
Proceedings on Privacy Enhancing Technologies ; 2016 (4):335–355

David J. Wu, Tony Feng, Michael Naehrig, and Kristin Lauter
Privately Evaluating Decision Trees and Random Forests
Abstract: Decision trees and random forests are com-
mon classifiers with widespread use. In this paper, we
develop two protocols for privately evaluating decision
trees and random forests. We operate in the standard
two-party setting where the server holds a model (ei-
ther a tree or a forest), and the client holds an input (a
feature vector). At the conclusion of the protocol, the
client learns only the model’s output on its input and a
few generic parameters concerning the model; the server
learns nothing. The first protocol we develop provides
security against semi-honest adversaries. We then give
an extension of the semi-honest protocol that is robust
against malicious adversaries. We implement both pro-
tocols and show that both variants are able to process
trees with several hundred decision nodes in just a few
seconds and a modest amount of bandwidth. Compared
to previous semi-honest protocols for private decision
tree evaluation, we demonstrate a tenfold improvement
in computation and bandwidth.

Keywords: privacy, secure computation, decision trees

DOI 10.1515/popets-2016-0043
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction
In recent years, machine learning has been success-
fully applied to many areas, such as spam classification,
credit-risk assessment, cancer diagnosis, and more. With
the transition towards cloud-based computing, this has
enabled many useful services for consumers. For exam-
ple, there are many companies that provide automatic
medical assessments and risk profiles for various diseases
by evaluating a user’s responses to an online question-
naire, or by analyzing a user’s DNA profile. In the per-
sonal finance area, there exist automatic tools and ser-
vices that provide valuations for a user’s car or property
based on information the user provides. In most cases,
these services require access to the user’s information in

David J. Wu, Tony Feng: Stanford University;
dwu4@cs.stanford.edu, tonyfeng@stanford.edu. Work done
while at Microsoft Research.
Michael Naehrig, Kristin Lauter: Microsoft Research;
{mnaehrig, klauter}@microsoft.com

the clear. Many of these situations involve potentially
sensitive information, such as a user’s medical or finan-
cial data. A natural question to ask is whether one can
take advantage of cloud-based machine learning, and
still maintain the privacy of the user’s data. On the flip
side, in many situations, we also require privacy for the
model. For example, in scenarios where companies lever-
age learned models for providing product recommenda-
tions, the details of the underlying model often consti-
tute an integral part of the company’s “secret sauce,”
and thus, efforts are taken to guard the precise details.
In other scenarios, the model might have been trained
on sensitive information such as the results from a med-
ical study or patient records from a hospital; here, re-
vealing the model can compromise sensitive information
as well as violate certain laws and regulations.

In this work, we focus on one commonly used class
of classifiers: decision trees and random forests [19, 43].
Decision trees are simple classifiers that consist of a col-
lection of decision nodes arranged in a tree structure.
As the name suggests, each decision node is associated
with a predicate or test on the query (for example, a
possible predicate could be “age > 55”). Decision tree
evaluation simply corresponds to tree traversal. These
models are often favored by users for their ease of inter-
pretability. In fact, there are numerous web APIs [1, 2]
that enable users to both train and query decision trees
as part of a machine learning as a service platform. In
spite of their simple structure, decision trees are widely
used in machine learning, and have been successfully ap-
plied to many scenarios such as disease diagnosis [5, 62]
and credit-risk assessment [49].

In this work, we develop practical protocols for pri-
vate evaluation of decision trees and random forests.
In our setting, the server has a decision tree (or ran-
dom forest) model and the client holds an input to
the model. Abstractly, our desired security property is
that at the end of the protocol execution, the server
should not learn anything about the client’s input, and
the client should not learn anything about the server’s
model other than what can be directly inferred from the
output of the model. This is a natural setting in cases
where we are working with potentially sensitive and pri-
vate information on the client’s side and where we de-
sire to protect the server’s model, which might contain
proprietary or confidential information. To motivate the

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 336

need for privacy, we highlight one such application of
using decision trees for automatic medical diagnosis.

Application to medical diagnosis.Decision trees are
used by physicians for both automatic medical diag-
nosis and medical decision making [5, 62]. A possible
deployment scenario is for a hospital consortium or a
government agency to provide automatic medical diag-
nosis services for other physicians to use. To leverage
such a service, a physician (or even a patient) would
take a set of measurements (as specified by the model)
and submit those to the service for classification. Of
course, to avoid compromising the patient’s privacy, we
require that at the end of the protocol, the service does
not learn anything about the client’s input. On the flip
side, there is also a need to protect the server’s model
from the physician (or patient) that is querying the ser-
vice. In recent work, Fredrikson et al. [34] showed that
white-box access to a decision tree model can be effi-
ciently exploited to compromise the privacy of the users
whose data was used to train the decision tree. In this
case, this means that the medical details of the patients
whose medical profiles were used to develop the model
are potentially compromised by revealing the model in
the clear. Not only is this a serious privacy concern, in
the case of medical records, this can be a violation of
HIPAA regulations. Thus, in this scenario, it is critical
to provide privacy for both the input to the classifier, as
well as the internal details of the classifier itself. We note
that even though black-box access to a model can still
be problematic, combining our private model evaluation
protocol with “privacy-aware” decision tree training al-
gorithms [34, §6] can significantly mitigate this risk.

1.1 Our Contributions

We begin by constructing a decision tree evaluation
protocol with security against semi-honest adversaries
(i.e., adversaries that behave according to the protocol
specification). We then show how to extend the semi-
honest protocol to provide robustness against malicious
adversaries. Specifically, we show that a malicious client
cannot learn additional information about the server’s
model, and that a malicious server cannot learn any-
thing about the client’s input. Note that it is possible
for a malicious server to cause the client to obtain a
corrupted or wrong output; however, even in this case,
it does not learn anything about the client’s input. This
model is well-suited for cloud-based applications where
we assume the server is trying to provide a useful ser-

vice, and thus, not incentivized to give corrupt or non-
sensical output to the client. In fact, because the server
has absolute control over the model in the private de-
cision tree evaluation setting, privacy of the client’s in-
put is the strongest property we can hope for in the
presence of a malicious server. We describe our threat
model formally in Section 2.3. Our protocols leverage
two standard cryptographic primitives: additive homo-
morphic encryption and oblivious transfer.

As part of our construction for malicious security,
we show how a standard comparison protocol based on
additively homomorphic encryption [28] can be used to
obtain an efficient conditional oblivious transfer proto-
col [11, 27] for the less-than predicate.

To assess the practicality of our protocols, we im-
plement both the semi-honest protocol as well as the
extended protocol with protection against malicious ad-
versaries using standard libraries. We conduct experi-
ments with decision trees with depth up to 20, as well
as decision trees with over 10,000 decision nodes to as-
sess the scalability of our protocols. We also compare the
performance of our semi-honest secure protocol against
the protocols of [7, 17, 20], and demonstrate over 10x re-
duction in client computation and bandwidth, or both,
while operating at a higher security level (128 bits of se-
curity as opposed to 80 bits of security in past works).
We conclude our experimental analysis by evaluating
our protocols on decision trees trained on several real
datasets from the UCI repository [6]. In most cases, our
semi-honest decision tree protocol completes on the or-
der of seconds and requires bandwidth ranging from un-
der 100 KB to several MB. This represents reasonable
performance for a cloud-based service.

This work provides the first implementation of a
private decision tree evaluation protocol with security
against malicious adversaries. In our benchmarks, we
additionally show that even with the extensions for ma-
licious security, our protocol still outperforms existing
protocols that achieve only semi-honest security.

Related work. This problem of privately evaluating
decision trees falls under the general umbrella of mul-
tiparty computation. One approach is based on ho-
momorphic encryption [35, 59], where the client sends
the server an encryption of its input, and the server
evaluates the function homomorphically and sends the
encrypted response back to the client. The client de-
crypts to learn the output. While these methods have
been successfully applied to several problems in privacy-
preserving data mining [16, 39], the methods are lim-
ited to simple functionalities. Another general approach

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 337

is based on Yao’s garbled circuits [9, 10, 51, 53, 64],
where one party prepares a garbled circuit represent-
ing the joint function they want to compute and the
other party evaluates the circuit. These methods typi-
cally have large communication costs; we provide some
concrete estimates based on state-of-the-art tools in Sec-
tion 6. We survey additional related work in Section 7.

2 Preliminaries
We begin with some notation. Let [n] be the set of in-
tegers {1, . . . , n}, and Zp be the ring of integers modulo
p. For two k-bit strings x, y ∈ {0, 1}k, we write x⊕ y for
their bitwise xor. For a distribution D, we write x← D
to denote a sample s from D. For a finite set S, we
write x r←− S to denote a uniform draw x from S. We
say that two distributions D1 and D2 are computation-
ally indistinguishable (denoted D1

c
≈ D2) if no efficient

(that is, probabilistic polynomial time) algorithm can
distinguish them except with negligible probability. A
function f(λ) is negligible in a parameter λ if for all
positive integers c, f = o(1/λc). For a predicate P we
write 1 {P(x)} to denote the indicator function for the
predicate P—that is, 1 {P(x)} = 1 if and only if P(x)
holds, and 0 otherwise.

2.1 Cryptographic Primitives

In this section, we introduce the primitives we require.

Homomorphic encryption. A semantically secure
public-key encryption system with message space R (we
model R as a ring) is specified by three algorithms
KeyGen,Encpk,Decsk (for key generation, encryption, de-
cryption, respectively). The key-generation algorithm
outputs a public-private key pair (pk, sk). For a mes-
sage m, we write Encpk(m; r) to denote an encryption of
m with randomness r. The security requirement is the
standard notion of semantic security [37]. In an addi-
tively homomorphic encryption [28, 29, 59] system, we
require an additional public-key operation that takes
encryptions of two messages m0,m1 and outputs an en-
cryption of m0 + m1. Additionally, we require that the
scheme supports scalar multiplication: given an encryp-
tion of m ∈ R, there is a public-key operation that pro-
duces an encryption of km for all k ∈ Z.

Oblivious Transfer. Oblivious transfer (OT) [4, 56,
57, 60] is a primitive commonly employed in crypto-
graphic protocols. In standard 1-out-of-n OT, there are

two parties, denoted the sender and the receiver. The
sender holds a database x1, . . . , xn ∈ {0, 1}` and the
client holds a selection bit i ∈ [n]. At the end of the
protocol, the client learns xi and nothing else about the
contents of the database; the server learns nothing.

2.2 Decision Trees and Random Forests

Decision trees are frequently encountered in machine
learning and can be used for classification and regres-
sion. A decision tree T : Zn → Z implements a function
on an n-dimensional feature space (the feature space is
typically Rn, so we use a fixed-point encoding of the
values). We refer to elements x ∈ Zn as feature vectors.
Each internal node vk in the tree is associated with a
Boolean function fk(x) = 1 {xik < tk}, where ik ∈ [n] is
an index into a feature vector x ∈ Zn, and tk is a thresh-
old. Each leaf node ` is associated with an output value
z`. To evaluate the decision tree on an input x ∈ Zn, we
start at the root node, and at each internal node vk, we
evaluate fk(x). Depending on whether fk(x) evaluates
to 0 or 1, we take either the left or right branch of the
tree. We repeat this process until we reach a leaf node
`. The output T (x) is the value z` of the leaf node.

The depth of a decision tree is the length of the
longest path from the root to a leaf. The ith layer of
the tree is the set of nodes of distance exactly i from
the root. A binary tree with depth d is complete if for
0 ≤ i ≤ d, the ith layer contains exactly 2i nodes.

