
Proceedings on Privacy Enhancing Technologies ; 2017 (2):149–171

Joshua Gancher, Adam Groce, and Alex Ledger

Externally Verifiable Oblivious RAM
Abstract: We present the idea of externally verifiable
oblivious RAM (ORAM). Our goal is to allow a client
and server carrying out an ORAM protocol to have dis-
putes adjudicated by a third party, allowing for the
enforcement of penalties against an unreliable or ma-
licious server. We give a security definition that guar-
antees protection not only against a malicious server
but also against a client making false accusations. We
then give modifications of the Path ORAM [15] and
Ring ORAM [9] protocols that meet this security defi-
nition. These protocols both have the same asymptotic
runtimes as the semi-honest original versions and re-
quire the external verifier to be involved only when the
client or server deviates from the protocol. Finally, we
implement externally verified ORAM, along with an au-
tomated cryptocurrency contract to use as the external
verifier.

Keywords: Oblivious RAM, cryptocurrency

DOI 10.1515/popets-2017-0021
Received 2016-08-31; revised 2016-11-30; accepted 2016-12-01.

1 Introduction
Oblivious RAM (ORAM) protocols allow clients to store
data on an untrusted server and to access it as if it was
stored locally. The protocols guarantee that the server
learns nothing about the client’s data or access pattern,
seeing only the amount of data and how frequently it is
accessed. Originally proposed by Goldreich and Ostro-
vsky [5, 6, 8], in recent years a series of exciting results
(e.g., [4, 9, 15, 16]) has drastically increased the effi-
ciency with which ORAM can be achieved.

These results prove security in one of two models.
The first is the semi-honest model, where the server
is assumed to behave according to the specified pro-
tocol. Given this honest behavior, the security claim
requires that no information about the client data or

Joshua Gancher: Cornell University, work done partly while
at Reed College, E-mail: jrg358@cornell.edu
Adam Groce: Reed College, E-mail: agroce@reed.edu
Alex Ledger: MIT Lincoln Laboratory, work done while at
Reed College, E-mail: alex.ledger@ll.mit.edu

access pattern can be inferred by the server. The sec-
ond model is that of malicious security, in which these
guarantees must hold even if the server deviates from
the prescribed protocol. Malicious security is certainly
a stronger model, and it is probably more realistic in
most settings. It has generally been achieved by first
creating a semi-honest protocol and then adding veri-
fication procedures that will detect any deviation from
the protocol that the server attempts to make.

Here we propose externally verifiable ORAM. In the
standard proposed use of ORAM protocols, a client pays
a server to provide storage in the cloud. If a malicious-
secure ORAM protocol is used, the client gets complete
assurance that their data and access patterns remain
private. However, if server misbehavior is detected, the
client has no redress other than to abort the protocol.
Given that server misbehavior in this setting might of-
ten be aimed not at violating client privacy but instead
at reducing costs by failing to store certain data (or
by storing it unreliably, without necessary backups and
safeguards), it may be very important that a client can
show to a third party that the server has failed. Exter-
nally verifiable ORAM provides that capability.

Because one of the primary concerns is data loss, it
is important to guarantee that the client can be com-
pensated in the case of non-response from the server.
Because it is impossible to prove non-response after the
fact, the external verifier must participate in the proto-
col. Fortunately, we can minimize this burden — in our
protocols, the verifier does not participate in honest ex-
ecutions. The verifier is only contacted when one party
detects that the other has deviated from the protocol,
at which point the protocol enters a second phase in
which messages are routed through the verifier who is
then able to confirm non-response.

We present three scenarios to illustrate how exter-
nally verifiable ORAM might be used.

Scenario 1 Client signs a contract with Server for
remote storage at a given price. A penalty is specified, to
be paid if Server becomes unable or unwilling to answer
read/write queries correctly. If that does happen, Client
goes to Judge and claims Server is not providing the
specified data, at which point Server must respond with
the requested data or is forced to pay the penalty.

This is the most straightforward use of our proto-
col. A standard government court probably does not

Externally Verifiable Oblivious RAM 150

have the technical capability (or willingness) to serve
as Judge in this scenario, since that requires real-time
participation in the protocol. The contract would have
to include an agreement to resolve disputes through ar-
bitration and specify an arbitrator capable of this tech-
nical operation, but binding arbitration agreements are
not unusual.

Scenario 2 Client purchases storage from Company,
a large and trusted corporation. Company does not
store Client’s data directly, instead subcontracting with
Server, who happens to have unused disk space at the
moment. This allows administrators with spare capac-
ity to put that capacity to work easily and reduces
wasted resources. Client interacts directly with Server,
but Company acts as a guarantor of Server’s reliability,
moderating disputes and penalizing Server if data is not
reliably available to Client when requested.

Finding a way to use otherwise idle computational
resources is potentially very useful, but it is hard to
establish a functioning market in these services when
the providers are small and have no reputation for re-
liability. Here an established company with a valuable
reputation to protect serves as a guaranteed enforcer of
reliability. This company can also serve to coordinate
the many providers. If one administrator needs to re-
claim their previously idle resources, the company can
facilitate the transfer of the remote database to another
server without disruption of the client’s service.

Scenario 3 Client and Server reach an agreement as
in Scenario 1. Instead of signing a legal contract, they
create this “contract” as an automated entity in a cryp-
tocurrency protocol like Ethereum that allows for auto-
mated execution of contracts. (See [17] for more infor-
mation.) This contract serves the role of Judge above,
automatically mediating disputes between Client and
Server and penalizing Server where appropriate using
currency held in escrow.

This is perhaps the most interesting scenario. It es-
sentially circumvents the requirement of a third party.
While technically many more than three parties are now
involved (due to the nature of the cryptocurrency pro-
tocol), in practice this interaction can be carried out
by any two parties on their own. The security guaran-
tees of the cryptocurrency protocol ensure the commu-
nity of cryptocurrency users will execute the automated
contract as specified.

This community-as-verifier entity is potentially
more trustworthy than any individual real world party
could ever be. It is also easier to initialize than any real
world contract, since no legal agreements are required.

However, using an automated contract as the verifier is
not without downsides. While a legal arbitrator has the
authority to force payment of a penalty from the dishon-
est party’s general property, a cryptocurrency contract
can only force payment by holding currency in escrow.
Also, as can be seen in our implementation, carrying
out this computation is much slower and more expensive
when done by an automated contract than when done
by a single trusted party. Nevertheless, we think this
idea is ideal for some situations and that these down-
sides can be reduced with future research.

1.1 Our contributions

Security definition In this paper we formalize exter-
nally verifiable ORAM (EVORAM), the functionality
that is needed for a protocol to be used in the above sce-
narios. This is difficult because one of the server misbe-
haviors that we want to protect against is non-response.
There is no way a client can prove to the verifier that
they did not receive a response to a given message. To
solve this problem, we divide our desired functionality
into two phases. In Phase 1, the client interacts directly
with the server, attempting to carry out a given oper-
ation. If the server fails to respond or responds incor-
rectly, the client can proceed to Phase 2, where commu-
nication is routed through the verifier, who can there-
fore confirm nonresponse. This means that full security
is guaranteed, but the verifier does not participate dur-
ing honest executions of the protocol.

Modified Path ORAM We then modify the
Path ORAM protocol [15] to achieve this definition.
Our modifications are reasonably straightforward, us-
ing standard techniques like Merkle trees, signatures,
and counters to guarantee accuracy and freshness. We
present this first as a simple example of what is needed
to guarantee external verifiability. Even though the tools
we use are standard, there are several subtle technical
details that must be handled carefully. Our construction
maintains the efficiency of Path ORAM.

Modified Ring ORAM We then present an EVO-
RAM modification of Ring ORAM. While Path ORAM
requires O(logn) communication per access (where n is
the database size), Ring ORAM requires only O(1) com-
munication per access in online communication, with
other communication deferred to flexibly-scheduled of-
fline operations, and we want to maintain this efficiency
in the externally verifiable construction. Ring ORAM

Externally Verifiable Oblivious RAM 151

also uses a more complex underlying data structure.
These two concerns collectively mean that while we can
use (mostly) the same basic tools, the construction is
significantly more complicated. Here too we maintain
the asymptotic running time of the original protocols.
(The one exception is that we require more communi-
cation in our version of Ring ORAM only when a de-
viation from the protocol occurs and the verifier needs
to be involved. Since in practice resort to the verifier is
primarily a deterrent, rather than part of normal oper-
ation, we think this downside is minimal.)

Malicious-secure Ring ORAM As a stepping
stone to our EVORAM construction, we present what
we believe is the first modification of Ring ORAM that
provably achieves malicious security with no efficiency
loss.

Stronger security guarantees We show that our
constructions have useful security properties beyond
what is required of the EVORAM definition. In par-
ticular, Scenario 3 requires that security be maintained
with a semi-honest verifier, and this is the case in our
protocols. Similarly, we show that if the verifier is mali-
cious and collaborating with the server, the EVORAM
security guarantee is lost, but the original ORAM guar-
antee is still maintained, meaning that trust in the ver-
ifier can be limited. This is most important in a setting
like Scenario 2.

Implementations Finally, we provide two imple-
mentations of our modified Path ORAM protocol. The
first is a standard implementation for three parties. It
achieves EVORAM with only 1% to 3% increased band-
width overhead compared to Path ORAM. Our second
implementation uses an Ethereum contract as the veri-
fier, allowing two parties to sign and execute an enforced
contract for storage without an external arbitrator. In
this implementation regular accesses are just as fast as
in the previous implementation, but the verification that
occurs when one party misbehaves is significantly slower
and has a small monetary cost associated with it. All im-
plementations are released under open-source licenses.

We believe that the additional functionality in our
definition, as well as the demonstrated practicality of
achieving it, go a long way towards making ORAM pro-
tocols useful in a variety of real-world situations.

1.2 Outline of the Paper

Section 2 discusses prior work on ORAM protocols and
notions analogous to externally verifiable security in
other contexts. Section 3 presents our definition of ex-
ternally verifiable ORAM and discusses some of the sub-
tleties involved in choosing the definition. Sections 4 and
5 are on Path and Ring ORAM, respectively. These sec-
tions begin with a brief overview of the original semi-
honest protocol, explain how that protocol can be made
secure in the malicious setting, then finally show how to
modify the protocol to achieve our externally verifiable
functionality. Section 6 describes our implementation of
externally verifiable Path ORAM. We discuss future di-
rections for this work in Section 7.

2 Background
Oblivious RAM seeks to allow a client to outsource stor-
age to an untrusted server. This can trivially be done
by encrypting the data, but that requires that the client
download the entire database for decryption every time
they wish to access the data. The database can instead
be divided into blocks, with each block encrypted sepa-
rately under the client’s key. While this greatly increases
efficiency, since only a single block need be downloaded
for each access, the server now knows which block is re-
quested/changed with each client interaction, and that
access pattern can disclose private information, either
about what computation the client is performing or
about the contents of the data itself. ORAM protocols
ensure complete privacy for the client by hiding both
the contents of the data and the access pattern.

