
Proceedings on Privacy Enhancing Technologies ; 2017 (1):118–131

Mojtaba Eskandari*, Maqsood Ahmad, Anderson Santana de Oliveira, and Bruno Crispo

Analyzing Remote Server Locations for
Personal Data Transfers in Mobile Apps
Abstract: The prevalence of mobile devices and their ca-
pability to access high speed internet has transformed
them into a portable pocket cloud interface. Being home
to a wide range of users’ personal data, mobile de-
vices often use cloud servers for storage and process-
ing. The sensitivity of a user’s personal data demands
adequate level of protection at the back-end servers. In
this regard, the European Union Data Protection regu-
lations (e.g., article 25.1) impose restriction on the lo-
cations of European users’ personal data transfer. The
matter of concern, however, is the enforcement of such
regulations. The first step in this regard is to analyze
mobile apps and identify the location of servers to which
personal data is transferred. To this end, we design
and implement an app analysis tool, PDTLoc (Personal
Data Transfer Location Analyzer), to detect violation
of the mentioned regulations. We analyze 1, 498 most
popular apps in the EEA using PDTLoc to investi-
gate the data recipient server locations. We found that
16.5% (242) of these apps transfer users’ personal data
to servers located at places outside Europe without be-
ing under the control of a data protection framework.
Moreover, we inspect the privacy policies of the apps
revealing that 51% of these apps do not provide any pri-
vacy policy while almost all of them contact the servers
hosted outside Europe.

Keywords: Personal Data, Privacy, Mobile Apps, Cloud,
Information Flow Analysis

DOI 10.1515/popets-2017-0008
Received 2016-05-31; revised 2016-09-01; accepted 2016-09-02.

*Corresponding Author: Mojtaba Eskandari: DISI,
University of Trento, Italy and Fondazione Bruno Kessler,
Trento, Italy, E-mail: mojtaba.eskandari@unitn.it
Maqsood Ahmad: DISI, University of Trento, Italy, E-mail:
maqsood.ahmad@unitn.it
Anderson Santana de Oliveira: SAP Labs, France, E-mail:
anderson.santana.de.oliveira@sap.com
Bruno Crispo: DISI, University of Trento,
Italy and DistriNet, KULeuven, Belgium, E-mail:
bruno.crispo@cs.kuleuven.be

1 Introduction
The number of smartphone users has rapidly increased
over the past decade. International Data Corpora-
tion (IDC) reported 1.43 billion smartphone shipments
in 2015 and anticipated a steadily rise to 1.92 billion
shipments in 2020 [35]. In Europe alone, according to the
Ericsson ConsumerLab’s report, there were 475 million
user subscriptions in 2014 and this number is estimated
to reach 815 million subscriptions in 2020 [18].

Smartphones often store personal data such as con-
tacts, financial information, photos, location, etc. Essen-
tially, “personal data” refers to any information relating
to an identified or identifiable natural person i.e., data
subject [34]. It is a common practice for mobile apps to
collect, process and transfer personal data to back-end
servers (cloud) for further processing and storage. Cloud
service provisioning usually is independent of the service
provider’s location; thus, it raises the issue of identify-
ing in which jurisdiction, personal data is stored and
processed. Data protection regulations, such as article
25.1 of the European Union Data Protection Directive
(DPD’25.1) [24, 34], restrict personal data transfer to
particular jurisdictions. DPD’25.1 prohibits the trans-
fer of personal data to any country that does not ensure
an adequate level of protection. This principle drove the
creation of the EU-US Safe Harbor agreement in July
2000 [19].

Years later, an Austrian privacy activist, Maximil-
lian Schrems, sued Facebook Ireland claiming that the
company made his personal information available to
the US intelligence agencies without any consent or
notification[10]. As consequence of that filed case, the
European court of Justice decided to invalidate the Safe
Harbor agreement [14]. This decision caused numerous
debates on the legal aspects of transferring and pro-
cessing European Citizens’ personal data to outside the
European Economic Area (EEA) [4, 44].

In February 2016, the European Commission and
the United States agreed on a new framework for
transatlantic data flows, the EU-US Privacy Shield [2].
The new arrangement imposes stronger obligations on
companies in the US in order to protect the European
users’ personal data. Moreover, it provides more robust

Analyzing Personal Data Transfers in Mobile Apps 119

monitoring and enforcement mechanism that allows the
European users to raise any inquiry or complaint in this
context with a dedicated new Ombudsman.

Several studies highlighted that mobile applications
actively collect and exfiltrate personal data from smart-
phones [3, 16, 23]. The main concern here is how to
enforce jurisdictional regulations such as DPD’25.1 in
mobile apps. As the first pace to tackle the problem, we
design and implement PDTLoc (Personal Data Trans-
fer Location Analyzer), which employs both static and
dynamic analysis techniques to infer whether the apps
violate DPD’25.1. PDTLoc inspects mobile applications
and extracts information about the collected personal
data and the jurisdictions of the remote servers to which
the data is transferred. In order to investigate the cur-
rent state of the privacy protection of the European
smartphone users with regard to DPD’25.1, we used
PDTLoc to analyze the 1, 498 most popular apps in the
EEA. We obtained evidence confirming that 16.5% (that
is 242 apps), transfer data outside the EEA whitout
user consent. This signifies that these apps collect and
transfer personal data to servers located outside the
EEA escaping the control of a data protection frame-
work (e.g., Safe Harbor), thus violating the users’ data
protection rights. We also analyzed the privacy policies
provided by the app developers. One striking finding is
that 51% of the most used apps in Europe do not provide
any privacy policy. Furthermore, out the apps provid-
ing a privacy policy, only 53 apps (3.5% of all) have Safe
Harbor certification, whose agreement was anyway de-
clared invalid, as we mentioned above. Perhaps the sit-
uation will be clarified when the EU-US Privacy Shield
framework will be finalized.

Contributions:
– We design and implement PDTLoc, an Android app

analysis tool that employs a backward program slic-
ing technique to detect DPD’25.1’s violation by mo-
bile apps [34].

– We collect a dataset of 1, 498 Android apps which
are the most used apps in the EEA. We analyze
these apps using PDTLoc to investigate the recipi-
ent server locations of the users’ personal data. To
our knowledge, this is the first study of the kind
conducted so far.

– In order to demonstrate the gravity of the problem,
we also analyze the privacy policies of the apps in
the dataset in order to check if the data controller
and the processing locations are clearly identified.

Organization: Section 2 provides a formal description
of the problem. Section 3 discusses the background of
data flow analysis. We explain the design and imple-
mentation of PDTLoc in Section 4 and discuss the em-
pirical analysis setup and the results in Section 5 and
Section 6, respectively. Section 7 provides suggestions
for better data governance in the EU. Section 8 states
the limitations of our work and Section 9 reports the
related work. Finally, Section 10 concludes the paper.

