Battery Status Not Included:
Assessing Privacy in Web Standards

Lukasz Olejnik
University College London

lukasz.w3c@gmail.com

1. INTRODUCTION

The standardization process is core to the development of
the open web. Until 2013, the process rarely included pri-
vacy review and had no formal privacy requirements. But
today the importance of privacy engineering has become ap-
parent to standards bodies and browser vendors. Standards
groups now have guidelines for privacy assessments, and are
including privacy reviews in many new specifications. How-
ever, the standards community does not yet have much prac-
tical experience in assessing privacy.

In this talk we provide a case study of the W3C Bat-
tery Status API — reviewing its evolution from the initial
specification to the eventual removal of the API from ma-
jor browser engines following privacy concerns, an unprece-
dented move. We provide context for these decisions, an-
alyze the standards processes that led to them, and make
recommendations for improving the privacy review process
for web standards.

This talk builds on a research paper published at the 2017
International Workshop on Privacy Engineering'. The talk
extends beyond the paper to address new insights, includ-
ing those from discussions held at the Dagstuhl Seminar on
Online Privacy and Web Transparency.

2. THE BATTERY STATUS CASE STUDY

Since 2013 the standards community has made numerous
substantial changes to the review process to address privacy
throughout feature development, which includes the creation
of specialized methodologies and working groups for such
assessments [3, 5, 7]. These advances are timely, as new
and proposed web features will provide websites with much
deeper access to the user’s device and environment, espe-
cially on smartphones and Internet-of-Things (IoT) devices.
In this talk we analyze these processes through a case study
of the Battery Status API, present new empirical evidence
to provide additional context for the case study, and extract
recommendations for privacy reviews in future standards.

The Battery Status API offers an interesting and unusual
case study of privacy impact assessment in the web stan-
dardization process. The specification started with a typical
progression: it went through a few iterations as a draft, was
quickly implemented by multiple browser vendors, and then
progressed to a candidate recommendation — one which
characterized the privacy impact as “minimal”. Several years
later, after it was implemented in all major browser engines
and was nearing finalization, researchers discovered several
privacy vulnerabilities as well as misuse in the wild. In an
unprecedented move, two of the three major browser engines

*This author will be the presenting author at HotPET's.

! Available at: senglehardt.com/papers/iwpel7_battery_
status_case_study.pdf

Steven Englehardt*
Princeton University

ste@cs.princeton.edu

Arvind Narayanan
Princeton University

arvindn@cs.princeton.edu

removed support for the API and another browser moved to
an opt-in model. Figure 1 provides an overview of develop-
ments related to the APL.

In the talk, we focus our discussion on the impact of pri-
vacy research on the specification itself and adoption of the
API by vendors. Privacy research by Olejnik et al. showed
that the API can be used to track users, both by using the
status readouts as short-term identifiers and by using re-
peated readouts to reconstruct the battery capacity [6]. In
response to this analysis, the specification was updated —
changing the privacy considerations section from identify-
ing a “minimal” risk to detailing specific protection recom-
mendations. At the same time, both Firefox and Chrome
shipped patches to reduce the effectiveness of the attacks.
Despite these changes, Englehardt and Narayanan found two
scripts, together present on 22 sites, that used battery status
as part of a device fingerprint [4]. In response to these find-
ings, as well as concerns of second-order privacy impacts
(e.g. dynamic pricing based on a device’s battery level),
both Mozilla and Webkit removed support for the API.

Was this the right decision for the web? What process fail-
ures exist that allowed the API to be designed, implemented,
and deployed, only to be recalled several years later due to
privacy concerns? These are the questions we analyze in our
talk. We hope to spur a discussion between standardization
bodies, browser vendors, privacy engineers, researchers, and
web developers around these questions with the goal of im-
proving the privacy review process.

3. RECOMMENDATIONS & DISCUSSION

We extract a set of good privacy engineering practices and
make several concrete recommendations on how standards
bodies can improve the standardization process. We draw
from our research, our participation in standardization ef-
forts, our assessments of specifications. While we hope that
our recommendations improve the privacy review process,
we are confident the issues we’ve identified will benefit from
a larger discussion within the privacy research community.
The remainder of our talk summarizes our recommendations
and points to open questions and directions for future re-
search.

Information exchange between vendors and resear-
chers is essential to privacy assessments. Research can
reveal theoretical privacy risks and their exploitation in the
wild; it can also provide data on the usage of features on the
web. As our case study illustrates, the specification process
can benefit from a deeper connection to research. Deliberate
attempts to break the privacy assumptions of specifications
should be actively incentivized — perhaps by funding at-
tack research, or by organizing a forum for academics and
researchers to publish their privacy reviews.



