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Why can’t users choose their identity providers
on the web?
Abstract: Authentication delegation is a major function
of the modern web. Identity Providers (IdP) acquired
a central role by providing this function to other web
services. By knowing which web services or web appli-
cations access its service, an IdP can violate the end-
user privacy by discovering information that the user did
not want to share with its IdP. For instance, WebRTC
introduces a new field of usage as authentication del-
egation happens during the call session establishment,
between two users. As a result, an IdP can easily dis-
cover that Bob has a meeting with Alice. A second issue
that increases the privacy violation is the lack of choice
for the end-user to select its own IdP. Indeed, on many
web-applications, the end-user can only select between
a subset of IdPs, in most cases Facebook or Google.
In this paper, we analyze this phenomena, in particu-
lar why the end-user cannot easily select its preferred
IdP, though there exists standards in this field such as
OpenID Connect and OAuth 2? To lead this analysis,
we conduct three investigations. The first one is a field
survey on OAuth 2 and OpenID Connect scope usage
by web sites to understand if scopes requested by web-
sites could allow for user defined IdPs. The second one
tries to understand whether the problem comes from the
OAuth 2 protocol or its implementations by IdP. The
last one tries to understand if trust relations between
websites and IdP could prevent the end user to select
its own IdP. Finally, we sketch possible architecture for
web browser based identity management, and report on
the implementation of a prototype.
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1 Introduction
The Web offers a vast range of applications and ser-
vices, on which users share personal information. To
protect these informations, secure access to web ser-
vices must be guaranteed. But site-by-site account man-
agement is a burden for users [1]. It may often result
in insecure login, for instance due to the reuse of the
same password across multiple websites [2], a situation
known as password fatigue. Web based Single-Sign-On
(SSO) and authorization delegations are interesting al-
ternatives to cumbersome site-specific accounts. Indeed,
users are more prone to use website services if they do
not have to create new accounts nor to manually fill
personal information. Moreover, SSO decreases the sen-
sitivity of data stored by websites as authentication and
access tokens are specific to a particular context and can
be revoked, contrary to login/password pair.

Third-party Identity Providers (IdP) acquire a cen-
tral position on the web by providing SSO services.
They are responsible for managing both user security
and privacy. As a consequence, IdPs gain the ability to
track their user’s actions and monetize this information,
making users face a tradeoff between usability and pri-
vacy [3].

Due to implementation constraints (cost and page
space), websites only propose few sign-in options, favor-
ing big IdPs with large user bases over medium or small
one. On one hand, users with concerns for their privacy
may not trust available IdPs. As a result these users
face a dilemma: use an untrusted IdP or create yet an-
other website-specific account. On the other hand, IdPs
implementing privacy preserving policies and solutions
have to convince individual RPs to implement them.
Privacy friendly techniques are an active research topic.
But to see them used, it is necessary to allow users to
choose actors they trust to respect the privacy of their
data.

Although technical solutions to let user authenti-
cate with the IdP of their choice exist, these are rarely
adopted. We postulate that probable reasons hampering
the adoption of IdP discovery mechanism by websites
are unadapted protocols/API, incomplete implementa-
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tions, and the necessity of trust relationship between
websites and IdPs.

In this paper we investigate the current implemen-
tation and usage of the latest SSO protocols, OAuth 2
and OpenID Connect (OIDC), in order to determine
the reasons and possible solutions to the non-usage of
user defined IdP solutions. We first give background
on authentication and authorization delegation, and
OAuth 2/OIDC in Section 2. We also showcase how au-
thentication delegation may be a risk to user personal
data with the example of the WebRTC identity specifi-
cation in Section 2.2. In particular, we show that users
may be drastically limited in their choice of an IdP, and
that they may not be correctly informed that the IdP
may access call information.

We then present our investigation in Section 3. In
that section, we propose three hypothesis that could
explain the absence of IdP discovery on the web. To
verify these hypothesis, we conduct a data collection
experiment using a browser extension. We visit SSO
services used on the top-500 worldwide websites. The
browser extension then collects OAuth 2/OIDC URL
requests in the navigation history. These requests al-
low us to discover a large number of websites using
OAuth 2/OIDC and the type of information requested
to supported IdPs. Results show that state of the art
protocols could adequately answer current RPs requests
but that IdPs do not implement functionalities for IdP
discovery mechanisms.

Our last contribution sketches the requirement and
advantage of an identity-enabled web-browser in Sec-
tion 4. We discuss why native identity support would
bring much benefits to users and that an identity web
API could ease the deployment of IdP discovery on
website. We report on the prototype solution we im-
plemented. Finally, we conclude and discuss our future
work.

2 Delegated authentication and
privacy

2.1 Authentication and authorization
delegation, OAuth 2

Authentication delegation allows users to create an ac-
count and to sign-in on a Relying Party website (RP),
by authenticating on a third-party IdP. Usually, users

(a) GitLab sign in page with a selection
of IdPs

(b) Redirection to GitHub sign in page

(c) Github consent page to share email with GitLab

Fig. 1. Authentication and authorization delegation process involv-
ing Gitlab as RP and GitHub as IdP

RP

User

IdP

Fig. 2. Trust relations in authorization delegation



Why can’t users choose their identity providers on the web? 74

have the choice of creating and authenticating with a
login/password local to the web site they want to use.
However creating and maintaining accounts over a large
amount of sites is a cumbersome activity. In order to
avoid this task, SSO solutions allow users to use a main
identity across multiple sites. SSO solutions are often
provided by email providers or social networks, services
historically in the role of providing an identity.

The process of authentication delegation involves
the choice of an IdP over a list of implemented ser-
vices offered by the RP, as shown in Figure 1a. Alter-
natively, discovery services, such as with OpenID [4] or
BrowserID [5], may be used by the RP to discover the
IdP of the user. Once the user has selected his IdP, he
is redirected to a sign-in page on the IdP where he can
authenticate himself, as presented in Figure 1b. Once
authenticated, the user is again redirected to the RP
with an identity token asserting the user authentication
by the IdP.