2 Problem Statement
Let A = {a0, a1, a2, . . . , an} be a set of android apps.
There is a jurisdictional regulation denoted by R =
{l0, l1, l2, . . . , lq}, which restricts ai ∈ A to trans-
fer data to particular locations i.e., l0...lq. Let S =
{s0, s1, s2, . . . , sm} be the set of all servers used by A

to store and process data. Each sj ∈ S is situated in
a physical location indicated as sl

j . There is a T(a,s)
function showing the app a transfers personal data to
the remote server s. Formally speaking, we have to en-
force the regulation R on the set A by using Equation 1:

∀ a ∈ A ∃ s | T(a, s) ⇒ sl ∈ R (1)

The problem we solve is to determine, with a particular
level of certainty, whether ai ∈ A violates R. For each
app, we have to discover the list of the remote servers
to which it transfers data; then, we need to find their
locations and match them against the allowed list, R,
to discover violations.

In the analysis we perform in this work, the major
goal is to expose the status of privacy protection with
respect to DPD’25.1 by the most popular mobile apps
in the EU. More specifically, we analyze the type of
personal data accessed by these apps, the number of
apps that collect/transfer personal data to servers over
the network, and the locations of the recipient servers.

Caveat: In this work, we do not try to assert the
compliance of the apps but rather to detect if they are
likely violating user’s privacy rights concerning interna-
tional data flows limited by the DPD’25.1.

3 Data Flow Analysis
The purpose of our data flow analysis is to understand
how an app retrieves and transfers personal data. In
the context of the problem, we need to infer whether a

Analyzing Personal Data Transfers in Mobile Apps 120

user’s personal data leaves the boundary of the app and
to identify the geographical location of the data recip-
ient. Transferring personal data consists of a data flow
between the Android framework APIs called to access
personal information; such as device Id, location, con-
tacts, calendar, photos, etc., i.e., “source APIs”; and the
APIs that provide potential transfer points; such as net-
work, files, log, etc. i.e., “sink APIs”. Source and sink
APIs are discussed in detail later in Section 4. An auto-
mated data flow analysis tool detects data flows between
the source and sink APIs. We can perform such analy-
sis both statically, i.e., extracting information from the
bytecode/source code; and dynamically, i.e., running an
app on a device/emulator and monitoring its behavior.
Here we describe the fundamental concepts regarding
static and dynamic analysis that form the basis of our
approach.
– Backward Program Slicing: In the bytecode rep-

resentation of a program, two types of data struc-
tures are used for storing and performing operations
on data, i.e., stack and register. Operations are per-
formed on stack or register variables using program
instructions (I). In this text, we use registers (r)
as we perform analysis on Android apps and An-
droid is based on a register based virtual machine.
Backward program slicing is a data flow analysis
technique that, with respect to a register r used at
point P in a program, considers all the instructions I
that can be executed before P and have a direct or
indirect effect on the value of r at P. The combina-
tion of r and P, a certain API call in our case, forms
a slicing criterion, whereas the set of instruction I
that effect the value of r at P is called a backward
slice. For instance, Line 2–6 and Line 9 represent
a backward slice corresponding to the variable Sum
used at Line 9 (Point P) in Listing 1.

Listing 1. Backward Slicing Example
1 ...
2 int i, sum , count;
3 i = 1;
4 sum = 0;
5 for(; i != 50; i++){
6 sum += i;
7 count = count * 100 / i;
8 }
9 System.out.println("Sum = " + Sum); // point P

As a backward slice usually starts from a sink API,
an inspection of a backward slice corresponding to
a particular register, can provide information about
its source and, thereby, infer the data flow path be-
tween the source and sink APIs. The source, here, is
represented by the API that retrieves the personal
information and the sink is represented by the API

that transfers the information to the outside world
through the Internet.
Such data flow paths can also be inferred by other
analysis techniques outlined in the literature (Sec-
tion 9), such as [6]. These techniques, generally,
identify access to sources of personal information
and then track its flow in the program. Since the
basic motivation of this work is to find the loca-
tion of the recipients of personal information, start-
ing the analysis from the sink APIs yields a better
performance by filtering out the apps that do not
transfer personal information to the outside world.
Therefore, we use backward program slicing and ef-
fectively avoid analyzing those apps which might
access personal data, but do not send it outside.

– Dynamic Tracking: Dynamic analysis is the pro-
cess of executing an app and observing its behavior.
Tracking the behavior exhibited by an app at exe-
cution time, usually, involves monitoring the system
resources accessed by the app, such as filesystem,
network, telephony, etc. Since, this work focuses on
personal data transfer over the network, we monitor
the outgoing traffic.

Both of these techniques, static and dynamic, come with
their respective pros and cons. Static analysis is able to
reach all possible data flows in the source code and not
only those executed in a specific run of the app. On the
other hand, there are programming features, such as
various types of code and data obfuscation, reflection,
and dynamic code loading, that yields an incomplete re-
sult. Reflection is a programming feature that enables
apps to operate on strings, i.e., instantiate objects of
a class, invoke its methods and access/modify its fields
where the class, method and field names are represented
by strings that may not be readily available for a static
analyzer[36]. Similarly, dynamic code loading allows an
app to extend its code base after installation[13]. There-
fore, it is impossible for a static analysis tool to fully an-
alyze such cases of dynamic nature. On the other hand,
dynamic analysis is able to overcome these limitations
in many cases. However, the app must be executed to
trigger the critical data flows for dynamic analysis to
capture sensitive behavior, which is a challenge for dy-
namic analysis tools. There are limitations with each
technique; however, if combined, static and dynamic
analysis techniques can complement each other in de-
signing a more effective data flow analysis system.

Analyzing Personal Data Transfers in Mobile Apps 121

4 Our Approach: PDTLoc
In order to effectively detect violation from DPD’25.1
in popular mobile apps, we design PDTLoc, a tool that
takes advantage of both static and dynamic analysis.

4.1 Overview

Figure 1 shows an overview of the basic blocks and the
workflow of PDTLoc. PDTLoc consists of three major
modules: a static analysis, a dynamic analysis, and a
location investigator module. Both the static and the
dynamic analysis modules take an .apk file; extract a
list of accessed personal data; and a list of server names,
URLs and IP addresses to which the personal informa-
tion is sent. The dynamic analysis module complements
the static module and it is only activated when the given
app uses reflection. The lists of URLs extracted by both
the modules may wary due to different nature of these
analysis techniques. Therefore, we consider a union set
of both the lists.

The lists of URLs along with the identifiers of the
respective personal information, which is sent to these
URLs, are stored in a repository for further analysis.
The Location Investigator module (shown in Figure 1)
reads URL/IP addresses from the repository and creates
a list of the server locations where the app sends the
collected personal data.