Complete binary trees. In general, decision trees
need not be binary or complete. However, all decision
trees can be transformed into a complete binary decision
tree by increasing the depth of the tree and introducing
“dummy” internal nodes. In particular, all leaves in the
subtree of a dummy internal node have the same value.
We associate each dummy node with the trivial Boolean
function f(x) = 0. Without loss of generality, we only
consider complete binary decision trees in this work.

Node indices. We use the following indexing scheme
to refer to nodes in a complete binary tree. Let T be a
decision tree with depth d. Set v1 to be the root node.
We label the remaining nodes inductively: if vi is an
internal node, let v2i be its left child and v2i+1 be its
right child. For convenience, we also define a separate
index from 0 to 2d − 1 for the leaf nodes. Specifically, if
vi is the parent of a leaf node, then we denote its left
and right children by z2i−m−1 and z2i−m, where m is
the number of internal nodes in T . With this indexing

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 338

scheme, the leaves of the tree, when read from left-to-
right, correspond with the ordering z0, . . . , z2d−1.

Paths in a binary tree. We associate paths in a com-
plete binary tree with bit strings. Specifically, let T be
a complete binary tree with depth d. We specify a path
by a bit string b = b1 · · · bd ∈ {0, 1}d, where bi denotes
whether we visit the left child or the right child when
we are at a node at level i−1. Starting at the root node
(level 0), and traversing according to the bits b, this pro-
cess uniquely defines a path in T . We refer to this path
as the path induced by b in T .

Similarly, we define the notion of a decision string
for an input x on a tree T . Let m be the number of
internal nodes in a complete binary tree T . The deci-
sion string is the concatenation f1(x) · · · fm(x) of the
value of each predicate fi on the input x. Thus, the de-
cision string encodes information regarding which path
the evaluation would have taken at every internal node,
and thus, uniquely identifies the evaluation path of x in
T . Thus, we also refer to the path induced by a deci-
sion string s in T . In specifying the path s, the decision
string also specifies the index of the leaf node at the
end of the path. We let φ : {0, 1}m → {0, . . . ,m} be the
function that maps a decision string s for a complete
binary tree with m decision nodes onto the index of the
corresponding leaf node in the path induced by s in T .

Random forests.One way to improve the performance
of decision tree classifiers is to combine responses from
many decision trees. In a random forest [19], we train
many decision trees, where each tree is trained using
a random subset of the features. This has the effect of
decorrelating the individual trees in the forest. More
concretely, we can describe a random forest F by an
ensemble of decision trees F = {Ti}i∈[n]. If the random
forest operates by computing the mean of the individual
decision tree outputs, then F(x) = 1

n

∑
i∈[n] Ti(x).

2.3 Security Model

Our security definitions follow the real-world/ideal-
world paradigm of [22, 23, 36, 44]. Specifically, we com-
pare the protocol execution in the real world, where
the parties interact according to the protocol specifi-
cation π, to an execution in an ideal world, where the
parties have access to a trusted party that evaluates the
decision tree. Similar to [22], we view the protocol execu-
tion as occurring in the presence of an adversary A and
coordinated by an environment E = {Eλ}λ∈N (modeled
as a family of polynomial-size circuits parameterized by

a security parameter λ). The environment chooses the
inputs to the protocol execution and plays the role of
distinguisher between the real and ideal experiments.

Leakage and public parameters. Our protocols re-
veal several meta-parameters about the decision tree:
a bound d on the depth of the tree, the dimension n

of a feature vector, and a bound t on the number of
bits needed to represent each component of the fea-
ture vector. For the semi-honest protocol, there is a
performance-privacy trade-off where the protocol also
reveals the number ` of non-dummy internal nodes in
the tree. In our security analysis, we assume that these
parameters are public and known to the client and
server.

Real model of execution. In the real-world, the pro-
tocol execution proceeds as follows:

1. Inputs: The environment E chooses a feature vector
x ∈ Zn for the client and a decision tree T for the
server. Each component in x is represented by at
most t bits, and the tree T has depth at most d.
In the semi-honest setting where the number ` of
non-dummy internal nodes in T is public, we impose
the additional requirement that T has ` non-dummy
internal nodes. The environment gives the input of
the corrupted party to the adversary.

2. Protocol Evaluation: The parties begin execut-
ing the protocol. All honest parties behave accord-
ing to the protocol specification π. The adversary A
has full control over the behavior of the corrupted
party and sees all messages received by the cor-
rupted party. If A is semi-honest, then A directs the
corrupted party to follow the protocol as specified.

3. Output: The honest party computes and gives its
output to the environment E . The adversary com-
putes a function of its view and gives it to E .

At the end of the protocol execution, the environment
E outputs a bit b ∈ {0, 1}. Let REALπ,A,E(λ) be the
random variable corresponding to the value of this bit.

Ideal model of execution. In the ideal-world exe-
cution, the parties have access to a trusted third party
(TTP) that evaluates the decision tree. We now describe
the ideal-world execution:

1. Inputs: Same as in the real model of execution.
2. Submission to Trusted Party: If a party is hon-

est, it gives its input to the trusted party. If a party
is corrupt, then it can send any input of its choos-
ing to the trusted party, as directed by A. If A is

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 339

semi-honest, it submits the input it received from
the environment to the TTP.

3. Response from Trusted Party: On input x and
T from the client and server, respectively, the TTP
computes and gives T (x) to the client.

4. Output: An honest party gives the message (if any)
it received from the TTP to E . The adversary com-
putes a function of its view of the protocol execution
and gives it to E .

At the end of the protocol execution, the environment
E outputs a bit b ∈ {0, 1}. Let IDEALA,E(λ) be the ran-
dom variable corresponding to the value of this bit. In-
formally, we say that a two-party protocol π is a secure
decision tree evaluation protocol if for all efficient ad-
versaries A in the real world, there exists an adversary
S in the ideal world (sometimes referred to as a simu-
lator) such that the outputs of the protocol executions
in the real and ideal worlds are computationally indis-
tinguishable. More formally, we have the following:

Definition 2.1 (Security). Let π be a two-party pro-
tocol. Then, π securely evaluates the decision tree
functionality in the presence of malicious (resp., semi-
honest) adversaries if for all efficient adversaries (resp.,
semi-honest adversaries) A, there exists an efficient ad-
versary (resp., semi-honest adversary) S such that for
every polynomial-size circuit family E = {Eλ}λ∈N,

REALπ,A,E(λ)
c
≈ IDEALS,E(λ).

In this work, we also consider the weaker notion of pri-
vacy, which captures the notion that an adversary does
not learn anything about the inputs of the other par-
ties beyond what is explicitly leaked by the computation
and its inputs/outputs. We use the definitions from [46].
Specifically, define the random variable REAL′π,A,E(λ)
exactly as REALπ,A,E(λ), except in the final step of the
protocol execution, the environment E only receives the
output from the adversary (and not the output from
the honest party). Define IDEAL′A,E(λ) similarly. Then,
we can define the notion for a two-party protocol to
privately compute a functionality f :

Definition 2.2 (Privacy). Let π be a two-party protocol.
Then, π privately computes the decision tree function-
ality in the presence of malicious (resp., semi-honest)
adversaries if for all efficient adversaries (resp., semi-
honest adversaries) A, there exists an efficient adver-
sary (resp., semi-honest adversary) S such that for every
polynomial-size circuit family E = {Eλ}λ∈N,

REAL′π,A,E(λ)
c
≈ IDEAL′S,E(λ).

3 Semi-honest Protocol
In this section, we describe our two-party protocol for
privately evaluating decision trees in the semi-honest
model. We show how to generalize these protocols to
random forests in Appendix A. In our scenarios, we as-
sume the client holds a feature vector and the server
holds a model (either a decision tree or a random forest).
The protocol we describe is secure assuming a semanti-
cally secure additively homomorphic encryption scheme
and a semi-honest secure OT protocol.

3.1 Setup

We make the following assumptions about our model:

– The client has a well-formed public-private key-pair
for an additively homomorphic encryption scheme.

– The client’s private data consists of a feature vector
x = (x1, . . . , xn) ∈ Zn, where xi ≥ 0 for all i. Let t
be the bit-length of each entry in the feature vector.

– The server holds a complete binary decision tree T
with m (possibly dummy) internal nodes.

Leakage. As noted in Section 2.3, we assume that the
dimension n, the precision t, the depth d of the decision
tree and the number ` of non-dummy internal nodes are
public in the protocol execution.

3.2 Building Blocks

In this section, we describe the construction of our deci-
sion tree evaluation protocol in the semi-honest setting.
Before presenting its full details (Figure 1), we provide
a high level survey of our methods. As stated in Sec-
tion 3.1, the decision trees we consider have a very sim-
ple structure known to the client: a complete binary tree
T with depth d. Let z0, . . . , z2d−1 be the leaf values of
T . Suppose also that we allow the client to learn the
index i ∈

{
0, . . . , 2d − 1

}
of the leaf node in the path

induced in T by x. If the client knew the index i, it can
then privately obtain the value zi = T (x) by engaging
in a 1-out-of-2d OT with the server. In this case, the
server’s “database” is the set

{
z0, . . . , z2d−1

}
.

The problem with this scheme is that revealing the
index of the leaf node to the client reveals information
about the structure of the tree. We address this by hav-
ing the server first permute the nodes of the tree. After
this randomization process, we can show that the de-

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 340

cision string corresponding to the client’s query is uni-
form over all bit strings with length 2d − 1. Thus, it is
acceptable for the client to learn the decision string cor-
responding to its input on the permuted tree. The basic
idea for our semi-honest secure decision tree evaluation
protocol is thus as follows:

1. The server randomly permutes the tree T to obtain
an equivalent tree T ′.

2. The client and server engage in a comparison proto-
col for each decision node in T ′. At the end of this
phase, the client learns the result of each comparison
in T ′, and therefore, the decision string correspond-
ing to its input in T ′.

3. Using the decision string, the client determines the
index i that contains its value zi = T (x). The client
engages in an OT protocol with the server to obtain
the value zi.

Comparison protocol. The primary building block we
require for private decision tree evaluation is a compar-
ison protocol. We use a variant of the two-round com-
parison protocol from [17, 28, 32] based on additive ho-
momorphic encryption. In the protocol, the client and
server each have a value x and y, respectively. At the
end of the protocol, the client and server each possess
a share of the comparison bit 1 {x < y}. Neither party
learns anything else about the other party’s input.

We give a high-level sketch of the protocol. Suppose
the binary representations of x and y are x1x2 · · ·xt and
y1y2 · · · yt, respectively. Then, x < y if and only if there
exists some index i ∈ [t] where xi < yi, and for all
j < i, xj = yj . As observed in [28], this latter condi-
tion is equivalent to there existing an index i such that
zi = xi − yi + 1 + 3

∑
j<i(xj ⊕ yj) = 0. In the basic

comparison protocol, the client encrypts each bit of its
input x1, . . . , xt using an additively homomorphic en-
cryption scheme (with plaintext space Zp). The server
homomorphically computes encryptions of r1z1, . . . , rtzt
where r1, . . . , rt

r←− Zp, and sends the ciphertexts back to
the client in random order. To learn if x < y, the client
checks whether any of the ciphertexts decrypt to 0. Note
that if zi 6= 0, then the value rizi is uniformly random
in Zp. Thus, depending on the value of the comparison
bit, the client’s view either consists of t encryptions of
random nonzero values, or t− 1 encryptions of random
nonzero values and one encryption of 0.

For our decision tree evaluation protocol, we do not
reveal the actual comparison bit to the client. Instead,
we secret share the comparison bit across the client and

server. This is achieved by having the server “flip” the
direction of each comparison with probability 1/2. At
the beginning of the protocol, the server chooses b r←−
{0, 1}, sets γ = 1 − 2 · b, and computes encryptions of
zi = xi − yi + γ + 3

∑
j<i(xj ⊕ yj). Let b

′ = 1 if there is
some i ∈ [t] where zi = 0. Then, b⊕ b′ = 1 {x < y}.