Additionally, profile information (name, email, ad-
dress, etc.) may be returned along with the identity to-
ken. Authorization delegation lets the user authorize a
RP to access private information contained on a Re-
source Server (RS). The process is managed by an Au-
thorization Server (AS) and involves a similar process to
the authentication delegation, in which the RP receives
an Access Token. This token can then be consumed by
the RP to access user data on the RS. In practice with
web sign-in, IdP, RS, and AS are often the same actor.
For the sake of simplicity, we do not distinguish them in
this paper. Most RPs often require user profile informa-
tion to complete their local profile. Thus, authentication
and authorization delegation are often mixed together
in a single process.

OAuth 2 is an authorization delegation protocol.
In the OAuth 2 protocol, the RP asks for specific au-
thorization by requesting scopes. Once redirected to
the IdP page, the user is presented with the requested
scopes and given the choice to grant or refuse autho-
rization. Figure 1c shows the GitHub consent page on
which the user is presented with a choice to share his
email with GitLab RP. Depending on the implemen-
tation, authorization may be individually given by the
user, however it is more often an all or nothing choice.
OpenID Connect (OIDC) is an identity layer built on
top of OAuth 2. OIDC specifies the OpenID scope to re-
quest an ID Token and standardizes several other scopes
related to user identity (profile, email, etc.), as well as
the endpoint on which to access these informations.

Authentication and authorization delegation proto-
cols pose a risk to user privacy as they require sharing

CSP

UA UA

IdPA IdPB

Media
Alice Bob

Fig. 3. A call with IdP-based identity and a single communication
service provider

IdPIdPProxy

API Calls

PeerConnection

API Calls

Calling JS Code CS

User Agent

Fig. 4. WebRTC Identity Architecture
API calls are the setIdentityProvider function, offered by the Peer-
Connection object to the JS client, and the generateAssertion and
validateAssertion functions, offered by the IdP Proxy to the Peer-
Connection. The protocol used between the IdP Proxy and the IdP
is unspecified.

private information between domains. In this situation,
users need to trust both actors, the IdP and the RP,
with their data. The RP may need to trust the IdP,
regarding the validity of the provided resources and as-
sertions. For instance, the validity of profile information
or the strength of authentication process. This simple
trust model is summarized in Figure 2, where arrows
represent relations of type A trust B.

2.2 Privacy issue, the example of
WebRTC identity

2.2.1 WebRTC identity

WebRTC [6] is a web API, developed by the W3C and
the IETF, which supports P2P audio-video calling and
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data sharing. It allows for real-time communications be-
tween web browsers, from within a webpage. The en-
visioned use-cases are audio conferencing, e-commerce
support, and personal or enterprise communications.
Due to the ease of deploying a WebRTC communication
service, a simple web server being enough, it is expected
to see the emergence of a larger number of WebRTC en-
abled web sites.

WebRTC communication setup can be decomposed
into three different paths as shown in Figure 3. The
Signaling path initializes the communication between
Alice and Bob User-Agents (UA) through one or more
Communication Service Provider (CSP) servers. On this
path, Alice and Bob exchange call offers and answers
Session Description Protocol (SDP) messages in order
to setup the Media path. The Media path is a peer-to-
peer encrypted connection between Alice and Bob used
to exchange audio, video, or data. Optionally, one or two
Identity paths are used to generate and verify Identity
Assertions. Identity Assertions are transmitted inside
SDP messages. Their role is to assert that media path
encryption keys are used by users that are authenticated
by an IdP.

The WebRTC Identity architecture [7] specifies the
IdP Proxy component. This component serves as an
interface between the WebRTC PeerConnection object
and the IdP. The IdP Proxy is available at a standard-
ized location on the IdP domain. Before making a SDP
call offer or answer, the PeerConnection calls the IdP
Proxy to generate an assertion covering a set of keys. Af-
ter the IdP authenticated the user, the identity assertion
is returned. This assertion, along with the IdP Proxy lo-
cation on the IdP domain, is then included in the SDP
message. This allows users to discover IdP Proxy loca-
tion without prior knowledge or relationship with the
IdP. On receiving a SDP call offer or answer containing
an Identity Assertion, the PeerConnection object down-
loads the IdP Proxy from the specified location. It then
calls its assertion verification function. If successful, the
IdP Proxy returns the key fingerprint and the user iden-
tity (for instance an email address). This ensures that no
man in the middle attack is being set, and that the user
claiming the identity was authenticated by the IdP. The
WebRTC Identity Architecture is shown in Figure 4.

The WebRTC specification allows users to choose a
default IdP in their UA preferences if none was specified
by the CSP. But implicitly, the default IdP should still
be somehow compatible with CSP implementations in
order to handle the authentication procedure, as speci-
fied in the Identity section of the WebRTC specification.
Otherwise, this would result in a call failure as the IdP

Proxy would not be able to produce an Identity As-
sertion. If the CSP sets an IdP to use for a WebRTC
call, we would expect it to be the same IdP used to
sign into the CSP’s website. Indeed, the CSP must be
able to handle the authentication procedure and needs
to know that the user has an active account on the IdP.
Besides, from a user perspective, it is important that
the identity presented on the CSP user interface and
the one received in the identity assertion are consistent
with each other.

In practice, the choice of IdP would thus be defined
by the CSP and limited in the same way as for com-
mon authentication delegation services, as explained in
Section 2.1.

2.2.2 Call tracking by the IdP

While the Identity Assertion ensures secure communi-
cation by exchanging user trust in the CSP with user
trust in IdP (or in addition to), it also comes at a cost as
the IdP gains the ability to track any user call covered
by an Identity Assertion.

The IdP Proxy code is deployed on both sides of
the call, and subject to the same sandbox restrictions on
both sides. This implies that an IdP Proxy can place and
read cookies on a user’s UA verifying an assertion, i.e.
not having actively accessed the IdP domain. Such IdP
could track a user’s call history, under an anonymous
identity, with other user authenticated with the IdP.
Eventually this anonymous identity could be linked with
a known identity, and the call history versed into an
existing profile.

The IdP can also track user calls across multiple
CSP, as long as they use, or are called with, the same
IdP. However it does not appear that the IdP is able
to know on which CSP the call happens, as the Peer-
Connection interfaces between calling sites and the IdP
Proxy. Except if the user authentication procedure is
used.