4.2 Static Analysis Module

PDTLoc’s static analysis module, represented by mod-
ule 1 in Figure 1, takes an .apk file and extracts
the URLs/IP addresses of the destination servers. APK
is an archive file format that represents the Android
app and contains all the compiled code and the com-
piled/raw resources. Android apps are usually written
in Java, compiled into Dalvik bytecode and then all the
compiled classes are packed into a classes.dex file.
Therefore, we have to analyze this file to understand
the behavior of the app.

To analyze the classes.dex file, the static analy-
sis module extracts and translates it into Smali code
by employing ApkTool [39]. Smali code is a disassem-
bled representation of the Dalvik bytecode [22]. We use
Smali disassembly over Java because the decompilation
process is more prone to be thwarted by obfuscation,
whereas the disassembly is more resilient [37]. The Static
Check component inspects the Smali code for the use

of reflection in order to pass the app to the dynamic
analysis module. The Backward Slicer performs back-
ward program slicing on the Smali files to discover the
information flow to certain sink APIs. This component
employs an extension of SAAF (Static Android Analysis
Framework for Android apps) that is able to extract the
backward slices corresponding to a given sink API [25].

Table 1 lists the sink APIs along with the cor-
responding parameters of interest used in our analy-
sis. We carefully analyzed the lists of sink and source
APIs provided in the literature, such as [6, 42], and
considered only those sink APIs that take the name
or IP address of a particular server and transfer data
to it. The Backward Slicer receives these APIs in the
form of an .xml file referred to as BackTrack Pat-
terns (shortly BT Patterns). A BT Pattern provides in-
formation about the API, such as class name, method
name, position of the parameter in the parameters
list and its type. For example, Listing 2 instructs
the Backward Slicer to backtrack parameter 0, which
is of type Ljava/lang/String;, of setURI method
of class org/apache/http/client/methods/HttpPost.
Similarly, information about the rest of the APIs in Ta-
ble 1 is also provided to the Backward Slicer.

Listing 2. BT Pattern Example
1 <backtracking -pattern
2 active="true" class="org/apache/http/client/methods

/HttpPost"
3 description="Apache HTTP POST" method="setURI"

parameters="Ljava/lang/String;"
4 interesting="0" />

The Backward Slicer spots the position of a given
BT pattern in the Smali files, backtracks the tar-
get parameter and extracts the corresponding code
slice. A code slice contains all the code statements
that have a direct/indirect impact the register hold-
ing the value of the target parameter. Listing 3 depicts
an example of a backward slice corresponding to the
API java/net/URL;-><init>. Similar slices represent-
ing each of the BT patterns are extracted in the form
of BT report and provided to a Slice Analyzer.

The Slice Analyzer component traverses the slices
and extracts URLs/IP addresses to which user’s per-
sonal data might be transferred. Its major role is to
analyze the slices for certain data extraction patterns
that represent access to personal data. A typical data
extraction pattern consists of a class name, a method
name, and a parameter as listed in Table 2. This list in-
cludes only the APIs provided by the framework, used
to acquire a user’s personal information. However, it
does not consider other methods of acquiring user per-

Analyzing Personal Data Transfers in Mobile Apps 122

Fig. 1. A general overview of PDTLoc.

Class Method Parameter
javax/net/ssl/SSLSocketFactory createSocket host, port
android/net/Uri parse uri
java/net/URL <init> *
java/net/Socket setRequestProperty key, value
org/apache/http/client/methods/HttpGet <init>, setURI uri
org/apache/http/client/methods/HttpPost <init>, setURI, setEntity uri
org/apache/http/client/methods/HttpPut <init>, setURI uri
java/io/OutputStream write *
java/io/Writer write *

Table 1. The sinks of personal information.
*: All possible parameters.

sonal data, such as data input through text fields or that
stored on files on the device, etc. At this stage, PDTLoc
can only guarantee the existence of such data flow paths
and flags them suspicious with respect to their potential
violation of DPD’25.1. Finally, the Slice Analyzer gen-
erates a mapping of the personal data accessed by the
app and the corresponding server-locations to which the
app might transfer the personal data, and stores it in a
repository for further processing.

4.3 Dynamic Analysis Module

We dynamically analyze the apps using reflection
(around 90% of the apps in this study) that can po-
tentially conceal data flows when only statically ana-
lyzed [45]. Therefore, based on the static checks, the
PDTLoc’s dynamic analysis module, (module 2 in Fig-
ure 1), is activated in case of the app making use of re-
flection. The dynamic analysis module utilizes a number
of tools provided as part of the Android SDK. It exe-
cutes the given app, monitors its network traffic, and
captures the URLs/IP addresses to which the personal
data is transferred. It employs adb to manage the dy-

namic analysis process that follows certain steps for each
app:
– Launch the emulator and configure WiFi and GPS.
– Run the TCP-Dump tool to monitor the network

traffic [38].
– Install the app and unlock the emulator.
– Launch the app with Monkey to stimulate it [21].

Monkey injects random events into the app including
touch, drag, type, change the screen orientation, etc.

– After completion of the execution, URLs/IP ad-
dresses and the parameters (i.e., the transmitted
data) are extracted from the TCP-Dump, stored in
the repository and all the data is erased from the
emulator in order to make it ready for next app
analysis.

This process is repeated for each app that uses reflec-
tion. Since the goal of using the dynamic analysis is to
complement the static analysis, the results are stored in
the repository as a union set of both the analysis mod-
ules. The dynamic analysis module captures all those
data flows (including those involving in reflection, na-
tive code, dynamic code loading, etc.) that are prop-
erly executed during the analysis run. In order to ex-

Analyzing Personal Data Transfers in Mobile Apps 123

Listing 3. Backward Slice Example
1 const -string v0 , "facebook.com"
2 sput -object p0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;
3 sput -object v0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;
4 sget -object v0 , Lcom/facebook/Settings;->facebookDomain:Ljava/lang/String;
5 const -string v0 , "https :// graph.%s"
6 ...
7 move -result -object v4
8 invoke -direct {v3 , v4}, Ljava/net/URL;-><init >(Ljava/lang/String ;)V

Class Method Parameter Parameter example
android/content/ContentResolver query uri content://media/external/video/media

content://sms/inbox
content://com.android.browser/history

android/net/Uri parse uri
android/content/Context getSystemService name location

connection
wifi
netstats
batterymanager

android/telephony/TelephonyManager getAllCellInfo
getCellLocation
getDeviceId
getSimCountryIso
...

*

Table 2. The sources of personal information

tract the personal information traveling through those
data flows, we analyzed the URLs by looking for partic-
ular patterns like “lat=[\.\-0-9]*”, “city=[a-Z]*”,
“deviceIds=[0-9]*”, “macAddress=[0-9a-f]*”, etc.