Goldreich and Ostrovsky [5, 6, 8] first proposed
ORAM and gave a protocol that achieved security. How-
ever, their protocol resulted in a factor of O(

√
n) in-

crease in the required bandwidth compared to unsecure
access, where n is the database size. A series of works
improved on this construction. A major milestone was
the proposal by Shi et al. to structure the ORAM stor-
age as a binary tree [12]. That basic innovation inspired
a string of ever-more-efficient protocols in recent years.
(For example, see [4, 9, 15, 16].)

Of particular interest to this work are Path ORAM
[15] and Ring ORAM [9]. Path ORAM was an early
and simple example of the binary tree framework in
use, and it decreased the required overhead to O(logn).
Ring ORAM improved on the efficiency of Path ORAM,
allowing for O(1) blowup in online bandwidth. (Total

Externally Verifiable Oblivious RAM 152

bandwidth required is still O(logn), but most commu-
nication happens in the background between accesses.)
Other works have increased efficiency further, but these
two protocols are the ones we adapt to create exter-
nally verifiable ORAM protocols. We leave creating ex-
ternally verifiable versions of more recent protocols to
later work.

The idea of externally verifiable ORAM is new in
this paper. Previous work has introduced the idea of
verifiable oblivious storage [1]. (Here “oblivious storage”
is used to mean an ORAM protocol where the server can
perform computation, rather than simply storing data.
We do not make that distinction in this work and refer
to such protocols as ORAM protocols.) The verifiability
in question though refers only to the ability of the client
to verify the server’s honesty. It would not, for example,
allow for the enforcement of a contract promising stor-
age, since a malicious client could falsely claim server
misbehavior, and a verifier would be unable to adjudi-
cate the claim.

Externally verifiable security definitions do exist in
other areas of research. For example, Stadler introduced
publicly verifiable secret sharing, where parties outside
of the secret sharing protocol can confirm that it has
been carried out correctly [14]. There is also a line of
work on optimistically fair exchange (e.g., [2] and [3]),
which adds the same sort of external verifiability to pro-
tocols for exchanging digital goods. We suspect that the
advent of smart contracts could be applicable to some
of these works. Care must be taken, however, since the
third parties considered in optimistic fair exchange are
in general allowed to maintain secret state.

In the setting of outsourced storage, Shah, Swami-
nathan, and Baker [11] also give a similar functional-
ity. They show a way that outsourced storage can be
“audited,” allowing an external arbitrator to confirm
whether or not the server has lost some of the client’s
data. The motivation here is identical to ours. However,
this was not built on top of ORAM’s privacy protection
— while data privacy was ensured against the auditor,
the server itself had full access to the data and access
pattern.

3 Externally Verifiable ORAM
We now present our definition of externally verifiable
ORAM. Our goal here is to allow the external verifier
V to arbitrate disputes, verifying that the server S is
or is not properly carrying out the operations requested

by the client C. We want to protect against a malicious
server who is attempting to misbehave, either by alter-
ing data or simply by hiding the fact that some data has
been lost. We also want to protect against a malicious
client who attempts to falsely claim server misbehavior.
We assume the verifier is trusted. (We present the def-
inition with a fully honest verifier. In reality we could
weaken the definition to allow for a semi-honest veri-
fier, and we discuss this alteration later.) We are at the
moment concerned with security in the standard model;
proving universal composability for our scheme is left to
further work.

Because we are worried about a server that sim-
ply loses data and becomes unable to answer queries,
we must allow a server to be punished for simple lack
of response to client requests. However, in a two-party
protocol the client can never prove after the fact that
the server stopped responding.1 One obvious solution is
to route communication through the verifier, who can
confirm that the client’s request was sent and that the
server did not respond. This, however, requires the veri-
fier to participate in every access. Instead, we divide our
protocol into two phases. In the first, the client sends re-
quests directly to the server. During honest interaction,
this first phase is all that occurs, and read/write opera-
tions are performed as expected. However, if the client
detects unexpected behavior (including nonresponse)
from the server, they can continue to Phase 2 of the
protocol, which asks the verifier to mediate the opera-
tion. During this phase, the verifier can detect cheating
from either party.

We formalize this desired behavior through the
functionality in Figure 1. During the first phase of the
ideal functionality, C submits a database operation and
C and S submit vrfyC and vrfyS respectively. These are
booleans specifying whether to involve the verifier in the
operation’s execution. Sending no for these values corre-
sponds to honest behavior during Phase 1 of a protocol
execution, and under honest behavior the access termi-
nates successfully at that point. Either player has the
power to deviate in Phase 1, which then forces the pro-
tocol to Phase 2, where they can again either behave
honestly or deviate (represented by the failC and failS

1 To see this formally, consider a client C who has transcript t of
a successful protocol execution, and client C′ who has transcript
t′ of a protocol execution that was identical up to a point where
the server stopped responding. Because t′ is computable given
t, any “proof” of server misbehavior that C′ could present to V
(which must be a function of just t′) can also be forged by C and
is therefore unconvincing.

Externally Verifiable Oblivious RAM 153

values in the functionality). If they deviate, the access
ends unsuccessfully, and the cheating party is known by
the verifier V. If both parties behave honestly at this
phase, the verifier learns only that an access has oc-
curred.

The details of this functionality have been chosen
very carefully, and we note that some seemingly equiv-
alent choices actually introduce problems when one at-
tempts to create secure protocols. For example, we con-
sidered a definition where the client had the option to
use or not use the verifier on each access, essentially
splitting Phase 1 and Phase 2 into two separate access
calls, allowing the client to repeat a call with the veri-
fier included any time the initial access failed. However,
such a definition causes problems. We find that in order
to construct secure protocols, one must structure the
definition so that an honest client always must proceed
to Phase 2 when Phase 1 fails. Failure to do so opens
the client up to privacy-violating attacks.

We then require, through a standard simulation-
based definition, that an externally verifiable ORAM
protocol provide this functionality. We limit ourselves,
though, to security against malicious clients or servers,
and we require security for a party to hold only when
it behaves honestly. In the ideal functionality, honest
behavior by C means sending vrfyC = failC = no (and
similarly for honest S).

Ideal World In this world a client C and server S
(and a verifier V, always assumed to be honest) interact
with the functionality F and with an environment Z. V,
being honest, always forwards any output received from
F to Z unchanged. At the end of all poly(λ) accesses
(where λ is the security parameter), Z outputs a bit.
Define the random variable IdealC,S,Z(λ) to be this
bit.

Real World In this world C, S and V communicate
directly with each other and with the environment Z. V
always behaves as specified by the protocol and forwards
all output to Z. At the end of all accesses, Z outputs
a bit. Define the random variable RealC,S,Z(λ) to be
this bit.

Definition 1 Fix a protocol Π. We say that the honest
client Ĉ is the one that carries out exactly the operations
that Z requests and reports its output to Z. In the real
world Ĉ always runs the protocol as specified. In the
ideal world Ĉ always sends vrfyC = failC = no. In both
worlds, Ĉ forwards all output (and nothing else) to Z.
Similarly, the honest server Ŝ carries out the protocol

honestly in the real world, always sends vrfyS = failS =
no in the ideal world, and reports its output to Z.

We say an externally verifiable ORAM scheme is
secure against a malicious server if for all probabilis-
tic polynomial-time real world servers S, there exists
an ideal world simulator SimS , such that for all non-
uniform, polynomial-time environments Z, there exists
a negligible function negl such that

|Pr[RealĈ,S,Z(λ) = 1]− Pr[IdealĈ,SimS ,Z(λ) = 1]|

≤ negl(λ).

Similarly, we say it is secure against a malicious client
if for all probabilistic polynomial-time real world clients
C, there exists an ideal world simulator SimC , such that
for all non-uniform, polynomial-time environments Z,
there exists a function negl such that

|Pr[RealC,Ŝ,Z(λ) = 1]− Pr[IdealSimC,Ŝ,Z(λ) = 1]|

≤ negl(λ).

We say the scheme is secure if it is secure against both
a malicious client and a malicious server. ♦

4 Path ORAM
In Section 4.1, we give an overview of semi-honest Path
ORAM. Section 4.2 presents the modification for mali-
cious security, while Section 4.3 gives our construction
for externally verifiable security. Appendix A presents a
proof for the security of our construction.

4.1 Semi-honest Path ORAM

Semi-honest Path ORAM is a simple ORAM protocol
in which data on the server is stored in a binary tree,
called the ORAM tree [15]. Each node of this tree is
called a bucket, which is a collection of Z blocks. The
client must also hold a small number of blocks locally
in the stash.

An invariant must hold such that each block is
mapped to a uniformly random leaf node of the ORAM
tree, and blocks not in the stash must reside on the path
in the ORAM tree corresponding to their leaf node. This
mapping of blocks to leaf nodes is held in a structure
called the position map. The path associated to a block
B refers to the unique path on the ORAM tree which
starts at the root node and ends at the leaf node associ-
ated to B, according to the position map. The position

Externally Verifiable Oblivious RAM 154

Functionality F

Setup:
Upon receiving the database D from the client, notify S that the setup operation has occurred and the size of
the database |D|. If S returns ok, send ok to C. If S returns abort, send abort to C. The below steps are only valid
if S sends ok.

Upon receiving an access (op, ind, data, vrfyC) from C:
Notify S that an access is occurring.

Upon receiving vrfyS from S:
If vrfyC = vrfyS = no, then process the requested operation (op, ind, data) on behalf of C, and send C the
requested data. At this point, the access is completed.
Otherwise, send vrfy to C and S.

Upon receiving failC from C:
If failC = yes, send ⊥ to C, and send cheatC to V. At this point, the access is completed.

Upon receiving failS from S:
If failS = yes, then send ⊥ to C, and send cheatS to V. At this point, the access is completed.
Otherwise, process the requested operation (op, ind, data) on behalf of C, and send C the requested data. Send
success to V. At this point, the access is completed.

Fig. 1. The externally verifiable ORAM functionality F . vrfy, ok, and other similarly-formatted terms represent arbitrary agreed-upon
constants meant to convey particular messages.

map can either be held in full by the client, or can be
stored recursively in another Path ORAM instance.

When a block is read from the server, the client
requests all blocks along the path associated to the de-
sired block. Then, the requested block is remapped to
another uniformly random leaf, and the entire path is
rewritten back to the server from the stash, subject to
the invariant.

Since to read or write a block in Path ORAM re-
quires communicating all blocks along a path, Path
ORAM has O(logn) bandwidth blowup, where n is the
database size.

4.2 Malicious-Secure Path ORAM

Stefanov et al. extend semi-honest Path ORAM to pro-
vide integrity for every access when interacting with an
untrusted server [15]. They achieve integrity by extend-
ing the role of the ORAM tree to also function as a
Merkle tree, using a collision resistant hash function H.
Each bucket of the ORAM tree also stores

H(b1|| . . . ||bZ ||h1||h2),

where b1, . . . , bZ are the blocks stored in the bucket, and
h1 and h2 are the hashes of the left and right child. If
the node is a leaf node, h1 = h2 = 0. We call this an
augmented Merkle tree, to indicate that each node of
the tree holds data, and not only the leaf nodes.