Decision tree randomization. As mentioned at the
beginning of Section 3.2, we apply a tree randomization
procedure to hide the structure of the tree. For each de-
cision node v, we interchange its left and right subtrees
with equal probability. Moreover, to preserve correct-
ness, if we interchanged the left and right subtrees of v,
we replace the boolean function fv at v with its negation
f̃v(x) := fv(x) ⊕ 1. More precisely, on input a decision
tree T with m internal nodes v1, . . . , vm, we construct a
permuted tree T ′ as follows:

1. Initialize T ′ ← T and choose s
r←− {0, 1}m. Let

v′1, . . . , v
′
m denote the internal nodes of T ′ and let

f ′1, . . . , f
′
m be the corresponding boolean functions.

2. For i ∈ [m], set f ′i(x) ← fi(x) ⊕ si. If si = 1, then
swap the left and right subtrees of v′i. Do not reindex
the nodes of T ′ during this step.

3. Reindex the nodes v′1, . . . , v′m in T ′ according to the
standard indexing scheme described in Section 2.2.
Output the permuted tree T ′.

In the above procedure, we obtain a new tree T ′

by permuting the nodes of T according to a bit-string
s ∈ {0, 1}m. We denote this process by T ′ ← πs(T).
By construction, for all x ∈ Zn and all s ∈ {0, 1}m,
we have that T (x) = πs(T)(x). Moreover, we define the
permutation τs that corresponds to the permutation on
the nodes of T effected by πs. In other words, the node
indexed i in T is indexed τ(i) in T ′. Then, if σ ∈ {0, 1}m

is the decision string of T on input x, τ(σ ⊕ s) is the
decision string of πs(T) on x.

3.3 Semi-honest Decision Tree Evaluation

The protocol for evaluating a decision tree with security
against semi-honest adversaries is given in Figure 1. Just
to reiterate, in the first part of the protocol (Steps 1-4),
the client and server participate in an interactive com-
parison protocol that ultimately reveals to the client a
decision string for a permuted tree. Given the decision
string, the client obtains the response via an OT pro-
tocol. We show that this protocol is correct and state
the corresponding security theorem. We give the formal
security proof in Appendix C.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 341

Let (pk, sk) be a public-private key-pair for an additively homomorphic encryption scheme over Zp. The client holds the secret
key sk. Fix a precision t ≤ blog2 pc.

– Client input: A feature vector x ∈ Zn
p where each xi is at most t bits. Let xi,j denote the jth bit of xi.

– Server input: A complete, binary decision tree T with m internal nodes. Let q1, . . . , q` be the indices of the non-
dummy nodes, and let fqk (x) = 1

{
xik
≤ tk

}
, where ik ∈ [n] and tk ∈ Zp. For the dummy nodes v, set fv(x) = 0. Let

z0, . . . , zm ∈ {0, 1}∗ be the values of the leaves of T . See Section 3.1 for more details.

1. Client: For each i ∈ [n] and j ∈ [t], compute and send Encpk (xi,j) to the server.
2. Server: The server chooses b r←− {0, 1}`. Then, for each k ∈ [`], set γk = 1 − 2 · bk. For each k ∈ [`] and j ∈ [t], choose

rk,j
r←− Z∗p and homomorphically compute the ciphertext

ctk,j = Encpk

[
rk,j

(
xik,w − tk,w + γk + 3 ·

∑
w<j

(xik,w ⊕ tk,w)

)]
. (1)

For each k ∈ [`], the server sends the client the ciphertexts (ctk,1, . . . , ctk,t) in random order. Note that the server is able
to homomorphically compute ctk,j for all k ∈ [`] and j ∈ [t] because it has the encryptions of xik

and the plaintext values
of rk,j , γk, and tk. To evaluate the xor, the server uses the fact that for a bit x ∈ {0, 1}, x ⊕ 0 = x and x ⊕ 1 = 1 − x.
Since the server knows the value of tk in the clear, this computation only requires additive homomorphism.

3. Client: The client obtains a set of ` tuples of the form (c̃tk,1, . . . , c̃tk,t) from the server. For each k ∈ [`], it sets
b′k = 1 if there exists j ∈ [t] such that c̃tk,j is an encryption of 0. Otherwise, it sets b′k = 0. The client replies with
Encpk(b′1), . . . ,Encpk(b′`).

4. Server: The server chooses s r←− {0, 1}m and constructs the permuted tree T ′ = πs(T), where πs is the permutation
associated with the bit-string s (see Section 3.2). Initialize σ = 0m. For k ∈ [`], update σik

= bk ⊕ b′k. Let τs be the
permutation on the node indices of T effected by πs, and compute σ′ ← τs(σ⊕s). The server homomorphically computes
Encpk(σ′) (each bit is encrypted individually) and sends the result to the client. This computation only requires additive
homomorphism because the server knows the plaintext values of bk and sk and has the encryptions of b′k for all k ∈ [`].

5. Client and Server: The client decrypts the server’s message to obtain σ′ and then computes the index i of the leaf
node containing the response (the client computes i ← φ(σ′), with φ(·) as defined in Section 2.2). Next, it engages in a
1-out-of-(m+ 1) OT with the server to learn a value z̃. In the OT protocol, the client supplies the index i and the server
supplies the permuted leaf values z′0, . . . , z′m of T ′. The client outputs z̃ and the server outputs nothing.

Fig. 1. Decision tree evaluation protocol with security against semi-honest adversaries.

Theorem 3.1. If the client and server follow the pro-
tocol in Figure 1, then at the end of the protocol, the
client learns T (x).

Proof. Appealing to the analysis of the comparison pro-
tocol from [28, §4.1], we have that for all k ∈ [`],
bk ⊕ b′k = 1(xik ≤ tk) = fqk (x). Since fv(x) = 0 for
the dummy nodes v, we conclude that σ is the deci-
sion string of x on T . Then, as noted in Section 3.2,
τs(σ ⊕ s) = σ′ is the corresponding decision string of x
on πs(T) = T ′. By correctness of the OT protocol, the
client learns the value of z′φ(σ′) = T ′(x) at the end of
Step 5. Since the tree randomization process preserves
the function, it follows that z′φ(σ′) = T ′(x) = T (x).

Theorem 3.2. The protocol in Figure 1 is a deci-
sion tree evaluation protocol with security against semi-
honest adversaries (Definition 2.1).

Proof (Sketch). We give the formal security proof in
Appendix C and give a sketch here.

Security against a semi-honest server. The server’s
view of the protocol execution consists entirely of ci-
phertexts, so privacy of the client’s input follows directly
from semantic security of the encryption scheme.

Security against a semi-honest client. To argue
that the client learns no additional information about
the decision tree other than the output, we note that
the comparison protocol only reveals an additive secret
sharing of the comparison bit to the client, which hides
the actual comparison outputs from the client. More-
over, due to the tree rerandomization step, the path
from the root to a leaf node that the client learns is
uniformly distributed over all possible paths through
the tree, and thus, hides the structure of the tree. Fi-
nally, the OT protocol is secure against semi-honest ad-

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 342

versaries, so the client learns nothing about the other
leaves of the decision tree; security follows.

Asymptotic analysis. In Appendix B, we give an
asymptotic characterization of the client and server
computation for the semi-honest secure decision tree
evaluation protocol from Figure 1.

4 Handling Malicious Adversaries
Next, we describe an extension of our proposed decision
tree evaluation protocol that achieves stronger security
against malicious adversaries. Specifically, we describe
a protocol that is fully secure against a malicious client
and private against a malicious server. This is the notion
of one-sided security (see [44, §2.6.2] for a more thor-
ough discussion). To motivate the construction of the
extended protocol, we highlight two ways a malicious
client might attack the protocol in Figure 1:

– In the first step of the protocol, a malicious client
might send encryptions of plaintexts that are not in
{0, 1}. The server’s response could reveal informa-
tion about the thresholds in the decision tree.

– When the client engages in OT with the server, it
can request an arbitrary index i′ of its choosing and
learn the value zi′ of an arbitrary leaf node, inde-
pendent of its query.

In the following sections, we develop tools that prevent
these two particular attacks on the protocol. In turn, the
resulting protocol will provide security against malicious
clients and privacy against malicious servers.

4.1 Building Blocks

To protect against malicious adversaries, we lever-
age two additional cryptographic primitives: proofs of
knowledge and an adaptation of conditional OT. In this
section, we give a brief survey of these methods.

Proofs of knowledge. At the beginning of Section 4,
we noted that a malicious client can deviate from the
protocol and submit encryptions of non-binary values
as its query. To protect against this malicious behav-
ior, we require that the client includes a zero-knowledge
proof [38] to certify that it is submitting encryptions of
bits. In our experiments, we use the exponential variant
of the ElGamal encryption scheme [26, §2.5] for the ad-

ditively homomorphic encryption scheme. In this case,
proving that a ciphertext encrypts a bit can be done
using the Chaum-Pedersen protocol [24] in conjunction
with the OR proof transformation in [25, 45]. Moreover,
we can apply the Fiat-Shamir heuristic [33] to make
these proofs non-interactive in the random oracle model.

To show security against a malicious client in our
security model (Section 2.3), the ideal-world simula-
tor needs to be able to extract a malicious client’s
input in order to submit it to the trusted third
party (ideal functionality). This is enabled using a
zero-knowledge proof of knowledge. In our exposi-
tion, we use the notation introduced in [21] to spec-
ify these proofs. We write statements of the form
PoK

{
(r) : c1 = Encpk(0; r) ∨ c1 = Encpk(1; r)

}
to denote

a zero-knowledge proof-of-knowledge of a value r where
either c1 = Encpk(0; r) or c2 = Encpk(1; r). All values not
enclosed in parenthesis are assumed to be known to the
verifier. We refer readers to [8, 38] for a more complete
treatment of these topics.

Conditional oblivious transfer. The second prob-
lem with the semi-honest protocol is that the client
can OT for the value of an arbitrary leaf independent
of its query. To address this, we modify the proto-
col so the client can only learn the value that corre-
sponds to its query. We use a technique similar to condi-
tional oblivious transfer introduced in [11, 27]. Like OT,
(strong) conditional OT is a two-party protocol between
a sender and a receiver. The receiver holds an input x
and the sender holds two secret keys κ0, κ1 and an in-
put y. At the conclusion of the protocol, the receiver
learns κ1 if (x, y) satisfies a predicate Q, and κ0 oth-
erwise. For instance, a “less-than” predicate would be
Q(x, y) = 1 {x < y}. As in OT, the server learns nothing
at the conclusion of the protocol. Neither party learns
Q(x, y). In Section 4.2, we describe how to modify the
comparison protocol from Figure 1 to obtain a condi-
tional OT protocol for the less-than predicate.

4.2 Secure Decision Tree Evaluation

We now describe how we extend our decision tree evalu-
ation protocol to protect against malicious adversaries.