4.4 Location Investigator

The fundamental purpose of PDTLoc is to analyze an
app and tell if it sends user’s personal data to servers
hosted at locations outside the jurisdiction defined by
the given policies, e.g., the EU DPD’25.1. Therefore,
we need to investigate the physical locations of the
machines represented by the extracted URLs/IP ad-
dresses. The PDTLoc’s third module is Location Inves-
tigator (module 3 in Figure 1). This module reads
the URLs/IP addresses of the remote servers from
the repository and determines their physical locations.
There are a number of online databases that bind IP
addresses (or server names) to their corresponding geo-
graphical locations. We configure the Location Investi-
gator to use IPaddressAPI.com [28]. The Location In-
vestigator retrieves the locations using this online IP-
Location service and reports a mapping of URLs and ge-
ographical locations. It also marks those locations which
are outside the declared jurisdiction.

5 Empirical Analysis
This section describes the criteria and the procedure of
dataset collection followed by the experimental setup
and the evaluation goals.

5.1 Dataset Collection

Since this work considers the analysis of the transfer
of European users’ personal data outside the EEA as a
case study (i.e., violating DPD’25.1), we have targeted
the popular mobile apps in the EEA. For the app selec-
tion, we relied on AppFigures which is an app tracking
platform that monitors the downloads and sales of the
apps from Google and Apple app stores [5]. We down-
loaded AppFigures’s list of the 400 most popular apps
for each EEA state. We identified 1, 498 distinct android
apps for the entire EEA and downloaded them. We use
android apps because they have over 80% of the mar-
ket share [27], also for the availability of analysis tools
and their simple downloading mechanism. However, we
searched for the apps in our list, on iTunes in order to
check their availability for iOS. In the dataset we have
collected, 80% of apps are available for both Android

Analyzing Personal Data Transfers in Mobile Apps 124

and iOS and 20% are available only for Android. There-
fore, our research results are meaningful to iOS users
as well; assuming the destination cloud servers are the
same for both OS, which is reasonable.

We developed a crawler to download .apk files. It
browses the given marketplace website for the down-
load link of each app and downloads it. Moreover, since
some marketplaces do not provide the download link
instantly, the crawler manages to switch to another
marketplace to ensure that the app is downloaded. We
submitted all the downloaded .apk files to VirusTotal
which is an online service to analyze suspicious files and
URLs [41]; it marked them as benign.

5.2 Experimental Setup

As PDTLoc consists of a static and a dynamic analysis
module, we designed the experiment in such a way to
know the results from both modules separately as well
as their combined results. The static module analyzes
all the apps in the dataset, whereas the dynamic mod-
ule analyzes those apps which pass the static reflection
check.

Static analysis module configuration: This
module analyzes all 1, 498 downloaded .apk files. We
used a desktop computer with an Intel Core i5
3.20 GHz CPU and 8 GB memory running Ubuntu
15.10 for the analysis. The static analysis took roughly
38 hours on this machine.

Dynamic analysis module configuration: The
dynamic module analyzes those apps that are marked
for the use of reflection. We call it Auto-Dynamic as it
uses Monkey to stimulate the apps. It employs Android
Lollipop 5.0.1 on its emulator and the Monkey tool is
configured to inject 700 random events into each app.
We executed the experiment on the same machine and
it took about 6 days to analyze all the given apps.

5.3 Evaluation Goals

The experiments are designed to answer the following
research questions:
– RQ1. Accessed Data: What are the types of per-

sonal data accessed/collected by the apps?
– RQ2. Data Transfer: What are the locations of

the remote servers to which the collected personal
data is transferred?

– RQ3. DPD’25.1 Violation: How many of the
popular apps used in the EEA, violate DPD’25.1?

Notice that there may be exceptions where transfers
outside of the EEA are authorized, such as Bind-
ing Corporate Rules [1]. Data subjects need to be
informed about the adoption of such legal mech-
anisms, through the terms of service and privacy
policy. We took this in consideration when consid-
ering violations, looking for information about the
agreements and certifications by the app developer
when available.

6 Results and Discussions
We analyzed statically all 1, 498 apps and out of these
apps, 1, 472 (98%) apps use reflection; therefore, we an-
alyzed them also dynamically.

This section reports the analysis results and dis-
cusses them in the light of the consequent privacy con-
cerns. The supporting data, the full list of the analyzed
apps and the study’s conclusions are accessible via this
link: http://bit.do/pdtloc.

6.1 Personal Data Accessed

Pieces of personal data stored on a user’s device are cat-
egorized into three broader groups as shown in Table 3.
These groups, Content; Device; and Network, represent
user data stored on the device; device status data; and
network data, respectively.

Figure 2 provides a graphical representation of the
number of apps that access the various types of personal
data (RQ1). According to these results, device status
data, marked as “Device”, such as device id, notifica-
tions and power information, etc., as shown in Table 3,
is accessed by almost all apps. Further examination re-
vealed that 75% of the apps request device location.
Similarly, network information is of interest to 65% of
the apps. What is alarming here is that over 70% of the
apps read “Content”, which carries sensitive personal
information.

6.2 Contacted Servers

The static analysis and the dynamic analysis module
extracted, in total, 135 K and 21 K valid URLs/IP ad-
dresses, respectively. The number of URLs extracted by
the static analysis module is much more as compared to
those extracted by the dynamic analysis. The disparity
in these numbers further endorses that static analysis

http://bit.do/pdtloc

Analyzing Personal Data Transfers in Mobile Apps 125

Category Information
Content Calendar

Contacts
Audio
Video
Image
Files
MMS & SMS
Call log
System settings
User dictionary

Device Device ID
Online accounts
Power state
System alarm
Device location
Telephony services

Network MAC Address
Proxy settings
Network Status
Network connectivity
Network usage
history and statistics

Table 3. Types of personal data in each category.

Content Network Device Location

0%

20%

40%

60%

80%

100%

Fig. 2. Type distribution of personal data collected by the ana-
lyzed apps.

provides an over-approximation of the program and ex-
tracts URLs which might not be contacted in an actual
program execution, whereas the dynamic analysis ex-
tracts only those URLs which are contacted by the app
in a single run. However, the presence of any of these
URLs in the executable of an app provides a potential
data transfer point and cannot be ignored. Since the
purpose of dynamic analysis is to widen the analysis
range, we use a combination of the URLs/IP addresses
extracted by both the modules. Figure 3 illustrates the
value of the dynamic analysis module to the static anal-
ysis results; where the red line shows the number of
URLs found in a particular app and the blue line repre-
sents the number of new unique URLs discovered only
by dynamic analysis in the same app. For certain apps

0 200 400 600 800 1,000 1,200 1,400
100

101

102

Apps

#
Se

rv
er
s

Static
Dynamic

Fig. 3. This graph shows that how effective is the auto-dynamic
analysis technique in covering the blind spots of the static analy-
sis technique.

the number of new URLs/IP addresses discovered by
the dynamic analysis in comparison to the static anal-
ysis is much higher than the others possibly because of
heavy use of reflection.