With this construction, the client only stores the
hash held at the root of the Merkle tree. When reading
a path from the server, the server also sends the ap-

propriate hashes so that the client can recompute the
root of the Merkle tree using their downloaded data.
We call this collection of hashes a Merkle proof. For
Path ORAM, a Merkle proof for a path consists of
the hashes of sibling buckets along that path. We use
ReconstructRoot(P,MP) to denote the root recomputed
using the data P along a path and the corresponding
Merkle proof, MP.

If the root does not recompute to the correct value,
the client can conclude the integrity of the data has been
violated. When rewriting the path, the client may use
the same Merkle proof to recompute the new Merkle
tree root.

This addition to Path ORAM is intuitively secure
with a malicious server, and is outlined in Figure 2. If
the position map is being stored recursively in another
Path ORAM instance, the above process would be car-
ried out for every level in the recursion. Ren et al. show
that it suffices to only carry out the above process on
the top level of recursion which holds data, and carry
out a simpler authentication scheme on the lower levels
which hold the position map [10]. We do not consider
this extension here, but it is likely to be compatible with
our externally verifiable version of Path ORAM.

Malicious Secure Path ORAM requires an addi-
tional O(logn) hashes to be communicated for each read
due to the Merkle proof. Hence, adding integrity to
Path ORAM does not affect the asymptotic bandwidth
blowup compared to unauthenticated Path ORAM.

Externally Verifiable Oblivious RAM 155

Malicious Secure Path ORAM
C S

r ← stored root
x← PositionMap[ind] x - P ← data in path x

� P,MP MP←Merkle proof of data P
r′ ← ReconstructRoot(P,MP)

if r 6= r′, abort

P ′ ← new data for path P ′ - data in path x← P ′

stored root← ReconstructRoot(P ′,MP)

Fig. 2. An honest execution of Malicious Secure Path ORAM.

Honestly Executed Externally Verifiable Path ORAM: Phase 1

C S

previous state = (rC , countC , σS) previous state = (rS , countS , σC)
x← PositionMap[ind]

x - P ← data in path x

� P,MP MP←Merkle proof of data P
r′ ← ReconstructRoot(P,MP)

if rC 6= r′, abort and revert; proceed to Phase 2
P ′ ← new data for path

rC ← ReconstructRoot(P ′,MP)
countC ← countC + 1

σ′C ← SignC(rC ||countC)
P ′, σ′C - data in path x←P’

rS ← ReconstructRoot(P ′,MP)
countS ← countS + 1
If σ′C does not verify, abort and revert
σC ← σ′C

If σ′S does not verify, abort �
σ′S σ′S ← SignS(rS ||countS)

and revert; proceed to Phase 2
σS ← σ′S

Fig. 3. An honest execution of Phase 1 of Externally Verifiable Path ORAM. The tuple (rC , countC , σS) is acquired by the client from
a previous access. Likewise, the server already holds (rS , countS , σC). If either side chooses to abort, they “revert” their state, setting
all values back to their state at the start of the execution before proceeding to Phase 2.

Externally Verifiable Oblivious RAM 156

4.3 Externally Verifiable Path ORAM

We adapt this malicious-secure variant of Path ORAM
into a protocol that is secure in the externally verifiable
setting by using two standard tools. We require first
that a counter be maintained that increments after each
access to guarantee freshness. During setup, the client
sets the counter to zero and in addition to sending the
initial database also sends a signature on the counter
and the root of the Merkle tree. The sever then responds
with its own signature of the same values. After each
access the counter is incremented and new signatures
are exchanged, signifying agreement on the state of the
database.

An access of externally verifiable Path ORAM con-
sists of two phases. In Phase 1, the client attempts to
interface directly with the server, as in Figure 3. If the
client aborts during this operation, the client enters
Phase 2. (If the server aborts during Phase 1, the client
also aborts.)

In Phase 2, the client sends a request to the veri-
fier to oversee the access, using the same access tuple
(op, ind, data) as in Phase 1. Phase 2 is similar to Phase
1, but each message is sent through the verifier; this is
detailed in Figure 4. At the end of Phase 2, the verifier
will output either cheatC , cheatS , or success.

In this specification (and all others in this paper),
all steps must happen in order. The verifier ignores
any unexpected messages, and assumes any messages
that are misformatted or not received in some specified
amount of time are incorrect and indicate cheating by
the sender. An output of cheatS favors the client (i.e.,
the server was detected to be cheating), while an output
of cheatC favors the server. Once the verifier reaches an
output command, no further commands for that access
may occur; the verifier reverts to its initial state.

We assume that if the verifier outputs cheatS , the
client is notified and aborts the protocol. Similarly, if the
verifier outputs cheatC , the server aborts the protocol.
Thus, we do not analyze a verified ORAM access that
continues if the verifier outputs either of these messages.

Phase 2 We now formally define the client and server
sides of Phase 2 of the protocol. This is initiated by
a request from the client to the verifier comes in the
form of (rootC , countC , σS) where rootC is the root hash
of the Merkle tree, countC is the state counter, and
σS is the digital signature of the root and counter
signed by the server. In particular, σS should equal
SignS(rootC ||countC). If the signature in this initial mes-

sage is valid, the verifier will forward countC to the
server.

The server responds analogously with
(rootS , countS , σC). If countC is one below the server’s
current count, the server should roll the database back
to its state before the previous access, decrementing
countS to match countC , before sending this message.
If countC is more than one step older than countS , the
server should not decrement — sending a (properly
signed) counter that is more than one step ahead of the
client’s counter is proof of client misbehavior.

Assuming the server sends back a matching counter
value, the protocol now proceeds identically to Phase 1.
The only difference is that the client and server send
messages to the verifier, which then forwards them to
the other party (after the correctness checks listed in
Figure 4).

The ability of the server to roll back the database is
perhaps the most subtle part of this protocol. Because
the server receives the new σC value before the client
receives the new σS , the server could fail to send the
final message in Phase 1, and then have a signature
on a one-higher count value during Phase 2, meaning
that the verifier must not see the client as cheating if
its claimed count value is one behind that of the server.
However, this opens a possible attack — the client could
run Phase 2 with a counter outdated by one increment,
to which the server could not respond properly. To pre-
vent this attack, the server must be able to roll back
the database by one step. Since the previous state of
the database differs from the current state in only one
path, the required extra storage is O(logn), trivial com-
pared to the overall size of the database.

Externally verifiable Path ORAM adds the ex-
change of a constant amount of hashes to every ORAM
access (compared to the malicious-secure variant), so
the cost is minimal.

See Appendix A for the proof that this protocol is
secure.

4.4 Additional security properties

Two of the three scenarios we discussed at the beginning
of this paper require slightly stronger security guaran-
tees than the standard definition we have given. These
modifications are straightforward, and we discuss each
below. While we present these discussions here, they ap-
ply not only to the Path ORAM modification discussed

Externally Verifiable Oblivious RAM 157

Verifier V

Upon receiving (rootC , countC , σS) from client:
If σS does not verify correctly, output cheatC . Otherwise, send (verify request, countC) to server.

Upon receiving (rootS , countS , σC) from server:
If σC does not verify correctly, output cheatS . If countS ≥ countC + 2, output cheatC . Otherwise if countC 6=
countS , output cheatS .

Upon receiving x from client:
Forward x to server.

Upon receiving (Path P, Merkle proof MP) from server:
Use data P with MP to reconstruct root r∗. If r∗ 6= rootC , output cheatS . Verifier forwards (P,MP) to client.

Upon receiving (Path P ′, (root′C , count
′
C , σ
′
C)) from client:

Use data P ′ with MP to reconstruct new root r′.
If σ′C does not verify correctly, output cheatC . If count′C 6= countC+1, output cheatC . If r′ 6= root′C , output cheatC .
Forward P ′ and (root′C , count

′
C , σ
′
C) to server.

Upon receiving (root′S , count
′
S , σ
′
S) from server:

If σ′S does not verify correctly, output cheatS . If count′S 6= count′C , output cheatS . If r′ 6= root′S , output cheatS .
Forward (root′S , count

′
S , σ
′
S) to client. Output success.

Fig. 4. The externally verifiable Path ORAM verifier V.

above, but also to the Ring ORAM modification that
follows.

A semi-honest verifier In Scenario 3, where the
verifier is implemented as an automated cryptocurrency
contract, the verifier is guaranteed to behavior correctly
but the information it sees is visible publicly and can
be analyzed by those with malicious intent. That is,
the verifier is semi-honest. Our protocols remain secure
when the verifier is only semi-honest, assuming we alter
the security definition slightly. Specifically, the verifier
in our protocol sees the client and server count vari-
ables, which let the verifier learn how many accesses
have occurred since the last verifier involvement. This
is information that is not visible in the ideal world. The
ideal functionality must be modified so that the verifier
sees the count of the operation whenever the verifier is
used. Then our protocols are secure with a semi-honest
verifier (even if the verifier is collaborating with a mali-
cious client or server). This reduction in security is quite
minor, since ORAM protocols in general already leak
the number of accesses. Security against a semi-honest
verifier with collaborating malicious client or server is
exactly what is needed to allow the verifier to be re-
placed by an automated cryptocurrency contract.

A malicious verifier In Scenario 2, Client relies on
well-known Company to enforce a contract that guar-
antees storage. Company can outsource this storage to
Server. This allows administrators of small systems with
spare resources (but without the reputation to sell ser-
vices directly) to act as Server and put those resources
to use. However, Client might not want to fully trust

Company, even if they are indeed more reliable than
Server.

Fortunately, the trust needed in Company is mini-
mal. One need not rely on Company for privacy protec-
tion, only for ensuring reliability. In particular, even if
Company and Server are both malicious and are cooper-
ating, Client still has the normal protection enjoyed un-
der the standard ORAM definition, meaning that data
and access pattern privacy are maintained. Only the
additional utility of our external verifiability property
is lost. This can easily be seen simply by noting that
everything the server and verifier see in our protocols is
either seen also in standard Path/Ring ORAM or is a
computable function of those values.

5 Ring ORAM
We now present a construction for externally verifi-
able Ring ORAM. Section 5.1 gives an overview of
Ring ORAM. Section 5.2 presents our construction for
malicious-secure Ring ORAM, which utilizes authen-
ticated encryption. Section 5.3 extends this construc-
tion to the externally verifiable setting, and Section D
presents a proof of security.

5.1 Semi-honest Ring ORAM

Ring ORAM is an improvement of Path ORAM where
instead of reading all blocks along a path every access,
a single block per bucket is read, along with a path of

Externally Verifiable Oblivious RAM 158

encrypted metadata [9]. In addition to each bucket stor-
ing Z blocks, each bucket also stores S dummy blocks.
Whole buckets (meaning Z blocks out of the bucket)
are still read and written in Ring ORAM, but much
less frequently than Path ORAM.

Ring ORAM preserves the same invariant as Path
ORAM: each block is mapped to a leaf node, and each
block must be stored in a bucket along the path from
the corresponding leaf node to the root of the ORAM
tree.