To reuse the classification proposed by Vapen et al.
and presented in Section 2.3, this ability to track user
call history could at least be classified as R+, or R++
regarding the verifying user, as it would fall under the
Friend’s data class of privacy risk. However, user may
not have authorized or even be aware of such tracking
capacity.

Let us follow the example of user signing in with
an OAuth 2 service onto a CSP. In order to access the
service, the user would give consent to authorization
requested by the CSP. However, in the WebRTC speci-
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fication, the Identity Assertion is not requested by the
CSP but by the IdP Proxy, who plays the role of RP. As
the IdP Proxy is from the same domain as the IdP, the
Identity Assertion generation could be done outside of
any authorization flow. For instance, a simple authenti-
cation check between the User Agent and the IdP would
be enough.

Even if the exchange between the IdP Proxy and
the IdP where covered by an authorization flow, this
authorization would have been given by the user to the
global IdP Proxy RP, rather than for a particular CSP.
Any CSP could trigger a WebRTC IdP authentication
without asking or notifying the user, as it is the CSP’s
client-side JavaScript which sets the WebRTC identity
parameters.

The verifying user would get no control over the
IdP Proxy as it is an automatic process controlled by
the UA. He would only be informed after the UA notifies
the success of the Identity Assertion verification by the
IdP. This can be compared to email, where the recipient
cannot prevent the sender mail server from learning the
email destination. Also note that the notification by the
UA of the Identity Assertion verification is optional, the
user may not get it at all.

We can also observe that the information sharing
relation is here reversed between the IdP and the CSP.
In a classical authorization delegation, the user autho-
rizes the IdP to share resources with the RP. However in
this case, the CSP could be considered as being in pos-
session of call information and would indirectly share
them with the IdP, by adding it to the call setup.

To summarize, the WebRTC authentication mech-
anism can be rated as R+ but may trigger R- or no
notification on the user side. Authorization for the IdP
to access call information may have been given on a
global scale, or not given at all. And the users may not
even be aware of the IdP during the call setup.

2.3 Web SSO usage and related work

In 2015, Vapen et al. studied the identity management
landscape on the web [8]. In their study, they clas-
sified the type of information shared by IdP to RP
in five classes: basic information, personal information,
created content, friend’s data, and a transversal ac-
tion class. In addition, they defined semi-ordered risk
types classes, build as conjunction of information shared
classes. These classes range from R- to RA++ risk lev-
els, A denoting action authorization. Our study, pre-
sented in Section 3, uses a similar but simplified classifi-

cation. Our classification defines three classes: authenti-
cation, profile, and specialized, characterizing the func-
tional requirements of RP. In this classification, RP from
the personal, created, friend’s data, and action classes
would belong to the specialized class.

They also show that in practice RPs offer few
choices of IdP to their users, with 47 % offering only one
IdP, and 19 % offering four or more IdPs. Proportions
confirmed by our own observations.

These observations also confirm that the situation
profit to a few IdPs trusting the top ranks, with Face-
book as the number one, followed by Google and Twit-
ter. It is clear that users lack choice when choosing an
IdP. This can lead to trust issue, especially due to the
dominant position of a few providers.

In 2011, Sun et al. conducted an empirical investi-
gation to evaluate the acceptance by users of Web SSO,
and OpenID in particular [9]. In this study, a large num-
ber of participants expressed concerns over privacy and
trust in RPs (40 % and 36 % resp.). From their findings,
they recommend that browser makers should provide an
integrated identity support to their user, giving them a
consistent, intuitive, and trustworthy user experience.

3 RP-IdP relationship
investigation

In Section 2.2, we presented how the WebRTC iden-
tity mechanism allows IdPs to track user calls without
explicit user’s authorization or awareness. This mecha-
nism mainly serves to leverage the user’s trust in the
IdP, in order to prove the CSP’s goodwill regarding a
man in the middle attack.

Furthermore, as explained in Section 2, users are
also presented with a very limited choice of IdPs when
signing in with authentication delegation. As WebRTC
IdP and SSO IdP would be the same, this limitation
may impact WebRTC scenarios too. Users may have
more trust in IdPs whose business model does not rely
on selling personal data or which they would host them-
selves [10]. However, current SSO implementations do
not permit users to make this choice.

We develop three hypothesis regarding the reasons
of these limitations and conduct an investigation on the
type of relations between IdPs and RPs to verify them.
Our hypothesis are the following:
– H1: API and data format divergences in implemen-

tations require specific implementations for each
IdP on the RP’s side.
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– H2: Protocol limitations induce implementation
cost.

– H3: Trust relationships between RP and IdP impose
manually configured relations.

3.1 OAuth 2/OIDC scope usage collection

To evaluate the impact of the first hypothesis, we im-
plement a browser extension to parse the browser navi-
gation history and look for OAuth 2 and OIDC autho-
rization request URLs. These requests are characterized
as OAuth 2 requests by several keyword parameters and
contain information identifying the RP making the re-
quest, the IdP to which the request is destined and the
scopes requested by the RP.

https://accounts.google.com/o/oauth2/auth?
client_id=74[...].googleusercontent.com&
response_type=code&
redirect_uri=http://www.dailymail.co.uk/
registration/signin/google.html&
scope=email+https://www.googleapis.com/
auth/plus.login&
[...]

The URL above is an OAuth 2 request for
a accounts.google.com (URL Domain Name) au-
thorization following the OAuth 2 code flow (re-
sponse_type=code). The request comes from the client
74658[...].apps.googleusercontent.com, also identifiable
through the redirect_uri parameter as dailymail.co.uk.
This client and the facebook.com client, registered as
146[...]95, share the same redirect_uri domain name.
We thus consider them to originate from the same RP.
Requested scope are email and https://www.googleapis.
com/auth/plus.login.

Note that these URLs do not contain private infor-
mation regarding the user as they are accessed before
the user is identified or authenticated.

To collect data, we manually visit each of the top
500 from the Alexa ranking1 and try to use each one of
the SSO solutions offered by these websites. The visited
URLs are recorded and parsed by our extension. Finally,
we use data on collected RPs and IdPs to also evaluate
the impact of hypothesis H2 and H3.