It is important to mention here that the relation
between servers and URLs is one-to-many, i.e., on each
server there can be multiple resources represented by
different URLs. Therefore, the number of servers an app
contacts is considerably less than the number of URLs.

Moreover, PDTLoc could extract data flow paths
only for a portion of all the URLs due to known limita-
tion of static and dynamic analysis. For clarity, we refer
to the data flows captured during the dynamic analysis
as observed data flows. Figure 4 provides the number
of servers and apps for which at least a personal data
transfer is observed. Overall for 505 (34%) apps, transfer
of personal data is observed among which 295 (20%) of
the apps transfer personal data outside the EEA. Sim-
ilarly, 401 servers are the recipients of data transferred
by these apps among which 213 are located outside the
EEA.

Outside EEA Global
0

200

400

600

213

401

295

505Servers Apps

Fig. 4. Number of servers and apps engaged in actual data trans-
fer

Analyzing Personal Data Transfers in Mobile Apps 126

6.3 Server Locations

Figure 5 illustrates the distribution of locations for
servers engaged in the transmission of personal data
(RQ2). As it reveals, only 23% of the servers are hosted
in the EEA and the majority of the servers (67%) is in
the US. Therefore, it is expected that the major portion
of personal data to travel outside the EEA.

67% 23%

2%
2%

4%

United States

Europe

China

Hong Kong

Russia

Japan

Others

Fig. 5. The distribution of the locations to which the European
users’ personal data collected by mobile apps travels.

The main focus of this work is to provide a loca-
tion analysis of the servers contacted by the apps in
our dataset. Figure 6 shows a graphical representation
of the country-wise distribution of servers based on the
number of apps. It illustrates that a reasonable portion
of the apps contact (observed and potential data trans-
fer) servers outside the EEA and US, especially China,
Japan, India and Russia.

As most of the analyzed apps contact servers outside
the EEA, it is interesting to know the number of apps
transferring data only to a certain location/country. In
this regard, Figure 7 illustrates the number of apps ex-
clusively contacting servers located in the EEA, US,
EEA & US and any other country. It shows that none
of the apps perform exclusive data transfer to servers
located outside the EEA and US. Only 12 (less than
1%) apps contact servers located only inside the EEA.
In contrast, the number of apps contacting servers ex-
clusively in the US is reasonably higher, i.e., 892 apps.
This implies that most of these apps either belong to
the US-based companies or having their data centers
located in the US. Similarly, the number of apps ex-
clusively contacting servers in the EEA & US is 232. A
similar reasoning applies to these apps as well where the
apps either communicate to servers in the US or their
local counterparts in the EEA.

1 10 100 1,000

EEA
US

China
Japan

India
Russia

Australia
Korea

Canada
Hong Kong
Singapore

Others

apps

Observed Potential

210

258

10

6

5

2

12

7

2

9

Fig. 6. The target countries per apps.

0 200 400 600 800 1,000

EEA

US

EEA+US

Others

12

892

232

0

apps

Fig. 7. The number of apps that transfer the personal data exclu-
sively to the EEA, US and other locations.

Analyzing Personal Data Transfers in Mobile Apps 127

6.4 Privacy Discussion

The new agreement between the EU and the US, the
EU-US Privacy Shield, provides stronger obligation on
the US based companies dealing with EU personal data.
However, similar to the Safe Harbor, the EU-US Pri-
vacy Shield also control only a portion of the entities
(service providers, apps) involved in personal data col-
lection/transfer to US and other countries. Figures 8
and 9 depict the results of the analysis we have done on
the mobile apps’ privacy policy and terms of use. More
than half of the most used apps in Europe, 51%, do not
provide any privacy policy as shown in Figure 8. They
simply do not tell their users what they do to the per-
sonal data they collect and where they store and process
them.

In the app analysis, we observed that 7% (108) of
the apps transfer personal data outside the EEA while
do not provide any privacy policy; thus, this is a vi-
olation of the DPD’25.1 regulation (RQ3). Moreover,
the analysis results reveal that 50% of the apps con-
tact servers (potentially transfer personal data) outside
the EEA and since these apps do not provide a privacy
policy, they should anyways be considered suspicious.

Among all the apps providing privacy policy (49%),
we observed that 13% transfer personal data to the non
EEA based servers (e.g. , the US, China, Russia, etc.)
while only 3.5% of them holding safe harbor certifica-
tion (Figure 9). We concludes that 9.5% (134) of the
apps certainly violate DPD’25.1 (RQ3) since users did
not provide consent for those international data flows,
and the available privacy policies are transparent about
the data processing locations. Additionally, when we
consider the apps which do not provide privacy policy
and transfer personal data outside EEA 7% (108), in
total, we confirm that 16.5% (242) of the analyzed apps
violate this regulation.

One of the major challenges for the Privacy Shield
Agreement is that even if we assume that its enforce-
ment will be practical, it will cover only a small portion
of mobile apps dealing with European users personal
data. The European Data Protection watchdogs would
need to have a more proactive role in inspecting compli-
ance with the Data Protection Regulations, in particular
for widely used mobile apps.

7 Improving Transparency and
Compliance

A number of actions are necessary to improve the con-
trol over trans-border personal data flows. It is im-
portant that the data protection authorities in Europe
demand transparency from the application providers
about the location of the data processing. This needs to
be explicit in privacy policies. It is vital to clarify which
parties have access to personal data and for which pur-
pose. In our study, we observed some applications trans-
ferring sensitive personal data items to multiple servers
across the globe. In addition to the jurisdictional issue,
as all countries do not offer the same level of privacy
protection to individuals, it is not possible to state that
all those servers belong to the data controller, or even
if the data controller is aware of them. Data Protection
Authorities (DPAs) need to be proactive in protecting
the privacy rights of individuals, by identifying interna-
tional data which is not compliant with the regulations
and agreements in place. The market place provider
needs to make privacy policies mandatory, that is the
minimum acceptable action that Google, Apple and Mi-
crosoft need to take, to mention the main companies
who control mobile application marketplaces today. Ide-
ally, the apps should display certification seal, but it is
possible to go further. Research on machine readable
and automated privacy policy enforcement has shown
it is possible to offer more transparency and control to
data subjects [7, 8, 11]. Moreover, the marketplace must
have a mechanism to promptly remove applications sig-
naled as non-compliant by DPAs or by the users. Fur-
thermore, it is not difficult to implement user notifi-
cation features on the mobile OS, such that users can
remove those non-compliant applications from their de-
vices. On the other hand, it is extremely hard to reclaim
the data that has already been leaked.

