
Proceedings on Privacy Enhancing Technologies ; 2017 (3):175–193

Anrin Chakraborti*, Chen Chen, and Radu Sion

DataLair: Efficient Block Storage with Plausible
Deniability against Multi-Snapshot Adversaries
Abstract: Sensitive information is present on our
phones, disks, watches and computers. Its protection
is essential. Plausible deniability of stored data allows
individuals to deny that their device contains a piece
of sensitive information. This constitutes a key tool in
the fight against oppressive governments and censor-
ship. Unfortunately, existing solutions, such as the now
defunct TrueCrypt [5], can defend only against an ad-
versary that can access a user’s device at most once
(“single-snapshot adversary”). Recent solutions have
traded significant performance overheads for the abil-
ity to handle more powerful adversaries able to access
the device at multiple points in time (“multi-snapshot
adversary”). In this paper we show that this sacrifice
is not necessary. We introduce and build DataLair1, a
practical plausible deniability mechanism. When com-
pared with existing approaches, DataLair is two orders
of magnitude faster for public data accesses, and 5 times
faster for hidden data accesses. An important compo-
nent in DataLair is a new write-only ORAM construc-
tion which improves on the complexity of the state of
the art write-only ORAM by a factor of O(logN), where
N denotes the underlying storage disk size.

Keywords: Plausible deniability, oblivious access

DOI 10.1515/popets-2017-0034
Received 2016-11-30; revised 2017-03-15; accepted 2017-03-16.

1 Introduction
With increasing amounts of sensitive data being stored
on portable storage devices, disk encryption has become
a necessity. Although full disk encryption (FDE) tools
(such as dm-crypt) provide protection against unautho-

1 A preliminary version of this paper was present as a poster [26]
with an overview of the technical solution described here.
*Corresponding Author: Anrin Chakraborti: Stony
Brook University, E-mail: anchakrabort@cs.stonybrook.edu
Chen Chen: Stony Brook University, E-mail:
chen18@cs.stonybrook.edu
Radu Sion: Stony Brook University, E-mail:
sion@cs.stonybrook.edu

rized adversaries attempting to access sensitive data at
rest, it does not allow the owner to deny possession of
sensitive data. This is a serious challenge in the pres-
ence of oppressive regimes and other powerful adver-
saries that may want to coerce the user into revealing en-
cryption keys. Unfortunately, this is an all-too-common
occurrence as illustrated by numerous examples [24, 25],
where sensitive data in possession of human rights ac-
tivists have been subject to government scrutiny in op-
pressive regimes, thus endangering the witnesses.

Plausible deniability (PD) provides a strong defense
against such coercion. A system with PD allows its users
to deny the existence of stored sensitive information or
the occurrence of a sensitive transaction[15].

An example of a plausibly deniable storage solu-
tion is the successful, yet unfortunately now-defunct
TrueCrypt [5]. TrueCrypt divides a disk into multiple
“password-protected” volumes and allows some of these
volumes to be “hidden” in order to store sensitive data.
Password-derived encryption keys are used to encrypt
each such volume. Upon coercion, a user can plausibly
deny the existence of a hidden volume by simply provid-
ing a valid password for one of the non-hidden ones, thus
showing a plausible use for the disk without revealing
the hidden volume data. TrueCrypt stores hidden vol-
umes in the free space of non-hidden (public) volumes.
To mask their existence, TrueCrypt fills all free space
with random data and encrypts the hidden data with a
randomized semantically secure encryption scheme with
output indistinguishable from random.

However, as pointed out by Czeskis [9], TrueCrypt is
not secure against an adversary that can access the disk
at multiple points in time (e.g., multiple security checks
or border crossings). In such scenarios, an adversary can
save a disk snapshot and compare subsequent snapshots
with it. Changes to free space occurring between snap-
shots will suggest the existence of hidden data.

A major reason why TrueCrypt fails to provide PD
against an adversary with multiple snapshots is because
it does not attempt to hide access patterns. The adver-
sary can point out exact locations on disk that have
changed in between snapshots and notice that the ap-
parently free portion of the disk (potentially containing
hidden data) appears altered.



DataLair 176

To defeat a multi-snapshot adversary, we need to
eliminate all evidence of hidden data and its correspond-
ing accesses – for example by ensuring that all modifica-
tions on the disk are attributable and indistinguishable
from the traces of public data operations.

This means that modifications to apparently free
space should be part of normal behavior of plausible
public operations and the traces of hidden data accesses
should be indistinguishable from the traces of public
data accesses.

One effective way to achieve this is to “cloak” hid-
den accesses within public data accesses by always per-
forming a public operation for every hidden operation.
Further, oblivious access mechanisms (ORAM) can be
used for randomizing accesses and making them indis-
tinguishable [7]. Unfortunately, ORAMs come with very
high overheads and reduce overall throughput by orders
of magnitude.

Fortunately, a new insight emerges that enables a
significant throughput increase: accesses to public data
do not need to be hidden since the existence of public
data is admitted. In fact, revealing access patterns to
public data reinforces deniability as it shows non-hidden
disk use to a curious adversary.

Consequently, DataLair uses this insight to design
a significantly more efficient way to achieve strong PD:
protecting only operations on the hidden data, while
ensuring that they are indistinguishable from operations
on public data (thus allowing the user to claim that
all I/O to the disk is due to public accesses). Further,
DataLair also optimizes the oblivious access mechanism
deployed for hidden data.

In summary, public data is accessed (almost) di-
rectly without the need to use an oblivious access mech-
anism while hidden data accesses are mitigated through
a new throughput-optimized write-only ORAM which
significantly reduces access complexity when compared
to existing work [7, 12]. As a result, DataLair is two
orders of magnitude faster for public data accesses, and
5 times faster for hidden data accesses, when compared
to existing work.

2 Related Work
Plausible deniability (PD) was first proposed in rela-
tion to deniable encryption [8]. Deniable encryption uses
cryptographic techniques to allow decrypting the same
ciphertext to different plaintexts.

Filesystem Level PD. For storage devices, Anderson
et al. first explored the idea of steganographic filesys-
tems and proposed two solutions for hiding data in
[6]. The first solution is to use a set of cover files and
their linear combinations to reconstruct hidden files.
The ability to correctly compute the linear combination
required to reconstruct a file was based on the knowl-
edge of a user-defined password. The second solution
was to use a hash based scheme for storing files at loca-
tions determined by the hash of the filename. This re-
quires storing multiple copies of the same file at different
locations to prevent data loss. Macdonald and Kahn [14]
designed and implemented an optimized steganographic
filesystem for Linux, that is derived from the second so-
lution proposed in [6]. Pang et al. [17] further improved
on the previous constructions by avoiding hash collisions
and more efficient storage.

The solutions based on steganographic filesystem
only defend against a single-snapshot adversary. Han et
al. [11] designed a steganographic filesystem that allows
multiple users to share the same hidden file. Further,
runtime relocation of data ensures deniability against
an adversary with multiple snapshots. However, the so-
lution does not scale well to practical scenarios as deni-
ability is attributed to joint-ownership of sensitive data.
Defy [18] is a log structured file system for flash devices
that offers PD using secure deletion. Although, Defy
protects against a multi-snapshot adversary, it does so
by storing all filesystem related metadata in the mem-
ory, which does not scale well for memory constrained
systems with large external storage devices.
Block device level PD. At device-level, disk en-
cryption tools such as Truecrypt [5] and Rubberhose [4]
provide deniability but cannot protect against a multi-
snapshot adversary. Mobiflage [20] also provides PD
for mobile devices against a single-snapshot adversary.
Blass et al. [7] were the first to deal with deniability
against a multi-snapshot adversary at device level. The
solution in [7] deploys a write-only ORAM for mapping
data from logical volumes to an underlying storage de-
vice and hiding access patterns for hidden data within
reads to non-hidden (public) data.