As our data-collection search is focused on OAuth 2,
we do not collect requests for IdPs using other proto-

1 http://www.alexa.com/topsites

cols, in particular Twitter and Amazon. However we
scarcely encounter RP offering only these IdPs, as a
result the large majority of visited RP is captured by
our extension. In total, we observe 103 unique RPs and
23 OAuth 2 provider’s domain names. The two biggest
observed IdPs are undoubtedly Facebook and Google,
respectively serving 63 and 52 RPs. The third most ob-
served IdP is Twitter with 30 request URLs, but it uses
OAuth 1 and as such is not included in our data collec-
tion.

While our claim that users are offered a limited
choice of IdPs is confirmed by our study, we globally
observe three different patterns based on the RPs geo-
graphical origin. Firstly, Chinese websites only offer to
login through Chinese SSO solution such as QQ.com.
Technically, they also often offer phone authentication
through a QR code. Occidental websites, i. e. North-
American and European, mostly offer to login through
one or both of the top two SSO platforms, sometimes
with a third solution. Finally, Russian websites offer
the largest number of solutions as they include Rus-
sian SSO, e. g. VK.com, and occidental SSO often not
limited to the top three providers. Others regions were
not represented in sufficient numbers to draw any con-
clusions.

3.2 API and data format limitation

The RPs not only require user authentication but also
authorization to access protected resources. These re-
sources may vary in nature, and may not share a stan-
dardized data format when of the same type. One rea-
son for RP not to allow signing in with any IdP could
be that they require specific resources, which are not
available on any IdP.

We classify RP in three categories: authentication,
profile, and specialized, in function of the scope ob-
served in OAuth 2 authorization requests. Authentica-
tion classed RPs only require an assertion that the user
got authenticated by the IdP. As such, any IdP could be
able to serve for such RP, given a standardized assertion
(e. g. a signed JSON Web Token [11]). RPs classified as
profile require basic user profile information, most often
to complete their own database and provide a personal-
ized user experience. IdP would need to give access to
resources in a standardized data format in order to avoid
a specific implementation on RP side. Finally, special-
ized RPs require specific resources, for instance, write
access on a user shared repository. By definition, ser-
vices provided by RPs of this class are specialized to use

https://www.googleapis.com/auth/plus.login
https://www.googleapis.com/auth/plus.login
http://www.alexa.com/topsites
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authentication

profile

profile+

specialized

Fig. 5. Relying parties’ classifications

resources from a few IdPs, each one requiring its own
implementation. They cannot be generalized to cover a
broad range of IdPs.

Figure 5 presents these classes, ordered by speci-
ficity. Indeed, access to a particular API is more spe-
cific than accessing generic profile information. Simi-
larly, getting access to a user name and phone num-
ber is more specific than authentication, which could
be abstracted to a boolean, i. e. authenticated or not.
Although special cases may exist, e. g. access to autho-
rized resources without authentication of the user, this
classification allows us to define which RP could in the-
ory accept any IdP, and which one would be bound to
a particular API.

We classify each RP-IdP relationships, i. e. each col-
lected client_id, into one of our three classes. We eval-
uate from the available documentation if the requested
scopes give access to a specialized API, a profile in-
formation API, or an authentication proof. Differences
between classes may be blurry, for instance email and
friends list can be considered as user profile informa-
tions. However, email alone is often used as a unique
user identifier in conjunction with a proof of authenti-
cation. OIDC defines a list of user-information claims
and their types, we consider this as the standard for
user information. Other type of informations and API,
e. g. friends lists or cloud access, are non-standardized
and not available from every IdP. We classify these re-
quests outside of the profile and authentication classes
as specialized. Ultimately we define our classes as:
– Authentication: requests only subscriber identi-

fier scopes, e. g. ’openid’ or email.
– Profile: requests scopes giving access to user in-

formations equivalent to OIDC’s standard claims.
– Specialized: requests not classified as authentica-

tion or profile.

Some RPs offer to sign in with multiple IdPs and may
require different types of information for each IdP. As a
result, they may be classified differently for each of their
IdP. Based on common redirect_uri domain names, we
grouped identified clients into unique RPs. For each
RP, we attributed a minimum (MIN) and a maximum
(MAX) classes. As an example, a RP classified as Au-
thentication/Profile requires to access profile informa-
tion on some of the offered IdP options, but only re-
quires an authentication proof and a unique identifier
on at least one offered IdP. RPs offering only a single
IdP were classified as MIN/-.

3.2.1 Result analysis

Our observations, summarized in Table 1, reveals that
a majority of RPs, 58 % of 103, can be classified as Au-
thentication or Profile. MAX-classed RPs, 40 % in to-
tal, are the one providing support for multiple IdPs. In
our observations, 24 out of 56 RPs with a Specialized
class are classified with a MIN class of Authentication
or Profile. This double classification demonstrates that
while some websites require Specialized services, they
also adapt to support other IdPs offering less resources.
Note that this also leads to different privacy risk level
for the user. On the other hand, 34 % of observed RP
are rated as MIN-Specialized.

The large majority of specialized RPs use resources
from Online Social Network (OSN) such as friends list,
user likes, and extended profile informations. While data
from different social networks can be similar from a con-
ceptual point-of-view, the format and API used to ac-
cess these data depend on the functionalities and con-
cepts offered by social network. In these cases, the user
fully depends on implementation choices by RPs.

Although a standardized protocol, OAuth 2 lets the
IdPs define their scope and data format. As a result,
IdPs may provide similar results in different scopes and
data format. For instance, we observed six different
scopes for email access and seven different scopes for
basic profile information. This gives an indication on
the lower bound of the implementation work that RP
must complete to support these IdPs.