Modified comparison protocol. Recall from Sec-
tion 3.2 that the basic comparison protocol exploits the
fact that x < y if and only if there exists some index
i ∈ [t] where zi = xi−yi+1+3

∑
j<i(xj⊕yj) = 0. In the

comparison protocol, the server homomorphically com-
putes an encryption of ci = rizi for a random ri ∈ Zp

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 343

and the client decrypts each ciphertext to learn whether
zi = 0 for some i. Suppose the server wants to transmit
a key κ0 ∈ Zp if and only if x < y. It can do this by in-
cluding an additional set of ciphertexts Encpk(ciρi +κ0)
in addition to Encpk(ci) for each i ∈ [t], and where ρi is
a uniformly random blinding factor from Zp. Certainly,
if all of the ci 6= 0, then ρici is uniform and perfectly
hides κ0. On the other hand, if for some i, ci = 0, then
the client is able to recover the secret key κ0. Thus, this
gives a conditional key transfer protocol for the less-
than predicate: the client is able to learn the key κ0 if
its input x is less than the server’s input y. Similarly,
the server can construct another set of ciphertexts such
that κ1 is revealed if x > y.1 Finally, the same trick de-
scribed in Section 3.2 can be used to ensure the client
learns only a share of the comparison bit (and corre-
spondingly, the key associated with its share).

Decision tree evaluation. Our two-round decision
tree evaluation protocol with security against malicious
adversaries is given in Figure 2. As in the semi-honest
protocol, the client begins by sending a bitwise encryp-
tion of its feature vector to the server. In addition to the
ciphertexts, the client also sends zero-knowledge proofs
that each of its ciphertexts encrypts a single bit. Next,
the server randomizes the tree in the same manner as
in the semi-honest protocol (Section 3.2). Moreover, the
server associates a randomly chosen key with each edge
in the permuted tree. The server blinds each leaf value
using the keys along the path from the root to the leaf.2

The server sends the blinded response vector to the
client. In addition, for each internal node in the deci-
sion tree, the server prepares a response that allows the
client to learn the key associated with the comparison
bit between the corresponding element in its feature vec-
tor and the threshold associated with the node. Using
these keys, the client unblinds the value (and only this
value) at the index corresponding to its query.

Remark 4.1. In the final step of the protocol in Figure 2,
the client computes the index of the leaf node based on
the complete decision string b′ it obtains by decrypting

1 We can assume without loss of generality that x 6= y in our
protocol. Instead of comparing x with y, we compare 2x against
2y + 1. Observe that x ≤ y if and only if 2x < 2y + 1. Thus, it
suffices to only consider when x > y and x < y.
2 There is a small technicality here since the values are elements
of {0, 1}`, while the keys are elements in G. However, as long
as |G| > 2`, we can obtain a (nearly) uniform key in {0, 1}` by
hashing the group element using a pairwise independent family
of hash functions and invoking the leftover hash lemma [42].

each ciphertext in the server’s response. At the same
time, we note that the path induced by b′ in the decision
tree can be fully specified by just d = dlog2 me bits in b′.
This gives a way to reduce the client’s computation in
the decision tree evaluation protocol. Specifically, after
the client receives the m messages from the server in
Step 3 of the protocol, it only computes the d bits in
the decision string needed to specify the path through
the decision tree. To do so, the client first computes
the decision value at the root node to learn the first
node in the path. It then iteratively computes the next
node in the path by decrypting the set of ciphertexts
associated with that node from the private comparison
protocol. The client’s computation is thus reduced to
O(t · log2 m).

Security. We now state the security theorem for the
protocol in Figure 2.

Theorem 4.1. The protocol in Figure 2 is a decision
tree evaluation protocol with security against malicious
clients (Definition 2.1) and privacy against malicious
servers (Definition 2.2).

Proof (Sketch). We give a sketch of the proof here, and
defer the formal proof to the extended version [63].

Privacy against a malicious server. To show that
the protocol provides privacy against a malicious server,
it suffices to construct a simulator that simulates the
server’s view in the real protocol. In the real protocol,
the server’s view consists of encryptions of the client’s
feature vector and zero-knowledge proofs of the well-
formedness of those ciphertexts. We construct a simula-
tor as follows: for each i ∈ [n] and j ∈ [t], the simulator
constructs an encryption cti,j = Encpk(0) of 0 along with
a zero-knowledge proof πi,j that cti,j is either an en-
cryption of 0 or of 1 (as in the real scheme). Recall from
Section 2.3 that we assume the dimension n and preci-
sion t are public to the protocol execution. By seman-
tic security of the underlying encryption scheme, and
the zero-knowledge property of the underlying proofs,
we conclude that the simulated view is computation-
ally indistinguishable from the view of the server in the
real protocol. Privacy against a malicious server (Defi-
nition 2.2) follows.

Security against a malicious client. Let A be a ma-
licious client in the real game. We construct an ideal-
world simulator S such that no efficient environment E
can distinguish the output of the real execution from
that of the ideal execution. The simulator S works as

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 344

Let (pk, sk) be a public-secret key-pair for an additively homomorphic encryption scheme over Zp. We assume the client holds
the secret key. Fix a precision t ≤ blog2 pc.

– Client input: A feature vector x ∈ Zn
p where each xi is at most t bits. Let xi,j denote the jth bit of xi.

– Server input: A complete, binary decision tree T with decision nodes v1, . . . , vm. For all k ∈ [m], the predicate fk

associated with decision node vk is of the form fk(x) = 1
{
xik
≤ tk

}
, where ik ∈ [n] is an index and tk ∈ Zp is a

threshold. Let z0, . . . , zm ∈ {0, 1}` be the values of the leaves of T .

1. Client: For each i ∈ [n] and j ∈ [t], the client chooses ri,j
r←− Zp, and constructs ciphertexts cti,j = Encpk(xi,j ; ri,j) and

proofs πi,j = PoK
{

(ri,j) : cti,j = Encpk(0; ri,j) ∨ cti,j = Encpk(1; ri,j)
}
. It sends {(cti,j , πi,j)}i∈[n],j∈[t] to the server.

2. Server: Let {(c̃ti,j , π̃i,j)}i∈[n],j∈[t] be the ciphertexts and proofs the server receives from the client. For i ∈ [n] and
j ∈ [t], the server verifies the proof π̃i,j . If π̃i,j fails to verify, it aborts the protocol. Otherwise, the server does the
following:
(a) It chooses s r←− {0, 1}m and computes T ′ ← πs(T), where πs is the permutation associated with the bit-string s

(see Section 3.2). Let τ be the permutation effected by πs on the nodes of T . Let s′1 · · · s′m = τ (s1 · · · sm). Similarly,
define the permuted node indices i′1, . . . , i′m and thresholds t′1, . . . , t′m in T ′.

(b) For each k ∈ [m], it chooses keys κk,0, κk,1
r←− Zp. Let γ′i = 1− 2 · s′i. Then, for each k ∈ [m] and j ∈ [t], it chooses

blinding factors r(0)
k,j
, r

(1)
k,j
, ρ

(0)
k,j
, ρ

(1)
k,j

r←− Z∗p, and defines

c
(0)
k,j

= r
(0)
k,j

[
x̃i′

k
,j − t′k,j + γ′k + 3

∑
w<j

(
x̃i′

k
,w ⊕ t′k,w

)]
c

(1)
k,j

= r
(1)
k,j

[
x̃i′

k
,j − t′k,j − γ

′
k + 3

∑
w<j

(
x̃i′

k
,w ⊕ t′k,w

)]
.

Finally, it computes the following vectors of ciphertexts for each k ∈ [m]:

A
(0)
k

=
(

Encpk(c(0)
k,1), . . . ,Encpk(c(0)

k,t
)
)

B
(0)
k

=
(

Encpk(c(0)
k,1ρ

(0)
k,1 + κk,0), . . . ,Encpk(c(0)

k,t
ρ

(0)
k,t

+ κk,0)
)

A
(1)
k

=
(

Encpk(c(1)
k,1), . . . ,Encpk(c(1)

k,t
)
)

B
(1)
k

=
(

Encpk(c(1)
k,1ρ

(1)
k,1 + κk,1), . . . ,Encpk(c(1)

k,t
ρ

(1)
k,t

+ κk,1)
)
.

For each k ∈ [m], it randomly permutes the entries in A
(0)
k

and applies the same permutation to B(0)
k

. Similarly,
it randomly permutes the entries in A

(1)
k

and applies the same permutation to B(1)
k

. In the above description, we
write x̃i,j to denote the value that c̃i,j decrypts to under the client’s secret key sk. While the server does not know
x̃i,j in the clear, it can still construct encryptions of each c(0)

k,j
and c(1)

k,j
by relying on additive homomorphism of the

underlying encryption scheme (the xor can be evaluated using the same procedure as in the semi-honest protocol of
Figure 1).

(c) Let d = log2(m + 1) be the depth of T ′. For each leaf node z′i in T ′, let b1 · · · bd be the binary representation
of i, and let i1, . . . , id be the indices of the nodes along the path from the root to the leaf in T ′. It computes
ẑ′i = z′i ⊕

(⊕
j∈[d] h(κij ,bj

)
)
, where h : Zp → {0, 1}` is a hash function (drawn from a pairwise independent

family).
(d) It sends the ciphertexts A(0)

k
, A

(1)
k
, B

(0)
k
, B

(1)
k

for all k ∈ [m] and the blinded response vector
[
ẑ′0, . . . , ẑ

′
m

]
to the

client.
3. Client: Let Ã(0)

k
, Ã(1)

k
, B̃(0)

k
, B̃(1)

k
(for k ∈ [m]) be the vectors of ciphertexts and [z̃0, . . . , z̃m] be the blinded response

vector the client receives. For each k ∈ [m], the client decrypts each entry Ã
(0)
k,j

for j ∈ [t]. If for some j ∈ [t], Ã(0)
k,j

decrypts to 0 under sk, then it sets κk = Decsk(B̃(0)
k,j

) and b′k = 0. Otherwise, it decrypts each entry Ã(1)
k,j

for j ∈ [t]. If

Ã
(1)
k,j

decrypts to 0 for some j ∈ [t], it sets κk = Decsk(B̃(1)
k,j

) and b′k = 1. If neither condition holds, the client aborts the
protocol. Finally, let i1, . . . , id be the indices of the internal nodes in the path induced by b′ = b′1 · · · b′m in a complete
binary tree of depth d, and let i∗ be the index of the leaf node at the end of the path. The client computes and outputs
z̃ = z̃i∗ ⊕

(⊕
j∈[d] h(κij)

)
.

Fig. 2. Decision tree evaluation protocol with security against malicious clients and privacy against malicious servers.

follows. Upon receiving the input x from E , it begins
running adversary A on input x. In the first step, A

outputs a bit-wise encryption Encpk
(
x′i,j
)
of its input

xi,j along with zero-knowledge proofs of knowledge that

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 345

it sent valid bitwise encryptions. The simulator verifies
these proofs and aborts the protocol if they fail. If the
proofs are valid, then S applies the knowledge extractor
to the proofs of knowledge to extract the client’s input
x′. The simulator submits x′ to the trusted party to
obtain a value z′ = T (x′).

To complete the proof, we show how S simulates
the server’s response for A. Because the server randomly
permutes the tree in the real protocol, the bit-string b′

the client obtains in Step 3 of the real protocol is uni-
formly random over {0, 1}m. In the simulation, S sam-
ples b̂′ r←− {0, 1}m along with keys κ̂1, . . . , κ̂m

r←− G. Let
i1, . . . , id be the indices of the nodes in the path in-
duced by b̂′ and let i∗ be the index of the leaf node in
the induced path. For all i 6= i∗, the simulator samples
ẑi

r←− {0, 1}`. Then, it sets ẑi∗ = z′ ⊕
(⊕d

j=1 h
(
κ̂ij
))

.

