34] approximately 3.5 × 109 record pairs from ten years of the West Australian Hospital Admissions
data; approximately 16 × 109 record pairs from ten years of the New South Wales admitted
patient data

Schmidlin et al. [38] No experimental evaluation; timing estimated for a linkage attempt with 100,000 records in one
data set and 50,000 records in another

Unauthenticated
Download Date | 10/23/16 5:54 PM

