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Abstract: We present PeerFlow, a system to securely
load balance client traffic in Tor. Security in Tor requires
that no adversary handle too much traffic. However, Tor
relays are run by volunteers who cannot be trusted to
report the relay bandwidths, which Tor clients use for
load balancing. We show that existing methods to de-
termine the bandwidths of Tor relays allow an adversary
with little bandwidth to attack large amounts of client
traffic. These methods include Tor’s current bandwidth-
scanning system, TorFlow, and the peer-measurement
system EigenSpeed. We present an improved design
called PeerFlow that uses a peer-measurement process
both to limit an adversary’s ability to increase his mea-
sured bandwidth and to improve accuracy. We show our
system to be secure, fast, and efficient. We implement
PeerFlow in Tor and demonstrate its speed and accu-
racy in large-scale network simulations.
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1 Introduction
Tor [12] is a popular anonymous-communication net-
work. It consists of over 7000 volunteer relays carrying
the traffic of over 2 million users daily at over 60Gib/s
on average [1]. To balance this large traffic load over
a diverse relay population, Tor estimates relay band-
width using both self measurements and external mea-
surements and then directs clients to use relays in pro-
portion to the relays’ bandwidth estimates. This load-
balancing system is an attractive target for attack be-
cause the relays that carry a client’s connection are able
to learn sensitive properties about that connection, such
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as the client’s identity. If an adversary controls enough
of those relays, he can deanonymize the connection [24].

Tor designed its current relay-measurement system,
TorFlow [5, 26], to avoid relying entirely on self-reported
measurements [7] and thereby improve performance and
security. TorFlow implements “bandwidth scanning”,
in which measurement authorities create connections
through relays to measure their bandwidth. Researchers
have observed [8, 31] that in this system a malicious re-
lay can increase its apparent bandwidth. We confirm
this observation by implementing and experimentally
testing the attacks. Our results show that an adver-
sary can obtain 177 times more client traffic than he
should. An adversary with 1% of the network band-
width could have 64% of client connections directed to
him, giving him the opportunity to attack a large major-
ity of Tor users. Moreover, the adversary can effectively
attack this large number of connections even with his
small amount of bandwidth, for example attempting to
deanonymize connections using a correlation attack that
completes before application data is sent [7] and then
immediately shutting the TCP window.

The main alternative to TorFlow is the EigenSpeed
system of Snader and Borisov [27–29]. In EigenSpeed,
each Tor relay measures the speeds of its connections to
other Tor relays and reports them to an authority, who
applies Principal Component Analysis (PCA) to pro-
duce bandwidth estimates. We show that EigenSpeed
too is highly vulnerable to attack. We identify basic
flaws in its measurement method and initialization pro-
cess, and we describe and experimentally demonstrate
fundamental flaws in using PCA to aggregate measure-
ments. These flaws allow an adversary to either get most
honest relays kicked out of the network or receive up to
420 times more client traffic than he should.

We present PeerFlow, a load-balancing scheme for
Tor that prevents an adversary from being directed a
share of client traffic that is much larger than his share
of the network capacity. PeerFlow uses a bandwidth-
weighted voting process that resists manipulation by
low-bandwidth adversaries, and it can use measure-
ments from trusted relays for improved security. Peer-
Flow solves many of the additional challenges to cre-
ating a complete replacement for TorFlow, including a
secure process to bootstrap new relays and techniques
to ensure user privacy in reported traffic statistics. We
also prototype PeerFlow in the actual Tor software and
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use large-scale network simulations to show that its load
balancing maintains Tor’s current performance.

2 Background and Related Work
Tor: Tor [12] anonymizes a client TCP connection by
randomly choosing three relays from its network, creat-
ing a multiply-encrypted circuit over those relays, and
creating a stream through that circuit, which causes the
endpoint to create an associated TCP connection to the
destination. Streams can be multiplexed over a circuit.

Clients have a small, longstanding set of relays
(guards) from which they select the first hop on their
circuits. Tor clients use one guard rotated every 2–3
months. To become guards, relays must be old enough,
provide at least 250KB/s of bandwidth, and have ade-
quate uptime. Relays meeting these criteria receive the
Guard flag, which makes them eligible to be selected as
guards. Circuits also have a second (middle) hop and a
third (exit) hop. Relays must allow connection to the
client’s desired destination port and IP to be selected
as the exit. Most exits receive the Exit flag, given when
a relay allows exit to the most useful ports. Currently
relays must also receive the Fast flag (which requires a
bandwidth of 100KB/s) to be selected at all.

A system of Directory Authorities maintains flag
and other relay information and publishes an hourly
consensus, which clients use to select relays for circuits.
Clients choose relays for a circuit position randomly
with probability roughly proportional to the product
of each relay’s consensus weight, which is proportional
to the relay’s bandwidth and is for load balancing in
a given position, and a position weight, which is based
on the relay’s flags and is used to improve load balanc-
ing across the different relay positions (namely, guard,
middle, and exit). Relays also provide the Directory Au-
thorities with a self-determined advertised bandwidth to
aid in setting their consensus weights.

Tor security requires that most of the network by
consensus weight is not malicious. An adversary that
controls much of the network will be selected often by
clients. When selected as a guard, he can apply website
fingerprinting [32, 33] to identify the client’s destination.
When selected as guard and exit, he can deanonymize
the connection using a first-last correlation attack [24].
And, of course, when selected for all three relays on a
circuit, the connection can be trivially deanonymized.
Bandwidth Measurement: TorFlow [5, 26] is a
bandwidth-scanning system currently used by Tor in
which measuring authorities measure the bandwidths
of Tor relays for the purpose of determining consen-

sus weights and flags. Past work has shown that Tor-
Flow is vulnerable to multiple attacks [7, 31], which we
will explore in more detail in §3. In contrast, PeerFlow
uses relays’ observations of each other in order to de-
termine relay bandwidths. EigenSpeed [27–29] is a pro-
posed scheme for secure bandwidth estimation that —
like PeerFlow — uses peer measurements. Presented as
a scheme for use in the Tor network, it is also proposed
more generally for use in peer-to-peer distribution net-
works. EigenSpeed is the state of the art for this problem
as far as we are aware, and it has been considered for
adoption into Tor.1 We show in §4 that EigenSpeed can
be manipulated through several attacks and does not
achieve its security goals.
Other: Karame et al. [25] describe attacks on link ca-
pacity estimation techniques and suggest using trusted
network hardware to secure these measurements. Susel-
beck et al. [30] propose a system for estimating peer
bandwidth in a P2P system. It includes both passive
measurements and active traffic injection, as PeerFlow
does, but it assumes all peers are trustworthy, which
PeerFlow does not. Haeberlen et al. propose the Peer-
Review system [17], which users cryptographic logs of
node activity and witness audits of a node’s actions to
detect misbehavior in a distributed system. While these
methods might further enhance the security of Peer-
Flow, they are unable to solve major challenges, includ-
ing (i) exposing falsely-claimed transfers between ma-
licious relays and (ii) identifying trustworthy witnesses
in a system where Sybil attacks are possible. Jansen
et al. [22, 23] describe how secure bandwidth measure-
ments in Tor could be used to build a system to incen-
tivize Tor relay operators by rewarding them for trans-
ferring traffic.

3 Attacks on TorFlow
TorFlow: TorFlow [5, 26] is a tool used by bandwidth-
measuring Directory Authorities to directly measure the
bandwidths of Tor relays. TorFlow works by construct-
ing a series of measurement circuits, using them to per-
form test downloads, and then computing a weight for
each relay based on the speeds of the test downloads.

TorFlow selects which relays to measure by divid-
ing the list of all relays into slices of 50 relays of similar
bandwidth (according to the most recent consensus). It
measures each slice by constructing two-hop measure-
ment circuits using only relays from that slice. When

1 https://trac.torproject.org/projects/tor/ticket/5464

https://trac.torproject.org/projects/tor/ticket/5464
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each circuit is built, TorFlow uses it to download a file
from torproject.org. TorFlow continues building new
circuits, choosing unmeasured relays from the current
slice at random, to measure two relays at a time until
every relay in the slice under examination has been mea-
sured several times. Then, for each relay, TorFlow takes
the average bandwidth measured on circuits involving
that relay, and stores this measurement to disk.

Every hour, TorFlow aggregates these measure-
ments and produces a weight for each relay. A re-
lay’s weight is calculated by multiplying the relay’s self-
advertised bandwidth by the ratio between its measured
bandwidth and the averaged measured bandwidth over
the entire network. The Directory Authorities use these
weights to produce the consensus weights.
Attacks: TorFlow allows a number of attacks that make
it easy to manipulate a relay’s apparent bandwidth.
First, malicious relays can perform a liar attack [7],
wherein they dishonestly report a higher bandwidth
than they have available to increase their chances of be-
ing chosen during path selection while expending very
few resources. TorFlow attempts to address this prob-
lem by adjusting self-reported bandwidths by a multi-
plier representing relative performance, but by contin-
uing to use the reported bandwidth as a baseline, it
remains vulnerable to the same attack. For example, a
relay providing only 100 KB/s of bandwidth (the mini-
mum required to obtain the Fast flag) could advertise a
bandwidth so high that even after being adjusted down
by TorFlow (as explained above), it will only be capped
by 10 MB/s—the upper bound the Directory Authori-
ties will assign to any relay. This attack is very effective,
but gross exaggeration could be detected.

A more subtle attack takes advantage of TorFlow’s
two-hop measurement circuits, which are built with one
of a small number of authorities on one end and a
fixed URL on the other. Because the IP addresses of
these measurement nodes are known, relays can easily
recognize measurement circuits and treat them differ-
ently from ordinary ones, a technique demonstrated by
Thill [31]. In a selective denial-of-service (DoS) attack,
a relay can provide service only to measurement circuits
while dropping all others, thereby giving the authorities
the impression of excess capacity at very low cost. An
adversarial exit can further reduce resource consump-
tion by spoofing short responses from the destination
instead of downloading and serving real ones, since Tor-
Flow does not verify certificates or check the correctness
or length of downloads.
Results: To demonstrate the efficacy of both the liar
and selective DoS attacks, we developed a new TorFlow

Goodput (MiB/s) Consensus Weight (%)
Median Std. Dev. Median Std. Dev.

Baseline 22.5 5.9 7 1
Attack 0.2 0.1 11 5

Table 1. A relay can inflate its consensus weight at little cost by
lying about its capacity and denying service to all but measure-
ment circuits. Our experiments led to a bandwidth inflation factor
of 177.

plug-in for the Shadow [3, 21] discrete-event network
simulator. The plug-in mimics the functionality of the
python scripts [5] that are used to run TorFlow in the
public Tor network. Using Shadow and our new plug-in,
we constructed a private Tor network with 498 relays,
4 directory authorities, 7500 clients, and 1 bandwidth
authority that runs TorFlow. More details about our
Tor model and simulations can be found in §7.