When the client reads a block, they first complete
a metadata scan over the path in question. They then
decrypt the metadata and infer a set of offsets for each
block along the path, where an offset i specifies that
the ith block of the bucket is requested. This operation
is called ReadPath. All of the blocks requested along
the path, except the actual block that the client wants,
are dummy blocks. The client then decrypts all blocks
downloaded and only keeps the real block. Dummy
blocks are each used only once; if a bucket along a path
has been involved in more than S ReadPath operations,
that bucket is now “used up”. The number of ReadPath
operations a bucket has been involved in is that bucket’s
count. At the end of ReadPath, all buckets with a count
at least S are read to the client’s stash, and rewritten
from the stash. This rewriting operation is called an
EarlyReshuffle.

Each bucket contains metadata that specifies where
the Z real blocks are (along with other small pieces of
metadata). The block size in Ring ORAM is set so that
each block is larger than the collection of metadata read
during ReadPath. Because of this, Ring ORAM is not
performant for small block sizes.

Periodically, an eviction happens. In an eviction,
a path is (deterministically) selected, and all buckets
along that path are read and rewritten. This operation
is called EvictPath. The operation to read an individual
bucket to the client’s stash is called ReadBucket, and
the operation to write to an individual bucket is called
WriteBucket.

Write operations are, in a sense, postponed. When
a client wishes to write to a block, they instead store
the new data in their local stash (and access the cor-
responding path, as if a read was occurring). Unless an
EarlyReshuffle occurs, this data will not be written un-
til an EvictPath operation allows the relevant block to
be updated. (EvictPath is set to happen often enough
that the size of the client’s stash is bounded.)

Ring ORAM with XOR The ReadPath opera-
tion may be further optimized by having the server

XOR all of the requested blocks together, and send the
XORed value to the client. The client can reconstruct
the dummy blocks, and hence recover the single non-
dummy block from the XORed value. This construction
gives a way to read a block securely where the only on-
line communication is a single block. Thus, the online
communication of Ring ORAM with XOR is a constant
multiple of the block size. (Overall communication is
still O(logn), but most can be performed offline.) Using
the XOR optimization requires the client to store ran-
domness associated with each dummy block, but this
can, like other information, be stored recursively in an-
other ORAM instance.

5.2 Malicious-Secure Ring ORAM

As a step on the way to externally verifiable ORAM,
we contribute what we believe to be the first malicious-
secure variant of Ring ORAM that does not reduce the
asymptotic efficiency of the protocol.

In order to provide correctness, authenticity, and
freshness, we use an authenticated encryption scheme
AE. Each block stored on the server (both real and
dummy) is stored as AE.Enc(ci||pi||bi), where bi is the
block data, ci is a freshness counter incremented each
time bi is written, and pi is a position index, an encod-
ing of the position in the ORAM tree of the block (i.e.,
B||O, where B is the bucket’s unique identifier and O is
the offset in the bucket).

The freshness counters for all blocks are stored on
the client side in a data structure we call the Fresh-
nessMap, which maps a block to a counter. When the
client reads a block that decrypts successfully, the block
is verified for correctness by checking that the read ci

agrees with the counter stored in the PositionMap, and
that the read pi corresponds to the correct position in
the ORAM tree. The client is guaranteed authenticity
by the block decrypting successfully.

Metadata for Ring ORAM also needs to be au-
thenticated. For metadata, an augmented Merkle tree
may be used in the same way as malicious-secure Path
ORAM. We call this the metadata tree, or MT . Each
internal node of MT is equal to H(Mi||h`||hr), where
Mi is the encrypted metadata in the ith bucket, and h`

and hr are the left and right children hashes of MT ,
respectively. The leaf nodes of MT are equal to H(Mi).
The client stores the current root rM of the metadata
tree.

Whenever the client begins a Ring ORAM operation
(ReadPath, EarlyReshuffle, or EvictPath), the client

Externally Verifiable Oblivious RAM 159

first requests from the server a path PM of metadata.
The server sends PM along with a Merkle proof MPM

consisting of all sibling hashes for PM . The client then
locally reconstructs the metadata root r′ using PM and
MPM ; if r′ 6= rM , the client aborts.

Each operation proceeds as follows:
1. The client requests a path PM from MT, according

to the ORAM access desired. In return, the server
sends PM along with a Merkle proof MPM . Us-
ing the client’s previously stored root rM of MT ,
if ReconstructRoot(PM ,MPM) 6= rM , the client
aborts.

2. The client runs the corresponding Ring ORAM op-
eration. Each time block bi is written to the server,
ci is incremented by one. If at any point a block
contains an incorrect ci or pi, or decryption fails,
the client aborts.

3. At the end of the access, the client sends an updated
path of metadata P ′M to the server according to the
metadata changed in the previous step; the client in
turn updates its stored root rM .

The above described scheme is malicious-secure. Ad-
ditionally, this construction is compatible with Ring
ORAM with XOR: the client can store locally all infor-
mation needed to compute an authenticated encryption
of a dummy block, so that they can recover a real block
encrypted with authentication from an XORed path.
We give a proof of malicious security in Appendix B.

As a speedup, the above scheme can be modified
so that metadata is also verified using authenticated
encryption in a manner similar to the ORAM data. (We
use the Merkle tree in this construction in order to lead
into externally verifiable Ring ORAM.)

Efficiency Overall, the additions above do not in-
crease the space or communication complexity com-
pared to semi-honest Ring ORAM.

Server storage increases only by a small constant
amount (ci, pi, and the constant overhead for authen-
ticated encryption) for each block.2 Client storage is
expanded to hold the freshness counters for each block.
This additional per-block data can be stored recursively
on the server similar to the Position Map, resulting in a
constant blowup in client storage [15]. If the client uses
the XOR technique, then they also need to store the

2 Technically, ci grows with O(logQ), where Q is an upper
bound on the number of rewrites on any given block. With a
practical block size (say, a few kilobytes), the space required for
each ci will be dominated by the size of each block.

randomness associated with each dummy block. This
data may also be stored recursively.

Communication is increased by a Merkle proof
MPM for metadata communicated with each Ring
ORAM operation. The size of this Merkle proof is dom-
inated by the size of the path of metadata PM required
in the semi-honest Ring ORAM protocol.

5.3 Externally Verifiable Ring ORAM

We now describe how to make Ring ORAM secure in the
externally verifiable setting. We note first that simply
using the same techniques used for Path ORAM would
result in O(logn) online bandwidth, removing the ad-
vantage that Ring ORAM (with XOR) offers in the first
place. (This is because reading a block would require
receiving a Merkle proof of that block’s authenticity.)
We instead use two separate types of overlapping au-
thentication. The first is a set of Merkle trees: we use
an augmented Merkle tree MT for the metadata tree,
a (standard) Merkle tree BT for each bucket, and an
augmented Merkle tree OT for the overall ORAM tree,
where the “data” in each node is the root of the cor-
responding bucket tree. Combined with these Merkle
trees, we also store in each block a counter and po-
sition index as we did in the malicious-secure variant.
Each block is encrypted using authenticated encryption,
as above. The data structures used for verifiable Ring
ORAM are outlined in Figure 5.

The Merkle tree authentication and the authenti-
cation from authenticated encryption are used at dif-
ferent times. Metadata is always verified using the MT

Merkle tree. When ReadPath is run, the resulting block
is verified by successful decryption. For EarlyReshuf-
fle and EvictPath operations, the OT Merkle tree (and
the bucket trees) are used to verify data. The Merkle
trees are updated whenever the data they authenticate
is changed. Because successful decryption cannot be
confirmed by the verifier, Phase 2 must revert to using
the Merkle tree authentication process. This means that
Phase 2 is a O(logn)-communication operation. This is
unfortunate, but given that the existence of Phase 2 is
really just a deterrent — honest parties would never
conduct this operation (and even malicious parties have
no incentive to force Phase 2) — we believe this is a
minor concern.3

3 One might be tempted to use signatures from both client and
server on each block to avoid the O(logn) efficiency for Phase 2,

Externally Verifiable Oblivious RAM 160

Fig. 5. The relevant data structures for externally verifiable Ring ORAM. All client-side storage except for the signed Merkle tree roots
may be stored recursively.

We now outline the construction of externally ver-
ifiable Ring ORAM in more detail. Below we present
high-level descriptions of exactly what changes need to
be made to the semi-honest Ring ORAM operations.
Full step-by-step descriptions of an honest execution of
each operation can be found in in Appendix C.

Phase 1 Modifications here use authenticated en-
cryption to authenticate blocks during ReadPath and
Merkle trees for all other authentication. Counters and
signatures for current values of the roots of OT andMT

must be maintained. Specific details are stated below.
We assume without explicit statement that any time one
party receives a signature, block to decrypt, or Merkle
proof, it is verified and if verification fails the receiving
party aborts.
1. At the beginning of each operation, the client re-

quests a metadata path PM and receives both PM

and a Merkle proof MPM of its correctness. At the
end of the operation, the client sends the new path
data to update MT as well as a signed copy of the
new root, along with an (incremented) counter. The
server responds with a signature of its own on the
root and counter. (Note that this happens in all op-
erations, meaning that the counters forMT and OT
will not in general be equal.)

2. In the ReadPath operation, the client verifies the
received block by checking successful decryption. (If
not using the XOR variant, this is done for all blocks
along the path.)

but this does not work. In particular, during Phase 2 the client
must be sent the entire path anyway, in order to hide what
block is requested. The XOR technique cannot be used because
the verifier does not have the randomness needed to reconstruct
the dummy blocks (and could not verify its accuracy if the client
shared it).

3. In EvictPath and EarlyReshuffle operations, the
client receives data from particular blocks and a
Merkle proof that those blocks are correct. (This
proof includes a Merkle proof that a given bucket
tree root is correct, followed by a Merkle proof that
that root is correct based on the shared root of OT .)
The client then writes new information to these
blocks, recomputes the root of OT , increments its
counter, and sends a signature of both to the server,
who responds with a signature of their own.

Phase 2 This phase always consists of an EvictPath
operation, moderated by the verifier. EarlyReshuffle and
ReadPath can be conducted as part of EvictPath —
they simply leave most data unchanged. The verifier in-
dependently confirms all signatures and outputs cheat-
ing messages if any do not verify correctly. More specif-
ically:
1. Client submits signed roots and counters for OT

and MT . Server responds with matching roots and
counters. As with Path ORAM, the verifier accepts
if the roots match, and the server is expected to be
able to roll back OT , MT or both by one counter
value. If the roots don’t match, the verifier outputs
a cheat message as in the Path ORAM variant.

2. A path PO of data and path PM of metadata is
forwarded from the server to the client through the
verifier, along with Merkle proofs MPO and MPM

for these data.
3. Client uses PO and PM to call EvictPath as in semi-

honest Ring ORAM, in order to obtain rewritten
paths P ′O and P ′M . Client uses the above Merkle
proofs to compute new roots r′O and r′M for the two
Merkle trees.