OIDC solves this problem by standardizing basic
profile claims (e. g. profile, email, address, ...) as well as
the scopes, endpoint, and data format to retrieve these
informations. From our observation, only four IdPs out
of twenty where implementing OIDC, as reported on
Table 2. Notably Google is one of the OIDC provider
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Min/Max Classes Observed Risk class
Authentication/- 10% (10) R−
Authentication/Auth 1% (1) R−
Authentication/Profile 9% (9) R−
Authentication/Special 6% (6) [R−; RA+]
Profile/- 13% (13) R−
Profile/Profile 2% (2) R−
Profile/Special 17% (18) [R−; RA+
Specialized/- 26% (27) [R; RA+]
Specialized/Special 5% (5) [R; RA+]
No Scope 11% (11)
Total 100% (102)

Table 1. Observed relying parties’ classes
Some RPs offer to sign in with a single IdP, we classify them with
a single class, e. g. Profile/-. Other RPs offer multiples IdPs, their
relations with these IdPs may belong to a single class, e. g. Pro-
file/Profile, or different classes, e. g. Auth/Special. For these RPs
we show the minimum and maximum classes they offer. Risk class
refer to privacy risk classes as defined by Vapen et al. [8]. When a
RP has different Risk class due to multiples RP-IdPs relationships,
we give an interval for the Risk classification.

and serves 50 % of observed RPs while Facebook does
not implement it and serves 63 % of observed RPs. Other
IdPs serve less than 6 % of RPs each.

However, out of the 52 RPs using Google’s SSO,
only 22 request standard OIDC scopes, and from these
22 only 10 arequest OIDC ID Token. Surprisingly, we
also observe that out of the 34 RPs using the Google
API scopes, 19 were using deprecated scopes.

RPs of MIN-Authentication and MIN-Profile classes
represent 58 % of all observed RPs. We defined these
classes as being equivalent to claims covered by OIDC
requests. It appears that from our observations, the
quantity and type of information shared under these
scopes would be sufficient to login into a majority of
websites. As a result, we conclude that current stan-
dards for API and data format do not appear to be a
hindrance to SSO interoperability.

However, there is a clear lack of implementation of
these standards from big IdPs, e. g. Facebook not imple-
menting OIDC or Twitter not implementing OAuth 2.
But the lack of implementation effort also comes from
RPs, as a not negligible proportion of them did not up-
date their SSO implementations to current versions. Im-
plementation cost may be a reason, but we also note
that studied websites come from the most 500 visited
websites.

Regarding scopes for sharing OSN data such as
friends list. We observe that 43% of RPs using OSN
data also implemented other IdPs without requesting
OSN data. This is even the case when such data are

available, e. g. with accounts.google.com. On one hand,
a standard format for OSN data could allow more in-
teroperability between RPs and OSN based IdPs. But
on the other hand, in these cases since RPs can accept
non-OSN IdPs, the sharing of OSN data appears to be
non-mandatory. The possibility to opt-out of consent for
data sharing is however often not offered or not clearly
advertised.

3.3 Protocol specification and
implementation limitation

In order to support signing-in on a RP with any IdP, the
protocol must offer discovery mechanism. This mecha-
nism allows the RP to find the IdP’s protocol parame-
ters from a URI provided by the user. Depending on the
protocol this URI may be for instance the user identi-
fier, or a resource location on the IdP. Without discov-
ery, the RP may not know which endpoint to use on the
IdP, or which public keys and algorithms to use to verify
information provided by the user or the IdP. Addition-
ally, the protocol should also allow interactions between
IdP and RP without prior manual configuration. Some
protocols require the RP to possess credentials to be
authenticated by the IdP. In this case a dynamic reg-
istration process must take place before any further in-
teractions.

For instance, standard OAuth 2 recommend that
the RP possess a client identifier and secret for authen-
tication to retrieve access token. The use of an unregis-
tered client is not excluded by the specification, but our
investigation did not reveal any use of this. Similarly,
OIDC requires the RP to be authenticated to get ac-
cess and identity tokens. The current OAuth 2 version
does not specify dynamic registration mechanism, but
OIDC optionally offers discovery [12] and dynamic reg-
istration [13]. OIDC discovery uses Web Finger [14] to
find user’s IdP from the user identifier, and standard-
ises IdP’s metadata location. The metadata are in turn
used to find, if available, dynamic registration endpoint.
However, both discovery and dynamic registration ex-
tensions are optional. RFC 7591 proposes to generalise
the specifications of OIDC discovery and dynamic reg-
istration to the broader OAuth 2 specification.

Table 2, summarizes the observed OAuth 2 IdPs. In
total, we collect 23 unique provider domain names. Out
of those, 15 are not requested with a scope parameter,
and are not included in our OIDC features investiga-
tion. For instance the rambler.ru request to Instagram



Why can’t users choose their identity providers on the web? 80

Provider RPs OIDC Metadata
www.facebook.com 63 × ×
accounts.google.com 52 X X
oauth.vk.com 6 × ×
graph.qq.com 5 × ×
login.live.com 3 × X
account.live.com 3 × ×
www.linkedin.com 3 × ×
connect.ok.ru 3 × ×
login.microsoftonline.com 1 X ×
services.Adobe.com 1 X ×
github.com 1 × ×
feedly.com 1 × ×
www.livejournal.com 1 × ×
connect.mail.ru 1 × ×
open.weixin.qq.com 1 × ×
api.weibo.cn 1 × ×
mixi.jp 1 X ×
oauth.riotgames.co 1 X ×
Total 103 5 3

Table 2. Observed OIDC and discovery features Implementations

do not contains a scope parameter, but Instagram still
asks some authorization to the user. On the other 18
unique provider domain names, only 5 are used with an
openid scope, indicating implementation of OIDC.

No observed OIDC provider implement dynamic
registration or Web Finger, and we find that only two
out of five offer openid-configuration metadata. We are
not able to test Web Finger in every case as some of
these services do not offer a look-up compatible user
identifier.

Again, existing protocols offer discovery and RP
registration capabilities but implementations are miss-
ing these optional specifications. This mechanism is
nonetheless compatible with manual configurations of
IdPs. As such RPs could nonetheless implement it to
demonstrate interest and support IdP allowing dynamic
registration.

However, this would impose an additional compo-
nent to add to the login page and an associated im-
plementation. Users would also need to know and en-
ter their OIDC identifier or provider for the discovery
mechanism, which may not always be obvious. There is
clearly an usability limitation compared to the "click to
signin" use of IdP button.