We implemented both attacks outlined above in
Tor, and compiled the Shadow Tor plug-in with our
modified Tor code. We arbitrarily chose one exit re-
lay that was generated by Shadow’s network generator
to act as our test relay; this relay had an access link
of 300 Mbits/s. We ran three baseline experiments in
which our test relay acted completely honestly, and we
ran six attack experiments in which our test relay ran
both the liar and selective DoS attacks by: (i) only for-
warding traffic for the TorFlow measurement circuits;
and (ii) falsely reporting a bandwidth of 125000 KB to
the directory authorities. We monitored the test relay’s
bandwidth usage and the fraction of the total consensus
weight that our test relay achieved over time.

The results shown in Table 1 indicate that, using
the attacks, the exit node was successfully able to in-
flate its consensus weight relative to other relays while
at the same time consuming significantly less bandwidth
(only what was required for the measurement circuits).
Our attacks reduced the median bandwidth consumed
by our test relay from 22.5 MiB/s to 0.2 MiB/s, while
the median consensus weight obtained increased from
7% to 11%; our attack enabled the test relay to obtain
more units of consensus weight fraction per bandwidth
unit cost with a bandwidth inflation factor of 177. While
we used only one relay for demonstration purposes, an
adversary could use the same techniques with several
relays to gain an even larger total fraction of the con-
sensus weight.

We note that while TorFlow’s current design makes
these attacks easy to carry out, any bandwidth-scanning
approach will need to solve the problem of relays de-
tecting and favoring measurement probes, as observed
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by Biryukov et al. [8]. A major obstacle is the fact that
some relays are unlikely to be chosen by normal clients
in the middle circuit position (e.g. guards and exits),
and measurement traffic must behave the same, expos-
ing measurement sources or destinations to malicious re-
lays and helping them identify the measurement probes.

4 Attacks on EigenSpeed
EigenSpeed: EigenSpeed uses as consensus weights the
eigenvector of a matrix derived from a bandwidth ma-
trix T , where Tij is the bandwidth estimate of relay
j by relay i. This process can be viewed as finding
weights that are consistent with using themselves in
a weighted average of the bandwidth estimates. Tor’s
Directory Authorities are the recipients of each node’s
estimates of the others and are responsible for deter-
mining the weights. Snader’s thesis [27] is the final and
most complete description of EigenSpeed, and so we use
it as the as the authoritative version.

The bandwidth estimates are obtained from peri-
odic measurements of the current bandwidth of an indi-
vidual stream with a relay, rather than that relay’s en-
tire bandwidth (see [27] §3.3.1). Each new measurement
is combined with a running bandwidth estimate using
an exponentially-weighted moving average (EWMA).
At the end of the measurement period, the estimates
are put into matrix T , which the Directory Authori-
ties use to produce T by first setting T ii = 0 to ignore
self-measurements, next setting T ij = min(Tij , Tji) to
enforce symmetric measurements, and finally normaliz-
ing rows of T to sum to one. The EigenSpeed consensus
weights are the left principal eigenvector v∗ of T , which
is produced by iteratively computing vi = vi−1T , where
v0 has a 1/t entry in the positions of a set of t trusted re-
lays and a 0 entry elsewhere. Any relay j with measure-
ments sufficiently different from the eigenvector, that is,
with ‖v∗ − T j‖4 > L for L = 10−5, is considered a liar
and is removed and added to a set of unevaluated relays.
Let ‖v∗−T j‖4 be the liar metric for j. Similarly, any re-
lay j whose weight increased too fast during the first two
iterations, that is, with (v2

j − v1
j )/v1

j > ∆ for ∆ = 0.1, is
judged to be malicious and is removed and considered
unevaluated. Let (v2

j −v1
j )/v1

j be the increase metric for
j. The unevaluated set also includes relays that are not
in the largest component of the measurement graph (e.g.
new relays), where an edge (i, j) exists in the graph if
T ij > 0. In EigenSpeed, unevaluated relays will each get
1/n of the total consensus weight, where n is the total
number of relays.

Attacks: An obvious vulnerability of EigenSpeed is
that it selects each unevaluated relay with probability
1/n. An adversary can flood the network with a large
number of new relays contributing little or no band-
width and thereby obtain a large total selection proba-
bility. Each new relay need only have a unique IP ad-
dress. This could, for example, allow a botnet of just
20,000 computers to have a collective consensus weight
of over 74% in a Tor network of its current size of about
7,000 honest relays. We therefore assume that unevalu-
ated relays are selected with very low probability (e.g.
if there are u unevaluated relays, then the probability of
selecting a given one is 0.01/u). This limits the effect of
a Sybil attack to just taking over the unevaluated set,
but it also means that a relay that is unevaluated can
be essentially shut out of the Tor network.

We show how the two mechanisms that EigenSpeed
uses to detect malicious nodes can be used to frame
honest relays and have them put into the unevaluated
set. The liar threshold L = 10−5 and increase threshold
∆ = 0.1 are designed for an attack in which a clique of
malicious relays report high bandwidth with each other
and low bandwidth with others. However, modifications
to this attack can confuse the trusted relays (which oth-
erwise help distinguish between the honest and dishon-
est relays) by making the liar or increase metrics for
honest framed relays appear large. This will imply that
either (i) the adversary can get the honest non-trusted
relays effectively kicked out of the network by moving
them to the unevaluated set or (ii) L and ∆ are large
enough that the adversary can greatly inflate the in-
ferred bandwidth of his relays.
Analysis: We demonstrate framing attacks using the
Tor 2015-04-31 23:00 network consensus [2], which con-
tains 5589 relays with positive selection probability
(over 1000 relays have zero selection probability). Eigen-
Speed takes measurements of the per-stream bandwidth
at a given relay rather than the total bandwidth at
that relay. Thus we consider the ideal load-balanced
case, in which all streams have the same bandwidth.
We note that our attacks are even more effective when
the network is not load balanced, in which case there
is disagreement among the relays’ observations, forc-
ing the thresholds L and ∆ to be large. For example,
suppose that the relay observations are the total relay
bandwidths, which we take to be the “observed band-
widths” in the relays’ descriptors [4]. Then, with 10%
of relays trusted (starting with the largest by observed
bandwidth) and no malicious relays, honest relays have
a liar metric as large as 0.00165, much larger than the
suggested threshold of L = 10−5, and honest relays have
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# trusted relays
(% of honest)

# adv
relays

# framed
relays Adv bw %

280 (5%) 447 1118 1.92
559 (10%) 558 1118 2.83
1118 (20%) 558 559 2.83
1677 (30%) 558 112 3.00

Table 2. Cases with minimum bandwidth in which all framed
relays had increase metrics above 0.2.

an increase metric as large as 0.86, much larger than the
suggested ∆ = 0.1. We thus consider all our attacks in
the load-balanced setting, in which case these metrics
are much smaller and well below the suggested thresh-
olds. In all of our experiments, we follow Snader [27]
and stop the iterative eigenvector calculation when the
change in vector norm is less than 10−10.

The increase framing attack causes the increase
metric of honest relays in a targeted set to be large.
In this attack, a set of malicious relays uses sufficient
bandwidth to obtain the average true bandwidth of
honest relays with all trusted relays and with a sub-
set of “framed” honest non-trusted relays. The mali-
cious relays also falsely claim that bandwidth measure-
ment among themselves (i.e. no data is actually sent
among them). All other measurements with malicious
relays are zero. All measurements among the honest re-
lays are the same load-balanced flow rate (say, 1). Note
that each malicious relay can easily obtain any band-
width measurement with any honest relay, as long as
the measurement does not exceed the relay’s true band-
width, by creating spurious connections to the honest
relay with the necessary amounts of traffic. The mali-
cious relay may furthermore drop all connections from
honest clients for measurements of zero.

We consider adding relays to the Tor network in
order to frame a subset of honest relays by causing
their increase metric to reach above 0.2. Not only is this
amount is greater than the ∆ = 0.1 recommended, it will
be enough to allow significant bandwidth inflation and
thereby demonstrate that no setting for ∆ can provide
good protection. For various numbers of trusted relays,
we searched for a minimum adversarial BW needed to
frame at least 2% of the relays. We count the band-
width of a relay as the sum of the estimates obtained
with each other relay, ignoring the false estimates among
malicious relays. Table 2 presents our results. It shows
that with at most 3% of the total bandwidth, the ad-
versary can frame between 112 (2%) and 1118 (20%)
of the honest relays, with the number decreasing as the
number of honest relays that are trusted increases from
280 (5%) to 1677 (30%). The number of relays that the

# trusted relays
(% of honest)

# adv
relays

False bw
factor

Adv
bw %

Adv
weight %

280 (5%) 4191 100 3.49 98.2
559 (10%) 2235 100 3.70 93.9
1118 (20%) 1117 100 3.70 79.5
1677 (30%) 1397 15 6.52 48.5

Table 3. Cases with maximum weight in which all malicious re-
lays had increase metrics below 0.2 and liar metrics below the
honest non-trusted relays.

adversary must add is not large, from 447 to 558. More-
over, the attack can easily be repeated (with a differ-
ent set of malicious relays) in order to move even more
honest relays into the unevaluated set. As we noted,
the selection probability for relays in the unevaluated
set must be quite low. Therefore, they will be rarely
observed by other relays, and so they must either wait
many measurements periods to be evaluated or will have
very low inferred bandwidths. In addition, if the adver-
sary performs another Sybil attack on the unevaluated
pool, which requires IP addresses but no bandwidth,
then relays in the unevaluated pool are effectively re-
moved entirely. Even worse, the relay bandwidths are
highly skewed, and so even for the smallest number of
framed relays in Table 2 (112), the adversary can quickly
cause most of the network capacity to be unused. For ex-
ample, in the consensus used in our experiments, 50% of
the total observed bandwidth is provided by the largest
464 relays and 75% by the largest 1172.

We next show the targeted liar attack, in which just
the trusted relays are provided a high-bandwidth flow.
This targeting of trusted relays keeps the liar metrics of
the malicious relays low while inflating the malicious re-
lays’ weight. In these experiments, the malicious relays
obtain bandwidth estimates with the trusted relays that
are the average bandwidth of the honest non-trusted re-
lays, the malicious relays create measurements of zero
with the honest non-trusted relays, and the malicious re-
lays report a large false bandwidth among themselves.
All honest relays again have the same bandwidth mea-
surement among themselves.