3 Model
We focus on storage-centric plausible deniability (PD)
as in the results discussed above, but we note that PD
has also been defined in more general frameworks [3].



DataLair 177

Plausible Deniability in real life. It is important to
understand however that the mere use of a system with
PD capability may raise suspicion! This is particularly
the case if PD-enabled systems have high overheads or
are outright impractical when accessed for public data
storage. This is why it is important to design mecha-
nisms that are practical and do not impede the use of
the device, especially for storing non-sensitive data. We
envision a future where all block device logic is endowed
with a PD mode of operation.

3.1 Preliminaries

Adversary. We consider a computationally bounded
“multi-snapshot” adversary that has the power to co-
erce the user into providing a password. As in existing
research [7], we also assume that the device user is not
directly observed by the adversary during writes – a
small amount of volatile memory is being used during
reads and writes and is inaccessible to the adversary
that can only see static device snapshots.
Configuration. While we note that there may be a
number of other ways to achieve PD , our focus is on a
practical solution involving storage devices with multi-
ple logical volumes, independently encrypted with user
password-derived keys.

To protect her sensitive data from adversaries, a
user may write it encrypted to one of these logical vol-
umes (the “hidden” volume). For PD, the user may
choose to also write non-sensitive data to a “public”
volume, encrypted with a key which can be provided to
an adversary as proof of plausible device use.
Logical and physical blocks. For a block device
hosting multiple logical (hidden or public) volumes,
clients address data within each volume using logical
block addresses. The data is stored on the underlying
device using physical block addresses.
Access patterns. We define an access pattern infor-
mally as an ordered sequence of logical block reads and
writes.
Write traces. We define a write trace as the actual
modifications to physical blocks due to the execution of
a corresponding access pattern.
Solution Space. While there might be multiple ways
to achieve PD in a multi-volume multi-snapshot adver-
sary setting, one idea [7] is to “hide” operations to the
hidden volume “within” operations to the public vol-
ume. This prevents the adversary from gathering any
information regarding user access patterns to the hidden

volume (hidden data access) by ensuring that the user
can plausibly attribute any and all writes traces as ac-
cesses to the public volume (public data access) instead.
On coercion, the user can provide the credentials for the
public volume and thus plausibly deny the existence of
the hidden data. Arguably, otherwise, in the absence of
public volume operations, an adversary could question
the reason for any observed changes to the space allo-
cated for the hidden volume and then rightfully suspect
the existence of a hidden volume.
Atomicity. As in existing work, a very small number
of physical block I/O ops (corresponding to one Data-
Lair read/write operation) are assumed to be performed
as atomic transactions. The adversary may gain access
only after entire transactions have completed (or rolled
back). This is reasonable since the user is unlikely to
perform any sensitive operation in the presence of an
adversary.
Access pattern indistinguishability. Computa-
tional indistinguishability of traces has been widely
discussed in ORAM literature [13, 21]. Further, most
ORAMs employ randomization techniques which ensure
that the write traces generated due to accesses are in-
distinguishable from random. As will be detailed later,
indistinguishability of access patterns is one of the main
requirements to achieve PD.

We also define the link between access patterns and
write traces.

Definition 1. Given two access patterns O0 =
{a1, a2, . . . , ai} and O1 = {b1, b2, . . . , bi} and their corre-
sponding write traces W0 = {w1, w2, . . . , wi} and W1 =
{y1, y2, . . . , yi}, O0 is called indistinguishable from O1
iff. W0 is computationally indistinguishable from W1.

3.2 Defining Plausible Deniability
(PD-CPA)

We model PD as a “chosen pattern” security game, PD-
CPA 2 for the block device. Since we focus on mech-
anisms that “hide” operations to the hidden volume
“within” operations to the public volume, we also de-
fine an implementation-specific parameter establishing
the number of operations that can be hidden within a
public operation. Specifically, φ is the ratio of the num-

2 The similarity with IND-CPA is intentional. The access pat-
terns correspond to the “plaintexts” in an access pattern privacy
setting.



DataLair 178

ber of hidden operations that can be performed with a
public operation such that the write traces due to the
public operation with a hidden operation is indistin-
guishable from the write traces for the same operation
without the hidden operations. This paper proposes a
solution with φ = 1 to ensure that each public operation
performs one hidden operation.

We define PD-CPA(λ, φ) , with security parameter
λ between a challenger and an adversary as follows:

1. Adversary A provides a storage device D (the adver-
sary can decide its state fully) to challenger C.

2. C chooses two encryption keys Kpub and Khid using
security parameter λ and creates two logical volumes,
Vpub and Vhid, both stored in D. Writes to Vpub and
Vhid are encrypted with keys Kpub and Khid respec-
tively. C also fairly selects a random bit b.

3. C returns Kpub to A.
4. The adversary A and the challenger C then engage in

a polynomial number of rounds in which:
(a) A selects two access patterns O0 and O1 with the

following restriction:
– O1 and O0 include the same writes to Vpub
– Both O1 and O0 may include writes to Vhid
– O0 or O1 should not include more writes to

Vhid than φ times the number of operations
to Vpub in that sequence.

(b) C executes Ob on D and sends a snapshot of the
device to A.

(c) A outputs b′ .
(d) A is said to have “won” the round iff. b′ = b.

We note that the restrictions imposed on the
adversary-generated access patterns are necessary to
eliminate trivially-identifiable cases. E.g., allowing dif-
ferent writes to V_pub in O0 and O1 would allow the
adversary to distinguish between the two sequences by
simply decrypting the contents of V_pub (using the
known Kpub) and comparing the decrypted data. For-
tunately, a similar comparison is not possible for Vhid
since Khid is not accessible to the adversary.

The restriction imposed by φ ensures that the ad-
versary may not trivially distinguish between O0 and
O1 by providing sequences of different “true lengths” –
the number of actual blocks modified in the write trace
generated by a given access pattern. Specifically, for a
given φ, PD-CPA assumes that the true length of a se-
quence with k writes to V_pub is k × φ. Since, O0 and
O1 have the same writes to V_pub, their true lengths
are the same. The additional φ writes in the correspond-
ing write traces generated for the sequences allows hid-

ing writes to V_hid. Thus, if the number of writes to
V_hid exceed the number allowable by φ, the sequences
become trivially distinguishable by their true lengths.
Relationship with existing work. PD-CPA is sim-
ilar to the hidden volume encryption game in [7] with
the notable difference that PD-CPA empowers the ad-
versary further by giving her the ability to choose the
input device. This consideration is regarding a practi-
cal scenario where an oppressive regime officer might be
aware of particular underlying properties of a storage
device. Thus, a PD-CPA secure solution should not be
reliant on the properties of a particular kind of storage
device that can be used by the challenger, as that in
itself would be suspicious to the adversary3.

Definition 2. A storage mechanism is “plausibly de-
niable” if it ensures that A cannot win any round of
the corresponding PD-CPA game with a non-negligible
advantage (in the security parameter λ) over random
guessing.

3.3 Necessary and sufficient conditions for
PD-CPA

DataLair provides a plausibly deniable solution defeat-
ing a PD-CPA adversary. We note informally here (and
prove later) that the following conditions are necessary
and sufficient to ensure PD-CPA security.
1. Indistinguishability between hidden data write ac-

cess patterns (“access pattern indistinguishability”,
HWA).