4. Client sends new data P ′O and P ′M to verifier, along
with client’s signature of the new Merkle tree roots.

Externally Verifiable Oblivious RAM 161

Verifier V

Upon receiving (rootT,C , countT,C , σT,S) for T ∈ {O,M} from client:
If σT,S does not verify correctly using the corresponding root and counter for either T ∈ O,M , output cheatC .
Otherwise, send (verify request, countC) to server.

Upon receiving (rootT,S , countT,S , σT,C) for T ∈ {O,M} from server:
For T ∈ {O,M}: If σT,C does not verify correctly using the corresponding root and counter, output cheatS . If
countT,S ≥ countT,C + 2, output cheatC . Otherwise if countT,C 6= countT,S , output cheatS .

Upon receiving x from client:
Forward x to server.

Upon receiving (Path PT , Merkle proof MPT) for T ∈ {O,M} from server:
For T ∈ {O,M}: Use data PT with MPT to reconstruct root r∗T . If r∗ 6= rootT,C , output cheatS .
If the above succeeds for T ∈ {O,M}, verifier forwards (PM ,MPM , PO,MPO) to client.

Upon receiving (Path P ′T , (root′T,C , count
′
T,C , σ

′
T,C)) for T ∈ {O,M} from client:

For T ∈ {O,M}: Use data P ′T with MPT to reconstruct new root r′T . If σ′T,C does not verify correctly, output
cheatC . If count′T,C 6= countT,C + 1, output cheatC . If r′T 6= root′T,C , output cheatC .
If the above succeeds for T ∈ {O,M}, forward P ′T and (root′T,C , count

′
T,C , σ

′
T,C) for T ∈ {O,M} to server.

Upon receiving (root′T,S , count
′
T,S , σ

′
T,S) for T ∈ {O,M} from server:

For T ∈ {O,M}: If σ′T,S does not verify correctly, output cheatS . If count′T,S 6= count′T,C , output cheatS . If
r′T 6= root′T,S , output cheatS .
If the above succeeds for T ∈ {O,M}, forward (root′T,S , count

′
T,S , σ

′
T,S) for T ∈ {O,M} to client.

Output success.

Fig. 6. The externally verifiable Ring ORAM verifier V. root, count, and σ variables refer to the roots of the Merkle trees, the corre-
sponding counters, and the signatures thereof. Each variable has two subscripts, the first (O or M) indicating which tree the variable
corresponds to, and the second (C or S) denoting the party that computed the value.

5. Server responds with server’s signatures of new
Merkle tree roots.

The corresponding verifier can be seen in Figure 6.

Analysis Our additions to malicious Ring ORAM to
make it externally verifiable do not cause any asymp-
totic overhead during honest execution. A Merkle proof
for values in MT is only sent when a path from MT is
being read as well, so this is a constant-factor increase.
Similarly, Merkle proofs for values in OT are only sent
when a path from OT is being sent. Counters, signa-
tures, and the blowup from authenticated encryption
are constant-size additional values. Phase 2 is the only
potentially longer operation, causing O(logn) commu-
nication. This would only be done given malicious be-
havior (or hardware failure).

6 Implementation
We implemented the externally verifiable Path ORAM
protocol of Section 4.3 in two ways. First, we imple-
mented the client, server, and verifier protocols in C as
would be used in Scenarios 1 or 2 described in our intro-
duction. Second, as described in Scenario 3, we imple-
mented an autonomous Ethereum contract that could

act as the verifier, allowing two parties to interact with
enforced penalties without the need for a third involved
party acting as verifier. These implementations are both
available online under open-source licenses.4 We discuss
the results of each implementation below.

Standard Verifier Our first implementation, us-
ing a standard real-world party as the verifier, requires
roughly the same bandwidth as standard malicious-
secure Path ORAM during regular interactions. The
only additional bandwidth needed is for our protocol’s
added signatures (and a couple control bytes specifying
that this is a Phase 1 interaction). This additional band-
width is small and constant. We ran tests on databases
of various sizes and find an overhead increase of ex-
actly 259B per database access, regardless of database
size. In our limited experiments on small databases, this
ranged from 5.6% overhead (on a 262KB database) to
3.1% overhead (on a 134MB database). Extrapolation
to a 1TB database would give an overhead of under 2%.
We expect careful optimization could reduce this over-
head somewhat.

A verified (Phase 2) interaction in this implementa-
tion requires exactly twice as much bandwidth (assum-
ing all connections have equal latency and bandwidth).

4 https://github.com/gancherj/evoram

Externally Verifiable Oblivious RAM 162

The same data is transmitted — the only change is that
it is now transmitted from sender to verifier to receiver
rather than directly from sender to receiver. This al-
lows for punishment of very minimal gaps in service.
The verifier, for example, can demand near-immediate
responses from the server and penalize delays on a slid-
ing scale. A server that experiences some small down-
time or traffic beyond capacity can be penalized to a
small extent,5 while a server that loses data entirely
(i.e., doesn’t respond to a request correctly even after a
long time) can face a very harsh penalty.

Ethereum Verifier We also provide a second imple-
mentation that uses an automated cryptocurrency con-
tract to replace the third party verifier. We do this using
Ethereum [17]. We stress that Ethereum is a cutting-
edge cryptocurrency that has shown automated con-
tracts to be realistic, but also that it is still in its early
phases and is under active development. We view our
results here as a demonstration of what is possible, and
we expect that our precise measurements will be quickly
out of date as the underlying cryptocurrency technology
improves, whether that is through the improvement of
Ethereum or through the introduction of other cryp-
tocurrencies.

The implementation of our verifier protocol as an
Ethereum contract was straightforward. The Ethereum
project includes a language, Solidity, that is similar to
ordinary scripting languages. All blockchain-specific im-
plementation details, such as how the contract interacts
with the Ethereum protocol, are abstracted away from
the programmer; the structure of the smart contract
closely mirrors the abstract verifier in Figure 4. The cor-
responding client and server implementations in C could
also be written by a programmer lacking detailed knowl-
edge of blockchain technology or Ethereum. The data
being passed to the contract had to be converted into a
standard format expected by Ethereum, but the actual
“sending” of the data to the contract was handled us-
ing well-developed, open-source libraries. The contract
measures time by checking the current progress of the
blockchain, which proceeds at a stable pace. The con-
tract cannot continue running autonomously; it only
responds to messages. Therefore the client must ping
the contract when an unacceptable amount of time has

5 The only practical floor on how small a disruption can be pun-
ished is the reliability of the network. Sometimes network traffic
is dropped and resent or otherwise delayed, and the time the
verifier waits before declaring non-response must be sufficient to
avoid blaming these delays on the server.

passed without a server response, at which point the
contract checks the time and then penalizes the server
(and vice versa for penalizing the client).

The implementation was not without challenges.
Ethereum is still in its earliest stages and has a small
user base. This meant that running times on public
blockchains were highly variable, as sometimes a mes-
sage was not processed on the first block step after it
was submitted. Because of this, we ran our tests on a
local simulation. (We also ran several experiments on
the public testnet and mainnet, and found consistent
results.) Using this method allows us to measure gas us-
age realistically, but does not allow us to measure timing
data. The time complexity of each verified access is dom-
inated by the number of rounds and intrinsic properties
of the blockchain instance (such as average block time,
and speed of the underlying gossip protocol). Given cur-
rent blockchain parameters in Ethereum, this would be
on the order of a small number of minutes, fast enough
to enforce a contract that penalizes the server for los-
ing data, but not fast enough to penalize the server for
temporary failures of service quality.

The unverified (Phase 1) regular accesses do not de-
pend on the verifier, and so are unchanged, remaining as
efficient as under the first implementation. Bandwidth
required for a verified (Phase 2) access is also largely
unchanged relative to the first implementation.

We focused on measuring the cost of using the con-
tract in a Phase 2 disputed access. Here one verified
access costs the equivalent of roughly $0.33 on a 10TB
database.6 Again, this seems entirely reasonable for en-
forcing penalties for data loss, which we expect would be
much greater than $0.33, but too expensive to enforce
small micropayments as penalties for faulty service. The
dependence on database size is O(logn), since gas cost
is proportional to the length of the path being sent. See
Table 1 for complete results.

We also fix database size and measure the depen-
dency of cost on block size. (This is important because
larger blocks are needed to enable recursive ORAM stor-
age.) For block size b, we would expect O(b log(n/b))
cost, and this is what we find. A 100MB database with
1KB block size gives a verification cost of $0.38. See
Table 2 for full results.

Of course, these measurements are of completed ver-
ified accesses where client and server both honestly exe-
cute the protocol. In the event of nonresponse, the speci-

6 The contract could be devised to charge this cost to the server,
the client, or any combination of the two.

Externally Verifiable Oblivious RAM 163

DB size Height Total Gas US Dollar equivalent
10MB 15 1077799 $0.18
1GB 22 1325838 $0.23
100GB 29 1632924 $0.29
10TB 35 1864503 $0.33

Table 1. Costs of external verification (Phase 2) using an
Ethereum contract with varying database size. Block size is 96B
(encrypted), with 5 blocks per bucket. Cost is the average over
two runs. The US Dollar equivalent is relative to exchange rates
as of November 28, 2016 ($8.74 per unit of ether).

Height Encrypted
Block Size

Total Gas US Dollar
equivalent

19 96 969879 $0.17
17 288 1221259 $0.21
15 1056 2145429 $0.38

Table 2. Costs of external verification (Phase 2) using an
Ethereum contract with varying block size. Database size is
100MB (unencrypted), with 5 blocks per bucket. All costs are
the average of two runs. The US Dollar equivalent is relative
to exchange rates as of November 28, 2016 ($8.74 per unit of
ether).

fied time must pass before penalizing one party. A failed
verified access might also be much cheaper, since less of
the contract’s code is being executed.

Ethereum enforces a gas limit on the total amount
of computation that can be done in a single block. Our
verification costs are below this limit even for extremely
large databases, but if many transactions of this com-
plexity were being run simultaneously, collisions in the
same block would cause degraded performance. How-
ever, in a scenario where Ethereum is used that widely
its protocol would trigger an increase in the gas limit.
This is a general issue with the scalability of blockchains;
future iterations of Ethereum and similar platforms will
undoubtedly work towards a more scalable blockchain.

Furthermore, certain new security concerns are
raised in the setting of smart contracts. For example,
nothing prevents a malicious client from carrying out
a denial-of-service attack against the server, and using
this as a proof of the server’s non-response. Indeed, any
escrow held by the contract is simultaneously a bug
bounty for the contract itself; c.f. the infamous DAO
hack [13]. One must also carefully assign responsibil-
ity for the cost of verified accesses. For example, if the
server is responsible for the entire cost the client can
force all transactions to Phase 2, imposing high costs on
the server. (Whether this is in the client’s interest de-
pends on the setting.) While crucial, we consider these
kinds of attacks as a separate issue from protocol design.

Whether a cryptocurrency contract will become fast
and cheap enough to penalize intermittent server down
time remains, we believe, an open question. Future ex-
ternally verifiable ORAM protocols might be more care-
fully optimized for use with a cryptocurrency contract,
but we expect the main avenue for improvement to
be the underlying cryptocurrency technology. Order-of-
magnitude improvements to the time and cost required
to execute contracts are entirely possible.