Thus the trusted relays make the same measure-
ments with the other honest relays as with the malicious
relays, but the measurements of the honest non-trusted
relays and those of the malicious relays disagree. This
makes the attack use less bandwidth while keeping the
liar metrics of malicious relays close to those of honest
non-trusted relays. Table 3 lists the scenarios in which
the final adversary weight was maximized among those
we tested subject to (i) preferring adversary bandwidth
of less than 4% when possible, (ii) producing increase
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metrics for malicious relays of no larger than 0.2, and
(iii) producing liar metrics of malicious relays less than
those of honest non-trusted relays. We can assume that
∆ > 0.2, or the previously-described increase framing
attack would be possible. Therefore, no malicious re-
lays are unevaluated due to an increase metric above ∆.
Furthermore, no setting of the liar threshold L is able
discriminate between malicious and honest relays. Ei-
ther it would allow the large adversary weight inflations
shown in Table 3 or it would put all honest non-trusted
relays in the unevaluated set. We can see that by report-
ing a false bandwidth of 15-100 times the load-balanced
rate reported by all honest relays, malicious relays can
obtain weight inflated 7.4-28.1 times.

5 PeerFlow
PeerFlow uses two relay-measurement techniques: (i)
each relay reports on the number of bytes it sent to or
received from other relays, and (ii) each relay reports
its available but unused bandwidth. Measurements from
the first technique are combined to estimate the to-
tal bytes transferred after trimming a weight fraction
λ of the largest and smallest values so that an adver-
sary without λ of the network capacity cannot manip-
ulate the outcome. Measurements from trusted relays
(if available) are used to ensure that the estimates of
bytes transferred are not unreasonably high or low. The
second measurement technique allows the network to
discover any unused bandwidth. It is vulnerable to ly-
ing by an adversary, though, and therefore PeerFlow will
only consider increasing the consensus weight for a relay
after consulting the secure outputs of the first measure-
ment technique and verifying that the relay carried the
expected amount of traffic. Further methods are used to
increase the privacy, accuracy, and speed of these mea-
surements and to securely bootstrap new relays into the
system. We now explain each of the PeerFlow compo-
nents in detail. For convenience, the key variables and
parameters are listed in Table 4.

G M Emd

g

mc

e

Fig. 1. Measuring positions in a circuit: relay G in position g
measures relay M , relay M in position mc measures relay E,
relay M in position md measures relay G, and relay E in position
e measures relay M . A dashed arrow indicates hosts between
which traffic is not measured.

Name Description
βSR

p bytes measured by S to and from R in position p
ρ

(S)R

(p) total traffic relayed by R (inferred by S, in position p)
η(S)R estimated traffic relayed by R (with S)
κR capacity of relay R computed by Directory Authorities
σR self-estimated capacity of relay R
ωR consensus weight of router R
vR

p voting weight of relay R in position p
tR measurement time of relay R
λ fraction of measuring relay inferences to trim
τ trusted relay weight fraction in each position
εdec max fraction a relay’s weight can decrease
µ weight of measuring relays: 0.75
εinc max fraction a relay’s weight can increase: 0.25
δnoise traffic amount covered by differential privacy: 1 MiB
εnoise differential privacy guarantee: 0.1
εerr targeted fraction of traffic added as noise: 0.1
qerr probability noise greater than targeted fraction: 0.1
εloss accuracy loss from maximum of noisy values: 0.01

Table 4. Key variables (top), parameters (bottom) in PeerFlow

5.1 Measuring total traffic of a relay
For each circuit position, a subset of relays keeps track
of the amount of traffic it sends to and receives from
all of the other public relays while in that position.
LetMg,Mm, andMe be the set of measuring guards,
measuring middles, and measuring exits, respectively.
Mp is defined to be the set containing each relay R

with positive voting weight vR
p in position p, that is,

Mp = {R|vR
p > 0}. Voting weights approximate the

relays’ relative capacity in each position, with only the
largest µ fraction of relays by capacity assigned non-zero
voting weights to speed up measurement (see §5.6).

Each measuring relay r ∈Mp counts the number of
bytes exchanged with each other relay while r is in po-
sition p. Bytes are counted at the application layer, and
both sent and received bytes are included in the count.
A measuring relay detects itself in the guard position
if the circuit-creation messages are not sent by a public
Tor relay, it detects itself in the exit position if the cir-
cuit is not extended past the measuring relay, and oth-
erwise it assumes the middle position. A measuring mid-
dle further divides its observations into client-side and
destination-side measurements according to whether the
measuring relay extended the circuit to the measured re-
lay during circuit creation or vice versa, respectively. A
measuring relay R0 counts traffic sent to and received
from each relay R1 for a measurement period of length
tR1 that depends on the bandwidth of R1 (see §5.4).
As in TorFlow, the measurement periods generally span
multiple consensuses and need not be aligned with them.
Let βR0R1

p be the number of bytes that measuring relay
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R0 sent to or received from R1 during the measurement
period while R0 was in directional position p. The pos-
sible directional positions are guard, client-side middle,
destination-side middle, and exit, denoted g, mc, md,
and e, respectively (see Figure 1).

At the end of the measurement period for relay R1,
measuring relay R0 will process the traffic count for
each position that it measures for and send it to the Di-
rectory Authorities. The first step in processing count
βR0R1

p protects the privacy of individual traffic flows
by adding noise. The noise is a random value selected
from the Laplace distribution Lap(b), which has mean 0
and variance 2b2, where b is set to provide differential
privacy for a certain amount of traffic on the link (see
§5.3). Let NR0R1

p ∼ Lap(b) be the noise value, and let
β̃R0R1

p = βR0R1
p +NR0R1

p .
The second processing step is to infer the total

amount of traffic to or from R1 seen in directional po-
sition p. This is accomplished by adjusting the amount
R0 sees by the probability of making that observation.
Let qR0

g be the probability of selecting R0 as a guard,
as determined from the consensuses of the measurement
period. Let qR0m , qR0mc, and q

R0
md all be set to the probabil-

ity of selecting R0 as a middle. Let qR0
e be the probabil-

ity that R0 is chosen as an exit (using the presence of
the Exit flag as an approximate way to identify possible
exits). Then let the estimate for the total traffic relayed
by R1 and seen in directional position p ∈ {g,mc,md, e}
be ρR0R1

p = β̃R0R1
p /qR0

p .
At the end of the measurement period for R1, the

Directory Authorities will receive the ρ statistics about
R1 from the measuring relays. The Directory Author-
ities remove the largest and smallest ρ values for each
directional position and aggregate the remaining val-
ues to obtain an estimate ρ̄R1

p . When removing the ex-
treme values, a voting weight vR

p that is proportional to
R’s capacity is attached to each ρRR1

p , and then a frac-
tion λ of the voting weight is trimmed from both the
top and bottom of the sorted ρ statistics. These voting
weights help ensure that a low-capacity adversary has
little effect on the measurement outcomes. To be more
precise, let ij be the index of the relay Rij with the jth
largest value ρ

Rij
R1

p , let j1 be the largest value such that∑
j<j1

v
Rij
p < λ, and let j2 be the smallest value such

that
∑

j>j2
v

Rij
p < λ. The trimmed ρ statistics are ag-

gregated by adding their noisy byte values and dividing
by the total selection probability of the untrimmed re-
lays: ρ̄R1

p =
∑

j1≤j≤j2
ρ

Rij
R1

p q
Rij
p /

∑
j1≤j≤j2

q
Rij
p . Ob-

serve that j1 and j2 are defined such that, for all λ ≤ 0.5,
some ρ value is untrimmed (i.e. j1 ≤ j2).

When there are no trusted relays, we set λ = 0.256
to maximize the size of the adversary that is prevented
from arbitrarily increasing his weight (see §6). Note that
using the median (i.e. λ = 0.5) does not provide optimal
security in this case. When some positive fraction of
the network τ is trusted in each position, we set λ to
maximize the size of the adversary such that using µ of
the network for measurement results in a smaller bound
on an adversary’s capacity increase compared to simply
using measurements from the smaller trusted fraction
τ . For τ = 0.05, 0.1, 0.2, and 0.3, the respective values
of λ are 0.34, 0.348, 0.497, and 0.498.

Given the aggregate values ρ̄R1
p , the Directory Au-

thorities calculate two estimates for the total number of
bytes relayed by R1. The first is the sum of the client-
side estimates, ρR1

c = ρ̄R1
g + ρ̄R1mc, and the second is the

sum of the destination-side estimates, ρR1
d = ρ̄R1

md + ρ̄R1
e .

If R1 can act as a guard, then client-side observations
for it will be missing for any circuits on which it is a
guard, and similarly for destination-side observations
if R1 can act as an exit. On the other hand, when
a relay acts as a middle it is observed both on the
client and destination side but should get credit for that
traffic only once. Therefore, the Directory Authorities
use ρR1max = max(ρR1

c , ρR1
d ) as an estimate for the to-

tal amount of traffic relayed by R1. To avoid excluding
client-side or destination-side observations made on sep-
arate circuits, PeerFlow requires that during a measure-
ment period a Tor relay will not operate both as a guard
and as an exit (Tor effectively already enforces this cur-
rently via its bandwidth weights, as exit bandwidth is
relatively scarce and is thus reserved for exiting).

PeerFlow takes advantage of measurements from
any trusted relays by using them to limit the range in
which a relay’s traffic will be inferred. PeerFlow uses
trusted relays in this way instead of simply using only
the trusted measurements because doing so provides
better security and accuracy when relatively little of
the network is trusted. Because many of the highest-
bandwidth Tor relays are managed by organizations
closely aligned with the Tor Project, and (as of 15 May
2015) the top 60 relays constitute over 20% of the total
weight, it seems reasonable to imagine a set of trusted
relays that carry 15-25% of Tor traffic.

Let Tp be the set of trusted relays in position p, and
let τ be the minimum fraction of relay capacity that they
are assumed to provide in each of the guard, middle, and
exit positions. At the end of a measurement period for
R1, the Directory Authorities simply combine the mea-
surements from the trusted relays of bytes exchanged
with R1 to determine the following trusted estimate for
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the total bytes relayed by R1 and observed in position p:
ρ̂R1

p =
∑

R∈Tp
ρRR1

p qR
p /
∑

R∈Tp
qR

p . PeerFlow then com-
bines these positional trusted estimates as it does with
the analogous estimates from all relay measurements
to produce ρ̂R1

c = ρ̂R1
g + ρ̂R1mc, ρ̂

R1
d = ρ̂R1

md + ρ̂R1
e , and

ρ̂R1max = max(ρ̂R1
c , ρ̂R1

d ).
The trusted estimate ρ̂R1max is used to adjust the

all-relay estimate ρR1max by enforcing a ceiling and floor
on its value. The ceiling is simply ρ̂R1

ceil = ρ̂R1max, which
means that the inferred traffic relayed by R1 will be
limited by the number of bytes it can exchange with
trusted relays. The floor is ρ̂R1

floor = ρ̂R1maxτ/(µ(1 − λ)),
which both limits the amount that the adversary can
use falsely low measurements from its relays to reduce
honest relays’ inferred traffic relayed and ensures that
the adversary gains no advantage in targeting its band-
width on the trusted relays instead of the top 1 − λ

fraction of measuring relays in a given position. The fi-
nal estimate for the traffic relayed by R1 is thus ρR1 =
max(min(ρ̂R1

ceil, ρ
R1max), ρ̂R1

floor). If there are no trusted re-
lays, then ρR1 = ρR1max.