3.4 Trust relations

As we described in Section 2, a trust relationship may
exists between RPs and IdPs. For instance a RP may

expect verified profile information from a governmen-
tal institution or a secure authentication process with a
two-factor authentication. Level of Assurance (LoA) are
usually used to characterise the strength of an identity
process during the user enrolment and authentication.
Similarly an IdP may trust a RP, or more particularly
monetise access to an API. This implies that RP and
IdP got into an agreement involving registration of pay-
ment methods which is out of scope of existing dynamic
registration specification.

These trust relations can be either implicit or ex-
plicit. Implicit relations are difficult to characterize as
they are not clearly visible from the user point of view.
For instance, the web site service-public.fr2, a website
offering direct access to french governmental service,
only offers to login with account from other public ser-
vices such as the tax department, the social security ser-
vice, or the national postal service. Other implicit trust
relations may be due to strategic decisions, for instance
limiting RP access to IdP of the same company. In such
scenarios, the RP would not allow the user to choose any
IdP. This is the case for developer.microsoft.com, as it
only allows login through the login.windows.net IdP, a
Microsoft service.

Explicit relations may be more easily character-
ized as the RP clearly request a solid information.
For instance, Orange’s OIDC IdP3 offers the scope
form_filling. This scope substitutes to OIDC profile
scope and allows the RP to access qualified Orange in-
formation, for instance the telephone number linked to
the user subscription. Such relation may either fit into
the specialized or profile class, depending on the RP
will or capacity to accept generic information, such as
standard OIDC profile. We classify these relations as
profile+, as shown in Figure 5. Explicit trust relations
may also be linked to a contract between the RP and
IdP. Note that other common scope may also be sub-
ject to agreement, though it is impossible to determine
without investigating actual IdP API terms of use.

Similarly, OIDC RPs can verify if the email was
verified by the IdP through the email_verified boolean
value. As this verification is done on the server side, it
is not visible from the user point of view.

Trusting a presented identity and the associated au-
thentication process is a complex, and sometimes sub-
jective matter, especially on the web. For instance, so-
cial networks such as Facebook and services using them,

2 Outside of our study.
3 Outside of our study.
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claim their identity to be trusted. These claims are
backed by social relationships, evaluation between users,
or real-name usage policies. But stricter organisation,
such as governments and banks, would not accept these
identities. As we explained at the beginning of this sec-
tion, identity trust level are standardized by several
transnational frameworks, called Level of Assurance.
OpenID Connect allows to request a specific authentica-
tion level with the Authentication Context Class Refer-
ence (ACR) parameter, referring to the ISO entity au-
thentication assurance framework [15]. Data collected
during our investigation (see section 3.1) did not reveal
ACR parameter usage in OIDC requests.

Out of the hundred and three observed RPs, we es-
timate that fourteen have an implicit trust relationship
with their IdP. In most cases, these RPs only offer a
single compatible IdP from the same company. Four of
these RPs are also classified as Specialized/-, indicating
that they would not be able to accept any IdP in the
first place. We found no occurrence of an explicit trust
relation in our panel.

Regarding our third hypothesis, it appears difficult
to judge if trust is an issue that would impose manual
configurations of IdP/RP relationships. To some extent,
a decision to support a particular IdP can be considered
as an implicit trust decision. But whether RPs are will-
ing to trust other IdPs, in order to offer more control
to their user, remains an open question. It seems to us,
that a solution to simplify the discovery and registra-
tion of IdP endpoint, should nonetheless give RPs the
option to control the range of compatible IdPs and the
authentication strength for trust reasons.

4 Proposal for a web based
identity browser management
and API

Frameworks for authorization delegation give users con-
trol over the information they want to share to other
websites. Used as SSO solutions, they force users to
choose between setting up a new account or shar-
ing some private information. While IdPs should offer
privacy-friendly solutions, websites also have a respon-
sibility as clients of these solutions. As such they should
allow login through trusted and privacy-friendly IdPs.
However, as presented in Section 2.3, users often don’t
have much choice regarding IdPs.

In Section 3, we considered several hypothesis that
could prevent the implementation of IdP discovery
mechanisms. From our observation, we conclude that
the OIDC standard could provide this feature to at least
58% of observed websites. However we also found several
hindrance to this solution:
– the lack of implementation by IdPs and RPs.
– the difficulties for users of knowing and configuring

their identifiers in the discovery process.

As a solution to these issues, we propose to add identity
management functionalities to web-browser through a
Web API.

Several tentatives have been made to develop Inter-
net’s "Missing Identity Layer" [16], without clear suc-
cess. As an example, Windows Cardspace [17], first re-
leased in 2007, was Microsoft’s solution to propose an in-
tegrated identity management experience to Windows’
users. This identity metasystem allowed users to select
InfoCards to prove identity claims, e. g. name, age, to
requesting applications.

An identity enabled web browser should let users
configure several identity for signing into webpages.
From a user perspective, the browser would provide
functionalities and associated interfaces to define new
identities, register passwords, display login prompt, and
define website preferences, i. e. which identity to use
with which web site. Some of these functionalities are
already provided by web browser, e. g. login and pass-
word storage, but without the coherency of a full iden-
tity management experience.

Recent trends in web browser development tend to
indicate that browser makers are looking to offer a more
complete browser experience. Personal preference syn-
chronization, official plugins bringing new functionali-
ties, e. g. Firefox Hello4, although being discontinued,
offers a web-calling service integrated in Firefox. Or
simply access to an application marketplace. Particu-
larly related to our interest, Google Chrome offers an
OAuth 2 API5 to Chrome Apps (third party applica-
tions running inside Chrome). This API implies that
users can use a Chrome interface to choose an identity,
sign-in, and modify some of their informations such as
their profile picture. However, Chrome only offers inte-
gration with Google’s identity.

WebRTC identity specification also offers some kind
of browser identity, but limited to user-to-user authen-

4 https://www.mozilla.org/en-US/firefox/hello/
5 https://developer.chrome.com/apps/app_identity
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tication. The specifications offers abstract authentica-
tion protocol and a discovery functionality. In itself the
WebRTC specification pose some interesting concepts,
but is limited in its capacities and interaction capability
with the user. We also note that its implementation in
web browser is lacking behind other WebRTC compo-
nents.