2. Indistinguishability between write traces that in-
clude public data accesses with one (or more) hid-
den data accesses, and the same public data accesses
without any hidden data accesses (“access type in-
distinguishability”, PAT).

Indistinguishability between hidden write access
patterns (HWA). Recall that in PD-CPA, the adver-
sary can include writes to Vhid in both O0 and O1. If
the write traces were distinguishable, the two sequences
would become distinguishable to an adversary providing
different accesses to Vhid in the sequences.

Note that HWA indistinguishability also ensures
that writes to the same logical location in Vhid in two

3 For example, [23] exploits the variations in the programming
time of a flash device to hide data by encoding bits in the pro-
gramming time of individual cells.



DataLair 179

different rounds of PD-CPA results in write traces that
are independently distributed and thus prevents an ad-
versary from “linking” accesses to the same logical loca-
tion in successive rounds. In the absence of this “unlink-
ability”, an adversary could provide the same accesses
to Vhid as part of O1 in successive rounds with only
writes (possibly different) to Vpub as O0. On observing
the same write traces for successive rounds, the adver-
sary could correctly predict that the sequence executed
is O1.
Indistinguishability between public access write
traces (PAT). In PD-CPA, an adversary can provide
O0 with only accesses to Vpub and O1 with accesses to
both Vpub and Vhid and win trivially if the sequences’
write traces were distinguishable. In effect, to ensure
PD-CPA security, in case O0 and O1 include the
same public data operations, they should be in-
distinguishable. Note that both sequences should con-
tain the same public data operations since otherwise
they are trivially distinguishable on the basis of any ad-
ditional public operation that is performed, as discussed
above. This is why the write trace due to a sequence of
public data operations plus (one or more) hidden data
write(s) should be indistinguishable from the write trace
due to accesses including the same public data opera-
tions without any hidden data write(s).

Theorem 1. A storage mechanism is PD-CPA se-
cure iff. it guarantees indistinguishability between hid-
den write access patterns (HWA) and indistinguishabil-
ity between public operations with and without hidden
writes (PAT).

See appendix for the detailed proof.

4 Access Pattern
Indistinguishability

Section 3 shows that one of the necessary conditions
to plausibly deny the existence of a logical volume to a
multi-snapshot adversary, is to ensure indistinguishabil-
ity of hidden data write access patterns (HWA).

A straightforward solution here is to use an oblivi-
ous RAM (ORAM) which allows a client/CPU to hide
its data access patterns from an untrusted server/RAM
hosting the accessed data. Informally, ORAMs prevent
an adversary from distinguishing between equal length
sequences of queries made by a client to the server. This
usually also includes indistinguishability between reads

and writes. We refer to the vast amount of existing lit-
erature on ORAMs for more formal definitions [10, 22].
Write-ony ORAM. As noted by Blass et al. [7], an
off-the-shelf full ORAM is simply too powerful since it
protects both read and write accesses – while for PD
only write access patterns are of concern. In this case,
a write-only ORAM [7, 12] can be deployed which pro-
vides access pattern privacy against an adversary that
can monitor only writes.
Logical vs. practical complexity. ORAM literature
traditionally defines access complexity as the number of
logical blocks of data accessed per I/O. This allows opti-
mizations by using logical blocks of smaller size [19, 21].
However, it is important to note that standard off-the-
shelf block-based storage devices can access data only in
units of physical blocks (sectors). For example, accessing
a 256 byte logical block still entails accessing the corre-
sponding 4KB block from the disk. Thus, in the context
of locally deployed block-based storage devices, practi-
cal complexity needs to be measured in terms of the
number of physical blocks (sectors) accessed per I/O.
HIVE-ORAM. The most bandwidth-efficient write-
only ORAM is the construction by Blass et al. [7] (fur-
ther referred to as HIVE-ORAM). HIVE-ORAM [7]
maps data from a logical address space uniformly ran-
domly to the physical blocks on the underlying device.
The position map for the ORAM is recursively stored
in O(logN) smaller ORAMs, a standard technique intro-
duced in [19]. The recursive technique reduces the logi-
cal block access complexity for the position map by stor-
ing the position map blocks in logical blocks of smaller
sizes. Under this assumption, HIVE-ORAM [7] accesses
a constant number of logical blocks per ORAM opera-
tion at the cost of some overflow that is stored in an
in-memory stash.

Unfortunately, as noted in [7], with physical blocks
of uniform size, HIVE-ORAM has a practical block read
complexity (number of blocks read) of O(logβN) and
a practical block write complexity (number of blocks
written) of O(log2

βN) where β = B/2 ∗ addr, B is the
physical block size in bytes and addr is the size of one
logical/physical block address in bytes. This is because
to perform a write, HIVE-ORAM [7] needs to update
all logβN position map ORAMs recursively and up-
dating each ORAM requires O(logβN) accesses to find
free blocks. More specifically, to find free blocks in an
ORAM, a constant number of randomly chosen physical
blocks are selected and then the position map for that
ORAM is checked to determine free blocks within the
sample. Consequently, with O(logβN) block read com-



DataLair 180

plexity of each position map ORAM, the overall write
complexity of HIVE-ORAM is O(log2

βN).
DL-ORAM. We propose DL-ORAM, a new effi-
cient write-only ORAM scheme with a practical block
write complexity of O(logβN). Similar to [7], DL-ORAM
maps blocks from the logical address space to uniformly
random blocks in the physical address space. The DL-
ORAM construction however is significantly different
and incorporates two key optimizations.

First, DL-ORAM eliminates the need for recursive
position map ORAMs by storing the position map as a
B+ tree, indexed by the logical block addresses. The tree
is stored along with the data within the same ORAM
address space, thus judiciously utilizing space. Second,
DL-ORAM uses a novel O(1) scheme for identifying uni-
formly random free blocks using an auxiliary encrypted
data structure. This allows writes with O(logβN) com-
munication complexity. We detail below.

4.1 Position Map

In DL-ORAM, all blocks are stored encrypted with a
semantically secure cipher. Further, DL-ORAM stores
the logical to physical block address mappings in a B+
tree indexed on the logical data block address. Logical
and physical addresses are assumed to be of the same
size. The position map tree is stored on the device with
each node stored in an individual physical block. Each
leaf node stores a sorted list of logical block addresses
along with the corresponding physical block addresses
they are mapped to.

Further, the leaf nodes are ordered from left to right,
e.g., the left-most leaf node contains the entries for log-
ical block addresses in the range of 1 to β. This ensures
that the (i/β)-th leaf node always contains the mapping
for logical block address i. If a logical block is currently
not mapped (e.g. when the block hasn’t been written to
yet by the upper layer), the entry corresponding to that
address in the map is set to null.

For traversal, each internal node stores only the list
of physical block address of the node’s children. Note
that since the leaves are ordered on logical addresses,
the index within an internal node determines the child
node to visit next in order to retrieve a path correspond-
ing to a particular logical block address. Searching for a
particular logical block address mapping requires read-
ing all the blocks along a path from the root to the leaf
that contains the mapping for that logical block ID. As
each node is stored in a physical block, the number of
block addresses that can be stored in each leaf node is

Fig. 1. DL-ORAM. The position map blocks are randomly inter-
leaved with the data blocks within the same address space.

bound by the physical block size, β. Consequently, the
depth of the tree is bounded by logβ(N) with a fanout
of β. Thus, querying the map for a particular logical to
physical block address mapping requires logβ(N) block
accesses.