We are planing to provide PDTLoc as an online
service. End-users, marketplaces and security agencies
can utilize such service to perform privacy analysis of
mobile apps.

8 Limitations
PDTLoc determines the physical location of the
remote servers by employing a third party ser-
vice e.g., IPAddressAPI.com; thus, it relies on the in-
formation provided by this service.

Analyzing Personal Data Transfers in Mobile Apps 128

0% 20% 40%

No Privacy Policy

Non EEA–Potential

Non EEA–Observed

51

50

7

Fig. 8. The apps that do not provide any privacy policy.
0% 20% 40%

Provide Privacy Policy

Non EEA–Potential

Non EEA–Observed

the US–Observed

Safe Harbor

49

49

13

9.5

3.5

Fig. 9. The apps providing privacy policy.

Our server location analysis of the apps is based on
the 1st hop server and do not consider if the personal
data might be transferred to another server, e.g., App1
transfers data to abc.com and then the data is trans-
ferred from abc.com to xyz.com. In this case, PDTLoc
only considers the transfer of data to the 1st server. It is
impossible to trace data transfer once they are released
to a server without collaboration of the target server.
However, the mere transfer of the data towards another
jurisdiction without explicit consent by the data sub-
ject and for which no international agreements are in
place, already represents a violation. Therefore, PDT-
Loc only considers the transfer of data to the first hop
server. Moreover, some applications might behave differ-
ently depending upon the location of the device they are
running on. Since we have performed dynamic analysis
in only one location (i.e., Italy), there is no guarantee
about the behavior of such apps elsewhere.

The source and sink APIs considered in this work
is a representative list of APIs which can be used by
apps to retrieve personal data and transfer it over the
network. However, there are other methods to receive
personal data and transfer it outside which is not con-
sidered in the analysis, e.g., apps can coordinate with
each other to acquire and transfer data. Furthermore,
we focus on only benign apps rather than malware that
usually employ more sophisticated and stealthy meth-
ods to exfiltrate personal information.

The data flow paths extracted by the static analysis
module only indicate the existence of potential personal
data transfer in the app, but do not ensure if the app
actually transfers personal data outside. However, even
the existence of such data flow paths enables the app
potentially violate DPD’25.1 and are, therefore, flagged
in this work.

9 Related Work
Literature shows a number of research publications and
tools which try to solve the problem of privacy leakages
in Android apps. They focus on a wide range of private
user data and are based on different strategies. Here
we briefly discuss some of them in the context of our
problem.

9.1 Static Privacy Leak Detection

A number of static analysis approaches have been pro-
posed in literature which can serve to detect privacy
leakage in Android apps. Based on the model of the An-
droid framework, CHEX is an approach that performs
data flow analysis to detect component hijacking vul-
nerabilities [31]. In principle, the same approach can be
used to detect also privacy leakages.

Scandal [29] tries to detect leakage of private infor-
mation, such as location information and phone identi-
fiers, using media including Network, Files and SMS. It
is based on identifying data flow using abstract seman-
tics of the applications. Although, it provides a concrete
representation of the data flow, it consumes a lot of
resources and would therefore suffer from performance
and scalability issues.

Androidleaks is a WALA based solution to detect
privacy leakages in Android apps [20] [26]. It uses a
system dependence graph to perform taint analysis.

Based on bytecode analysis of Android apps,
DroidAlarm is a tool designed to counter privilege esca-
lation by detecting capability leaks [47]. It uses control
flow graphs to detect and extract capability leak paths
from to sensitive sources to public interfaces. However,
it only supports Android 2.2 which is quite outdated.

AmanDroid is an inter component-data flow analy-
sis framework for Android apps [42]. It is an extensible
tool implemented in Scala and based on an intermedi-
ate representation of Dalvik bytecode. Amandroid per-

Analyzing Personal Data Transfers in Mobile Apps 129

forms data flow analysis by constructing an inter com-
ponent data flow analysis graph. It provides a plugin
for taint analysis which captures data flow between var-
ious sources and sinks of information. The sources and
sinks are easily configurable in Amandroid’s taint anal-
ysis plugin. Theoretically, these sort of tools are ideal
for detecting privacy leakage. However, we practically
tried it on some apps and it could not detect some very
obvious data flows.

Bodden et al. presents, Flowdroid, one of the most
sophisticated static analysis tool for Androd [6]. It is
a Soot based tool which performs data flow analysis
on a representation of Java bytecode called Jimple [40].
They also publish a benchmark of applications, known
as DroidBench, which can be used to test data flow anal-
ysis tools.

Epicc is another static analysis tool which focuses
on privacy leakage considering inter component com-
munication and inter app data flows [32]. They pro-
vide a cover for privacy leakage between various compo-
nents of an app and among multiple apps, which most
of the static analysis tools do not consider. To make
it a complete package, Didfail and IccTa are two other
tools which combine Flowdroid and Epicc [9] [30]. They
utilize the object/field/context sensitivity of Flowdroid
and the inter-component data flow detection Epicc to
construct superior tools. This chain of static analysis
tools, however, is based on Soot that was designed for
Java applications and some times fails to analyze An-
droid apps.

As a matter of fact, some of these static analy-
sis tools capable of detecting privacy leakage can be
adopted to be used in our work. However, we preferred
performing analysis on Smali code as it provides a di-
rect representation of the Dalvik bytecode. Therefore,
we used an extension of SAAF that performs analysis
on Smali code and is based on backward program slicing
of apps. The extension of SAAF overcomes some of its
limitations, such as handling data flow through intents.

9.2 Dynamic Privacy Leak Detection

As static analysis usually suffers from over-
approximation and, therefore, a higher number of false
alarms, dynamic analysis solutions provide the answer.

SmartDroid detects sensitive APIs in an app, cre-
ates a static activity switch path and control flow paths
leading to these sensitive APIs and dynamically exe-
cutes these paths to generate trigger inputs which could
be used to detect privacy leakage [46]. They rely on in-

strumentation of framework services to ensure dynamic
execution.

TaintDroid is one of the most widely cited tools in
Android dynamic privacy leakage detection [17]. It is
based on tainting sensitive information and tracking it
towards sensitive sources. Similarly, Droidbox is another
tool which detects privacy leakage in Android apps by
executing them in an emulator [15]. However, such tools
require a dynamic triggering solution to effectively exe-
cute portions of the code that leak private information.

To counter this problem, some tools provide their
own triggering solution along with privacy leakage de-
tection, e.g., AppsPlayground, AppIntent, etc. [33, 43].