Firefox adds
support

WebKit adds
support

W3C Battery
Status Event WD

Firefox 38 rounding
bug fixed

Firefox rounding
bug reported

Chrome rounding |Blink bug moved to
patch commit permissions component

W3C Yandex announces
Prop.Rec.|opt-in model

|2011 2012 2013 2014

2015 2016 |201i7

Chrome adds API misuse Firefox 52 limits
support in the wild API to internal use
W3C Battery W3C Candidate Leaking Battery Uber Firefox and WebKit
Status APl WD Recommendation report published study remove support

Figure 1: Timeline of events.

The specification process should include a privacy
review of implementations. On the modern web, pro-
posed features often get deployed rapidly. By the time a
spec is finalized, it is common for several vendors to al-
ready fully support a feature; in fact, the W3C requires
at least two implementations to exist before official recom-
mendation. We recommend that specification authors study
implementations to prepare higher quality privacy assess-
ments. Implementations enable field testing of theoretical
attacks and can be examined for potential API misuses.

With the Battery Status API, the privacy risk stemmed
from a difficult-to-predict interconnection of software layers,
namely the browser acquiring information from the operat-
ing system in order to supply it to a web script. Such a risk
is difficult to predict during the design phase, but becomes
much easier to identify with access to an implementation.

API use in the wild should be audited after imple-
mentation. In removing the Battery Status API from Fire-
fox, Mozilla was influenced by the paucity of legitimate uses
of the API in the wild [2]. This underscores the importance
of analyzing the early use of an API after deployment. Mea-
surement studies have continually shown that fingerprinting
scripts are often early adopters of a new API [4, 1]. The
benefits of doing an early audit are two-fold: misuses of
the API that weren’t found during the privacy assessment
may be discovered, and any uncovered vulnerability can be
fixed at the specification level before web compatibility and
breakage become a concern.

In the past, fingerprinting abuse in the wild has been pri-
marily measured by the academic research community [4, 1].
As research on fingerprinting starts to lose its novelty, aca-
demic researchers may lose the incentive for frequent mea-
surements of fingerprinting abuse. As a replacement, we
suggest measurement through built-in browser probes or a
dedicated web crawling infrastructure run by browser ven-
dors or privacy advocacy groups.

Browser vendors have not given up on fingerprint-
ing — specifications should continue to address the
concern. Many new APIs increase the fingerprinting sur-
face of the browser. Privacy discussions of those APIs will
inevitably arrive at the argument that the browser’s finger-
printing surface is already large enough that any increase in
that surface is inconsequential. This contradicts the W3C’s
own stance on device fingerprinting [5], which considers it
harmful to the web and suggests authors take steps to min-
imize the fingerprinting surface of any new feature. The
decision by Mozilla and WebKit to remove the Battery Sta-
tus API due to privacy concerns shows that browser vendors
are also continuing to support this stance.

Specification authors should carry out privacy as-
sessments with multiple threat models. Our case study
shows how a seemingly innocuous mechanism can introduce
privacy risks. The original 2012 specification of Battery Sta-
tus API characterized the fingerprinting risk as “minimal”,
but did not include any analysis of that risk. An enumera-
tion of the possible fingerprinting approaches, even if min-
imal in expected effectiveness, may have helped avoid the
blind spot. We recommend that if any privacy vulnerability
is identified, possible exploitation should be modeled and
analyzed in detail.

Specification authors must also enumerate and analyze
all relevant threat models. Some implementers, such as the
Tor Browser, operate under much stricter threat models.
For example, most implementers may find it acceptable to
reveal the user’s operating system through a new API. But
not the Tor Browser, as it attempts to maintain a uniform
fingerprint across all devices.

In addition to providing guidance to browser ven-
dors, specifications should include advice for web
application developers. Web developers are ultimately
the end consumers of new features and are responsible for
complying with local data protection regulations. To assist
these developers, specifications should highlight if a partic-
ular feature provides sensitive data. Including this infor-
mation in a specification will also assist browser vendors in
properly documenting the APIs.

4. REFERENCES

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The web never forgets:
Persistent tracking mechanisms in the wild. In Proceedings
of CCS, 2014.

[2] Chris Peterson. Removing the Battery Status API?
https://groups.google.com/forum/#!msg/mozilla.dev.
platform/5U8NHoUY-1k/9ybyzQIYCAAJ, 2016.

[3] N. Doty. Reviewing for privacy in internet and web
standard-setting. In Security and Privacy Workshops
(SPW), 2015 IEEE, pages 185-192. IEEE, 2015.

[4] S. Englehardt and A. Narayanan. Online tracking: A
1-million-site measurement and analysis. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 16, pages 1388—1401, New
York, NY, USA, 2016. ACM.

[5] M. Nottingham. Unsanctioned Web Tracking. https:
//www.w3.0rg/2001/tag/doc/unsanctioned-tracking/,
2015.

[6] L. Olejnik, G. Acar, C. Castelluccia, and C. Diaz. The
leaking battery. In Data Privacy Management, 2015.

[7] W3C. Privacy Interest Group Charter.
https://www.w3.0rg/2011/07/privacy-ig-charter, 2011.