7 Conclusion and Future Work
We have proposed what we believe is a useful defini-
tion, strengthening the guarantees of ORAM protocols
in a way that allows for use in some practical situations
that might have otherwise proven challenging. We then
gave protocol constructions and implementations that
show this definition can be achieved in reasonably ef-
ficient ways. However, much more remains to be done.
Below, we outline several of the directions we feel are
most interesting.

More efficient protocols We show the feasibility
of externally verifiable ORAM by finding verifiable ver-
sions of the existing Path and Ring protocols. However,
these are no longer the most efficient protocols known.
We would love to see protocols that matched the ef-
ficiency of more recent standard ORAM constructions
(e.g., [4, 16]).

Cryptocurrency improvements As mentioned
above, we expect the state of the art in cryptocurrencies
to change in the coming future. As a result, an imple-
mentation of our verifiable ORAM protocols over the
next iteration of smart contract technology is likely to
drastically improve the usability and cost of our system,
as well as the time it takes to perform a verified access.

Automated verifiers Finally, we expect that the
advent of autonomous third parties trusted for correct-
ness (i.e., smart contracts) is likely to have interesting
applications in other areas of security and privacy. In
particular, we believe their use here could possibly be
adapted to replace verifiers in optimistic fair exchange
protocols and other related work. This can largely be
enabled by using zero knowledge proofs of knowledge in
order to facilitate manipulation of private data (see, for
example, Hawk [7]).

Externally Verifiable Oblivious RAM 164

References
[1] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable

oblivious storage. In Public-Key Cryptography–PKC, pages
131–148. Springer, 2014.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic proto-
cols for fair exchange. In Proceedings of the 4th ACM con-
ference on Computer and communications security, pages
7–17. ACM, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair
exchange of digital signatures, pages 591–606. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

[4] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi,
and D. Wichs. Onion ORAM: A constant bandwidth
blowup oblivious RAM. In IACR Theory of Cryptography
Conference–TCC, pages 145–174. Springer, 2016.

[5] O. Goldreich. Towards a theory of software protection and
simulation by oblivious RAMs. In Symposium on Theory of
Computing–STOC, pages 182–194. ACM, 1987.

[6] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. J. ACM, 43(3):431–473, May
1996.

[7] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou.
Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. University of Maryland and
Cornell University, 2015.

[8] R. Ostrovsky. Efficient computation on oblivious RAMs. In
Symposium on Theory of Computing–STOC, pages 514–
523. ACM, 1990.

[9] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. Van Dijk, and S. Devadas. Constants count: practical
improvements to oblivious RAM. In USENIX Security Sym-
posium, pages 415–430, 2015.

[10] L. Ren, C. W. Fletcher, X. Yu, M. van Dijk, and S. De-
vadas. Integrity verification for path oblivious-RAM. In High
Performance Extreme Computing Conference–HPEC, pages
1–6. IEEE, 2013.

[11] M. A. Shah, R. Swaminathan, and M. Baker. Privacy-
preserving audit and extraction of digital contents. Technical
report, HP Lab No. HPL-2008-32, 25 April, 2008.

[12] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((logN)3) worst-case cost. In Advances in
Cryptology–ASIACRYPT, pages 197–214. Springer, 2011.

[13] E. G. Sirer. Thoughts on the dao hack. http://
hackingdistributed.com/2016/06/17/thoughts-on-the-dao-
hack/, 2016.

[14] M. Stadler. Publicly verifiable secret sharing. In Advances in
Cryptology—EUROCRYPT, pages 190–199. Springer, 1996.

[15] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An extremely simple
oblivious RAM protocol. In Computer & Communications
Security–CCS, pages 299–310. ACM, 2013.

[16] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness
of the Goldreich-Ostrovsky lower bound. In Computer &
Communications Security–CCS, pages 850–861. ACM, 2015.

[17] G. Wood. Ethereum: A secure decentralised generalised
transaction ledger. Technical report, Ethereum Project
Yellow Paper, 2014.

A Proof of security
A complete proof of security would duplicate most of the
proof of semi-honest security of Path ORAM. We do not
think reproducing that proof would be beneficial for the
reader, so we instead make reference to arguments made
in that proof where they are required, and we refer the
reader to the original semi-honest proof [15] to see those
details explained

We split the proof into two cases: the first is the
case of a malicious server, and the second is the case of
a malicious client.

Client-side security
In this case, we prove that for all real world adversarial
servers S there exists an ideal world simulator SimS such
that for all environments Z,

|Pr[RealĈ,S,Z(λ) = 1]− Pr[IdealĈ,SimS ,Z(λ) = 1]|

≤ negl(λ).

Before proving this result directly, we will display a hy-
brid in which all data and operations are dummy:

Lemma 1. The view of the server S in the externally
verifiable Path ORAM protocol with an honest client
is computationally indistinguishable from the view of
the server in Game 3 below, where the client performs
dummy operations with dummy data.

Proof. In order to prove the above, we will show a se-
quence of hybrids.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1 the client stores and updates
the database locally. After each access, if the verifier
does not output cheatC or cheatS (i.e., the access is suc-
cessful) instead of decrypting the desired ciphertext the
client reads the corresponding plaintext from its local
database.

For the server to distinguish Game 0 and Game 1,
the server must either give the client incorrect data and
cause verification to succeed, or cause the output of the
verifier to change compared to Game 0. The server can-
not do the former, by the security of the hash function
and Merkle tree. The server cannot do the latter, since
the messages sent to the verifier do not change in this
game. Therefore, Game 0 and Game 1 are indistinguish-
able.

http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

Externally Verifiable Oblivious RAM 165

Game 2 In Game 2, instead of uploading the real
database to the server during setup, the client up-
loads a dummy database. The client still stores the real
database locally. For each access, the client requests a
read with the same index as what the client would re-
quest on the real database. While performing an access
with the server, the client engages in the same verifica-
tion procedure over the dummy ciphertexts. If verifica-
tion of the dummy database fails, the client correspond-
ingly aborts as if it was the real database.

First, note that the semi-honest ORAM scheme
guarantees that reads are indistinguishable from writes.
Thus, for the server to distinguish Game 1 from Game 2,
the server must distinguish ciphertexts in Game 1 from
Game 2, or distinguish hashes or signatures in Game 1
from Game 2, or see different behavior from the verifier.

By the CPA security of symmetric-key encryption,
none of these things can happen. If they did, an ad-
versary attacking the CPA security of the encryption
scheme could simulate the entire interaction, using an
encryption oracle to encrypt on the client’s behalf, and
use the server (or verifier) behavior to distinguish en-
cryptions of real data from encryptions of dummy data.
(This argument assumes that the signatures the client
computes are computed with a different public key than
the encryptions.)

Game 3 Game 3 is the same as Game 2, except that
the client always reads dummy index ind′ = 0 from the
server.

The same argument given for the semi-honest se-
curity of Path ORAM implies that the server cannot
distinguish the change in the client’s access pattern as
a result of the choices of path x on each step. Thus,
we must only show that verification does not leak any
access pattern. For Path ORAM, each path is verified
in the same way; siblings are requested, and reused to
recompute the new root hash. By the security of Merkle
trees, if the server sends any hash incorrectly, the client
notices: if the client was running an unverified access, a
verified access is requested. If the client was running a
verified access, then cheatS gets output by the verifier.
Because the server already knows the client will (or will
not) detect misbehavior, the client’s actual detection
and response adds no additional information.

In Game 3, the server S stores a dummy database which
is always accessed with a dummy index. Given this hy-
brid, we construct an ideal world simulator SimS that in-
ternally simulates S, V, and the modified client of Game
3. We assume, without loss of generality, that S sends

its view to the environment Z during setup and each
access. (Any other message sent to Z is necessarily a
function of the view of S, so it suffices to prove verifia-
bility if S sends its view.)

Simulation Upon receiving a notification that the
client has sent a setup request to F with a database of
size |D|, SimS internally runs the setup procedure for
an instance of Game 3 as above with an honest client
and server S with a dummy database of size |D|. If the
internal client aborts, SimS sends abort to F ; otherwise,
SimS sends ok to F . Then, SimS sends the view of S to
Z.

Upon receiving a notification that an access is oc-
curring from F , SimS internally runs a dummy ac-
cess (read, 0,⊥) with S. If Phase 1 aborts, SimS sends
vrfyS = yes; otherwise, SimS sends vrfyS = no. If the ac-
cess proceeds to Phase 2 and the verifier outputs cheatS ,
SimS sends failS = yes. If the verifier outputs cheatC or
success, SimS sends failS = no. At the end of each access,
SimS sends the view of S to Z.

We now need to show that the simulator SimS as de-
fined above, internally running Game 3, is such that
the output bit of the environment is indistinguishable
between the real world and ideal world. Lemma 1 al-
ready showed that the view of S (including the outputs
of V) is identical in Game 3 and the real world. There-
fore SimS outputs a view that is indistinguishable from
the real-world view of S. It is also clear from the con-
struction of the simulator that client output is the same
in both worlds. All that remains is to show that the
output of V in the ideal world is indistinguishable from
that in the real world.

Note that by sending the appropriate values of vrfyS
and failS , SimS can essentially choose the output of V
in the ideal world, guaranteeing that it matches the out-
put of the simulated verifier SimS is running internally.
The only exception to this is if the simulated verifier
outputs cheatC . We must show this happens with neg-
ligible probability. There are three cases in which this
output might occur:
1. If σS does not verify correctly from the client.
2. If countS ≥ countC + 2; i.e., if the root sent by the

client is much too old, compared to the root sent by
the server.

3. If the new signed root σ′C does not verify or the new
count count′C is not one greater than countC .

The first and third cases cannot occur, since the client
here is honest. To limit the second case, note that af-
ter each operation is complete, either one party has

Externally Verifiable Oblivious RAM 166

been found cheating (in which case no additional op-
erations will occur) or both parties now have signatures
of matching counters. Therefore each access starts with
matching counters. As discussed earlier, the server could
move their counter one ahead of the client by not send-
ing the final message in Phase 1, but the client will never
sign a counter that has been increased by more than one
during a single operation, so this cannot occur due to a
signature actually received from the client. Therefore it
must come from a forged signature, which happens with
negligible probability.

Thus, the simulation is successful, and we have se-
curity against a malicious server.

Server-side security
In this case, we prove that for all real world adversarial
clients C there exists an ideal world client SimC such
that for all server-side environments Z,

|Pr[RealC,Ŝ,Z(λ) = 1]− Pr[IdealSimC,Ŝ,Z(λ) = 1]|

≤ negl(λ).

As above, we may assume without loss of generality that
C sends its view to Z each access, since any other mes-
sage is a function of this view.

Simulation The ideal world simulator SimC runs the
real world protocol between client C, an honest server,
and the verifier internally, always sending the simulated
view of C to Z. When C runs the setup protocol success-
fully with the server using database D, SimC sends D to
F .