5.2 Measuring available bandwidth
Each relay R monitors its network activity during a
measurement period and estimates its total capacity for
relaying traffic. That is, R estimates the maximum rate
at which it could have relayed traffic during the mea-
surement period if Tor clients had asked it to. This could
be measured in the same way that Tor relays currently
determine their self-advertised bandwidths. R sends this
self-measured value σR to the Directory Authorities at
the end of the measurement period.

5.3 Preserving link privacy with noise
The traffic statistics that measuring relays report to Di-
rectory Authorities reveal how traffic flows through the
Tor network. Traffic statistics per relay are already col-
lected and reported by Tor [2], but the PeerFlow statis-
tics describe traffic between each pair of relays. These
statistics should not assumed to be kept secret by the
Directory Authorities, because some Directory Authori-
ties may be compromised and because it allows auditing
of PeerFlow to identify errors and relay misbehavior.

The risk of releasing the PeerFlow measurements is
that they could be used to identify the routes through
the Tor network taken by a target set of connections. For
example, a malicious destination might target an incom-
ing connection and use its observation of the exit node
and traffic volume to identify as the middle node that re-
lay measured by PeerFlow to have sent the same amount
of traffic as the target connection. The guard relay could
then be identified similarly. Although there exist other

ways of identifying the relays used on a connection (e.g.
the congestion attack [14], latency attack [18], and pre-
decessor attack [34]), this information should still have
some protection.

Therefore, measuring relays in PeerFlow add a ran-
dom value to the observed byte totals. The goal of this
added noise is to limit the certainty with which an ad-
versary can conclude that a given client stream was car-
ried between a given pair of relays. We accomplish this
by choosing the noise value randomly from the Laplace
distribution with mean 0, which has the probability den-
sity function Lap(b;x) = e−|x|/b/(2b). Adding noise ac-
cording to the Laplace distribution provides differen-
tial privacy [13], where the privacy notion applies to a
given amount of traffic. We set the Laplace parameter
to b = δnoise/εnoise, where δnoise is the maximum amount
of traffic for which εnoise-differential privacy is provided
(we use δnoise = 1 MiB and εnoise = 0.1). Providing
differential privacy to Tor traffic statistics follows the
suggestion of Goulet et al. [16]. Appendix A describes
a cryptographic measurement-aggregation scheme that
further limits the amount of traffic data revealed.

5.4 Measurement periods
The length of a measurement period is determined for
each relay individually and is updated at the end of the
each measurement period. We would like this length to
be low in order to enable quick response to changes in
relay bandwidth and load. The speed of measurement is
limited by how quickly a relay can exchange an amount
of client traffic with each measuring relay such that the
added noise is relatively small.

Let tR1 be the length of the next measurement pe-
riod for relay R1. The Directory Authorities determine
tR1 after inferring ρR1 by using ρR1 and the consensus
weights to estimate the traffic rates with each measur-
ing relay R0 in each position p. tR1 is set large enough
such that with probability 1 − qerr for at least 1 − 2λ
of the measuring relays by voting weight the amount
of noise added is less than a fraction εerr of the traffic
exchanged with R1 during the measurement period (we
use qerr = 0.1 and εerr = 0.1). 1−2λ of the voting weight
ensures accurate estimates remain after trimming the
largest and smallest fraction λ of the ρ statistics. In ad-
dition, tR1 must be set large enough to limit to εloss the
loss in accuracy due taking the maximum of noisy values
ρ̂R1

c and ρ̂R1
d (see App. B for details; we use εloss = 0.01).

5.5 Load balancing using measurements
The Directory Authorities use the aggregate peer-
measurement ρR and self-measurement σR to produce
the consensus weight ωR for relay R. Tor clients select
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relay R for a given position in a new circuit with proba-
bility proportional to ωR (approximately, see §2). Thus,
in order to balance the load across the available relays,
the Directory Authorities attempt to determine consen-
sus weights that are proportional to the bandwidth of
each relay. They must do this even as relay capacities
and network traffic change, and they must do it in a way
that is secure against manipulation. They will accom-
plish this by computing and comparing the amounts of
traffic a relay was expected to transfer, did transfer, and
claims it can transfer.

Let ηR be the amount of traffic that R is expected
to have relayed in the measurement period that has just
completed. To determine ηR, let PR be the set of relays
(including R) that could be chosen for the same posi-
tions as R in their most-recently completed measure-
ment period based on the Guard, Exit, and Fast consen-
sus flags, where for this purpose a relay is considered
to possess each of these flags if they exist for the ma-
jority of consensuses during the measurement period.
Then let ωR′

0 be the weight used by R′ ∈ PR dur-
ing its most-recently completed measurement period,
let tR′0 be the length of that period, and let ρR′

0 be the
inferred number of bytes relayed during that period. Fi-
nally, set ηR to be the voting-weight median of the set
{ωR

0 t
R
0 ρ

R′

0 /(ωR′

0 tR
′

0 )}R′∈PR , which is the set of inferred
bytes transferred adjusted for differences in consensus
weight and measurement-period length.

Let κR be the current estimate for the capacity of R,
that is, the amount of traffic that R is capable of relay-
ing. κR is set initially during the bootstrapping process.
Let SR be the measurement state of R. After the boot-
strapping period has finished, SR will only take values
normal and probation (its use during bootstrapping
is described in §5.7).

For SR = normal, if R is non-trusted, Figure 2 de-
scribes how the Directory Authorities update the con-
sensus weight ωR, the relay state SR, and the capac-
ity estimate κR. Observe that κR is never set to be
larger than the relay’s self-estimate σR and that κR is
increased to the observed rate ρR/tR if κR is less than
it. κR will only be decreased if R transfers a certain
fraction εdec less than both the expected amount ηR

and R’s estimated limit κRtR. This fraction is set to at
most εdec ≤ 1 − τ/(µ(1 − λ)) to protect honest relays
from being forced into probation by an adversary. Set-
ting εdec this way protects an honest R because R will
send the expected amount to the trusted relays, and so
(1− εdec)ηR = ρ̂R

floor ≤ ρR. Without trusted relays, εdec
should be set to a small value to allow some natural
variation in traffic amounts without allowing too much

1: κ′R = min(max(ρR/tR, κR), σR)
2: ωR = min(max((1 + εinc)κR, κ′R), σR)
3: κR = κ′R

4: if ρR < (1− εdec) min(κRtR, ηR) ∧ ρR/tR < σR

then
5: SR =probation
6: ωR = κR

7: end if

Fig. 2. Non-trusted relay weight algorithm if SR = normal

1: κR = min(ρR/tR, σR)
2: SR =normal
3: ωR = min((1 + εinc)κR, σR)

Fig. 3. Non-trusted relay weight algorithm if SR = probation

underperformance without penalty (e.g. εdec = 0.25). If
ρR falls below the required threshold but R indicates
with σR that it believes it has a higher capacity than
the amount measured, then R maintains its capacity
but enters the probation state. When the relay stays
in the normal state, the final weight produced ωR is
only increased either to a newly-demonstrated capacity
κR or, if R believes it has additional unused capacity, to
a fraction εinc over the old capacity (we use εinc = 0.25).

Probation allows a relay to avoid a weight decrease
due to a random or malicious lack of client traffic. When
non-trusted relay R enters the probation state, it at-
tempts to prove over the next measurement period that
it is capable of transferring at a rate that is the min-
imum of its current capacity κR and its self-assessed
capacity σR. To do so, R monitors the number of bytes
that it transfers to other relays, and it exchanges (iden-
tified) dummy traffic as needed to convince all mea-
suring relays in Mp for some p that it has relayed
min(κR, σR)tR bytes total. When R′ ∈ Mp receives β
dummy traffic from R, it echoes it back and adds µβ
to βR′R

p . The µ factor is needed because dummy traffic
is only sent to measuring relays, and, because dummy
traffic is otherwise treated the same as other traffic, it
provides no additional opportunity for the adversary to
cheat the system. As shown in Figure 3, at the end of
the measurement period the relay leaves probation sta-
tus and is assigned the capacity that is measured ρR/tR,
unless that exceeds its updated self-assessment.

Trusted relays also update their weights as shown
in Figures 2 and 3, with the additional requirement that
trusted relays maintain τ fraction of the weight (i.e. se-
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lection probability) in each position. After the update of
ωR for any relay R, an inflation factor is computed that
is multiplied by the trusted-relay weights when comput-
ing selection probabilities qR

p for R ∈ Tp. The inflation
factor is taken to be minimum value greater than one
such that

∑
R∈Tp

qR
p ≥ τ for p ∈ {g,m, e}.

5.6 Updating voting weights
For accuracy and security, the voting weight of a relay
should reflect the amount of bandwidth it has provided
in a given position. Giving relays with high contributed
bandwidth high voting weights improves accuracy be-
cause those relays have the most observations about
other relays’ activity. It improves security because it
requires the use of costly bandwidth both for an adver-
sary to obtain large weights for its relays and to affect
the weight of other relays. Thus PeerFlow bases voting
weights on previous estimates for the amount of relayed
traffic. However, voting weights are updated more slowly
than consensus weights in order to increase the upfront
bandwidth cost of obtaining influence over consensus
weights. In addition, a fraction of the smallest relays is
excluded from voting to speed up measurement.

We need to maintain that the measuring relays con-
stitute a significant fraction of the network. However, we
would also like to update voting weights infrequently
to force an adversary to relay traffic for a while before
increasing his voting weight. To satisfy the former con-
cern, we select a fraction µ of the network capacity in
each position to receive a positive voting weight (we use
µ = 0.75). To satisfy the latter, we only update the vot-
ing weights when the cumulative selection probability
of any 1− λ of the voting weight in some position falls
below (1−λ)µ (i.e. when

∑
R∈S q

R
p < (1−λ)µ for some

relay set S with voting weight at least 1− λ in position
p). This will ensure that a small adversary (i.e. one with
voting weight α < λ) cannot inflate his weight by tar-
geting the 1 − λ fraction of measuring relays that have
had their selection probability reduced the most.

The Directory Authorities initiate any update of
the voting weights after determining the next consensus
weights. During the update, each Directory Authority
gives a positive voting weight to the relays that have
the largest capacity and constitute a fraction µ of the
network capacity. Let κR

p be the current estimated ca-
pacity κR of relay R multiplied by the position weight
for R and p ∈ {g,m, e}. Let ij,p be the index of the re-
lay with the jth largest value κR

p . Let j∗p be the number
of relays needed to reach a fraction µ of

∑
R κ

R
p . Relay

Rij,p , j ≤ j∗p , is assigned a voting weight for position p

of v
Rij,p
p = κ

Rij,p
p /

∑
k≤j∗p

κ
Rik,p
p . Relay Rij,p , j > j∗p , is

assigned a voting weight for position p of v
Rij,p
p = 0.