The position map shares the same physical address
space with the ORAM data blocks. Specifically, the B+
tree blocks are assigned a logical block address and are
written to random physical blocks interleaved with the
data blocks, using the ORAM protocols. The physical
location of the tree root is stored at a known location
outside the ORAM address space (intuition explained
later). Semantic security of the cipher used ensures that
the position map blocks are indistinguishable from the
data blocks in the ORAM.

DL-ORAM supports two operations: read_oram
and write_oram. Detailed pseudocode can be found in
the Appendix.
read_oram(id) returns the data in the block with log-
ical block address id. It locates the mapping for id in
the B+ tree and returns the data stored in the corre-
sponding physical block.
write_oram(id,d) writes data d to the block with log-
ical block address id. It first determines the entry cor-
responding to id in the B+ tree and then writes data d
to a new free block. Finally, the map is updated corre-
sponding to id. The mechanism for finding a free block
is described next in Section 4.2

Finally, updating the map requires recursively writ-
ing all the nodes along the the specific path of the B+
tree to new free blocks to ensure indistinguishability be-
tween map blocks and data blocks. Specifically, the up-
dated leaf node (after adding the entry for id) is written
to a selected new free block. This results in its parent
node being modified and being mapped to a new free lo-
cation. Consequently, on an ORAM write, all the blocks
from the root of the map to the corresponding leaf node
are modified and remapped to new locations.



DataLair 181

To ensure that the recursion terminates, the physi-
cal location of the tree root is always stored at a known
fixed location as described before. For DL-ORAM , this
information is held at a fixed location on the disk where
the physical block address of the root is written en-
crypted and is modified for each access. Once the root
data is also modified and remapped to a new physical
block, this information is updated.

4.2 Finding Free Blocks

A major challenge for write-only ORAMs is selecting
uniformly randomly free block from the distribution of
all free blocks on the device for writing data. Writing
thusly eliminates correlations between the logical data
block addresses and their physical locations, thus ren-
dering an adversary incapable of linking modifications
to physical blocks with the corresponding modifications
to logical blocks. Even when data already in the ORAM
needs to be updated, it is relocated to a new random
location to prevent correlation with previous writes.

DL-ORAM deploys a new O(1) scheme for iden-
tifying uniformly random free blocks using an auxil-
iary encrypted data structure. This allows writes with
O(logβ(N)) access complexity. This is achieved by stor-
ing free block addresses in a novel encrypted data struc-
ture – the free block matrix (FBM). The FBM is de-
signed with the two following properties – i) it allows
retrieval of uniformly random elements in O(1) accesses,
and ii) it does not reveal the actual number of elements
that it contains at any given point in time. Ensuring (i)
allows efficient retrieval of random free block addresses
in our scheme (as we detail later). (ii) ensures that the
actual number of data blocks in the ORAM is not re-
vealed thus preventing possible correlations.
Free Block Matrix (FBM). The FBM is an en-
crypted β × N/β matrix (where N is the total num-
ber of physical blocks in the ORAM and β is number
of physical block addresses that can be written to one
disk block) that stores the addresses of all currently free
blocks. The columns of the matrix are stored in consec-
utive disk blocks outside the ORAM, each containing β
free block addresses (Figure 2). The coordinates in the
matrix where each block address is stored is randomized
independent of the address. Since all blocks are free at
initialization, the FBM is initialized with all N entries
containing a randomly chosen disk block address.

As physical blocks are used for writing data, the
corresponding block addresses need to be removed from
the FBM. This is achieved by invalidating entries (de-

Fig. 2. FBM design. The FBM is a matrix with β = B/addr rows
and N/β columns, containing N entries. Each entry of the matrix
is a physical block ID. Each column of the FBM is stored in a
disk block. A special “FBM header” array is in stores the number
of physical block IDs per row. The FBM requires N/β + 1 disk
blocks for storage – N/β columns and 1 FBM Header. The figure
illustrates an example FBM configuration with 9 entries. The first
row has two invalid entry as indicated by the FBM header.

scribed next) when the corresponding blocks are used
for ORAM writes. In this case, to track the number of
valid entries in the FBM, the FBM header block stores
a block-sized array tracking the number of valid entries
per FBM row.

More specifically, the FBM header contains an en-
try for each row indicating the number of valid entries
currently present in that row. Since each row can con-
tain N/β valid entries (corresponding to the number
of columns), each entry in the FBM header is of size
log(N/β). For β rows, the total number of entries in the
FBM header is β × log(N/β). Also, β <= B/logN with
B as the block size and each physical address of length
at least equal to logN . Then for β > 1,

β × log(N/β) ≤ β × logN ≤ B/logN × logN ≤ B

Hence, the FBM header always fits in one physical
block if B > logN . With standard 4KB block size on off-
the-shelf storage disks, the FBM header requires more
than one block (B < logN) only if the disk has more
than 24096 blocks in total

Figure 2 describes the FBM design.
Selection from the FBM. The FBM allows selec-
tion of uniformly random block addresses with two disk
block accesses as follows – select a random i in the range
of the total number of valid entries in the FBM. Then,
determine the coordinate of the ith entry in the FBM
by counting valid entries row-wise – this is straightfor-
ward since the header stores the number of valid entries
per row. The block address at that coordinate is then
retrieved from the corresponding location.



DataLair 182

Fig. 3. Example of FBM with 9 entries. In (a), the FBM header
correctly determines that the 3rd valid entry is at (2,2) since
there is 1 valid entry in the first row and 3 in the second. In
(b), the 3rd valid entry is determined incorrectly since the FBM
header correctly indicates that the second row has 2 valid entries
but does not show which columns have the valid entries.

If the block is subsequently used (possibly for a new
write), it is invalidated by reducing the valid entry count
for the corresponding row in the FBM header. Conse-
quently, for subsequent accesses the FBM header indi-
cates that the row has one less valid entry. Note that
invalidating an entry does not entail removing it from
the disk block storing the FBM column, rather the FBM
header is updated to ensure that the entry is not used
in subsequent accesses.

An important condition for correctness of this mech-
anism is to ensure that a location determined from the
FBM header always contains a valid entry. A possible
scenario where this might be violated is shown in Fig-
ure 3 where the FBM incorrectly points to a location
that contains an invalid entry. The problem in this case
is due the presence of invalid entries between valid en-
tries (as in Figure 3(b)). Here, the FBM header correctly
indicates that the second row has 2 valid entries but does
not indicate the columns with the valid entries. Deter-
mining the exact coordinate at which the valid entry is
present is non-trivial given that the header only records
the number of valid entries in a row but not their cor-
responding locations. Consequently, with gaps between
valid entries in the FBM (as in Figure 3), the selec-
tion mechanism described above can erroneously return
block addresses (corresponding to invalid entries) that
are already being used.
Compacting the FBM. To ensure correctness, DL-
ORAM maintains the following invariant – all invalid
entries in the FBM appear before all valid entries when
the FBM is traversed row-wise. This requires all valid
entries in a particular row to be invalidated first before
invalidating an entry from the next row in sequence
– e.g., all entries in the first row are invalidated be-

Fig. 4. Compacting the FBM. Invalid entries appear before valid
entries when entries are traversed row-wise. In the example, 7 was
selected randomly from (2,3) which was replaced by 5 from (1,2)
to ensure compactness.

fore the second row etc. Since, entries are selected ran-
domly from the FBM, DL-ORAM performs an extra
compaction step to maintain the invariant.

The compaction replaces a randomly selected valid
entry from the FBM by another valid entry which is se-
lected row-wise from the FBM. This replacement entry
is the first valid entry that is encountered while counting
valid entries per row sequentially from the FBM header.
After the replacement, the FBM header is updated.