4.1 Possible architecture for browser
identity

We envision two possible architectures for a web browser
offering an identity API to websites and identity man-
agement functionalities to users. We think that the main
requirement for such a solution would be to let user
choose their own identity service in order raise their
trust level in web SSO, including privacy concerns. This
should of course come with appropriate security on the
device or browser, to store and manipulate token and
credentials.

4.1.1 Discovery and registration through the browser

The first architecture, and possibly the lighter one,
would be to use the browser in a pre-OAuth step. The
user would first register his identity parameters and se-
lect the one to use when prompted by the browser. In
turn, the browser would offer discovery and dynamic-
registration services to web sites through a web API.
As this solution build on top of existing protocols and
given the results of our investigation we estimate that
it could be implemented by a large proportion of web
site using SSO (see Section 3).

However, this architecture binds the API to a single
protocol suite, i. e. OAuth 2/OIDC dynamic registra-
tion. This is a major issue as it may be incompatible
with future identity protocol evolutions.

4.1.2 Web authentication proxy

The second solution is more integral. In this architecture
the browser would serve as an abstracting interface be-
tween the web site and the identity protocol in use. We-
bRTC identity introduces this mechanism with the IdP
Proxy component which offers identity assertion gener-
ation and verification functions for the purpose of web-
calling authentication (see Section 2.2). While WebRTC
identity only offers authentication through an identity

assertion, it could be expanded to offer more resources
in a user to website relation.

As proxy for authentication and authorization ser-
vices, websites would consume user resources, i. e. au-
thentication assertion, profile information, through a
web API, as shown in Figure 6. In this situation, the
browser would be responsible for authorization manage-
ment of these resources. HTTPS could be used for RP
authentication, leveraging existing browser security im-
plementation. User profile resources could be stored by
local caching on the browser, or directly accessed on the
IdP through the browser. Following the result of our in-
vestigation, this browser API should support RP of class
authentication and profile.

For discovery, an IdP proxy similar to the one de-
fined by WebRTC identity would be downloaded by the
browser from a standard location on the IdP. This proxy
component would serve the purpose of abstracting the
protocol used by the IdP, to fit the browser API and
assertion format.

A standard data format for user profile information
should be defined for website to consume. We note that
this work is already covered by the OIDC specification.
The issue with this architecture may be in defining the
browser to IdP Proxy API. Indeed, this interface should
support existing protocols (or a subset) and still keep
enough flexibility for future evolutions. On the other
hand, this standardization process would take place be-
tween identity providers and browser makers. For web-
site developers, the exposed web API would be stable
and the standardization process transparent.

4.2 Prototype implementation

To evaluate the practicability in terms of use and devel-
opment of our solutions, we implement a prototype for
the Web authentication proxy architecture6.

This architecture relies on three components inter-
acting together: (a) a web-browser modification provid-
ing a JavaScript API to website and a user interface for
identity selection, (b) a website –client and server side–
requesting an authentication from the user and able to
understand and verify the provided identity assertion,
and (c) an IdP Server able to provide a suitable identity
assertion through a WebRTC compatible IdP Proxy.

Figures 7 and 7 show sequence diagrams represent-
ing the interactions between the different actors of our

6 https://github.com/Sparika/WebConnect
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Web UA IdP
Auth API Proxy interface

Fig. 6. Browser (UA) as proxy between web-site and IdP.

implementation. In Figure 7, after the user requested
to login, the JavaScript (JS) client code calls the UA
connect function which returns a promise7 for an iden-
tity assertion. The UA then asks the user to choose one
of its registered identity provider and then proceed to
instantiate the corresponding IdP Proxy. Interactions
with the IdP Proxy follows the WebRTC identity spec-
ification [6, 7]. Once the IdP Proxy returns the iden-
tity assertion to the UA, the UA resolves the connect
promise. The website client thus receives the assertion.

Figure 7 shows the identity assertion verification.
After the website client receives the identity assertion,
the assertion is passed to the website server. In our ex-
ample, the client requests a login URL with a HTTP
GET method and passes the assertion as a query param-
eter. The server then extracts the JKU (JSON Web Key
Set URL) parameter from the identity assertion header,
and get the public key from the IdP over HTTPS at
the provided location. This public key is then used to
verify the assertion signature. The format and verifi-
cation procedure of the assertion are detailed in Sec-
tion 4.2.2. Once the assertion authenticity and integrity
is confirmed, the server logs in the user and responds to
the client GET.

4.2.1 Browser modification

We develop a browser extension to implement the
browser modification. This solution was chosen for its
simplicity in comparison to browser source modifica-
tions. A browser extension does not expose function to
the global window scope. To simulate access to a stan-
dard Web API, we offer a JS file exposing our API func-
tions to website client code. This script can then com-
municate with the extension code through the postMes-
sage API.

The API offers two functions: connect(request) and
register(iss, sub, type, name). The register function cre-

7 http://www.ecma-international.org/ecma-262/6.0/#sec-
promise-objects

ates an entry for an identity in the browser. It is used
by IdP to let users store identity cards in the browser.
iss and type are used to retrieve the IdP Proxy following
the procedure in WebRTC identity. sub is an identifier
for the user on the IdP, while name is the display name
of the user on the identity card. The connect function is
called by website to request an identity assertion in or-
der to log in the user. The request parameter is a JSON
object used to convey request parameters, e. g. scope.

Technically, our extension implements a graphical
user interface for identity selection and configuration
on top of the PeerConnectionIdP Firefox module. As we
leverage and reuse the WebRTC identity specification,
we developed our prototype for Firefox which is the only
browser to support it.

4.2.2 Identity provider implementation

The role of the IdP is to provide an IdP Proxy at a stan-
dard location, and through it, authenticate the user and
return an identity assertion. Our IdP implementation
uses an OIDC server written with the NodeJS frame-
work, modified to serve IdP Proxy. We implement our
IdP Proxy as an OIDC client, which follows the OIDC
implicit flow to interacts with the server.

The returned assertion is thus a signed JSON Web
Token (JWS) [11]. In WebRTC, the party wanting to
verify the assertion validity can download the IdP Proxy
and call the verifyAssertion function. However, as we
wanted to avoid IdP Proxy sandboxing on the website
server, we used the JKU header in the JWS assertion.
This allows a verifying party to retrieves, from the IdP,
the public key used to sign the assertion and verify the
JWS authenticity.