5.7 Bootstrapping new relays
PeerFlow boostraps new relays into the system using
the following staged process:
Initialization: A new relay that Tor would currently
just add to the next consensus has its measurement state
SR initialized to unknown.
Unknown: In any consensus period a set of Bandwidth
Authorities, such as those currently used by TorFlow,
estimate the capacity of a relay R with SR =unknown
by downloading a set of test files of increasing size
through a one-hop circuit consisting of R. The test file
is obtained from a Bandwidth Authority itself, and the
Bandwidth Authority should have enough capacity to
measure a reasonable lower-bound on capacity for the
largest relays. Tor’s current restrictions on one-hop cir-
cuits can be avoided by having the Bandwidth Author-
ity act both as the client and as a spurious second hop.
To reduce the ability of the adversary to slow down the
testing process, Bandwidth Authorities test relays in the
order that they joined, and they only allow the down-
load to take as long as it would take a relay with the
minimum amount of bandwidth needed for the Fast flag
(currently 100KB/s [4]).

Regardless of whether all downloads finished, at the
end of the tests for relay R, the Bandwidth Authority
estimates a sustainable rate for the relay κR as the mini-
mum of the observed rate (i.e. the test bytes transferred
over the time needed to transfer them) and the initial
self-measured capacity σR. The weight of R is initial-
ized to ωR = κR. The measurement time tR is set as
described in §5.4, except the traffic amounts ρR

p in each
measurement position p (which do not exist initially) are
estimated by using those amounts ρR′

p from the other re-
lays R′ with the same flags as R after their most-recently
completed measurement period. To estimate ρR

p from
these, each ρR′

p is normalized to ωRρR′

p /(tR′ωR′), and
ρR

p is set to the vote-weighted median of these values.
Finally, the state of R is updated to SR = estimated.

Note that this stage is for performance reasons only.
The amount of data downloaded during the tests is not
high and is not intended as a security barrier. In ad-
dition, the measured relay is aware that the requested
downloads are measurement tests performed by Band-
width Authorities.
Estimated: Relay R with SR =estimated starts being
selected only for the middle position when doing so will
not cause the selection probability of estimated relays
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to exceed some small amount (e.g. 5%). The middle po-
sition cannot observe the client or destination directly,
and so PeerFlow allows relays to occupy the middle po-
sition based only on an insecure capacity estimate. The
limit on the probability of estimated relays limits the
extent of observations they can make. Note that esti-
mated relays are not considered when determining the
measuring relays, which, among other things, prevents
an adversary from triggering a voting-weight update by
flooding new relays.

Measuring relays measure R just as they do for
relays in the normal state. After tR time, an esti-
mate ρR is produced for the amount relayed by R us-
ing the same trimmed vote as for relays in the nor-
mal state. Then the capacity estimate is updated to
κR = min(ρR/tR, σR), and the consensus weight is set
to ωR = κR. Finally, the relay’s state is updated to
SR = normal.

6 Security analysis
The main security goal of PeerFlow is to ensure that
an adversary that relays a fraction φ of Tor’s traffic in
a given position only obtains a total relative consensus
weight of γφ, where γ is a small advantage multiple. We
first examine consensus weights in a given voting-weight
period (voting-weight periods are described in §5.6). We
show bounds on γ, which, in addition to the limits im-
posed by trusted relays, show that if the adversary is
small (i.e., has a maximum voting-weight fraction of
α < λ), the advantage is bounded even without any
trusted relays. We then examine the consensus weights
across voting-weight periods and show that PeerFlow
provides bounded advantage there as well.

6.1 Weights in a single voting-weight
period

Let αp, p ∈ {g,m, e}, be the voting weight fraction
that the adversary’s relays cumulatively possess in po-
sition p, and let α = maxp αp. Let A be an adversar-
ial relay. Let βA be the total number of bytes sent
or received by A during its measurement period. Let
nmsr = max(|Mg|+ |Mm|, |Me|+ |Mm|), and let Sj =∑

1≤i≤nmsr
N j

i , j ∈ {1, 2}, where each N j
i is an in-

dependent random variable distributed in same way
as the PeerFlow noise values (i.e. with distribution
Lap(δnoise/εnoise)). We use the variables in Table 4 to re-
fer to those values in the current measurement period,
and we denote by x0 the value of variable x in the last
measurement period (e.g. κR

0 indicates the capacity in-
ferred for R for its previous measurement period). Note

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

Adv relative capacity

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

re
la

tiv
e

in
fe

rr
ed

ca
pa

ci
ty

Trusted fraction: 0.00
Trusted fraction: 0.05
Trusted-only frac: 0.05
Trusted fraction: 0.10
Trusted-only frac: 0.10
Trusted fraction: 0.20
Trusted-only frac: 0.20
Trusted fraction: 0.30
Trusted-only frac: 0.30

Fig. 4. Max adversarial relative inferred capacity across voting
periods using trusted relays and using trusted relays only

that the proofs of Lemmas 1 and 2 and of Theorem 1
appear in Appendix B.

We focus on α < λ because α = 0 at the beginning
of an attack, small adversaries will maintain small α
(as shown in §6.2), and with α > λ the adversary’s
inferred capacity is bounded only by the trusted ceiling
(i.e. the limit imposed by ρ̂A

ceil). Lemma 1 shows that
the expected bytes that PeerFlow infers were transferred
by A (i.e. ρA) are upper-bounded in some way by the
number of bytes that A actually exchanged (i.e. βA). As
we will show, assuming A exchanges close to the amount
necessary to stay out of probation, then the noise sums
S1 and S2 will be small relative to βA, and the upper
bound in the lemma is roughly βA/((1 − λ − α)µ). For
λ = 0.256, α < λ, and µ = 0.75, the adversary is thus
limited to increasing ρA by a factor of roughly 2.73.

Lemma 1. If α < λ, then over the random noise values

E[ρA] ≤ ((1− λ− α)µ)−1 E
[
max(S1, β

A + S2)
]
.

Lemma 1 limits the amount an adversary can increase
his relays’ inferred bytes transferred. His total consen-
sus weight is relative to the honest relays, however, and
it may occur that many of these relays transfer most of
their traffic with a small number of measuring relays,
whose values get trimmed. However, it is unlikely that
traffic from honest clients is skewed much in this way.
Let γ′ ≤ 1 be the smallest factor by which some set
of honest measuring relays with voting weight 1 − 2λ
underestimates an honest relay. Let A be the set of ad-
versarial relays. Lemma 2 states that the inferred bytes
of each honest relay is at most γ′ of the true value βR/2.

Lemma 2. If α < λ, then, for all R /∈ A, ρR ≥ γ′βR/2.

These lemmas combine to prove Theorem 1, which
states that either the malicious relay sends less than
expected, putting it into probation, or it obtains a rel-
ative consensus weight at most a constant factor above
the relative amount of traffic it transfers. With α = 0,
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γ′ = 1, µ = 0.75, εinc = 0.25, λ = 0.256, and εloss = 0.01,
for example, the advantage factor is γ = 4.52.

Theorem 1. For α < λ and over the random noise
values, if βA < (1−λ−α)(1− εdec)(1− εloss)µρA

0 t
A/tA0 ,

then E[ρA] puts A into probation, and otherwise

E[ωA]∑
R ω

R
≤
[

2γ′(1 + εinc)
(1− εloss)(1− λ− α)µ

]
(βA/tA)∑
R(βR/tR)

.

While in theory the adversary can obtain the advantage
factor γ in Theorem 1 (the value in brackets), doing
so requires certain attacks that have costs and limita-
tions. To obtain the factor of 2 in γ, the adversary must
only send or receive “one-sided” traffic to measuring re-
lays, i.e. only from the client side or destination side.
In particular, he must not actually relay any Tor traffic.
Acting this way is highly observable and is likely to be
noticed by clients. To obtain the ((1−λ−α)µ)−1 factor
in γ, the adversary must exchange traffic only with a set
of measuring relays with voting weight 1−λ−α. This is
observable by Directory Authorities (although hard to
distinguish from a possible framing of an honest relay)
and also noticeable by clients.

6.2 Weights across voting periods
We now consider the ability of an adversary to increase
his inferred capacities κA (and thus his weights ωA) over
time, A ∈ A. For this analysis, we ignore the possible
inflation effect of the added noise (i.e. εloss = 0.01),
assume that honest relays send their share of the traffic
volume to the measuring relays (i.e. that γ′ = 1), and
assume that voting weights and selection probabilities
are maintained to be proportional (e.g. as when there is
no network churn).

The adversary can apply a feedback attack to the
bounds of Theorem 1 by repeatedly exchanging all traf-
fic with a target set of relays with voting weight 1−λ−α,
including the trusted relays, as α grows. He can ac-
complish this, for example, by severely rate limiting
honest client connections and creating his own dummy
connections through the targeted measuring relays. Ini-
tially, when α = 0, this inflates his total capacity by a
factor of at most 2/((1 − λ)µ). Then, once the adver-
sary receives an inflated voting weight α, he can target
1− λ− α of the measuring relays to exchange all traffic
with, further increasing his voting weight by a factor
of (1 − λ)/(1 − λ − α). The adversary can repeat this
process until either he reaches a fixpoint or he receives
voting weight α > λ, at which point the capacities of his
relays are either limited by the trusted-relay ceiling (i.e.
ρ̂A
ceil) or are unbounded without trusted relays, and the

adversary can start to deflate the weights of the honest
relays, which are ultimately limited by the trusted-relay
floor (i.e. ρ̂R

floor).
We simulate this process across voting periods un-

til the adversary’s weight no longer increases. We also
consider a simpler variant of PeerFlow in which only
trusted-relay measurements are used. In this variant,
the trusted-relays measurements are used directly (i.e.
ρR = ρ̂max), there are no voting weights, and the other
PeerFlow components operate in the same way.

The results are shown in Figure 4. It shows that
PeerFlow can provide bounded weight inflation to small
adversaries even when there are no trusted relays.
Specifically, the inflation factor is γ < 4.6 when τ =
0 and the adversary is at most 4% of the network.
This compares favorably to the measured TorFlow and
EigenSpeed inflation factors of up to 177 and 28.1, re-
spectively. It also shows that using measurements from
all relays protects against small adversaries at the ex-
pense of worse security against larger adversaries com-
pared to using measurements from only trusted relays.
Making this tradeoff is consistent with Tor’s security in
general [24]. We can also see that as the trusted fraction
of the network grows, the security from using all relays
and from using only trusted relays become the same. In
both cases, as the trusted fraction grows, an adversary
with φ of the network capacity has his inferred relative
capacity limited to (2φ/τ)/(1 + 2φ/τ), which implies a
bounded inflation factor of γ ≤ 2/τ .

7 Load-Balancing Analysis
In this section, we experimentally demonstrate Peer-
Flow’s ability to effectively distribute network traffic to
relays in proportion to their bandwidth capacities.