For example, in Figure 4, 7 is uniformly randomly
selected (and invalidated) from coordinate (2,3) in the
FBM using the protocol described above. This leads to a
configuration that violates the invariant. Then for com-
paction, 5 is copied from coordinate (1,2) to (2,3) and
the entry at (1,2) is invalidated. Note that the entry at
(1,2) is the first valid entry encountered while travers-
ing the FBM row-wise. Also, even though the FBM now
contains duplicate block addresses at (1,2) and (2,3),
the block address at (1,2) will not be used subsequently
during uniform selection since the FBM header correctly
indicates that row 1 has one valid entry. Due the invari-
ant, this single valid entry has to be present at (1,3).

Compaction straightforwardly ensures the invariant
since randomly selected entries are replaced by entries
that are selected row-wise and subsequently invalidated.
To summarize, the compaction modifies two blocks – the
header and the block from which the random entry is
selected and replaced.

Moreover, in certain cases this compaction is not
required. For instance, when a free block address is to be
added to the FBM and a new random free block address
is required in turn. Recall that this is indeed the case
for updates to DL-ORAM blocks – the updated data is
written to a new free block while the block containing
the previous data is now free and the corresponding free
block address can be added back to the FBM. In this
case, the new randomly chosen free block address can



DataLair 183

be directly replaced by the free block address that is to
be added back to the FBM. Note that due to the direct
replacement, the header does not need to be updated.

In order to ensure that such an access looks indistin-
guishable from an access with compaction – otherwise
an adversary could identify accesses which are simply
updates to existing blocks and thus deduce the actual
number of data blocks in the ORAM – the FBM header
is reencrypted along with the modification to the block
where the replacement takes place. Due to semantic
security, reencrytion of the header is indistinguishable
from actual modification during compaction.

Finally, note that entries are added back to the
FBM only as part of updates (as described above). DL-
ORAM does not support deletes since modern filesys-
tems do not indicate deletes to block devices. Specifi-
cally, FS such as ext4 only update its internal metadata
to track blocks that have been deleted while the deleted
data is overwritten only when the block is subsequently
allocated for writing new data. Thus, when DL-ORAM
is used with an overlying filesystem mounted logical vol-
ume (the deployment scenario considered here), deletes
are logically equivalent to updates and the deleted data
is updated with new data in future accesses.
Uniform free block selection As discussed, the FBM
provides an efficient mechanism for determining uni-
formly random free block addresses for ORAM writes
with O(1) access complexity. Unfortunately, writing to
blocks only selected from the FBM for every write, can
result in certain blocks in the ORAM never being modi-
fied. For instance, consider a block containing data that
is never updated. This block is never subsequently mod-
ified in the ORAM after the first write since the block
never becomes free again. This can leak subtle correla-
tions since an adversary can differentiate between disk
blocks that are being updated frequently from locations
that are not updated since they were first written.

To solve this, DL-ORAM deploys an O(1) free block
selection scheme using the FBM, that modifies uni-
formly random locations in the ORAM and thus pre-
vents any block level correlations. The intuition is to al-
ways modify k (a chosen constant) random disk blocks
while also finding a free block.

For every ORAM write, DL-ORAM creates two
sets, each with k items as follows –
1. A free set that contains k randomly chosen free

block addresses from the FBM.
2. A random set that contains k randomly chosen block

addresses out of all the blocks in the ORAM.

In case of duplicate items between the sets, one of the
duplicates is randomly discarded while a new item is
selected either to the free set or the combined set de-
pending on the set from which the item was discarded.
Then, items from the two sets are merged randomly to
create a combined set.
Selection Protocol. Using the combined set DL-
ORAM , executes the following protocol –
1. Select an item randomly from the combined set.
2. If the item, i selected in step 1 originally belonged

to the free set, use the corresponding block for the
ORAM write. Otherwise, reencrypt the block corre-
sponding to the block address selected. Remove the
item from the combined set.

3. Repeat steps 1-3, k times.
4. For all the remaining items, i, that are also in the

free set, replace the addresses back in the FBM from
where they were selected.

Lemma 1. The sample of k physical blocks modified
for every ORAM write (due to the selection protocol)
is indistinguishable from a sample of k blocks selected
uniformly at random out of the N physical blocks in the
ORAM.

Proof. The idea here is to show that the probability
of a block x being selected (and modified) randomly
in a sample of k blocks out of N , is the same as the
probability of x being one of the k blocks chosen by the
selection protocol. Let X denote the event of x being
chosen uniformly at random in a sample of k blocks out
of N . Then, straightforwardly Pr[X] = k/N .

Next, consider the process of building the free set.
Let Pr[x ∈ FBM ] denote the probability that x is cur-
rently in the FBM. Since the FBM is initialized with all
N block addresses and for each access, entries are se-
lected (and invalidated) uniformly randomly, allN block
addresses are equally likely to be present and valid in
the FBM during the current access. More specifically,
all the N initial entries are equally likely to have been
invalidated in the writes that have preceded this access.
Thus, Pr[x ∈ FBM ] = f/N when f is the current num-
ber of valid entries in the FBM.

Let E1 be the event that x is selected into the free set
– x is one of k randomly chosen block addresses selected
from the FBM to form the free set. This conditionally
depends on x being present in the FBM. Thus, Pr[E1] =
Pr[x ∈ k|x ∈ FBM ] = Pr[x ∈ k] × Pr[x ∈ FBM ] =
k/f × f/N = k/N since the event that x is selected as



DataLair 184

one of the k items from the FBM is independent of x
being present in the FBM.

Now, since the random set is created by selecting k
random block address out of all N , the event that x is
selected into the random set, E2 straightforwardly has
the probability, Pr[E2] = k/N . Thus, x has equal prob-
ability of being added to the combined set from either
the free set or the random set. Note that the combined
set has size 2k.

Let X ′ be the event of x being selected for mod-
ification by the protocol. The goal here is to show
Pr[X] = Pr[X ′ ]. X ′ depends on x being chosen either
to free set or the random set (E1 and E2) and x being
selected in one of the rounds of the protocol, denoted
by event Y . Thus, Pr[X ′] = Pr[Y ]× Pr[E1UE2].

Let Y = Y1 + Y2 + . . . + Yk where Yi is the event
that x is selected in the ith round of the protocol. Also,
since x can be selected only once (selection without re-
placement), probability of x being selected in the ith

round conditionally depends on x not being selected in
previous rounds4. Then,

Pr[Y = Yi] = Pr[Yi|Y 6= Yi−1, Yi−2, . . . , Y1]

Note that for round i, an item is selected from the
combined set with probability 1/(2k−i) since previously
selected items are removed without replacement.

Now, Pr[Y = Y1] = 1/2k.

Pr[Y = Y2] = Pr[Y2|Y 6= Y1] = 1/(2k − 1)× Pr[Y 6=
Y1] = 1/2k.

It can be similarly shown that Pr[Y = Yi] = 1/2k
∀i ∈ k. Thus,

Pr[Y ] =
i=k∑
i=1

Pr[Y = Yi] = 1/2.

Finally, Pr[X ′ ] = Pr[Y ] × Pr[E1UE2] = 1/2 ×
2k/N = k/N , thus proving Pr[X ′ ] = Pr[X].