However, most of these tools still suffer from code
coverage issues and increasing the code coverage when
analyzing Android apps is an open research problem.
Moreover, Shauvik et al. performed an analysis based
study of the state-of-the-art open sourced test input
generation tools for Android applications [12]. Surpris-
ingly, random exploration strategies based tools per-
formed far better than the other model based and sys-
tematic tools.

Since even the more sophisticated tools do not yield
considerable improvement in the code coverage and un-
necessarily complicate the process, we use the stan-
dard application exerciser provided with the Android
SDK,i.e., the Monkey tool, in the dynamic analysis
module.

10 Conclusions
This paper makes a substantial contribution in the anal-
ysis of trans-border personal data flows. It is a major
debate that may impact how the regulatory framework
around the digital economy will evolve. We have high-
lighted the main concerns in personal data transfers
by in principle non-malicious applications, and shown a
considerable number of them fail to comply with the EU
personal data protection regulation, in the first study of
the kind, up to our knowledge. While PDTLoc has been
suitable in this case, we believe it can be extended to
analyze other information flow properties as well.

Acknowledgment
This work has been partly supported by the EU under
grant 317387 SECENTIS (FP7-PEOPLE-2012-ITN).

Analyzing Personal Data Transfers in Mobile Apps 130

We thank Nicolas Dolgin for his comments on a pre-
vious version of this work.

References
[1] European commission - overview on binding corporate rules.

http://ec.europa.eu/ justice/data-protection/ international-
transfers/binding-corporate-rules/ index_en.htm, 2016.

[2] European Commission - press release: EU-US Privacy Shield.
http://europa.eu/rapid/press-release_IP-16-216_en.htm,
2016.

[3] Jagdish Prasad Achara, Franck Baudot, Claude Castelluccia,
Geoffrey Delcroix, and Vincent Roca. Mobilitics: Analyzing
privacy leaks in smartphones. ERCIM News, 2013(93), 2013.

[4] Tina Amirtha. Safe Harbor was for EU privacy: But how
safe is US data in Europe? http://www.zdnet.com/article/
safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-
europe/ , 2015.

[5] AppFigures. A tracking platform to monitor the sales and
downloads of apps. http://AppFigures.com.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. Flowdroid: Pre-
cise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In ACM SIGPLAN Notices,
volume 49, pages 259–269. ACM, 2014.

[7] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Karin
Bernsmed, Anderson Santana Oliveira, and Jakub Sendor.
Data Privacy Management, Autonomous Spontaneous Se-
curity, and Security Assurance: 9th International Workshop,
DPM 2014, 7th International Workshop, SETOP 2014, and
3rd International Workshop, QASA 2014, Wroclaw, Poland,
September 10-11, 2014. Revised Selected Papers, chapter
A-PPL: An Accountability Policy Language, pages 319–326.
Springer International Publishing, Cham, 2015.

[8] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Mo-
hamed Sellami, Monir Azraoui, Kaoutar Elkhiyaoui, Melek
Önen, Anderson Santana Oliveira, and Karin Bernsmed.
Cloud Computing and Services Sciences: International Con-
ference in Cloud Computing and Services Sciences, CLOSER
2014 Barcelona Spain, April 3–5, 2014 Revised Selected
Papers, chapter From Regulatory Obligations to Enforce-
able Accountability Policies in the Cloud, pages 134–150.
Springer International Publishing, Cham, 2015.

[9] Johnathon Burket, Lori Flynn, Will Klieber, Jonathan Lim,
and William Snavely. Making DidFail Succeed: Enhanc-
ing the CERT Static Taint Analyzer for Android App Sets.
2015.

[10] Mary Carolan. Data protection commissioner to investi-
gate max schrems claims. http://www.irishtimes.com/
news/crime-and-law/courts/high-court/data-protection-
commissioner-to-investigate-max-schrems-claims-1.2398728 ,
2015.

[11] F. Di Cerbo, D. F. Some, L. Gomez, and S. Trabelsi. Ppl
v2.0: Uniform data access and usage control on cloud and
mobile. In TEchnical and LEgal aspects of data pRivacy and
SEcurity, 2015 IEEE/ACM 1st International Workshop on,

pages 2–7, May 2015.
[12] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro

Orso. Automated Test Input Generation for Android: Are
We There Yet?(E). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on,
pages 429–440. IEEE, 2015.

[13] Fred Chung. Custom Class Loading in Dalvik. http:
//android-developers.blogspot.it/2011/07/custom-class-
loading-in-dalvik.html.

[14] Court of Justice of the European Union. The court of jus-
tice declares that the commission’s us safe harbour decision
is invalid. http://curia.europa.eu/ jcms/upload/docs/
application/pdf/2015-10/cp150117en.pdf , 2015.

[15] Anthony Desnos and Patrik Lantz. Droidbox: An android
application sandbox for dynamic analysis (2011). https:
//code.google.com/p/droidbox , 2014.

[16] Serge Egelman, Adrienne Porter Felt, and David Wagner.
Choice architecture and smartphone privacy: There’sa price
for that. In The economics of information security and
privacy, pages 211–236. Springer, 2013.

[17] William Enck, Peter Gilbert, Seungyeop Han, Vasant Ten-
dulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N Sheth. TaintDroid: an
information-flow tracking system for realtime privacy mon-
itoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[18] Ericsson. Europe mobility report appendix. http://www.
ericsson.com/res/docs/2014/emr-november2014-regional-
appendices-europe.pdf , 2014.

[19] European Court of Justice. Commission Decision of 26
july 2000 pursuant to directive 95/46/ec of the european
parliament and of the council on the adequacy of the pro-
tection provided by the safe harbour privacy principles and
related frequently asked questions issued by the us depart-
ment of commerce. Official Journal L 215 , 25/08/2000 P.
0007 - 0047 URL: http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:32000D0520:EN:HTML, 2000.

[20] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. AndroidLeaks: automatically detecting potential pri-
vacy leaks in android applications on a large scale. Springer,
2012.

[21] Google. Monkey Tool. http://developer.android.com/tools/
help/monkey.html , 2015.

[22] Ben Gruver. Smali/Baksmali Tool.
https://github.com/JesusFreke/smali/wiki, 2015.

[23] Dominik Herrmann and Jens Lindemann. Obtaining personal
data and asking for erasure: Do app vendors and website
owners honour your privacy rights? CoRR, abs/1602.01804,
2016.

[24] Paul De Hert and Vagelis Papakonstantinou. The proposed
data protection Regulation replacing Directive 95/46/EC: A
sound system for the protection of individuals. Computer
Law & Security Review, 28(2):130–142, 2012.

[25] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and
Michael Spreitzenbarth. Slicing Droids: Program Slicing
for Smali Code. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages 1844–
1851, New York, NY, USA, 2013. ACM.