7.1 Experimentation Setup
We evaluate PeerFlow and its effect on the con-
sensus path selection weights, network goodput, and
client performance using Shadow [21]. Shadow is an
open-source [3] parallel discrete-event network simula-
tor/emulator hybrid that has been extensively validated
and utilized for Tor network experimentation [19, 20].
Shadow experiments are completely isolated from the
network, so they are safe and contain no privacy risk
to the public Tor network or its users. Because Shadow
runs real applications as plug-ins, it is ideal for analyz-
ing application-layer effects, e.g. those that result from
modifying Tor’s load-balancing protocols.
Our Private Tor Network: We generated a new Tor
network configuration for Shadow using the tools in
the Shadow distribution and Tor Metrics data [1] col-
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lected during 2014-09. The resulting Tor network con-
tains 4 Tor directory authorities, 498 Tor relays, 7,500
Tor clients, and 1,000 servers. Our private network rep-
resents the public Tor network from 2014-09 at scale of
approximately 1

12 , and we ran our private network for
5 virtual hours for each experiment (using the first two
for network bootstrapping). We repeated each experi-
ment 3 times to measure variability across runs, which
we quantify for a given performance metric by compar-
ing the distribution F (x) across all 3 experiments to the
distribution Fi(x) for the ith experiment, i ∈ {1, 2, 3},
using the KS statistic: maxx |F (x)− Fi(x)|.

We experiment with and compare three models to
determine the effect of load-balancing weights on client
performance and the distribution of network load. In the
Ideal model, each relay’s consensus weight is initialized
to the capacity of its network interface as configured in
Shadow, and these weights do not change throughout
the experiment. In the TorFlow model, we run our new
Shadow TorFlow plug-in that we developed2 to mimic
the behavior of TorFlow as it operates in the public Tor
network. In the PeerFlow model, we run a PeerFlow pro-
totype3 that we implemented in Tor (forked at version
0.2.5.10). We did not implement probation in our pro-
totype. However, we do measure when probation would
be triggered and how much traffic would be needed to
avoid probation, and those measurements are presented
in §8.2. In both the TorFlow and PeerFlow models, the
bandwidth information used to produce the consensus
weights is dynamically updated throughout the exper-
iment. We run three experiments for each model using
random seeds, and for each model we present the results
aggregated across all three experiments. Note that we
do not compare EigenSpeed because (i) it is not cur-
rently used in practice; and (ii) we believe that Tor will
not adopt it at least partially due to the vulnerabilities
discussed in §4.

7.2 Network Performance
A primary goal of Tor’s network load-balancing algo-
rithm is to distribute traffic to best utilize existing re-
sources, and we use goodput as a metric for determin-
ing effective use of such resources. For our purposes,
relay goodput, or application throughput, is the num-
ber of application bytes that a relay is able to for-
ward over time. More formally, if a relay Ri receives
Br

i (T ) application bytes from the network and sends

2 Our Shadow TorFlow plug-in contains 2128 lines of code
3 Our PeerFlow prototype contains 1222 lines of code

Bs
i (T ) application bytes to the network at time T over

time interval t, then we define its goodput as Gi(T ) =
min(Br

i (T ), Bs
i (T ))/t. We normalize t to 1 second for

ease of exposition.
To determine how load is distributed over the re-

lays, we compute each relay’s per-second goodput Gi(T )
for every second of the final 3 virtual hours of simula-
tion. Figure 5a shows the cumulative distribution of the
goodput for each relay-second, over all relays, seconds,
and experiments. The goodput achieved under all three
models were 199.0 KiB/s for Ideal, 0.1 KiB/s for Tor-
Flow, and 30.1 KiB/s for PeerFlow in the median, and
960.3 KiB/s for Ideal, 729.5 KiB/s for TorFlow, and
683.0 KiB/s for PeerFlow in the third quartile. Each
per-experiment distribution was similar to the combined
distribution with a maximum KS statistic of 0.0604.

Given our definition of relay goodput, we define ag-
gregate load L at time T as the sum of all relay good-
puts, i.e., L(T ) =

∑
i Gi(T ). We compute L for all t ∈ T

(every second), and plot the cumulative distribution
over all seconds in all experiments for each model. The
results are shown in Figure 5b. The median and stan-
dard deviation of aggregate goodput are 483.7 and 10.2
MiB/s for the Ideal model, 437.9 and 11.3 MiB/s for
the TorFlow model, and 427.4 and 11.8 MiB/s for the
PeerFlow model. Some per-experiment distributions dif-
fered significantly from the combined distribution with
a maximum KS statistic of 0.393. Given these results,
we conclude that PeerFlow does not dramatically re-
duce relay goodput compared to the TorFlow model,
and that optimizing PeerFlow may be able to increase
aggregate relay goodput to be closer to Ideal.

We also consider network utilization as a load-
balancing metric, which demonstrates how well the al-
gorithms in our load-balancing models use the available
network resources. If relay Ri has goodput Gi(T ) and
capacity Ci, we define its utilization Ui(T ) at time T
as Ui(T ) = Gi(T )/Ci. We compute utilization for each
relay each second, and show the distribution of utiliza-
tion rates over all experiments in Figure 5c. Our results
show that 75% of relays had a utilization of 43% or less
in TorFlow, 49% or less in PeerFlow, and 61% or less in
Ideal. Each per-experiment distribution was similar to
the combined distribution with a maximum KS statistic
of 0.0628. We thus conclude that while PeerFlow im-
proves utilization over TorFlow, further improvements
may still be possible.

7.3 Client Performance
Another goal of load-balancing algorithms is to mini-
mize client performance bottlenecks. We use file down-
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Fig. 5. Network utilization and client performance for the Ideal, TorFlow, and PeerFlow load-balancing models over all experiments.

load times as a metric for determining how clients will
perceive performance changes resulting from using Peer-
Flow. We consider the time to download the first byte
of all files as a general measure of latency (Figure 5d),
and the time to download the last byte of 320KiB files
(Figure 5e) and 5MiB files (Figure 5f) as measures of
performance for web or bulk type downloads, where the
distributions considered are across all 3 experiments.
As the distribution of download times is nearly identi-
cal for all measurements below the median, we focus on
the upper half of the distributions.

With regards to the 320KiB file downloads in Fig-
ure 5e, the 3rd quartile download time is highest for
Ideal at 2.00 seconds, followed by TorFlow at 1.51 sec-
onds, and lowest for PeerFlow at 1.44 seconds. The max-
imum download time is just over 60 seconds for all mod-
els due to the default 60 second timeout set by the traffic
generation tool used in Shadow. These trends are simi-
lar for both 320KiB and 5MiB downloads, as well as for
the time to first byte metric. Each per-experiment dis-
tribution was similar to the combined distribution with
a maximum KS statistic of 0.0461.

Given our results, we conclude that the security
benefits of PeerFlow may come with a slight reduction
in download times across all file sizes when compared to
both TorFlow and Ideal, and a small increase in down-
load time for the smaller first byte and 320KiB met-
rics for less than 10% of the downloads. We also note
that while ideal measurement does result in the highest
overall network utilization, as expected, it doesn’t yield
faster individual downloads, and this unintuitive phe-
nomenon may merit further investigation. Furthermore,
probation is not fully implemented in our prototype,

and so it is possible that PeerFlow will underestimate
relays’ weights. We now analyze the extent of such er-
rors in weight calculations in our experiments.

7.4 Consensus Weight Errors

TorFlow and PeerFlow produce relay weights that get
added to the Tor network consensus. These weights bias
the relays chosen by clients when constructing circuits,
thus affecting the distribution of client load. Ignoring
additional position weights that are applied based on
the ability to serve as a guard or exit relay, the ratio of a
given relay weight to the sum of all of the relays’ weights
roughly approximates the fraction of total network load
that will be directed to that relay.

A good load-balancing scheme should distribute
load proportional to the real capacities of the relays;
in other words, a relay’s relative weight should match
its relative capacity. We can thus consider the inaccu-
racy of load balancing in Tor by comparing the relays’
relative consensus weights to their true relative band-
widths. Let Ci be the bandwidth capacity of relay Ri

and its relative capacity be Ci = Ci/
∑

j Cj , and let
W j

i be the weight of Ri in the jth consensus and its
relative weight be Wj

i = W j
i /
∑

k W
j
k . We measure the

inaccuracy of the weight of Ri as | log10(Ci/Wj
i )|. We

also measure the imprecision of the weights of Ri across
consensuses as their sample standard deviation divided
by their sample mean.

Table 5 compares the inaccuracy and imprecision of
TorFlow and PeerFlow. For each experiment, the inac-
curacy is averaged across all relays and consensuses, and
the average and standard deviation across experiments
is shown. Similarly, the imprecision results are averaged
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Inaccuracy Imprecision
Avg. Std. Dev. Avg. Std. Dev.

TorFlow 1.02 0.244 0.288 0.213
PeerFlow 0.428 0.0381 0.217 0.0814

Table 5. Weight errors in TorFlow and PeerFlow.

over all relays for each experiment, and the average and
standard deviation across experiments is shown. The re-
sults show that our PeerFlow prototype was both more
accurate and more precise than TorFlow.

8 Speed and Efficiency Analysis
PeerFlow schedules measurement rounds individually
for each relay depending on the relay’s expected client
traffic. With more client traffic, a relay’s measurements
will more quickly be large relative to the added noise,
and so the measurement time can be smaller. These
measurement times also affect the bandwidth efficiency
of the protocol because they determine how often mea-
surements are sent to the Directory Authorities.

8.1 Speed
In order to estimate relay measurement times when run-
ning PeerFlow on the Tor network, we use historical net-
work data from CollecTor [2]. These data include past
network consensuses, from which we can determine the
types of relays that existed, and extra-info descriptors,
from which we can determine the amount of traffic each
relay transferred.

We use the consensus from January 31, 2015, at
00:00 and the extra-info descriptors from January 2015
as the basis for our analysis. We estimate the average
rate of client traffic transferred by each relay using the
byte histories over the hour before the consensus. After
excluding relays with empty or incomplete byte histories
or with selection probabilities of zero, there are 5917
relays in the network.

We estimate PeerFlow’s determination ρ̄R
p of the

bytes relayed by R and observed in position p by tak-
ing the minimum of read and written bytes in the byte
history and multiplying it by R’s relative probability
of being selected in each circuit position. We take the
measuring guards, measuring middles, and measuring
exits to be the largest µ = 0.75 fraction of relays by
position-weighted bytes relayed (i.e., for relay R, βR is
multiplied by the position weight for R in the given mea-
suring position). The result is 400 measuring guards, 749
measuring middles, and 145 measuring exits.