Stash. If none of the k rounds yields a free block, the
data is written to an in-memory stash. Since, initially
there are equal number of items from the free set and the
random set in the combined set and uniformly random
items are selected each round, k rounds of the protocol
yields an expected k/2 number of items from the free
set. If k = 3, the DL-ORAM stash can be modeled as
a D/M/1 queue similar to [7], and bound to a constant

4 Y follows a hypergeometric distribution with 2k population
size, k draws and 1 observed and possible success state. Thus,
the following could also be derived straightforwardly using the
probability mass function for the distribution.

size with negligible failure probability in the security
parameter. We refer to [7] for details.
Device utilization. A final detail is to ensure that the
expected number of free blocks obtained from the selec-
tion protocol does not exceed the expected number of
free blocks obtained from an equal-sized sample selected
randomly out of all the blocks in the ORAM. Other-
wise, the protocol will always yield an expected k/2 free
blocks unlike a randomly selected sample where the ex-
pected number of free blocks will be a function of the
actual distribution of data. Note that lemma 1 shows
indistinguishability between a randomly selected sam-
ple and the sample obtained due to the modification in
Step 2 of the protocol for each write. However, a signifi-
cant difference in the expected number of free blocks ob-
tained can leak subtle correlations over multiple rounds.
Fortunately, a straightforward solution for this is to en-
sure that half of the ORAM blocks are always free. Note
that a similar assumption is also made by HIVE [7] but
for a different purpose, namely to bound the in-memory
stash for the write protocol.

Lemma 2. If half of the ORAM blocks are always en-
sured to be free, the expected number of free blocks pro-
vided by the selection protocol per write is equivalent to
the expected number of free blocks in a sample of k blocks
randomly selected out of all N blocks in the ORAM.

Proof. Note that a free block can be obtained by the
protocol only if an item is selected from the free set in
Step 1, for at least 1 out of the k rounds. Since, the
rounds are independent, it can be straightforwardly ob-
served that the expected number of free blocks yielded
by the selection protocol is k/2. This is equal to the
expected number of free blocks in a randomly selected
sample of k blocks, if half of the blocks in the ORAM
are always free.

Access Complexity. Both read_oram() and
write_oram() access the ORAM map to locate the tar-
get block. The complexity of accessing an entry in the
B+ tree is O(logβN). Further, write_oram() needs to
find and write to O(logβN) free blocks for writing data
and updating the map blocks. Finding a free block re-
quires O(1) accesses as discussed above, and thus the
write complexity of DL-ORAM is O(logβN). Conse-
quently, the overall access complexity of DL-ORAM is
O(B × logβ(N)).

Lemma 3. DL-ORAM provides write access pattern
indistinguishability.



DataLair 185

Proof. This follows directly from the ORAM properties.
For every DL-ORAM write, logβ(N) + 1 blocks need to
be written to the ORAM (logβ(N) blocks for updating
the position map and one data block that needs to be
written/updated) . Free blocks for writing these blocks
are randomly chosen and modified independently of the
logical block address that the user wants to to write at.
In fact, for any given access pattern, A = {a1, a2, . . .}
and its corresponding write trace B = {b1, b2, . . .}, the
selection of the blocks in B is independent of the blocks
in A since B is composed of uniformly randomly se-
lected blocks from the disk (Lemma 1). Thus, observ-
ing B does not leak any information about A to the
computationally-bounded adversary. Further since the
elements in B are randomly and uniformly chosen, the
write trace of any access pattern C 6= A is indistinguish-
able from the write trace for A.

Finally, each access results in writes to blocks of the
position map along with the block that the user wants to
access. Position map and data blocks are re-encrypted
with semantic security and thus indistinguishable. This
reduces the security of DL-ORAM to the security of the
underlying semantically secure encryption.

Simulating a write. Note that all write_oram ac-
cesses have indistinguishable write traces – modifying
k × (logβN + 1) randomly selected ORAM data blocks,
FBM blocks, and the FBM header block. Consequently,
a write_oram access can be simulated even with ran-
dom data stored in the ORAM and the FBM by ran-
domly selecting and re-randomizing an equal number of
ORAM blocks, FBM blocks and FBM header. Due to
semantic security, re-randomizing blocks with random
data is indistinguishable from reencrypting a block with
valid data. We use this property of DL-ORAM as a basis
for the solution described in Section 5.

5 Access Type Indistinguishability
We now detail the design of DataLair, which ensures
HWA by deploying DL-ORAM (Section 4) and PAT
through its access protocols described below. For PAT,
DataLair ensures that a device containing both public
and hidden data is indistinguishable from a device con-
taining only public data.

First, we describe a simple secure design, DataLair
Lite, which sacrifices storage space for reduced design
complexity. Section 5.2, introduces a more complex but
space-efficient design dubbed DataLair Full.

Fig. 5. Design of DataLair Lite. Writes to the hidden partition
happen through DL-ORAM.

5.1 DataLair Lite: Isolating Volumes

Setup. DataLair Lite maps blocks from two logical
volumes to an underlying block device and can be set
up in two modes of operation – ONLY_PUB (only
public) and PUB_HID (public and hidden). In the
ONLY_PUB mode, the device only stores data from
a “public” logical volume that is disclosed to an adver-
sary. For PUB_HID mode, DataLair Lite also stores
data from a hidden volume. DataLair Lite fixes the
size of each volume to 50% of the underlying phys-
ical device size. Each logical volume may support a
filesystem. DataLair Lite creates two physical partitions
on the device – a public partition and a hidden par-
tition, according to the corresponding logical volume
sizes (Figure 5). When, DataLair Lite is initialized in
ONLY_PUB mode, the hidden partition is filled with
random data.

The underlying storage is a block device with N

blocks of size B each and physical block address Pid ∈
[1, N ]. The format of the address would vary across dif-
ferent types of block devices, e.g., in case of a hard disk,
the physical block address would be the sector numbers
that constitute one block on the physical device.

Logical block addresses Vid ∈ [1, |Vid|] are used to
reference blocks in the logical volumes (|Vid| is the size
of the volume). The logical blocks are mapped to the
physical blocks using a device mapper. Data from the
public volume is mapped to the public partition directly
(as indicated by the overlying FS) while data from the
hidden volume is mapped to the hidden partition using
DL-ORAM. In addition, semantically secure encryption
is used to encrypt all data and metadata before writ-
ing. Public data is encrypted with a key Kpub available
to the adversary. Hidden data is encrypted with secret
key Khid. In practice, keys may be derived from user
passwords.
I/O. DataLair Lite maps logical volume I/O into either
public or hidden volume operations.



DataLair 186

Public reads and writes are straightforward since
DataLair Lite can linearly translate the logical block
address and perform a read/write to the corresponding
physical block in the public partition. A read to the hid-
den volume calls read_oram on the hidden partition. In
addition, to ensure PD, with every public write, Data-
Lair Lite performs a hidden operation as follows:
– If there is a write queued up for the hidden logical

volume, it is performed by calling write_oram.
– In the absence of a write for the hidden volume, or

if DataLair Lite is used in ONLY_PUB mode, a
write is simulated for DL-ORAM (as described in
Section 4).

Effectively, this ensures that every write to the hidden
volume is preceded by a write to the public volume. If
there is no public write when a hidden write request ar-
rives at DataLair Lite, the hidden data is queued in
the DL-ORAM stash. With every write to the pub-
lic volume, either an outstanding write (or data from
the stash) is written to the hidden volume (using DL-
ORAM) or a write is simulated. As shown before, these
two cases are indistinguishable to an adversary without
the key for DL-ORAM.
Security. The construction described above pro-
vides PD for the hidden volume. First, both the
ONLY_PUB and PUB_HID modes of operations
create public and hidden partitions of equal size. A write
to the public volume in both the cases results in indistin-
guishable modifications to the hidden partition – either
due to an actual write or a simulation. This guarantees
PAT indistinguishability. Further, deploying DL-ORAM
on the hidden partition ensures HWA indistinguishabil-
ity. Recall that these are the necessary and sufficient
conditions to ensure PD-CPA security.