Any time the simulated C carries out an operation
in the internal simulation, SimC carries out an operation
in the ideal world, always requesting a read of index 0.
If the simulated operation finishes without the involve-
ment of the verifier, SimC sends vrfyC = no. Otherwise,
vrfyC = yes and then failC = yes only if the simulated
verifier outputs cheatC .

We now need to show that the environment cannot dis-
tinguish the real world from the ideal world with the
above simulation. In the setup phase, the output of SimC
is identical to the view of C, and the server will out-
put notification of the setup and |D| in both the real
and ideal worlds if and only if C successfully concludes
the setup protocol. Thus, we can assume the simulated
server and C have successfully exchanged signed roots
and counters. We then prove that a given access looks
identical in both worlds.

It is clear that in each access the view of C in the
real world matches the output of SimC in the ideal world,

since SimC is simulated exactly the same real world in-
teraction internally. It’s also clear that the output of
the server is the same in both worlds, since whenever
the real world server notifies Z that an access is occur-
ring, SimC sends a message to F that causes the same
thing to happen in the ideal world. That means the only
difference between worlds can come from the output of
the verifier.

Whenever the verifier would output cheatC or
success in the real world, SimC sends vrfyC and failC
values that cause the same thing to happen in the ideal
world. So we must show only that an output of cheatS
occurs with negligible probability in the real world (or,
equivalently, in the internal simulation of SimC). We con-
sider each case where the verifier might decide on such
an output:
1. If σC on any root sent by the server does not verify

correctly.
2. If countS is incorrect; i.e., if countS = countC + 1 or

countS < countC .
3. If the Merkle proof for data P does not match the

agreed upon root rootC .
4. If the new signed root σ′S from the server is not the

correct value or if the new signature σS does not
verify correctly.

All cases but the second are impossible. The honest
server will only send σC values that it received from
the client (and that verified correctly when received).
The Merkle proof and new counter and signature values
will also always be correct. The second case requires a
more nuanced examination. If the countC value received
from the client (through the verifier) is one less than the
most recent count the server has seen, the server will roll
back the database to match that count value, meaning
that countS = countC+1 can never occur. Furthermore,
the server never signs a given count value until after it
has seen the same value signed by the client. As a re-
sult, countS < countC cannot occur unless the client
has forged a signature, which happens with negligible
probability.

This completes the proof of security against a ma-
licious client, and therefore the protocol is a secure ex-
ternally verified ORAM protocol.

B Malicious-Secure Ring ORAM
Here we prove that the Ring ORAM variant from Sec-
tion 5.2 achieves malicious security. We borrow the

Externally Verifiable Oblivious RAM 167

simulation-based definition of secure ORAM with a ma-
licious server from [4]. This definition, in contrast with
the definition of externally verifiable ORAM, considers
only client-side security, so only the server is allowed to
arbitrarily deviate from the protocol.

Ideal world Here, F is an ideal functionality that
locally stores the database, which interfaces with the
client C and server S.
Setup An environment Z gives a database D to C, who

forwards D to F . Then, F tells S the size of the
database |D|. Then, S gives ok or abort to F , who
forwards ok or ⊥ to C accordingly. If C receives ⊥,
the execution ends.

Access Each time step, the environment Z gives C a
command (op, ind, data), and C forwards it to F . F
then notifies S that an operation is happening. In
response, S sends either ok or abort to F . If S gave
ok, F fulfills the request from C and sends C any
requested data. If S gave abort, F gives ⊥ to C. C
then forwards this data to Z.
After the setup procedure and each access, S may
send a message to Z.

Once all poly(λ) accesses have been completed, Z out-
puts a bit. Define the random variable IdealF,S,Z(λ)
to be this output.

Real world In the real world, the environment Z
gives C a database D. C runs the setup procedure with
the real world server S. If the setup protocol aborts, the
execution ends. At each time step, Z gives C the tuple
(op, ind, data), who runs the corresponding access with
S. The client then forwards any data received, or ⊥ if
the protocol aborted, to Z. After the setup procedure
and each access, S may send a message to Z.

After all access have been completed, Z outputs a
bit. Define the random variable RealΠ,S,Z(λ) to be the
final bit output by Z in the real world scenario.

Definition 2 A protocol Π is malicious-secure if for all
real world servers S, there exists an ideal world simula-
tor SimS such that for all environments Z, there exists
a negligible function negl such that

|Pr[RealΠ,S,Z(λ) = 1]− Pr[IdealF,SimS ,Z(λ) = 1]|
≤ negl(λ).

♦

Having defined security, we now proceed with the
proof. We give a simulator and then use a hybrid argu-
ment to show that the real and ideal worlds are indis-
tinguishable.

The simulator The simulator is analogous to the
above one for Path ORAM, but for a real world instance
of Ring ORAM using dummy data.

The simulator SimS runs the real world protocol lo-
cally between client C and server S. When the function-
ality F notifies SimS that a setup operation is occurring
with database size |D|, SimS runs the real world setup
protocol between C and S with a dummy database of
size |D|. If the setup protocol aborts, SimS sends abort
to F ; otherwise, SimS sends ok to F .

When F notifies SimS that an access is occurring,
SimS runs an access between C and S with dummy index
ind′ = 0. This access includes a ReadPath operation and
any EvictPath or EarlyReshuffle operations that will are
required after the ReadPath has been performed. If the
client aborts, the simulator sends abort to F . Otherwise,
it sends ok.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1, the client stores the database lo-
cally, including metadata. If verification succeeds after
each access, instead of decrypting the desired ciphertext
or metadata, the client reads the corresponding plain-
text from its local database.

To distinguish Game 0 and Game 1, the server must
give the client incorrect data (or metadata) and cause
verification to succeed. The server is unable to do so,
by the security of authenticated encryption and Merkle
trees. (The client stores the updated freshness counter
and knows the position index, so blocks cannot be rear-
ranged. The server would have to forge a valid encryp-
tion or find a collision in the hash underlying the Merkle
tree.) Therefore, Game 0 and Game 1 are indistinguish-
able.

Game 2 In Game 2, instead of uploading the real
database to the server, the client uploads a dummy
database. The client still stores the real database lo-
cally. For each access, the client requests a read with the
same index as what the client would request on the real
database. After completing an access with the server,
the client engages in the same verification procedure;
that is, the client verifies the dummy database.

First, note that reads are indistinguishable from
writes by the same argument that applies in the semi-
honest ORAM case. By the CPA security of symmetric-
key encryption, the server cannot tell dummy data from
real data. Since all Merkle tree hashes are functions only
of ciphertexts, they cannot add any more information.
Thus, Game 1 and Game 2 are indistinguishable.

Externally Verifiable Oblivious RAM 168

Game 3 Game 3 is the same as Game 2, except that
the client always accesses dummy index ind′ = 0 from
the server.

Again, the argument from the semi-honest case ap-
plies, unless the verification steps give the server addi-
tional information. However, the client verifies success-
ful decryption of every block read every access, and any
change by the server will result in an abort (unless an
encryption was forged) so the server knows ahead of
time how the client will behave. Thus, no information
new information is gained from this behavior, and Game
2 and Game 3 are indistinguishable.

Game 3 is equivalent to the ideal world, so the
present construction is malicious secure.

XOR Technique Using the XOR technique, instead
of sending log(n) blocks for every ReadPath access, the
server sends the XOR of all of these blocks. All but
one of these blocks are dummy blocks, so the client may
recompute the desired encrypted blocks. The client may
then abort as usual if the recomputed block does not
decrypt successfully.

Game 0 is still indistinguishable from Game 1, since
this does not enable the server to forge any encryption it
couldn’t before; any computation that the server could
do here, the server could have done in the original Read-
Path protocol. Also, Game 1 is still visibly indistinguish-
able from Game 2.

To show that Game 2 is indistinguishable from
Game 3, we need to show that the decision for the client
to abort during ReadPath using XOR does not leak any
more information than during ReadPath without XOR.
First, note that once a block is involved in a ReadPath
operation, that block is now invalidated; thus, we do not
need to consider multiple ReadPath operations that in-
volve overlapping sets of blocks.

If the server alters an odd number of blocks at bit
position i during a ReadPath operation, then the corre-
sponding bit will be flipped, and corresponding decryp-
tion will fail. Similarly, if the server alters an even num-
ber of blocks at bit position i, then the decryption will
succeed. Thus, whether or not the client aborts is purely
a function of how many bits are flipped at each position.
This means that the server already knows whether the
client will abort, meaning the server can infer nothing
about the access pattern from the client’s behavior.

Thus, the server cannot gain any information using
the XOR technique, so Game 2 is indistinguishable from
Game 3. Using the same simulator, we see that the con-
struction is malicious secure with the XOR technique.

C Detailed Description of
Externally Verifiable Ring
ORAM

Below are detailed descriptions of the honest execution
of Phase 1 for each operation of Ring ORAM. We use
DB to represent the data stored in bucket B, and we use
countO and countM to represent the counters associated
with the roots of OT and MT respectively.

ReadPath During ReadPath, the client downloads,
modifies, and re-uploads metadata along a path. The
client then requests specific block offsets within each
bucket along a path. The server sends the client the rel-
evant data blocks, potentially XORed together. Data
blocks received during this operation are verified by
checking successful decryption.

Note that the metadata tree is modified, while the
ORAM tree is not. Thus, the counter countM for the
metadata tree may be greater than the counter countO
for the ORAM tree.
1. Client requests metadata path PM , and server re-

sponds with PM and Merkle proof MPM .
2. Using previously stored root rM , if

ReconstructRoot(PM ,MPM) 6= rM , client aborts.
3. Client runs ReadPath, and requests blocks Bi from

server. During this process, client modifies meta-
data to obtain P ′M , according to the Ring ORAM
protocol.

4. If using the XOR technique, client receives an
XORed path of blocks B∗. Client reconstructs block
B, by using reconstructed dummy blocks. Other-
wise, client receives a path of blocks Bi.

5. Client verifies each Bi (or B) using position indices,
stored freshness counters, and by checking success-
ful decryption. If any block fails to verify, the client
aborts.

6. Client constructs new metadata root r′M from P ′M
and MPM .

7. Client sends server signed metadata root
(r′M , count′M ,SignC(r′M ||count′M)), with updated
counter count′M = countM +1. Server responds with
(r′M , count′M ,SignS(r′M ||count′M)). If the server’s
signature or counter is incorrect, the client aborts.
If the client’s signature or counter is incorrect, the
server aborts, which causes the client to abort.

EvictPath During EvictPath, the client calls Read-
Bucket along an entire path of buckets. Then, the client

Externally Verifiable Oblivious RAM 169

calls WriteBucket along that same path. Metadata is
operated on throughout.
1. Client requests metadata path PM , and server re-

sponds with PM and Merkle proof MPM . (The se-
lection of path is specified by the Ring ORAM pro-
tocol.)

2. Using previously stored root rM , if
ReconstructRoot(PM ,MPM) 6= rM , client aborts.

3. For each bucket in path P (root to leaf),
(a) Using metadata, client requests Z blocks from

bucket B. Server sends back the requested Z

blocks {bj}, and S hashes {hk} of the other
blocks.