We apply the measurement-time procedure given in
§5.4 to estimate what the measurement times of ex-
isting Tor relays would be under PeerFlow. Figure 6
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Fig. 6. Measurement times weighted by observed relay capacity
Number of Relays Dummy Traffic (KiB/s)

εdec Median Max Avg. Total Std. Dev.
0.05 14 75 2.38 0.677
0.25 7 55 1.49 0.573
0.50 4 57 2.05 1.33
0.75 1 17 0.039 0.0142
0.95 1 10 0.00328 0.00385

Table 6. Median and maximum number of relays in probation and
the amount of dummy traffic needed to avoid probation

shows the resulting distribution of measurement times
over the observed bytes transferred. Measurement times
below 14 days are shown, which constitute 96.8% of the
times by relay capacity. The 25th-percentile measure-
ment time is 11.5 hours, the 50th is 27.7 hours, and the
75th is 70.7 hours. The relays with measurement times
above 14 days have low observed capacity, many below
Tor’s stated requirements of 100 KB/s for Fast relays
and 250 KB/s for guards. By raising these requirements
by 150%, to 250 KB/s for Fast relays and 625 KB/s for
guards, and excluding relays with observed capacities
below these requirements, the maximum measurement
time can be lowered to 316.4 hours (i.e. 13.2 days).

8.2 Efficiency
PeerFlow has bandwidth overhead from sending statis-
tics to the Directory Authorities and from dummy traf-
fic due to relays in probation. Each measuring relay
sends data to the Directory Authorities at the end of
a measured relay’s measurement period. Thus the total
measurement traffic to them is O(mn), where m is the
number of measuring relays and n is the number of re-
lays. However, each measuring relay sends only the four
ρ statistics for each measured relay, and our evaluation
shows that measurement periods are generally at least a
few hours long. Again using the consensus from January
31, 2015, at 00:00, and assuming that each statistic is
4 bytes, we find that the average rate of upload to each
Bandwidth Authority is only 119.6 B/s.

We investigate the dummy traffic overhead by run-
ning Shadow experiments over a range of probation-
trigger values εdec. Using the PeerFlow model and net-
work described in §7, we ran 3 experiments for each εdec.
For µ = 0.75, εdec ranges from 0.90 for a trusted fraction
of τ = 0.05 to 0.2 for τ = 0.3. The results in Table 6
show that, out of the 498 total relays, the median num-
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ber of relays in probation in a given second across all
experiments was at most only 14 and that the maximum
was at most only 75. Moreover, the results show the to-
tal dummy traffic needed to meet expectations and thus
avoid probation was at most only 2.38 KiB/s on average
over time and across all experiments, with comparable
standard deviation across experiments. This amount is
very small relative to the median network-wide Peer-
Flow goodput of 428.0 MiB/s (see §7).

9 Conclusion
Tor’s security is vulnerable to an adversary running
large relays, and we show that under the Tor’s current
TorFlow bandwidth-measurement system and the pro-
posed EigenSpeed system an adversary can make small
relays appear large, drastically reducing the cost of at-
tack. We present PeerFlow, show how it limits the abil-
ity of an adversary to fool Tor about the bandwidth of
his relays, and demonstrate that its performance is com-
parable to Tor’s current performance. Possible future
improvements to PeerFlow include improving scalabil-
ity and further improving security to reduce even more
the adversary’s ability to inflate his relays’ weights.
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A Enhanced PeerFlow
While our simulations and analysis show that PeerFlow
would improve the security and performance of Tor’s
load balancing at relatively low cost, we note that some
future concerns are not addressed by our basic design.
First, revealing the approximate amount of traffic sent
between specific pairs of relays increases the information
available to an adversary for traffic analysis. In addition,
adding noise to traffic statistics makes them less accu-
rate and forces PeerFlow to wait to report on a given
relay until enough client traffic is likely to have been
relayed. This delays measurement of low-bandwidth re-
lays, and as the network grows the relative weight of
each measuring relay will decrease, thus increasing the
length of reporting intervals.

Here we describe a modifications to PeerFlow that
address these concerns, by cryptographically protect-

ing the privacy of individual measurements. We present
these modifications as an enhancement to PeerFlow to
leave a core design that is more straightforward for the
Tor Project to implement and adopt.

A.1 Encrypted Measurement Aggregation
In order to protect the privacy of individual measuring
relay observations, we introduce a new role for the Band-
width Authorities (§5.7). These authorities will have the
role of jointly decrypting bandwidth reports after aggre-
gation; if a majority of the Bandwidth Authorities col-
lude then individual observations can be exposed, but
if a majority are honest, then individual observation re-
ports will retain their privacy.

The Bandwidth Authorities cooperate to publish a
public key for a threshold homomorphic tally system,
while separately maintaining shares of the decryption
key. In addition to key generation, a threshold homo-
morphic tally system supports the following operations:
– Encryption: Given a public key and t tallies

b1, b2, . . . , bt, produce a ciphertext that encodes
these counts, providing semantic security.

– Proving: Given a public key PK , randomness
r, and a ciphertext that encrypts a tally, pro-
duce a publicly-verifiable proof that the cipher-
text is well-formed, i.e. was produced by computing
EPK (0, . . . , 1, . . . , 0; r).

– Aggregation: Given ciphertexts c and c′ encoding
tallies b1, . . . , bt and b′1, . . . , b

′
t and weights w and

w′, produce a ciphertext c that encodes wc1 +
w′c′1, . . . , wct + w′c′t.

– Decryption: Given ciphertext c and decryption key
share s, produce a decryption share d along with a
publicly-verifiable proof of correctness. The shares
should be publicly combinable to produce the joint
decryption. This verifiability allows PeerFlow to
maintain auditability while increasing privacy.

We describe two possible implementations of these op-
erations in §A.2.1 and A.2.2.

Given the encrypted tally system, we modify how
measuring relays report their observations. For each re-
lay R, we partition the range ((1 − δ)ρR

p , (1 + δ)ρR
p )

into t equally-sized buckets [b1, b2), [b2, b3), . . . , [bt−1, bt),
where δ is a maximum allowed relative capacity change.
Each measuring relay in position p then computes
the observed value ρR

p (without noise) as in §5.1, and
chooses the bucket b ∈ {1, . . . , t} containing ρR

p . The
measuring relay R′ then encrypts a “vote” for this
bucket, and submits this encrypted tally cR′ to the
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Bandwidth Authorities along with a proof of well-
formedness.

Finally, the Bandwidth Authorities use the homo-
morphic properties of submitted ballots to combine the
tallies, weighted by measuring relays’ voting weights,
obtaining a final tally for each relay observation. The
Bandwidth Authorities decrypt this aggregate, provid-
ing proofs of correct decryption. The Bandwidth Au-
thorities then compute the observation for relay R, ρ̄R

p ,
as the mean value of the votes after trimming λ voting
weight from the smallest and largest buckets. They send
this value to the Directory Authorities.

A.2 Example Threshold Homomorphic
Tally Schemes

A.2.1 Paillier-based scheme

Baudron et al. [6] describe a homomorphic tally scheme
based on the Paillier cryptosystem; the scheme can be
modified for PeerFlow in a straightforward way. The
Bandwidth Authorities engage in a distributed thresh-
old Paillier key generation algorithm [10, 11, 15], result-
ing in a Paillier public key N with generator g. Using the
network consensus, all measuring relays can agree on a
value M which is greater than the sum S of all voting
weights, for example M = 2dlog2 Se. Then to encrypt a
vote for bucket i, a measuring relay chooses r ∈R Z∗N
and computes EN (bi) = gMi

rN mod N2.4

Note that in this scheme, if the sum of voting weight
given to bucket i is vi, we have EN (bi)vi = EN (viM

i)
and

∏
i EN (viM

i) = EN (
∑

i viM
i), so as long as we

have all vi < M , we can recover weights v1, ...vt by rep-
resenting the result of decryption in base M (and this
will be particularly efficient if M = 2k for some k).

Proving in zero-knowledge that a ciphertext c =
EN (M i) correctly encrypts a particular bucket value
M i can be accomplished by proving knowledge of an N -
th root of c/gMi using the Guillou-Quisquater scheme,
which requires the prover to send two elements of
ZN2 and a 2`-bit challenge for soundness level 2−` ;
this can be extended using the standard techniques of
Cramer et al. [9] to prove that

∨t
i=1 c = EN (M i) and

converted into a noninteractive proof using the Fiat-
Shamir heuristic. All together, this method of proving

4 If Mt > N , the scheme can use the Damgård-Jurik extension
to work modulo Nd+1, where d is the minimal integer such that
Mt < Nd.

that a ciphertext is correct produces a proof of length
2t(2 log2 N + `) bits, and can be verified with t modular
exponentiations in ZN2 .

Proofs of correct decryption are provided by each
Bandwidth Authority individually, following the proto-
col described in [10, 11, 15].

A.2.2 Additive Elgamal-based scheme

A tally scheme can also be implemented using additive
Elgamal encryption over any group where the Decisional
Diffie-Hellman assumption is hard. In this case, the
bandwidth authorities engage in a distributed key gen-
eration protocol to produce t public keys {hi = gx

i }ti=1
with generators g0, g1, . . . , gt of prime order p whose re-
spective discrete logarithms are unknown. To encrypt a
vote for bucket b, a measuring relay chooses r ∈R Zp,
and computes c0 = gr

0, cb = hr
bg0, and cj = hr

j for j 6= b;
the ciphertext becomes the list c0, c1, . . . , ct. Note that
in this scheme, raising all elements of a ciphertext to a
scalar power v scales the tally for bucket b by v, and
elementwise multiplication adds the tallies for all buck-
ets. After decrypting the elements of a ciphertext using
standard threshold Elgamal, the individual tallies are
recovered in O(

√∑
i vi) time using a standard short

discrete logarithm algorithm.
Proving that a ciphertext c encrypts a vote for a

single bucket b in honest-verifier zero knowledge could
be accomplished as follows: the verifier chooses a ran-
dom vector 〈x1, . . . , xt〉 ∈R Zt

p; then both sides com-
pute X =

∑
i xi, H =

∏
i h

xi
i , and Cb = g−xb

0
∏

i c
xi
i .

Finally, the verifier and prover engage in a standard
proof of knowledge of equality of discrete logarithms,
logg0 c0 = logH Cb, which requires the prover to send
a group element and an element of Zp and the veri-
fier to send an `-bit challenge. Applying the standard
disjunction technique to the t possible buckets allows
constructing a proof that c encrypts a single vote for
one bucket b ∈ {1, . . . , t}, and applying the Fiat-Shamir
heuristic results in a noninteractive proof of length t

group elements plus t elements of Zp and t short expo-
nents.
Privacy Analysis: Under the assumption that the ma-
jority of Bandwidth Authorities are honest, this scheme
ensures that no information is leaked about the indi-
vidual measurements reported by each measuring relay
beyond what is leaked by the voting-weighted sum re-
leased for a given measurement period; this follows from
the semantic security of the tally encryption schemes.
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Fig. 7. The subset entropy of four voting-weight rounding
schemes applied to the top 750 bandwidth weights from a recent
Tor consensus: full is no rounding, ideal assigns all weights to 1,
rounded-1k rounds to the nearest 1000, rounded-pow2 rounds up
to the nearest power of 2. 7a Cumulative frequencies of subset
anonymity; 7b counts of low-anonymity subsets (capped at 20 to
show detail).