5.2 DataLair Full: Merging Volumes

Although, DataLair Lite (Section 5.1) achieves PD,
it makes sub-optimal use of storage space – e.g., in
ONLY_PUB mode, a hidden partition uses up 50% of
the space allocated to it, notwithstanding of actual use.
A more reasonable solution would allow physical volume
storage space to correspond to logical use requirements.
Further, space not used for hidden data should be avail-
able for public data and vice-versa.

To this end, DataLair Full allows the user to create
two (or more) volumes of variable sizes and stores them
on the same physical partition. In this case, both the
public and the hidden volume can be of the same logical

size as the underlying partition and use all the available
space (in this case up to 50% of total device size) for
either hidden or public data. We provide the intuition
for the restricted device usage further below.

Unfortunately, achieving this is significantly more
challenging than the Lite construction – the main prob-
lem being mapping public data to independent locations
in the presence of hidden data. We detail below.
Mapping Public Data. First, with both public and
hidden data being stored within the same physical ad-
dress space, writing public data straightforwardly to
physical blocks indicated by an overlying filesystem is
not possible. Since DataLair does not restrict the choice
of filesystem, the distribution of public data will also
determine the distribution of hidden data. For example,
with a log structured filesystem on the public volume,
all hidden data will end up being “pushed" towards the
end of the disk. This breaks the security of the random
free block selection mechanism in DL-ORAM. Instead,
public data will need to be mapped randomly without
compromising overall PD. This requires storing a corre-
sponding mapping table for the public volume .
Public Position Map (PPM). DataLair Full stores
the logical to physical block address mappings for public
data in an array called the Public Position Map (PPM),
stored at a fixed device location. The PPM is similar to
the mapping table used by most device mappers. Im-
portantly, the PPM is considered to be public data and
thus not subject to PD.

To proceed, it is necessary to define two important
terms here to categorize physical blocks on the basis of
their state of occupancy: truly free and apparently free.
Truly free block: a block that does not contain any
(public or hidden) data. Apparently free block: a
block that contains hidden data and the use of which
needs to be hidden from an adversary, i.e., the block
needs to “appear” free to an adversary.

To maintain PD, public data writes should not avoid
apparently free blocks by writing around hidden data.
Thus, while writing public data to randomly selected
blocks, DataLair must ensure that all free blocks (in-
cluding truly free and apparently free) are equally likely
to get selected to complete the write. An obvious so-
lution then is to choose a random block and write the
public data there if it is unoccupied. If the block is ap-
parently free, the hidden data there can be relocated to
a new random location subsequently.

This approach however creates a significant prob-
lem. Recall that DL-ORAM writes hidden data by de-
ploying the uniform free block selection protocol (de-



DataLair 187

Fig. 6. Sample PFL with 7 entries. Each entry in the FMA is a
physical block address. The reverse mapping array (RMA) stores
an index pointer to the forward mapping array (FMA) for a par-
ticular entry.

tailed in Section 4.2), using the FBM for selecting “free”
block addresses. In the current context, to ensure cor-
rectness, the FBM should contain addresses of only truly
free blocks, i.e., blocks that do not contain either pub-
lic or hidden data. Thus, randomly choosing a block for
writing public data will also require the corresponding
block address to be invalidated in the FBM. Otherwise,
the FBM will contain block addresses that are already
occupied by public data. If such a block address is se-
lected for a subsequent hidden write, the public data
in the block will have to be moved elsewhere (leaking
the presence of hidden data) to complete the write. Un-
fortunately, invalidating a particular randomly chosen
block address in the FBM is not straightforward – by
construction the location of a block address in the FBM
is randomized.

The solution then is to select block addresses for
public writes also from the FBM while updating the
FBM in the process. The problem however with naively
implementing this is that the FBM is hidden data i.e,
the FBM is encrypted with the DL-ORAM secret key.
Thus, using the FBM for public writes would entail the
user to provide the FBM key to the adversary since all
public operations and data structures in DataLair needs
to be transparent to the adversary for PD. Providing
the FBM key to the adversary breaks the security of
DL-ORAM if hidden data is also stored.
Public Free List (PFL). To solve this, DataLair
selects free block addresses from the FBM but also pro-
vides a way to plausibly deny this. The idea is to store
a public (encrypted with the public key) list of block
addresses corresponding to the blocks that do not con-
tain public data. The list further supports the following
two properties: i) it allows efficient retrieval of uniformly
random entries, and ii) the location of any given entry in
the list can be determined efficiently. We detail below.

The PFL (Figure 6 ) is a data structure keeping
track of block addresses of blocks that do not contain

public data. The PFL is public (not subject to deniabil-
ity) and is composed of two arrays:
1. The forward mapping array (FMA) (sizeN) of block

addresses that currently do not contain public data
(apparently free + truly free). Uniformly random
block addresses can be selected by picking up the
entry at a randomly selected index in the array. If
the selected entry is to be removed from the PFL
(use case described later), the array is subsequently
compacted, by moving the entry at the end of the
array to the index corresponding to the removed
item. The compacting ensures that the real size of
the array is always known and entries can be picked
uniformly.

2. The reverse mapping array (RMA) (size N) tracks
the index in the forward mapping array correspond-
ing to each physical block address. Whenever an
entry is removed/added or replaced in the forward
mapping array, the reverse mapping array is up-
dated as well.

The intuition behind the PFL is that the FMA allows
DataLair to efficiently select and retrieve a free block
address that does not contain public data, while the
RMA allows efficiently locating the index of a particular
free block address in the forward mapping array.
Public write free block selection. DataLair Full
performs the public write free block selection as follows.
First, the uniform free block selection protocol using
the FBM is deployed as described in Section 4.2. More
specifically, for a public write, DataLair Full creates a
free set and the random set. In addition, now the random
set can be built by using random block addresses from
the PFL because the blocks that already contain public
data (and thus not part of the PFL) can be trivially ex-
cluded as being occupied. This is followed by executing
the k rounds of the protocol using the combined set. If
the protocol yields a free block address then the data is
written to that block. Then, using the RMA, DataLair
Full determines the location of the block address in the
FMA, which is subsequently removed. This allows Data-
Lair Full to claim that the block address was actually
selected from the PFL.

If the protocol yields no free blocks, the data is still
written to the disk (instead of being added to the in-
memory stash). The idea here is to ensure that a pub-
lic write always translates to a write to the disk. Since
the modifications to blocks not containing public data
(due to a hidden write or DL-ORAM simulation) are
attributed to public data writes, writing public data to



DataLair 188

the stash can result in inconsistent modifications on the
disk and violate PD.