Next, from b̂′, S simulates the collections of ciphertexts
(Â(0)

k , Â
(1)
k , B̂

(0)
k , B̂

(1)
k) for all k ∈ [m]. For example, if

b̂′k = 1, the simulator chooses a random index j∗ r←− [t]
and sets Â(1)

k,j∗ = Encpk(0) and B̂
(1)
k,j∗ = Encpk(κk). All

other ciphertexts in Â
(0)
k , Â

(1)
k , B̂

(0)
k , B̂

(1)
k are encryp-

tions of random elements in Zp (exactly as in the real
protocol). Finally, the simulator gives the blinded re-
sponse vector [ẑ0, . . . , ẑm] along with the collections of
ciphertexts (Â(0)

k , Â
(1)
k , B̂

(0)
k , B̂

(1)
k) for k ∈ [m] to A. It

outputs whatever A outputs. In the extended version of
the paper [63], we show formally that S has correctly
simulated the view of A in the real execution.

Asymptotic analysis. In Appendix B, we characterize
the asymptotic performance of the protocol in Figure 2.

5 Extensions
In Appendix A, we describe two extensions of our deci-
sion tree evaluation protocol: private evaluation of ran-
dom forests and providing support for decision trees
containing categorical variables.

6 Experimental Evaluation
We implemented the decision tree evaluation protocol
secure against semi-honest adversaries (Figure 1) as well
as the protocol with protection against malicious adver-
saries (Figure 2). In the latter case, we also implement
the optimization from Remark 4.1. Additionally, we im-
plemented both the extension for random forest evalu-

ation and in the semi-honest setting, the extension for
supporting categorical variables from Appendix A.

Our implementation is written in C++. For the ad-
ditively homomorphic encryption scheme in our pro-
tocols, we use the exponential variant of the ElGa-
mal encryption scheme [26, §2.5] (based on the DDH
assumption [13]), and implement it using the MSR-
ECC library [14, 15]. In the semi-honest protocol, we
instantiated the 1-out-of-n OT with the Naor-Pinkas
OT [56], and implemented it using the the OT library
of Asharov et al. [4]. In the malicious setting, we use
Chaum-Pedersen [24] proofs to prove that the encryp-
tions the client submits are encryptions of bits. We ap-
ply the Fiat-Shamir heuristic [33] to make the proofs
non-interactive in the random oracle model. We in-
stantiate the random oracle with SHA-256, and lever-
age the implementation in OpenSSL. We use NTL [61]
over GMP [40] for the finite field arithmetic needed for
the Chaum-Pedersen proofs. We compile our code using
g++ 4.8.2 on a machine running Ubuntu 14.04.1. In
our experiments, we run the client-side code on a com-
modity laptop with a multicore 2.30 GHz Intel Core
i7-4712HQ CPU and 16 GB of RAM. We run the server
on a compute-optimized Amazon EC2 instance with a
dual-core 2.60GHz Intel Xeon E5-2666 v3 processor and
3.75 GB of RAM. We do not leverage parallelism in our
benchmarks. The network speed in our experiments is
around 40-50 Mbps.

We conduct all experiments at a 128-bit security
level. For our implementation of exponential ElGamal,
we use the 256-bit elliptic curve numsp256d1. We in-
stantiate the OT scheme at the 128-bit security level
using the parameters in [4]. For our first set of bench-
marks, we compare our performance against the proto-
cols in [7, 17] on the ECG classification tree from [7]
and the Nursery dataset from the UCI Machine Learn-
ing Repository [6]. Since the decision tree used in [17] for
the Nursery dataset is not precisely specified, we test our
protocol against a tree with the same depth and num-
ber of comparison nodes as in [17]. In our benchmarks
we measure the computation and total communication
between the client and the server. We also perform some
heuristic analysis to estimate the communication needed
if we were to use a generic two-party secure computation
protocol based on Yao’s garbled circuits [53, 64] for pri-
vate decision tree evaluation. We describe this analysis
in greater detail at the end of this section.

Our results are summarized in Table 1. The num-
bers we report for the performance of [7, 17] are taken
from [17, Table 4]. While our test environment is not
identical to that in [17], it is similar: Bost et al. con-

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 346

Dataset n d m Method Security End-to-End Computation (s) Bandwidth (KB)Level Time (s) Client Server

ECG 6 4 6

Barni et al. [7] 80 - 2.609 6.260 112.2
Bost et al. [17] 80 - 2.297 1.723 3555.0
Generic 2PC† 128 - - - ≥ 180.5
Our protocol 128 0.344 0.136 0.162 101.9

Nursery 8 4 4
Bost et al. 80 - 1.579 0.798 2639.0
Generic 2PC† 128 - - - ≥ 240.5
Our protocol 128 0.269 0.113 0.126 101.7

†Estimated bandwidth from directly applying Yao’s protocol [53, 64] for private decision tree evaluation.
Note that the estimated numbers are only a lower bound, since we only estimate the size of the garbled
circuit, and not the OTs. See the discussion at end of Section 6 for more information on these estimates.

Table 1. Performance of protocols for semi-honest secure decision tree evaluation. The decision trees have m decision nodes and depth
d. The feature vectors are n-dimensional. The “End-to-End Time” column gives the total time for the protocol execution, as mea-
sured by the client (including network communication). Performance numbers for the Barni et al. and Bost et al. methods are taken
from [17], which use a similar evaluation environment.

duct their experiments on a machine with a 2.66 GHz
Intel Core i7 processor with 8 GB of RAM. Our re-
sults show that despite running at a higher security
level (128 bits vs. 80 bits), our protocol is over 19x
faster for the client and over 5x faster for the server
compared to the protocols in [17] based on somewhat
homomorphic encryption (SWHE). Moreover, our pro-
tocol is more than 25x more efficient in terms of commu-
nication. Compared to the protocol in [7] based on ho-
momorphic encryption and garbled circuits, of Barni et
al. [7], our protocol is almost 20x faster for both the
client and the server, and requires slightly less commu-
nication. For these small trees, our protocols also require
less communication compared to generic two-party com-
putation protocols.

Scalability and sparsity. To understand the scala-
bility of our protocols on large decision trees, we per-
form a series of experiments on synthetic decision trees
with different depths and densities. We first consider
complete decision trees, which serve as a “worst-case”
bound on the protocol’s performance for trees of a cer-
tain depth. In our experiments, we fix the dimension of
the feature space to n = 16 and the precision to t = 64.
We measure both the computation time and the total
communication between the client and server. Our re-
sults are shown in Figure 3. We note that even for large
trees with over ten thousand decision nodes, our proto-
col still operates on the order of minutes.

We also compare our protocol against the private
decision tree evaluation protocol of Brickell et al. [20].
Their protocol can evaluate a 1100 node tree in around
5 minutes and 25 MB of communication. On a similarly
sized tree over an equally large feature space, our proto-

0
20
40
60
80
100
120
140

0
50

100
150
200
250
300
350

4 6 8 10 12 14

Ba
nd

w
id

th
 (M

B)

Co
m

pu
ta
tio

n
Ti

m
e

(s
)

Depth of Decision Tree

Client Computation Server Computation

Client Upload Server Upload

Fig. 3. Client and server computation (excluding network com-
munication) and total bandwidth for semi-honest protocol on
complete decision trees.

col completes in 30 seconds and requires about 10 MB of
communication, representing a 10x and a 2.5x improve-
ment in computation and bandwidth, respectively.

We also perform a set of experiments on “sparse”
trees where the number m of decision nodes is linear
in the depth d of the tree. Here, we set m = 25d. We
present the results of these experiments in Figure 4.
The important observation here is that the client’s com-
putation now grows linearly, rather than exponentially
in the depth of the tree. Unfortunately, because the
server computes a decision string for the complete tree,
the server’s computation increases exponentially in the
depth. However, since the cost of the homomorphic op-
erations in the comparison protocol is greater than the
cost of computing the decision string, the protocol still
scales to deeper trees and maintains runtimes on the
order of minutes. The limiting factor in this case is the
exponential growth in the size of the server’s response.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 347

0
20
40
60
80
100
120
140
160

0
20
40
60
80

100
120

10 12 14 16 18 20

Ba
nd

w
id

th
 (M

B)

Co
m

pu
ta
tio

n
Ti

m
e

(s
)

Depth of Decision Tree

Client Computation Server Computation

Client Upload Server Upload

Fig. 4. Client and server computation (excluding network com-
munication) and total bandwidth for semi-honest protocol on
“sparse” trees.

Even though the tree is sparse, because the decision
string communicated by the server encodes information
about every node in the padded tree, the amount of com-
munication from the server to the client is mostly un-
changed. The communication upstream from the client
to the server, though, is significantly reduced (linear
rather than exponential in the depth).

Handling malicious adversaries. Next, we consider
the performance of the protocol from Figure 2 that
provides protection against malicious adversaries. Since
this protocol does not distinguish between dummy and
non-dummy nodes, the performance is independent of
the number of actual decision nodes in the tree. Thus,
we only consider the benchmark for complete trees.
Again, we fix the dimension n = 16 and the preci-
sion t = 64. The results are shown in Figure 5. Here,
the client’s computation grows linearly in the depth of
the tree, and thus, is virtually constant in these exper-
iments. In all experiments in Figure 5, the total client-
side computation is under half a second. Moreover, the
amount of communication from the client to the server
depends only on n, t, and is independent of the size of
the model. Thus, the client’s computation is very small.
This means that the protocol is suitable for scenarios
where the client’s computational power is limited. The
trade-off is that the server now performs more work.
Nonetheless, even for trees of depth 12 (with more than
4000 decision nodes), the protocol completes in a few
minutes. It is also worth noting that this protocol is al-
most non-interactive (i.e., the client does not have to
remain online during the server’s computation).

As a final note, we also benchmarked the protocol
in Figure 2 on the ECG and Nursery datasets. On the
ECG dataset, the client’s and server’s computation took
0.191 s and 0.948 s, respectively, with a total communi-

0
20
40
60
80
100
120
140

0
50

100
150
200
250
300
350

4 6 8 10 12

Ba
nd

w
id

th
 (M

B)

Co
m

pu
ta
tio

n
Ti

m
e

(s
)

Depth of Decision Tree

Client Computation Server Computation

Client Upload Server Upload

Fig. 5. Client and server computation (excluding network com-
munication) and total bandwidth for one-sided secure protocol for
decision tree evaluation.

cation of 660 KB. On the Nursery dataset, the client’s
and server’s computation took 0.216 s and 0.937 s, re-
spectively, with a total communication of 720 KB. Even
in spite of the higher security level and the stronger se-
curity guarantees, our protocol remains 2x faster than
that of [17] in total computation time and requires
3.5x less communication. Thus, even the protocol se-
cure against malicious adversaries is practical, and for
the reasons mentioned above (low client overhead and
only two rounds of interaction), might, in some cases,
be more suitable than the semi-honest secure protocol.

Random forests. As described in Appendix A, we gen-
eralize our decision tree evaluation protocol to support
random forests with an affine aggregation function with
almost no additional overhead than the cost of evaluat-
ing each decision tree privately. The computational and
communication complexity of the random forest evalu-
ation protocol is just the complexity of the decision tree
evaluation protocol scaled up by the number of trees in
the forest. We give some example performance numbers
for evaluating a random forest with different number of
trees. Each tree in the forest has depth at most 10 and
contains exactly 100 comparisons. As before, we take
n = 16 for the dimension and t = 64 for the precision.
Our results are summarized in Table 2.

Performance on real datasets. We conclude our
analysis by describing experiments on decision trees and
random forests trained on real datasets. We benchmark
our protocol on five datasets from the UCI repository
[6] spanning application domains such as breast can-
cer diagnosis and credit rating classification. We train
our trees using standard Matlab tools (classregtree
and TreeBagger). To obtain more robust models, we
introduce a hyperparameter α ≥ 1 that specifies the
minimum number of training examples that must be

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 348

k End-to-End (s) Computation (s) Bandwidth (MB)
Client Server Client Server

10 26.161 4.652 19.069 0.247 9.106
25 65.067 11.343 47.756 0.430 22.761
50 130.496 22.252 95.133 0.736 45.520

100 256.362 44.759 190.196 1.346 91.037

Table 2. Semi-honest random forest evaluation benchmarks. Each
forest consists of k trees (each tree has depth at most 10 and ex-
actly 100 comparisons). The “End-to-End” measurements include
the time for network communication.