As standard for OIDC, the assertion payload con-
tains Issuer Identifier (iss) and Subject Identifier (sub),
respectively identifying the IdP and the user to the re-
questing website. The payload may also include OIDC
user-info claims, such as name, address, or email.

4.2.3 Website implementation

Besides calling the API to get an identity assertion, a
compatible website must also be able to understand and
verify the assertion. In our implementation, the JS code
on the client side sends the assertion to its backend
server for verification and login. This is done by a GET
to a login URL with the assertion transmitted as a URL
query parameter.
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Fig. 7. Identity assertion management sequence diagram.

The assertion authenticity is then verified by the
server. To do so, developer can use several libraries for
JWS support. For our prototype we extended a JWS
strategy for Passport8 –a popular NodeJS authentica-
tion library– with support for JKU verification. Once
the assertion has been verified, the server can extract
relevant information from it and lookup for existing
users in its database. If no user exists, the server creates
a new entry on the fly. Thus this procedure serves the
dual purpose of signing in and logging in. Ultimately,
the user is returned to the relevant page through the
HTTP response.

4.2.4 Security analysis

In comparison to a standard OAuth 2 flow, our imple-
mentation introduced two major changes that may have
security implications. We discuss these changes in this
section.

Firstly, in order to verify the validity of claims cov-
ered by a received assertion, the RP must verify the

8 http://passportjs.org/

assertion’s signature. This signature would have been
produced by the IdP using a key pair exchanged with
the RP during the registration process. In our solution
we replaced the registration process, including the key
exchange, by a verification of the JKU’s origin. How-
ever, the OpenID Connect specification states "ID To-
kens SHOULD NOT use the JWS [...] jku, or jwk header
parameter fields". From IETF mail archives9, it appears
that assertions claims, including the iss and jku param-
eters, are considered to be self asserted until verified by
a trusted key. To solve this issue, additional constraint
could be added to the key’s origin verification. For in-
stance, using a standard well-known[18] path for the
JKU URL also matching the ISS domain would prevent
attacker from specifying any key.

Secondly, assertion manipulated by the javascript
client code, and returned by the API’s promise response,
would be added to the page’s global. The assertion could
thus be read, and used, by a malicious cross-origin script
embedded on the same page. This issue is similar to
what can happen on an OAuth 2 implicit flow, where the

9 https://www.ietf.org/mail-archive/web/jose/current/
msg03929.html

https://www.ietf.org/mail-archive/web/jose/current/msg03929.html
https://www.ietf.org/mail-archive/web/jose/current/msg03929.html
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Fig. 8. Prototype user interface for the Authentication Web API.

client directly receives an access token. In OAuth 2 we
would use a code flow to instead let the client exchange a
code and authentication with the token endpoint to get
the token. But as in our solution the RP/client cannot
be authenticated by the IdP, the code flow could not be
used. A solution could be to use a sort of code exchange,
leveraging TLS mutual authentication between the RP
and IdP. Alternatively, the browser could protect the as-
sertion from the Javascript code and transmit it directly
to the RP sever. Action 10 and 1, respectively from Fig-
ure 7 and 7, would be replaced by a single message from
the User-Agent to the Site Server. The website redirec-
tion uri would be passed as a parameter to the connect
function, action 2 on Figure 7.

4.2.5 Usability

From the end-user perspective the overhead is quite lim-
ited. Compared to current authentication process, the
main addition is a one time configuration of the web-
browser. This configuration can be done in a single ac-
tion with the register function of the API. Identity se-
lection on login request is also similar to current SSO
solutions. Preferences storage by the browser may help
reduce it further. However, the user-experience does not
constitute our field of expertise and we did not con-
ducted user studies.

Regarding developer, we also believe the additional
work to be limited. Table 3 compares the amount of new
code lines to the total for each modules of our prototype
implementation. In proportion, the biggest task is to
develop the browser modification and IdP Proxy, which
are new concepts. These developments would however

Module Total code lines New code lines
Firefox Addon 0 417
IdP Proxy 0 197
Client site (.js) 693 66
Client site (.conf) 457 70
Passport JWS 1242 60
Total 2392 810

Table 3. Code lines written for the prototype implementation

be done once by browser makers and IdPs. On the client
website, the main task is to configure the new authen-
tication method and verify the assertion authenticity.
However as we noted, library for JWS and OIDC ID
Token support already exists. Modifying the existing
JWS verification library required 60 new lines over a to-
tal 1242 code lines, while configuring the new strategy
required 70 code lines, mostly copy-pasted from other
strategies.

5 Conclusion and future work
In this paper, we showed how users are drastically lim-
ited in their choice of an IdP and as a result, unable to
use a trusted IdP of their choice. Using the WebRTC
identity specification as an example, we demonstrated
the type of privacy risks that user may be exposed to
in the near future. Postulating that allowing users to
choose freely their IdP would help solve these issues, we
investigated the reasons that may prevent the usage of
IdP discovery mechanisms.

Our results show that while state of the art proto-
cols (OAuth 2 and OIDC) prove to be adequate, lack
of implementation by IdPs, and more particularly the
non-implementation of OIDC optional Discovery and
Dynamic Registration specifications is a cause of this
problem. It seems to us that a push for these implemen-
tations could come from RPs and smaller IdPs.

Providing an integrated identity management on
web browser is also a key to reduce the implementa-
tion cost for RPs and to provide a fluid and simple user
experience. To this end we proposed an architecture to
place the browser in an active role between RPs and
IdPs, leveraging its trusted position. We implemented
a prototype and reported on the solutions adopted and
security issues encountered during its development.

As future work, we intend to extend our browser
extension collecting OAuth request URL. We will then
distribute it to the public in order to aggregate OAuth
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usage and in return offer recommendations on privacy
preserving identity solutions. We will also write a tech-
nical draft specification to disseminate our browser iden-
tity solution. Additional researches are required in or-
der to facilitate this work. In particular, we will conduct
user studies to evaluate the impact on SSO acceptance
of our solution.
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