[26] IBM. Watson libraries for analysis. http://wala.sourceforge.
net/wiki/ index.php.

http://ec.europa.eu/justice/data-protection/international-transfers/binding-corporate-rules/index_en.htm
http://ec.europa.eu/justice/data-protection/international-transfers/binding-corporate-rules/index_en.htm
http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://www.zdnet.com/article/safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/
http://www.zdnet.com/article/safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/
http://www.zdnet.com/article/safe-harbor-was-for-eu-privacy-but-how-safe-is-us-data-in-europe/
http://AppFigures.com
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://www.irishtimes.com/news/crime-and-law/courts/high-court/data-protection-commissioner-to-investigate-max-schrems-claims-1.2398728
http://android-developers.blogspot.it/2011/07/custom-class-loading-in-dalvik.html
http://android-developers.blogspot.it/2011/07/custom-class-loading-in-dalvik.html
http://android-developers.blogspot.it/2011/07/custom-class-loading-in-dalvik.html
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/cp150117en.pdf
https://code.google.com/p/droidbox
https://code.google.com/p/droidbox
http://www.ericsson.com/res/docs/2014/emr-november2014-regional-appendices-europe.pdf
http://www.ericsson.com/res/docs/2014/emr-november2014-regional-appendices-europe.pdf
http://www.ericsson.com/res/docs/2014/emr-november2014-regional-appendices-europe.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000D0520:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000D0520:EN:HTML
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://wala.sourceforge.net/wiki/index.php
http://wala.sourceforge.net/wiki/index.php

Analyzing Personal Data Transfers in Mobile Apps 131

[27] IDC Press Release. Smartphone os marketshare. http:
//www.idc.com/prodserv/smartphone-os-market-share.jsp.

[28] IPaddressAPI.com. An ip location api solution. http://www.
ipaddressapi.com/ , 2015.

[29] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin,
and SWRD Center. ScanDal: Static analyzer for detecting
privacy leaks in android applications. MoST, 12, 2012.

[30] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques
Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. IccTA:
Detecting inter-component privacy leaks in Android apps. In
Proceedings of the 37th International Conference on Soft-
ware Engineering-Volume 1, pages 280–291. IEEE Press,
2015.

[31] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei
Jiang. Chex: statically vetting android apps for compo-
nent hijacking vulnerabilities. In Proceedings of the 2012
ACM conference on Computer and communications security,
pages 229–240. ACM, 2012.

[32] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre
Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. Ef-
fective inter-component communication mapping in android
with epicc: An essential step towards holistic security anal-
ysis. Effective Inter-Component Communication Mapping
in Android with Epicc: An Essential Step Towards Holistic
Security Analysis, 2013.

[33] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlay-
ground: automatic security analysis of smartphone applica-
tions. In Proceedings of the third ACM conference on Data
and application security and privacy, pages 209–220. ACM,
2013.

[34] European Parliament. Directive 95/46/ec of the european
parliament and of the Council of 24 october 1995 on the
protection of individuals with regard to the processing of
personal data and on the free movement of such data. http:
//eur-lex.europa.eu/eli/dir/1995/46/oj.

[35] IDC Press Release. Worldwide smartphone market will
see the first single-digit growth year on record, according
to idc. http://www.idc.com/getdoc.jsp?containerId=
prUS40664915 , 2015.

[36] Brian Cantwell Smith. Procedural Reflection in Program-
ming Languages. PhD thesis, Massachusetts Institute of
Technology, Laboratory for Computer Science, 1982.

[37] David Sounthiraraj, Justin Sahs, Garret Greenwood,
Zhiqiang Lin, and Latifur Khan. Smv-hunter: Large scale,
automated detection of ssl/tls man-in-the-middle vulnera-
bilities in android apps. In In Proceedings of the 21st An-
nual Network and Distributed System Security Symposium
(NDSS’14. Citeseer, 2014.

[38] The Tcpdump Group. TCP-Dump. http://www.tcpdump.
org/ , 2015.

[39] Connor Tumbleson and Ryszard Wiśniewski. APK tool -
a tool for reverse engineering android apk files. http://
ibotpeaches.github.io/Apktool/ .

[40] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hen-
dren, Patrick Lam, and Vijay Sundaresan. Soot-a Java byte-
code optimization framework. In Proceedings of the 1999
conference of the Centre for Advanced Studies on Collabora-
tive research, page 13. IBM Press, 1999.

[41] VirusTotal. Free online virus, malware and url scanner.
https://www.virustotal.com.

[42] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. Aman-
droid: A precise and general inter-component data flow
analysis framework for security vetting of android apps.
In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 1329–1341.
ACM, 2014.

[43] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X Sean Wang. Appintent: Analyzing sensitive
data transmission in android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1043–1054.
ACM, 2013.

[44] Sara Zaske. Germany’s privacy leaders gather to discuss
suspending us safe harbor. http://www.zdnet.com/article/
germanys-privacy-leaders-gather-to-discuss-suspending-us-
safe-harbor/ , 2015.

[45] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya,
Bruno Crispo, and Fabio Massacci. Stadyna: addressing the
problem of dynamic code updates in the security analysis
of android applications. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy,
pages 37–48. ACM, 2015.

[46] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui
Gong, Xinhui Han, and Wei Zou. Smartdroid: an automatic
system for revealing ui-based trigger conditions in android
applications. In Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices,
pages 93–104. ACM, 2012.

[47] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie.
DroidAlarm: an all-sided static analysis tool for Android
privilege-escalation malware. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and commu-
nications security, pages 353–358. ACM, 2013.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.ipaddressapi.com/
http://www.ipaddressapi.com/
http://eur-lex.europa.eu/eli/dir/1995/46/oj
http://eur-lex.europa.eu/eli/dir/1995/46/oj
http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.tcpdump.org/
http://www.tcpdump.org/
http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/
http://www.zdnet.com/article/germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/
http://www.zdnet.com/article/germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/
http://www.zdnet.com/article/germanys-privacy-leaders-gather-to-discuss-suspending-us-safe-harbor/

	Analyzing Remote Server Locations for Personal Data Transfers in Mobile Apps
	1 Introduction
	2 Problem Statement
	3 Data Flow Analysis
	4 Our Approach: PDTLoc
	4.1 Overview
	4.2 Static Analysis Module
	4.3 Dynamic Analysis Module
	4.4 Location Investigator

	5 Empirical Analysis
	5.1 Dataset Collection
	5.2 Experimental Setup
	5.3 Evaluation Goals

	6 Results and Discussions
	6.1 Personal Data Accessed
	6.2 Contacted Servers
	6.3 Server Locations
	6.4 Privacy Discussion

	7 Improving Transparency and Compliance
	8 Limitations
	9 Related Work
	9.1 Static Privacy Leak Detection
	9.2 Dynamic Privacy Leak Detection

	10 Conclusions