Dataset n
Tree Forest

d m d m

breast-cancer 9 8 12 11 276
heart-disease 13 3 5 8 178
housing 13 13 92 12 384
credit-screening 15 4 5 9 349
spambase 57 17 58 16 603

Table 3. Parameters for decision trees and random forests trained
on UCI datasets [6]: n is the dimension of the data, m is the
number of decision nodes in the model, d is the depth of the
tree(s) in the model.

associated with each leaf node in the tree. We choose
α by running 10-fold cross validation [43] for several
candidate values of α. In most cases, α > 1, which has
an added benefit of reducing the depth of the resulting
model. Additionally, for two of the datasets (housing
and spambase), we choose the best value for α such that
the depth of the resulting trees and forests is within 20.
The size and depth of the resulting trees and forests,
along with the dimension of the feature space for each
of the datasets is given in Table 3.

Of the five datasets we use for the benchmarks,
four are binary classification tasks. The exception is
the housing dataset which is a regression problem. The
heart-disease and credit-screening datasets incor-
porate a mix of categorical and numeric variables. In
our experiments, we operate at a 128-bit security level,
and use 64 bits of precision to represent each compo-
nent of the feature vector. For the random forest experi-
ments, we train a random forest consisting of 10 decision
trees, again choosing α via 10-fold cross-validation. The
performance of the semi-honest decision tree evaluation
protocol on each of the five datasets is summarized in
Table 4 and the performance of the semi-honest random
forest evaluation protocol is summarized in Table 5. We
remark that while our random forest extension only ap-
plies to affine aggregation functions which are suitable
for regression problems and not classification problems

Dataset Total Bandwidth (KB)
Time (s) Upload Download

breast-cancer 0.545 73.7 132.0
heart-disease 0.370 73.3 43.9
housing 4.081 115.7 1795.2
credit-screening 0.551 49.9 45.0
spambase 16.595 463.4 17363.3

Table 4. Performance (with network communication) of semi-
honest decision tree evaluation protocol on UCI datasets.

Dataset Total Bandwidth (KB)
Time (s) Upload Download

breast-cancer 9.671 106.7 4853.1
heart-disease 4.691 94.9 1758.2
housing 15.152 152.2 8357.4
credit-screening 8.737 92.9 3456.5
spambase 93.276 531.6 89310.7

Table 5. Performance (with network communication) of semi-
honest random forest evaluation protocol on UCI datasets [6].

in general, our classification examples are all examples
of binary classification, in which case, taking the mean
response is appropriate.

The performance benchmarks demonstrate that our
semi-honest secure protocols are suitable for evalu-
ating trees and forests that could arise in practice.
Even for relatively deep trees over high-dimensional fea-
tures spaces such as the spam classification (spambase)
dataset, our semi-honest protocol completes in under
20 seconds. In all cases, the client’s computation time
in the semi-honest setting is under a second. For all but
the largest tree (spambase), the total bandwidth is un-
der 2 MB. For smaller trees, the bandwidth is usually
on the order of 100-200 KB. With random forest evalu-
ation, both the client and server have to perform addi-
tional computation and there is more data exchanged.
Nonetheless, the amount of computation required from
the client is on the order of a few seconds, and the
server’s computation is also on the order of seconds
(except in the case of spambase where the computa-
tion took over a minute). Excluding spambase, the total
amount of communication is small.

Because we did not implement the extension to cat-
egorical variables for the protocol robust against ma-
licious adversaries, we do not have complete bench-
marks for all five datasets. We do have concrete results
for the housing and breast-cancer datasets. On the
breast-cancer dataset, end-to-end decision tree evalua-

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 349

tion using the protocol completes in 12.3 s including net-
work communication (client computation of just 0.263
s) and 8.2 MB of total communication. For the housing
dataset, the decision tree evaluation completes in 357.0
s (client computation of 0.384 s) and 256 MB of commu-
nication. These results indicate that for low-depth trees
(d < 10), the protocol in Figure 2 remains viable, but
the amount of communication does grow rapidly in the
depth of the tree.

Comparison to generic methods. Private decision
tree evaluation falls under the general umbrella of secure
two-party computation. While secure two-party compu-
tation protocols based on Yao’s garbled circuits [53, 64]
have seen numerous optimizations in the last several
years [9, 50, 51, 65], a key limitation of these protocols
has been bandwidth. We now describe a simple proto-
col for private decision tree evaluation based on garbled
circuits. In typical two-party computation protocols, the
function that is being evaluated is assumed to be public.
In our setting, however, we want to hide the structure
of the decision tree from the client. Thus, we instead
securely evaluate a general decision tree evaluation cir-
cuit, which takes as input a description of a decision
tree T (from the server) and a feature vector x (from
the client), and outputs T (x). This approach can be
viewed as securely evaluating a universal circuit for de-
cision trees of up to depth d.

To compare our protocols to a generic protocol, we
provide an estimate on the size of the decision tree evalu-
ation circuit. In the actual protocol execution, the server
would send the client a garbled version of this circuit to-
gether with the encodings of its input (the description
of the decision tree). The client then OTs for the encod-
ings of its input wires (its feature vector), and evaluates
the circuit to learn the output. Because the decision tree
evaluation circuit must support evaluation of arbitrary
trees of depth d, its size is lower bounded by the size of
the circuit needed to evaluate on a worst-case input (a
complete decision tree of depth d). Using the state-of-
the-art free-XOR [51] and half-gate [65] optimizations
for garbled circuits, the communicate required to se-
curely evaluate a garbled circuit depends only on the
number of AND gates.

The circuit needed to evaluate a tree with depth d

must perform 2d− 1 comparisons between two t-bit val-
ues. Moreover, each comparison requires indexing into
a feature vector of dimension n (to select the value to
be compared). Using the optimized comparison circuit
from [50, §3.2], comparing two t-bit integers can be per-
formed using a circuit with exactly t AND gates. Using

Dataset Bandwidth (KB)
Our Protocol Generic 2PC

breast-cancer 205.7 ≥ 4598.0
heart-disease 117.2 ≥ 182.2
housing 1910.9 ≥ 2.1 × 105

credit-screening 94.9 ≥ 450.5
spambase 17826.7 ≥ 1.5 × 107

Table 6. Bandwidth comparison between our proposed semi-
honest protocol and estimated bandwidth using a generic two-
party computation protocol on trees trained from UCI datasets.

the multiplexer circuits from [50, §C], selecting a t-bit
value from a vector containing n such t-bit values can
be done using a circuit with (n−1) · t AND gates. Thus,
each comparison can be computed with a circuit con-
taining t+ (n− 1) · t = n · t gates. Evaluating all of the
comparisons in a complete tree of depth d requires a
circuit with at least (2d − 1) · n · t AND gates. Finally,
computing the output requires selecting one of 2d pos-
sible output values. If each output value has `-bits and
using the same multiplexer circuit as above, this step
requires another (2d − 1) · ` AND gates. These compo-
nents give a conservative lower bound of (2d− 1)(nt+ `)
on the number of AND gates in the circuit needed to
generically evaluate a complete decision tree of depth d.

Using the half-gates optimization [65], each garbled
AND gate requires sending a table that contains ex-
actly two rows, each λ bits long (where λ is the security
parameter). At a 128-bit security level, this means the
size of a garbled circuit containing N AND gates is 32N
bytes. Note that the size of the garbled circuit provides
only a lower bound on the total required communication
in Yao’s protocol. We neglect the interaction between
the client and the server for the OTs. We compare the
communication required in our protocol with our esti-
mates in Table 6 (with the conservative estimate ` = 1).

In all cases, our semi-honest decision tree evalua-
tion protocol requires less communication compared to
our estimates for the bandwidth required by a generic
Yao-based approach. This is because in order to hide
the structure of the tree, the generic approach necessar-
ily incurs the worst-case performance. As a result, the
communication grows much more rapidly in the depth
of the tree, and quickly becomes infeasible. However, the
generic solution does not reveal the number of internal
comparison nodes in the tree, while our semi-honest pro-
tocol does. It is worth noting that even for complete de-
cision trees, the bandwidth requirements of our protocol
is still less than that required by the generic solution.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 350

In recent years, other generic two-party computa-
tion frameworks have been introduced that combine
Yao’s protocol with methods such as homomorphic en-
cryption or secret sharing techniques [12, 30]. Like Yao’s
protocol, these generic tools can be leveraged for private
decision tree evaluation. However, as our above anal-
ysis shows, even for shallow decision trees, a generic
circuit for private decision tree evaluation is large and
deep (due to the numerous comparison and multiplexing
operations). Thus, direct application of these methods
would likely lead to protocols with higher bandwidth or
require additional rounds of interaction.

7 Related Work
The earliest work for private decision tree evaluation fo-
cused on training decision trees in a privacy-preserving
manner [3, 31, 52]. In the case of [31, 52] multiple parties
each have their own individual datasets, and the objec-
tive is to compute a decision tree on their joint data
without revealing their individual datasets.

On the contrary, this work focuses on the problem of
privately evaluating decision trees, where it is assumed
that one of the parties holds a trained decision tree or
random forest. In [7, 20], the authors develop proto-
cols for privately evaluating linear branching programs
(of which decision trees are a special case) based on
a combination of homomorphic encryption and garbled
circuits. Because these protocols solve a more general
problem of evaluating linear branching programs, they
are not as competitive in performance in comparison to
our protocol which exploits the simple structure of de-
cision trees. More recently, the work of [17] describes a
fairly generic protocol for decision tree evaluation that
also splits up the decision tree evaluation protocol into
two components: a comparison phase followed by an
evaluation phase. In [17], Bost et al. view the decision
tree as a polynomial in the decision variable and evalu-
ate the polynomial using a SWHE scheme [18, 35, 41].
In all of these works, the authors achieve semi-honest
security, although [7, 20] note that their protocols can
be made secure in the malicious setting without much
difficulty. Nonetheless, we do not know of any existing
implementations of a private decision tree evaluation
protocol that achieves stronger security.

On the theoretical side, private decision tree evalua-
tion falls into the category of private function evaluation
(where we view the decision tree as the underlying pri-
vate function to be evaluated). In the last few years, sev-

eral generic approaches for private function evaluation
have been proposed [47, 55] which are asymptotically
very efficient and can be made robust against malicious
adversaries. Restricting to private decision tree evalua-
tion, Mohassel et al. describe a protocol for evaluating
oblivious decision programs based on OT in [54]. They
provide an abstract method for evaluating decision pro-
grams in both the semi-honest and malicious setting.
However, it is unclear how to integrate comparisons ef-
ficiently into their protocol, which would be necessary
for evaluating the particular kind of decision trees con-
sidered in this work. While the protocols of [47, 54, 55]
apply to our setting, we are not aware of any existing
implementations of these methods.

8 Conclusion
In this work, we presented two protocols for privately
evaluating decision trees and random forests. The first
protocol based on additive homomorphic encryption
and oblivious transfer is secure against semi-honest ad-
versaries. Then, using a novel conditional OT protocol,
we showed how to modify the protocol to obtain se-
curity against malicious adversaries. We implemented
both protocols and evaluated their performance on de-
cision trees trained on several real-world datasets. Our
experiments demonstrate that our protocol is more effi-
cient in terms of both computation and communication
compared to existing protocols [7, 17]. A basic back-of-
the-envelope calculation shows that our protocols are
much more efficient in terms of communication com-
pared to a generic solution based on garbled circuits.