Here we analyze the amount of information that could
be leaked by this aggregate result.

The residual leakage stems from the fact that few
relays have identical weights in the current Tor network,
so many small subsets of relays could have distinctive
weight sums. As an example, we consider the bandwidth
weights of the top 750 relays in the Tor network as of
February 9, 2015 (750 is just over the number of mea-
suring relays we used in our analysis §8.1). Among these
relays, there are 138 possible sums that can only arise
from a single subset of the weights, and 2456 possible
sums that can arise from fewer than 256 different relay
subsets.5

However, this leakage can be mitigated to a large
extent by one of two schemes for rounding of voting
weights. In the Rounded-1K scheme, each measuring re-
lay’s weight is divided by 1000 and rounded. Contin-
uing with the example above, we find that the 750th
highest-weighted relay on Febuary 9, 2015 had a weight
of 8160, which under this scheme would be assigned vot-
ing weight 8, while the highest-weighted relay had a
weight of 334000, and would be assigned voting weight
334. In the Rounded-Pow2 scheme, each measuring re-
lay’s weight is rounded to the next power of 2 and scaled
by the voting weight of the lowest-weighted measur-
ing relay. Thus the lowest-weighted measuring relay in
the previous example would have its weight rounded to
8192 and then scaled to 1, while the highest-weighted
relay’s voting weight would be rounded to 219 = 524288
and scaled to 64. Figure 7 summarizes the impact of

5 To count possible subset sums, we modified the standard
pseudopolynomial-time dynamic programming algorithm for
subset sum, which runs in time O(mS) for m items with to-
tal weight S

these rounding schemes on the anonymity of weight
sums: overall, most relay subsets have high subset en-
tropy (defined as SE(R) = log2 |{S ⊆ [n] :

∑
i∈S wi =∑

i∈R wi}|), as seen in Figure 7a. As Figure 7b shows,
however, both rounding schemes significantly reduce
the number of subsets with low subset entropy, with
Rounded-Pow2 producing the fewest low-entropy sub-
sets.

We note that in the worst case, the Rounded-Pow2
scheme may inflate the fraction of voting weight con-
trolled by an adversary by nearly a factor of 2, whereas
the worst case for the Rounded-1K scheme is 1+ 1

2vmin+1 ,
where vmin ≥ 1 is the lowest post-rounding voting
weight among measuring relays; in our example vmin =
8, so the worst-case inflation factor as a result of round-
ing was 1.059. If we instead consider an adversary that
compromises existing relays in our example, the highest
relative inflation encountered under the Rounded-Pow2
scheme was 1.366, while the highest relative inflation
under the Rounded-1K scheme was 1.014; the respec-
tive 90th percentiles were 1.287 and 1.014.

B Proofs of Theorems
Lemma 1. If α < λ, then over the random noise values

E[ρA] ≤ ((1− λ− α)µ)−1 E
[
max(S1, β

A + S2)
]
.

Proof. The Directory Authorities infer the number of
bytes transferred by A as the maximum of inferred
bytes observed on the client and destination sides: ρA =
max(ρA

c , ρ
A
d ). The inferred number of client-side bytes

is the sum of the inferred number of guard-observed
and middle-client-side bytes: ρA

c = ρ̄A
g + ρ̄A

mc. The in-
ferred number of destination-side bytes is defined sim-
ilarly: ρA

d = ρ̄A
e + ρ̄A

md. Let βA
p be the number of bytes

sent or received by A with a measuring relay in position
p ∈ {g,mc,md, e}. We will show a bound on each ρ̄A

p in
terms of βA

p that will combine to bound both ρA
c and

ρA
d and then ρA as well.
ρ̄A

p is determined from the values βRiA
p , which are

the number of bytes A sent or received from each mea-
suring relay Ri ∈ Mp while Ri was in position p in
the circuit. Each Ri uses βRiA

p to produce an indepen-
dent estimate of the total bytes ρRiA

p by first adding
random noise NRiA

p ∼ Lap(δnoise/εnoise) and then di-
viding by its selection probability qRi

p , that is, ρRiA
p =

(βRiA
p + NRiA

p )/qRi
p . ρ̄A

p is the aggregate of these esti-
mates after trimming the largest and smallest fraction
λ by voting weight. Let ip,j be the index of the jth
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largest ρ statistic. Let i1p and i2p be the indices of the
first and last untrimmed statistics, respectively. Let A
be the set of indices of the adversary’s relays. To extend
the measuring relay notation to directional positions,
letMmc =Mmd =Mm. We bound the value of ρ̄A

p as
follows:

ρ̄A
p =

∑
i1

p≤j≤i2
p
ρ

Rip,j
A

p q
Rip,j
p∑

i1
p≤j≤i2

p
q

Rip,j
p

(1)

=

∑
i1

p≤j≤i2
p
β

Rip,j
A

p +N
Rip,j

A
p∑

i1
p≤j≤i2

p
q

Rip,j
p

(2)

≤

∑
i1

p≤j∧j /∈A β
Rip,j

A
p +N

Rip,j
A

p∑
i1

p≤j∧j /∈A q
Rip,j
p

(3)

≤
βA

p +
∑

i1
p≤j∧j /∈AN

Rip,j
A

p

(1− λ− α)µ (4)

The inequality in line 3 holds because j > j′ implies
that ρ

Rip,j
A

p ≥ ρ
Ri

p,j′
A

p and also any untrimmed voting
weight from adversarial relays is replaced by the same
amount of voting weight from honest relays with larger
ρ statistics. The inequality in line 4 holds because the
voting weight of honest relays with ρ statistics above
the lower trimmed fraction is at least 1−λ−α, and vot-
ing weights are updated to maintain that the selection
probability of any subset with voting weight at least
1− 2λ has total selection probability of at least µ of its
voting weight.

Let Sp =
∑

i1
p≤j∧j /∈AN

Rip,j
A

p . Then, using our
bound on ρ̄A

p , we can see that

ρA
c = ρ̄A

g + ρ̄A
mc (5)

≤
βA

g + βA
mc + Sg + Smc

(1− λ− α)µ . (6)

By similar arguments, an analogous bound holds for ρA
d .

ρA is the maximum of ρA
c and ρA

d . Thus, by the pre-
ceding inequalities on those values (e.g. Inequality 6),

E[ρA] = E[max(ρA
c , ρ

A
d )]

≤ E
[

1
(1− λ− α)µ max

(
βA

g + βA
mc + Sg + Smc,

βA
e + βA

md + Se + Smd

) ]
. (7)

This expectation is over all possible values of the noise
variables sums (i.e. the Sp). Moreover, each noise vari-
able is symmetric. Therefore, if we add an additional
independent noise variable into one of those sums, for

every value of the added variable that decreases the
maximum there is an equally-probable value of the
added variable that increases it by the same amount
(the reverse is not true because we are taking the
maximum with another value). Therefore, adding in
additional independent noise variables only increases
the expectation on the right-hand side of Inequality 7.
Let nmsr = max(|Mg| + |Mm|, |Me| + |Mm|), and
let Sj =

∑
1≤i≤nmsr

N j
i , j ∈ {1, 2}, where each N j

i

is an independent random variable with distribution
Lap(δnoise/εnoise)). Then, by the foregoing argument,

E[ρA] ≤ E
[
((1− λ− α)µ)−1 max

(
βA

g + βA
mc + S1,

βA
e + βA

md + S2
)]
. (8)

For a fixed bandwidth budget βA, the right-hand
side of inequality 8 can only be increased by increasing
the larger of βA

g +βA
mc and βA

e +βA
md and decreasing the

smaller. The follows from the fact that S1 and S2 are
independently and identically distributed, and so every
case in which shifting the βA

p in this way reduces the
maximum reduced corresponds to a unique and equally-
probably case in which the maximum is increased by an
equal or larger amount (simply swap the values of S1
and S2. Therefore, for fixed βA, the right-hand side of
Inequality 8 is maximized by setting βA

g + βA
mc to βA

and βA
g + βA

mc to 0 (vice versa will maximize it as well).
Therefore,

E[ρA] ≤ 1
(1− λ− α)µE

[
max(S1, β

A + S2)
]
,

which was the statement to be proved.

Lemma 2. If α < λ, then, for all R /∈ A, ρR ≥ γ′βR/2.

Proof. We can assume that the adversarial relays A ∈ A
send values ρRA

p that are lower than all other values
ρRR′

p , because doing so can only reduce ρR. Moreover,
α < λ, and so we can assume the set of measurements
in the trimmed sum are from some set of honest re-
lays of voting weight 1 − 2λ. The aggregate of these
measurements in a given position is at least γ′βR

p . By
the requirement that a relay will not act in both the
guard and exit positions during a measurement period,
R sends all bytes from either a client-side or destination-
side position. Furthermore, R sends at least as many
bytes as it receives as it never drops data. Therefore,
either βR

g + βR
mc or βR

e + βR
md is at least βR/2, and so

ρR = max(ρ̄R
g + ρ̄R

mc, ρ̄
R
e + ρ̄R

md)
≥ γ′max(βR

g + βR
mc, β

R
e + βR

md)
≥ γ′βR/2.
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To prove Theorem 1, we first quantify as νloss the loss
in accuracy of ρR due taking the maximum of noisy
values, which is limited to εloss (see § 5.4). νloss is defined
as the smallest value such that for all β large enough
that E[max(S1, β+S2)]/((1−2λ)µ) ≥ (1−εdec)ρA

0 t
A/tA0 ,

β/E[max(S1, β + S2)] ≥ 1− νloss.

Theorem 1. For α < λ and over the random noise
values, if βA < (1−λ−α)(1− εdec)(1− εloss)µρA

0 t
A/tA0 ,

then E[ρA] puts A into probation, and otherwise

E[ωA]∑
R ω

R
≤
[

2γ′(1 + εinc)
(1− εloss)(1− λ− α)µ

]
(βA/tA)∑
R(βR/tR)

.

Proof. If βA < (1− λ− α)(1− εdec)(1− εloss)µρA
0 t

A/tA0 ,
then, by Lemma 1 and the definition of εloss, E[ρA] <
(1 − εdec)ρA

0 t
A/tA0 . ωA is adjusted to keep ρA no less

than (1 − εdec)ηR, and thus the expected value of ρA

would put A into probation.
Otherwise, it must be that βA/E[max(S1, β

A +
S2)] ≥ 1 − εloss by the definition of εloss. Therefore, by
Lemma 1, E[ρA] ≤ βA/((1− εloss)(1−λ−α)µ). Then we
can use Lemma 2 and the fact that ωA is set to at most
(1 + εinc)ρA/tA to obtain the theorem.
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