(b) Client forms hashes of received blocks {bj},
and combines these hashes with received hashes
{hk} to form a collection of Z + S block hashes
DB .

(c) Client uses leaf hashes DB to construct bucket
root rB .

4. Server sends client Merkle proof MPO for the
ORAM tree.

5. Using previously stored root rO and bucket roots
{rB} from above, if ReconstructRoot({rB},MPO) 6=
rO, client aborts.

6. For each bucket B in path P (leaf to root),
(a) Client sends Z+S blocks to server in bucket B.

Client hashes these blocks to form D′B .
(b) Client uses leaf hashes D′B to construct bucket

root r′B .
7. Client reconstructs new ORAM tree root r′O using

MPO and the bucket roots {r′B}.
8. Client sends server signed ORAM tree root

(r′O, count′O, SignC(r′O||count′O)), with updated
counter count′O = countO + 1. Server responds
with (r′O, count′O,SignS(r′O||count′O)). If the server’s
signature or counter is incorrect, the client aborts.
If the client’s signature or counter is incorrect, the
server aborts, which causes the client to abort.

9. Throughout the above steps, metadata is modified
to eventually obtain P ′M . Client reconstructs new
metadata tree root r′M using P ′M and MPM .

10. Client sends server signed metadata root
(r′M , count′M ,SignC(r′M ||count′M)), with updated
counter count′M = countM +1. Server responds with
(r′M , count′M ,SignS(r′M ||count′M)). If the server’s
signature or counter is incorrect, the client aborts.
If the client’s signature or counter is incorrect, the
server aborts, which causes the client to abort.

EarlyReshuffle During EarlyReshuffle, the client
calls ReadBucket and WriteBucket on select buckets
along a path. This operation is similar to EvictPath, but
not all buckets along the path will be updated. Addition-
ally, in EvictPath the operations were batched such that
all ReadBucket operations happened before all Write-
Bucket operations. Here, ReadBucket and WriteBucket
operations alternate.
1. Client requests metadata path PM , and server re-

sponds with PM and Merkle proof MPM . The se-
lection of path is specified by the Ring ORAM pro-
tocol.

2. Using previously stored root rM , if
ReconstructRoot(PM ,MPM) 6= rM , client aborts.

3. Along the entire path, server sends collection of
bucket roots {rB}, with Merkle proof MPO.

4. Using previously stored root rO, if
ReconstructRoot({rB},MPO) 6= rO, client aborts.

5. Using metadata from PM , client constructs list L of
what buckets need to be updated according to the
Ring ORAM protocol. Client sends list L to server.

6. For each bucket B in L (ordered from root to leaf):
(a) Client calls ReadBucket and requests Z blocks

from bucket B. Server sends back the requested
Z blocks {bj}, and S hashes {hk} of the other
blocks.

(b) Client forms hashes of received blocks {bj},
and combines these hashes with received hashes
{hk} to form a collection of Z + S block hashes
DB .

(c) Client uses leaf hashesDB to reconstruct bucket
root r∗B . If r∗B 6= rB from above, client aborts.

(d) Client modifies metadata in B and sends Z +S

blocks to bucket B. Client hashes these blocks
to form D′B . (Client also modifies metadata in
PM accordingly.)

(e) Client uses leaf hashes D′B to construct bucket
root r′B .

7. For each bucket B not in L, let r′B = rB .
8. Client constructs new ORAM tree root r′O, using
{r′B} and MPO.

9. Client sends server signed ORAM tree root
(r′O, count′O,SignC(r′O||count′O)), with updated
counter count′O = countO + 1. Server responds
with (r′O, count′O,SignS(r′O||count′O)). If the server’s
signature or counter is incorrect, the client aborts.
If the client’s signature or counter is incorrect, the
server aborts, which causes the client to abort.

10. Throughout the above steps, metadata is modified
to eventually obtain P ′M . Client reconstructs new
metadata tree root r′M using P ′M and MPM .

Externally Verifiable Oblivious RAM 170

11. Client sends server signed metadata root
(r′M , count′M ,SignC(r′M ||count′M)), with updated
counter count′M = countM +1. Server responds with
(r′M , count′M ,SignS(r′M ||count′M)). If the server’s
signature or counter is incorrect, the client aborts.
If the client’s signature or counter is incorrect, the
server aborts, which causes the client to abort.

D Proof of Security for Externally
Verifiable Ring ORAM

This proof largely follows the same argument as was
used for the externally verifiable version of Path ORAM.
We begin with a lemma that captures the part of the
proof with the most additional complexity, and then
use this lemma to proceed through the proof as we did
previously.

Lemma 2. If an operation ends successfully (i.e., in
Phase 1 or in Phase 2 with the verifier outputting
success), with all but negligible probability any data re-
ceived by the client is correct and the client’s updated
Merkle tree roots accurately reflect a tree where new data
has been written as expected.

Proof. This is immediate for the metadata tree, since
it is an augmented Merkle tree interfaced with in the
same manner as in externally verifiable Path ORAM.

Recall that all data blocks are encrypted using au-
thenticated encryption. During ReadPath, data blocks
are verified by checking successful decryption. For the
client to not abort while reading block Bi, decryption
must succeed with the correct freshness counter and po-
sition index; i.e., the block must be authentic, up-to-
date, and in the correct position in the ORAM tree.
The server cannot forge this encryption with greater
than negligible probability.

During EvictPath, the client uses the Merkle tree
to authenticate data. If this does not cause the client
to abort, then with all but negligible probability each
received bucket root rB is consistent with the stored
ORAM tree root rO, by the security of Merkle trees.
In turn, with all but negligible probability each bucket
root rB is consistent with the received blocks and block
hashes in that bucket. If the received data and Merkle
proof is correct, then it follows that the client’s updated
root is correct for the newly modified database.

EarlyReshuffle is similar, but the server also pro-
vides the client with bucket roots rB not included in

the list L of buckets to request. If the Merkle proof for
the ORAM tree succeeds, these are similarly consistent
with the stored root rO with all but negligible probabil-
ity.

Thus, if the Merkle proof succeeds, all received
blocks, block hashes, and bucket roots are confirmed
to be correct with all but negligible probability, and all
updates will then occur correctly.

Client-side security The proof for externally ver-
ifiable Ring ORAM is essentially the same as for ex-
ternally verifiable Path ORAM. We use the above two
lemmas to show that the view of a server is indistin-
guishable between the real world and scenario where all
operations are dummy:

Lemma 3. The view of the server S in the externally
verifiable Ring ORAM protocol with an honest client
is computationally indistinguishable from the view of
the server in Game 3 below, where the client performs
dummy operations with dummy data.

Proof. As before, we use a hybrid argument.

Game 0 Game 0 is the real world scenario.

Game 1 In Game 1 the client stores and updates
the database locally. After each access, if the verifier
does not output cheatC or cheatS (i.e., the access is suc-
cessful) instead of decrypting the desired ciphertext the
client reads the corresponding plaintext from its local
database.

For the server to distinguish Game 0 and Game 1,
the server must either give the client incorrect data and
cause verification to succeed, or cause the output of the
verifier to change. The server cannot do the former; by
Lemma 2, if the client does not abort from Phase 1, the
client must have the correct data with all but negligible
probability. By the security of Merkle trees, if the ver-
ifier does not output cheatC or cheatS during Phase 2,
the verifier must have given the client the correct data.
The server cannot do the latter, since the interaction
with the verifier does not change in this game.

Therefore, Game 0 and Game 1 are indistinguish-
able.

Game 2 In Game 2, instead of uploading the real
database to the server, the client uploads a dummy
database. The client still stores the real database lo-
cally. For each access, the client requests a read with
the same index as what the client would request on
the real database. While performing an access with the

Externally Verifiable Oblivious RAM 171

server, the client engages in the same verification proce-
dure over the dummy ciphertexts. If verification of the
dummy database fails, the client correspondingly aborts
as if it was the real database.

First, note that the standard argument from the
proof of security for semi-honest (or malicious) Ring
ORAM that reads are indistinguishable from writes
still applies, with minor revision. If ReadPath is the
only operation called, the only additional informa-
tion exchanges are Merkle tree roots and their signa-
tures, which reveal no information. If EvictPath or Ear-
lyReshuffle is run, the only additional information sent
(compared to the malicious case) is the Merkle proof
in tree OT (essentially hashes of other blocks/buckets),
which again reveals no additional information.

Thus, for the server to distinguish Game 1 from
Game 2, the server must distinguish ciphertexts in
Game 1 from Game 2, or distinguish hashes or signa-
tures in Game 1 from Game 2, or see different behav-
ior from the verifier. The same argument in Game 2 of
Lemma 1 applies to show this is impossible and there-
fore that Game 1 and Game 2 are indistinguishable.

Game 3 Game 3 is the same as Game 2, except that
the client always reads dummy index ind′ = 0 from the
server.

Again, the argument from the semi-honest Ring
ORAM security proof applies here. The same additional
information is added here as above (namely, using au-
thenticated encryption, signed roots of Merkle trees, and
Merkle proofs), and this information is all a function
only of the ciphertexts, which the server can already
see. It follows that Game 2 is indistinguishable from
Game 3.

Given the above hybrid, we use the same simulator as
in Appendix A, but running the above Game 3 instead.
The Ring ORAM verifier behaves essentially the same
as the Path ORAM verifier, since both trees are being
verified simultaneously. Because of this, the same argu-
ment from Appendix A holds here as well.

Server-side security The same simulator and basic
argument as in the proof for server-side verifiability for
Path ORAM in Appendix A also applies here. Recall
that in the proof for Path ORAM, the simulator SimC
internally runs a real world instance of the ORAM pro-
tocol between C, an honest server, and the verifier; then,
SimC outputs the correct messages to the ideal function-
ality in order to imitate the same behavior with respect
to the output of the verifier. For this proof, SimC is the

same as in Appendix A, but running a real world in-
stance of externally verifiable Ring ORAM.

Specifically, SimC outputs vrfyC and failC in order to
correspond with the internally-simulated verifier’s out-
put of success or cheatC . The result follows, then, as
long as C cannot force the verifier to output cheatS with
non-negligible probability. The same analysis holds as in
Appendix A to show that this is impossible. The only
modification is that the argument must be applied sep-
arately to OT and MT .

	Externally Verifiable Oblivious RAM
	1 Introduction
	1.1 Our contributions
	1.2 Outline of the Paper

	2 Background
	3 Externally Verifiable ORAM
	4 Path ORAM
	4.1 Semi-honest Path ORAM
	4.2 Malicious-Secure Path ORAM
	4.3 Externally Verifiable Path ORAM
	4.4 Additional security properties

	5 Ring ORAM
	5.1 Semi-honest Ring ORAM
	5.2 Malicious-Secure Ring ORAM
	5.3 Externally Verifiable Ring ORAM

	6 Implementation
	7 Conclusion and Future Work
	A Proof of security
	B Malicious-Secure Ring ORAM
	C Detailed Description of Externally Verifiable Ring ORAM
	D Proof of Security for Externally Verifiable Ring ORAM