We leave as an open problem that of designing a
private decision tree evaluation protocol whose overall
complexity is subexponential in the depth of the tree
(i.e., a protocol whose performance is not worst-case
bounded). Another interesting direction is to explore
how to efficiently update the decision tree (or random
forest) in a privacy-preserving manner.

Acknowledgments
We thank Melissa Chase, Seny Kamara, and Payman
Mohassel for many helpful comments and discussions on
this work. The first author is supported in part by an
NSF Graduate Research Fellowship under grant number
DGE-114747 and an Amazon AWS in Education Grant.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 351

References
[1] BigML. https://bigml.com/.
[2] Microsoft Azure Machine Learning. https://azure.microsoft.

com/en-us/services/machine-learning.
[3] R. Agrawal and R. Srikant. Privacy-preserving data mining.

SIGMOD Rec., 29(2), 2000.
[4] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More

efficient oblivious transfer and extensions for faster secure
computation. In CCS, pages 535–548, 2013.

[5] A. T. Azar and S. M. El-Metwally. Decision tree classifiers
for automated medical diagnosis. Neural Computing and
Applications, 23(7-8):2387–2403, 2013.

[6] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[7] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A. Sadeghi,
and T. Schneider. Secure evaluation of private linear branch-
ing programs with medical applications. In ESORICS, pages
424–439, 2009.

[8] M. Bellare and O. Goldreich. On defining proofs of knowl-
edge. In CRYPTO, pages 390–420, 1992.

[9] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In IEEE
Symposium on Security and Privacy, pages 478–492, 2013.

[10] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations
of garbled circuits. Cryptology ePrint Archive, Report
2012/265, 2012.

[11] I. F. Blake and V. Kolesnikov. Strong conditional oblivious
transfer and computing on intervals. In ASIACRYPT, 2004.

[12] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
ESORICS, pages 192–206, 2008.

[13] D. Boneh. The decision Diffie-Hellman problem. In ANTS,
pages 48–63, 1998.

[14] J. Bos, C. Costello, P. Longa, and M. Naehrig. Specification
of curve selection and supported curve parameters in MSR
ECCLib. Technical Report MSR-TR-2014-92, Microsoft
Research, June 2014.

[15] J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting
elliptic curves for cryptography: An efficiency and security
analysis. IACR Cryptology ePrint Archive, 2014:130, 2014.

[16] J. W. Bos, K. E. Lauter, and M. Naehrig. Private predictive
analysis on encrypted medical data. Journal of Biomedical
Informatics, 50:234–243, 2014.

[17] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In NDSS, 2015.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In
ITCS, pages 309–325, 2012.

[19] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[20] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel.
Privacy-preserving remote diagnostics. In CCS, pages 498–
507, 2007.

[21] J. Camenisch and M. Stadler. Efficient group signature
schemes for large groups (extended abstract). In CRYPTO,
pages 410–424, 1997.

[22] R. Canetti. Security and composition of multiparty crypto-
graphic protocols. J. Cryptology, 13(1):143–202, 2000.

[23] R. Canetti. Security and composition of cryptographic proto-
cols: a tutorial (part I). SIGACT News, 37(3):67–92, 2006.

[24] D. Chaum and T. P. Pedersen. Wallet databases with ob-
servers. In CRYPTO, pages 89–105, 1992.

[25] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding
protocols. In CRYPTO, pages 174–187, 1994.

[26] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure
and optimally efficient multi-authority election scheme. In
EUROCRYPT, pages 103–118, 1997.

[27] G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Con-
ditional oblivious transfer and timed-release encryption. In
EUROCRYPT, pages 74–89, 1999.

[28] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and
secure comparison for on-line auctions. In ACISP, pages
416–430, 2007.

[29] I. Damgård, M. Jurik, and J. B. Nielsen. A generalization
of Paillier’s public-key system with applications to electronic
voting. Int. J. Inf. Sec., 9(6):371–385, 2010.

[30] D. Demmler, T. Schneider, and M. Zohner. ABY - A frame-
work for efficient mixed-protocol secure two-party computa-
tion. In NDSS, 2015.

[31] W. Du and Z. Zhan. Building decision tree classifier on
private data. In CRPIT ’14, 2002.

[32] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft. Privacy-preserving face recognition. In
PETS, pages 235–253, 2009.

[33] A. Fiat and A. Shamir. How to prove yourself: Practi-
cal solutions to identification and signature problems. In
CRYPTO, pages 186–194, 1986.

[34] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion
attacks that exploit confidence information and basic coun-
termeasures. In ACM SIGSAC, pages 1322–1333, 2015.

[35] C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[36] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, New York,
NY, USA, 2004.

[37] S. Goldwasser and S. Micali. Probabilistic encryption. Jour-
nal of Computer and System Sciences, 28(2):270–299, April
1984.

[38] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract).
In ACM STOC, pages 291–304, 1985.

[39] T. Graepel, K. E. Lauter, and M. Naehrig. ML confidential:
Machine learning on encrypted data. In ICISC, pages 1–21,
2012.

[40] T. Granlund and the GMP development team. GNU MP:
The GNU Multiple Precision Arithmetic Library, 5.0.5 edi-
tion, 2012. http://gmplib.org/.

[41] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO,
pages 554–571, 2014.

[42] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A
pseudorandom generator from any one-way function. SIAM
J. Comput., 28(4):1364–1396, 1999.

[43] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer
New York Inc., 2001.

[44] C. Hazay and Y. Lindell. Efficient Secure Two-Party Proto-
cols - Techniques and Constructions. Information Security

Unauthenticated
Download Date | 10/23/16 6:39 PM

https://bigml.com/
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning
http://gmplib.org/

Privately Evaluating Decision Trees and Random Forests 352

and Cryptography. Springer, 2010.
[45] B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing

privacy and trust in electronic communities. In EC, pages
78–86, 1999.

[46] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank.
On achieving the "best of both worlds" in secure multiparty
computation. SIAM J. Comput., 40(1):122–141, 2011.

[47] J. Katz and L. Malka. Constant-round private function
evaluation with linear complexity. In ASIACRYPT, pages
556–571, 2011.

[48] J. Kilian. Founding cryptography on oblivious transfer. In
STOC, pages 20–31, 1988.

[49] H. C. Koh, W. C. Tan, and C. P. Goh. A two-step method
to construct credit scoring models with data mining tech-
niques. International Journal of Business and Information,
1:96–118, 2006.

[50] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved
garbled circuit building blocks and applications to auctions
and computing minima. Cryptology ePrint Archive, Report
2009/411, 2009.

[51] V. Kolesnikov and T. Schneider. Improved garbled circuit:
Free XOR gates and applications. In ICALP, pages 486–498,
2008.

[52] Y. Lindell and B. Pinkas. Privacy preserving data mining. In
CRYPTO, pages 36–54, 2000.

[53] Y. Lindell and B. Pinkas. A proof of security of Yao’s pro-
tocol for two-party computation. J. Cryptology, 22(2):161–
188, 2009.

[54] P. Mohassel and S. Niksefat. Oblivious decision programs
from oblivious transfer: Efficient reductions. Financial Cryp-
tography, 2014:269–284, 2012.

[55] P. Mohassel and S. S. Sadeghian. How to hide circuits in
MPC: An efficient framework for private function evaluation.
In EUROCRYPT, pages 557–574, 2013.

[56] M. Naor and B. Pinkas. Oblivious transfer and polynomial
evaluation. In STOC, pages 245–254, 1999.

[57] M. Naor and B. Pinkas. Efficient oblivious transfer proto-
cols. In SODA, pages 448–457, 2001.

[58] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh. Location privacy via private proximity test-
ing. In NDSS, 2011.

[59] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, volume 1592,
pages 223–238. 1999.

[60] M. O. Rabin. How to exchange secrets with oblivious trans-
fer. IACR Cryptology ePrint Archive, 2005:187, 2005.

[61] V. Shoup. NTL: A library for doing number theory. http:
//www.shoup.net/ntl/.

[62] A. Singh and J. V. Guttag. A comparison of non-symmetric
entropy-based classification trees and support vector ma-
chine for cardiovascular risk stratification. Annual Interna-
tional Conference of the IEEE Engineering in Medicine and
Biology Society, pages 79–82, 2011.

[63] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter. Privately
evaluating decision trees and random forests. IACR Cryptol-
ogy ePrint Archive, 2015:386, 2015.

[64] A. C. Yao. How to generate and exchange secrets (extended
abstract). In FOCS, pages 162–167, 1986.

[65] S. Zahur, M. Rosulek, and D. Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half

gates. In EUROCRYPT, pages 220–250, 2015.

A Extensions
In this section, we describe two extensions to our pri-
vate decision tree evaluation protocol. First, we describe
a simple extension to support private evaluation of ran-
dom forests (Section 2.2). Then, we describe how to pro-
vide support for decision trees over feature spaces that
contain categorical variables.

Random forest evaluation. As mentioned in Sec-
tion 2.2, a random forest classifier is an ensemble clas-
sifier that aggregates the responses of multiple decision
trees in order to obtain a more robust response. Typi-
cally, response aggregation is done by taking a major-
ity vote of the individual decision tree outputs, or tak-
ing the average of the responses. A simple, but naïve
method for generalizing our protocol to a random forest
F = {Ti}i∈[n] is to run the decision tree evaluation pro-
tocol n times, once for each decision tree Ti. At the end
of the n protocol executions, the client learns the values
T1(x), . . . , Tn(x), and can then compute the mean, ma-
jority, or some other function of the individual decision
tree outputs.

The problem is that this simple protocol reveals to
the client the values Ti(x) for all i ∈ [n]. In the case
where the output of the random forest is the average (or
any affine function) of the individual classifications, we
can do better by using additive secret sharing. Specifi-
cally, suppose that the value of each leaf of Ti (for all i)
is an element of Zp. Then, at the beginning of the proto-
col, the server chooses blinding values r1, . . . , rn

r←− Zp.
For each tree Ti, the server blinds each of its leaf val-
ues v ∈ Zp by computing v ← v + ri. Since ri is uni-
form over Zp, v is now uniformly random over Zp. The
protocol execution proceeds as before, except that the
server also sends the client the value r ←

∑
i∈[n] ri.

At the conclusion of the protocol, the client learns the
values {vi + ri}i∈[n] where vi = Ti(x). In order to com-
pute the mean of v1, . . . , vn, the client computes the
sum

∑
i∈[n](vi + ri) − r =

∑
i∈[n] vi which is sufficient

for computing the mean provided the client knows the
number of trees in the forest. We note that this protocol
generalizes naturally to evaluating any affine function of
the individual responses with little additional overhead.
The leakage in the case of affine functions is the total
number of comparisons, the depth of each decision tree
in the model (or a bound on the depth if all the trees are

Unauthenticated
Download Date | 10/23/16 6:39 PM

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Privately Evaluating Decision Trees and Random Forests 353

padded to the maximum depth), and the total number
of trees. No information about the response value of any
single decision tree in the forest is revealed.

Equality testing and categorical variables. In
practice, feature vectors might contain categorical vari-
ables in addition to numeric variables. When branch-
ing on the value of a categorical variable, the natural
operation is testing for set membership. For instance,
if xi is a categorical variable that can take on values
from a set S = {s1, . . . , sn}, then a branching criterion
is more naturally phrased in the form 1 {xi ∈ S′} for
some S′ ⊆ S. We leverage this observation to develop
a method for testing for set inclusion based on private
equality testing when the number of attributes is small.
More precisely, to determine whether xi ∈ S′, we test
whether x = s for each s ∈ S′.

We use the two-party equality testing protocol of
[58]. Fix a group G with generator P and let (pk, sk) be
a key-pair for an additively homomorphic encryption
scheme where the client holds the secret key sk. Let Zp
be the plaintext space for the encryption scheme. Let
x, y ∈ Zp denote the client and server’s input to the
equality testing protocol, respectively. To test whether
x = y, the client sends Encpk(x) to the server. The server
then chooses a random r

r←− Z∗p and homomorphically
computes Encpk(r(x−y)) and sends it to the client. The
key observation is that r(x− y) is 0 if x = y, and other-
wise, is uniform in Zp.

We now extend the decision tree evaluation proto-
col to support categorical variables with up to t classes,
where t is the number of bits needed to encode a
numeric component in the feature vector. To evalu-
ate a decision function of the form 1 {xi ∈ S′}, where
S′ = {y1, . . . , ym}, the server constructs the ciphertexts
Encpk(rj(xi − yj)) for each yj ∈ S′ as above and addi-
tional dummy ciphertexts Encpk(rj+1), . . . ,Encpk(rt), for
rj+1, . . . , rt

r←− Z∗p. The server sends these ciphertexts to
the client in random order. Clearly, xi ∈ S′ if and only if
one of these ciphertexts is an encryption of 0. Moreover,
this set of ciphertexts is computationally indistinguish-
able from the set of ciphertexts the client would receive
for a comparison node. Finally, in the decision tree eval-
uation protocol, we require that the client learns only
a share of the value of the decision variable. This is
also possible for set membership testing: depending on
the value of the server’s share of the decision variable,
the server can test membership in S′ or in its comple-
ment S′. Since

∣∣S′ ∪ S′∣∣ ≤ t, the decision tree evaluation
protocols can support these tests with almost no mod-
ification. The only difference in the semi-honest setting

is that the client encrypts categorical variables directly
rather than bitwise. In the one-sided secure setting, the
client additionally needs to prove that it sent an encryp-
tion of a valid categorical value. To facilitate this, we
number the categories from 1 to |S| ≤ n, where S is the
set of all possible categories for a given variable. Then,
in addition to providing the encryption c ← Encpk(x; r)
of a value x ∈ {1, . . . , |S|}, the client also includes
a proof PoK

{
(x, r) :

(
c = Encpk(x; r)

)
∧ (1 ≤ x ≤ |S|)

}
.

Since |S| is small, this can be done using the same OR
proof transformation of Chaum-Pedersen proofs.

B Asymptotic Analysis
In this section, we give a brief description of the asymp-
totic performance of our decision tree evaluation pro-
tocols. In our analysis, we only count the number of
cryptographic operations the client and server perform.
Let d be the depth of the tree, n be the dimension of the
feature space, ` be the number of non-dummy internal
nodes, and t be the precision (the number of bits needed
to represent each component of the feature vector).

Semi-honest secure protocol. Consider a client in
the semi-honest protocol from Figure 1. In this case,
encrypting the feature vector requires O(nt) public-key
operations; processing the comparisons require O(`t)
operations; computing the leaf node and the OT re-
quire O(d) operations. The total number of crypto-
graphic operations the client has to perform is thus
O (t(n+ `) + d). For the server, evaluating the compar-
isons requires O(`t) public-key operations. After receiv-
ing the comparison responses, the server constructs the
decision string, which has length 2d − 1, so this step re-
quires O(2d) operations. The 1-out-of-2d OT at the end
also requires O(2d) computation on the server’s side, for
a total complexity of O

(
`t+ 2d

)
.

One-sided secure protocol. We perform a similar
analysis of the asymptotic performance for the one-sided
secure protocol as we did for the semi-honest secure pro-
tocol. If we apply the improvement from Remark 4.1,
the client’s computation requires O (t(n+ d)) operations
and the server’s computation requires O

(
2dt
)
opera-

tions.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 354

C Proof of Theorem 3.2
As described in Section 2.3, our decision tree evaluation
protocol assumes that the following quantities are pub-
lic and known to both the client and the server in the
protocol execution: the depth d of the decision tree, the
number of comparisons `, the dimension n of the fea-
ture vectors, and the number of bits t needed to encode
each component of the feature vector. To simplify the
security proof, we work in the OT-hybrid model where
we assume that the client and server have access to an
ideal 1-out-of-2d OT functionality [48]. Specifically, in
the real protocol, we replace the final OT invocation
with an oracle call to a trusted party that implements
the OT functionality: the sender sends its database of
2d values (v1, . . . , v2d) and the receiver sends an index
i ∈ [2d] to the trusted party. The trusted party then
gives the receiver the value vi to the receiver. Security
in the standard model then follows by instantiating the
ideal OT functionality with an OT protocol that pro-
vides security against semi-honest clients [56, 57] and
invoking the sequential protocol composition theorem
of Canetti [22].

Security against a semi-honest server. First, we
prove security against a semi-honest server. Intuitively,
security against a semi-honest server follows from the
fact that the server’s view of the protocol execution con-
sists only of ciphertexts, and thus, reduces to a semantic
security argument. We now give the formal argument.
Let A be a semi-honest server in the real protocol. We
construct an ideal-world simulator S as follows:

1. At the beginning of the protocol execution, the sim-
ulator S receives the input T from the environment
E . The simulator S sends the tree T to the trusted
party.

2. The simulator starts running A on input T . Next,
S generates a public-private key-pair (pk, sk) for the
additive homomorphic encryption scheme used in
the protocol execution. Then, S computes and sends
nt fresh encryptions Encpk(0) of 0 to the server.

3. After A replies with the results of the comparison
protocol, S computes and sends ` fresh encryptions
Encpk(0) of 0 to A.

4. The simulator outputs whatever A outputs.

We argue that REALπ,A,E(λ)
c
≈ IDEALπ,S,E(λ). By The-

orem 3.1 and the fact that A is semi-honest, we have
that at the end of the protocol execution in the real
world, the client obtains T (x) where x is the client’s in-

put. By definition of the ideal functionality, the trusted
party computes T (x) and gives it to the client. Thus,
the client’s output in the real and ideal distributions
are identically distributed. Next, since the value T (x) is
a deterministic function in the inputs T and x, the joint
distribution of the client’s output and the adversary’s
output decomposes. To complete the proof, it thus suf-
fices to show that the view S simulates for A is computa-
tionally indistinguishable from the view of A interacting
in the real protocol.

The view of A in the real protocol consists of two
components: the encryptions

{
Encpk(xi,j)

}
i∈[n],j∈[t] of

each bit of the client’s input and the encrypted bit string
{Enc(b′i)}i∈[`]. When interacting with the simulator S,
adversary A sees nt independent encryptions of 0, fol-
lowed by ` independent encryptions of 0. By semantic
security of the underlying public-key encryption scheme,
the server’s view when interacting with the client in the
real scheme is computationally indistinguishable from
its view interacting with the simulator. Thus, the output
distribution of A in the real world is computationally
indistinguishable from that in the ideal world. Security
follows.

Security against a semi-honest client. Next, we
prove security against a semi-honest client. Let A be
a semi-honest client in the real protocol. We construct
a semi-honest simulator S in the ideal world as follows:

1. At the beginning of the protocol execution, S re-
ceives the input x from the environment E . The
simulator sends x to the trusted party. The trusted
party replies with a value ẑ.

2. The simulator starts running A on input x. Let pk
be the client’s public key.

3. The simulator samples a random string σ̂ r←− {0, 1}m

and a random bit-string b r←− {0, 1}`. Then, for each
k ∈ [`]:
– If bk = 0, the simulator samples a value ĉk,j

r←−
Zp for all j ∈ [t].

– If bk = 1, the simulator chooses a random in-
dex j∗

r←− [t] and sets ĉk,j∗ = 0. For j 6= j∗, it
samples ĉk,j

r←− Zp.
4. When A submits the encryption of its feature vec-

tor, the simulator replies with the collection of ci-
phertexts

{
Encpk(ĉk,j)

}
k∈[`],j∈[t].

5. When A sends the encrypted bit string (Step 4),
the simulator replies with the bitwise encryption
Encpk(σ̂) of σ̂.

Unauthenticated
Download Date | 10/23/16 6:39 PM

Privately Evaluating Decision Trees and Random Forests 355

6. When A sends an index to the ideal OT function-
ality, S simulates the response from the ideal OT
functionality with ẑ.

7. At the end of the simulation, S outputs whatever A
outputs.

In the decision tree functionality, the server has no out-
put. Thus, to show security against a semi-honest client,
it suffices to show that the output of S is computation-
ally indistinguishable from the output of A. We show
that the view S simulates for A is computationally in-
distinguishable from the view of A interacting in the
real protocol.

The client’s view in the real protocol consists of
three components: the encrypted comparison bits ctk,j
for all k ∈ [`] and j ∈ [t], the encrypted decision string
Encpk(σ′), and the response z from the trusted OT func-
tionality. For all k ∈ [`] and j ∈ [t], let ck,j = Decsk(ctk,j)
be the comparison bit encrypted by ctk,j . We now show
that{{

ck,j
}
k∈[`],j∈[t] , σ

′, z
}

︸ ︷︷ ︸
view in real protocol

c
≈
{{

ĉk,j
}
k∈[`],j∈[t] , σ̂, ẑ

}
︸ ︷︷ ︸

simulated view

.

We reason about each component individually:

– By correctness of the protocol (Theorem 3.1), z =
T (x) in the real protocol. In the view S simulates,
ẑ is the response from the trusted party, and so ẑ =
T (x) = z.

– Consider the distribution of σ′ in the real protocol.
By construction, σ′ = τ(σ ⊕ s). Since s is chosen
uniformly and independently of σ, σ ⊕ s is uniform
over {0, 1}m and independent of the other compo-
nents. Since τ is just a permutation on the bits,
σ′ = τ(σ ⊕ s) remains independently uniform over
{0, 1}m, and also independent of the other compo-
nents. Thus, σ′ is distributed identically as σ̂.

– Consider the distribution of the
{
ck,j
}
k∈[`],j∈[t] in

the real protocol. These values are computed ac-
cording to Eq. (1) in Figure 1. Fix an index k ∈
[`] and consider the set of values

{
ck,j
}
j∈[t]. By

construction, at most one ck,j = 0. Let b′k =
1
{
∃j : ck,j = 0

}
. From the analysis of the compar-

ison protocol in [28, §4.1], we have that bk ⊕ b′k =
1 {xik < tk}. Since the server chooses bk uniformly
and independently of 1 {xik < tk}, the bit b′k is also
uniform over {0, 1}. In particular this means that
with equal probability, the set

{
ck,j
}
j∈[t] contains t

uniformly random elements of Zp or t− 1 uniformly
random elements of Zp and one component equal
to 0. Since the ciphertexts

{
ck,j
}
j∈[t] are randomly

permuted in the real protocol, if
{
ck,j
}
j∈[t] contains

an element ck,j∗ = 0, it follows that j∗ is uniform in
[t]. Finally, since each comparison is processed in-
dependently, ck,j is independent of ck′,j′ whenever
k 6= k′. But this is precisely the same distribution
from which S samples the ĉk,j , and so we conclude
that

{
ck,j
}
k∈[`],j∈[t] ≡

{
ĉk,j
}
k∈[`],j∈[t].

We conclude that
{{

ck,j
}
k∈[`],j∈[t] , σ

′, z
}

≡{{
ĉk,j
}
k∈[`],j∈[t] , σ̂, ẑ

}
, and so the view S simulates

for A is computationally indistinguishable from the
view A sees in the real protocol. Correspondingly, the
output of S is computationally indistinguishable from
the output of A, and security follows.

Unauthenticated
Download Date | 10/23/16 6:39 PM