To implement this, when the selection protocol does
not yield a truly free block for a public write, the pub-
lic data is instead written to an apparently free block.
The hidden data there can then be moved to the stash
and written back in a subsequent hidden write. An ap-
parently free block address can be straightforwardly se-
lected from the DL-ORAM position map, which as de-
scribed before stores the logical to physical address map-
pings for data in the ORAM (hidden data in this case).
Subsequently, this block address is removed from the
PFL. Note that the PFL necessarily contains this ad-
dress, since it contains entries of all blocks not contain-
ing public data – which also includes blocks that already
contain hidden data (apparently free blocks). Thus, a
free block address selected using this procedure can also
be attributed to being selected from the PFL
Hidden write free block selection. Hidden writes
follow the same procedure as DataLair Lite by invoking
the DL-ORAM write protocol. However unlike public
writes, hidden data is still written to the stash if the se-
lection protocol yields no free blocks. Recall that one of
the requirements for a bounded DL-ORAM stash is to
ensure that half of the ORAM is free. In this case, since
DL-ORAM will write to the blocks which are shared
with public data, it necessary to ensure that the com-
bined size of public and hidden data is only half the size
of the device. This is achieved by the DataLair device
mapper only allowing the user to create logical volumes
with size equal to or less than half of the device capacity.
Further, on reaching 50% utilization, the device mapper
informs the user that the disk is full.
Indistinguishability between two modes of op-
eration. Recall that in the ONLY_PUB mode, DL-
ORAM and the FBM is initialized with random data.
Thus, the free block selection mechanism for public data
writes described above (using the FBM) cannot be de-
ployed in this case. Fortunately, to overcome this the
PFL can be used to efficiently select uniformly random
free block addresses. Once the address has been selected
and removed from the FMA, the array is compacted.

Further, to ensure indistinguishability, the accesses
due to the uniform free block selection using the FBM is
simulated by reencrypting the required number of FBM
blocks and required number of random block addresses
selected from the PFL.

In summary (Figure 7), when writing public data in
ONLY_PUB mode, a randomly chosen block address
is removed from the PFL while simulating the uniform

Fig. 7. Free block selection protocol for public writes in DataLair
Full. Step 1 is indistinguishable for the two cases since simulation
to the FBM is indistinguishable from a real access. Using either
the PFL or the free block selection protocol in step 2 provides
uniformly random block addresses of blocks that do not contain
public data. The entry selected by the selection protocol in step
2 will be at a random index in the FMA as all entries in the FBM
are randomized independent of their locations in the FMA.

free block selection protocol. In PUB_HID mode, the
randomly chosen block address for writing public data is
determined using the free block selection protocol while
removing its corresponding address from the PFL. The
two cases are indistinguishable since an actual access
to DL-ORAM and the FBM is indistinguishable from a
simulation.
Storing metadata for encryption. Since encryp-
tion is performed at the block level and the reverse
mapping array contain an entry for each disk block, the
IVs/counters for the randomized semantically secure ci-
pher used to encrypt the physical blocks are stored in
the reverse mapping array.
Optimization: in-place updates for public
data. When a public block is written for the first time
(insert), it requires searching for a random free block as
described above, but subsequent updates can be made
in-place, thus avoiding additional accesses for finding
free blocks and updating the PPM.
Storing the stash. The in-memory stash is stored to
the disk at a graceful power-down. DataLair Full allo-
cates a fixed location to store the constant-sized stash.
On power-down, the stash is written encrypted to that
location. If the stash is empty or not being used (in case



DataLair 189

Fig. 8. DataLair full design with the four main components:
DL-ORAM, PPM, PFL and FBM. Hidden data I/O is mapped
through DL-ORAM while public data I/O is mapped through the
PPM. The public data inserts and updates simulates an access to
the DL-ORAM. In ONLY _PUB mode free blocks are located
using the PFL.

of ONLY_PUB mode), DataLair Full writes random
data instead of the stash for indistinguishability. On
boot-up, the stash is read to memory and reencrypted.

Figure 8 illustrates the DataLair Full design.
Security. DataLair Full derives its security properties
straightforwardly from DataLair Lite. First, note that
the only difference between the schemes is that pub-
lic data and hidden data coexist in the same physical
address space. Public data is mapped randomly, inde-
pendent of the locations where hidden data is already
stored. This is ensured by the free block selection mech-
anism. The PPM and the PFL (added in this construc-
tion) are public data and do not need to be protected.

Similar to the Lite construction, hidden writes
through DL-ORAM are either performed with public
writes (inserts and updates) or simulated indistinguish-
ably. This provides HWA indistinguishability. Further,
as shown above, the ONLY_PUB mode of operation is
indistinguishable from the PUB_HID mode for Data-
Lair Full. This ensures PAT indistinguishability. As
shown before, these are the necessary and sufficient con-
ditions for PD.

6 Evaluation

Implementation. We implemented DataLair Full as
a kernel module device mapper, a Linux based frame-
work for mapping blocks in logical volumes to physical
blocks. The default cipher used is AES-256 in counter
mode with individual per-block random IVs. Underly-
ing hardware blocks are 512 bytes each and 8 adjacent
hardware blocks constitute a DataLair “physical block”.
Logical and physical block sizes are 4KB.

Access dm-crypt DataLair HIVE [7]
Public Read 225.56 84.1 0.88
Public Write 210.10 2.00 0.57
Hidden Read n/a 6.00 5.36
Hidden Write n/a 2.92 0.60

Table 1. Throughput Comparison (MB/s). Higher is better.
DataLair performance for public data reads is practical when
compared to dm-crypt and almost 100x faster than existing work
[7]. For hidden data writes, DataLair is 5x faster.

DataLair was benchmarked with two logical vol-
umes (one public and one hidden) using an ext4 filesys-
tem in ordered mode (metadata journaling) on top.
Each volume was allocated a logical size of 25% of the
underlying device capacity. This ensures that the com-
bined size of the logical volumes is 50% of the device,
thus ensuring that 50% of the device is always free.
Throughput was compared against Hive [7] as well dm-
crypt, a commonly used linux device mapper for full
disk encryption.
Platform. Benchmarks were conducted on Linux
boxes with Intel Core i7-3520M processors running at
2.90GHz and 6GB+ of DDR3 DRAM. The storage de-
vice was a 1TB Samsung-850 Evo SSD. Logical vol-
ume sizes were set 64GB while DataLair was built on a
256GB physical partition. Benchmarking was performed
using Bonnie++ [1] on Ubuntu 14.04 LTS, kernel ver-
sion 3.13.6. Benchmarking for Hive [7] was performed
with the same parameters by compiling the open source
project [2].

System caches were flushed in between tests. All
tests were run 3 times and results collected with 95%
confidence interval. DataLair stores all internal data
structures persistently. The in-memory stash used was
constrained to 50 4KB blocks (200KB of data).
Throughput. Table 1 shows throughput comparison
for DataLair, HIVE and dm-crypt. Public reads feature
a throughput of about 85MB/s, 100x faster than exist-
ing work [7] and only 2.5x slower than dm-crypt. The
speedup results from the fact that public reads do not
need to use the ORAM. Note that the PPM stil needs
to be accessed first for determining the physical location
of the logical block. This additional synchronous access
results in the overhead when compared to dm-crypt.

Public writes simulate a DL-ORAM access. The
improved write complexity of DL-ORAM compared to
HIVE-ORAM [7] results in a 4x speedup. Later we show
how to optimize this further for more practical use. Sim-
ilarly, hidden writes for DataLair are almost 5x faster
than HIVE. Hidden reads perform comparably to HIVE



DataLair 190

Access dm-crypt DataLair HIVE [7]
Public Read .007 .018 1
Hidden Read n/a .10 .19
Public Write .7 25 332
Hidden Write n/a 92 219

Table 2. Latency Comparison (in seconds). Lower is better. Data-
Lair is 100x faster than HIVE [7] for public reads and almost 10x
faster public writes.

 0

 5

 10

 15

 20

 25

 30

 35

 0  2  4  6  8  10  12  14  16

P
u
b

lic
 W

ri
te

 T
h

ro
u

g
h

p
u

t(
in

 M
B

/s
)

Public to Private Ratio 

All Writes
Only Updates

HIVE

Fig. 9. Variations in public write throughput vs. the public
write to private write ratio. The x-axis represents the num-
ber of public writes that are performed in between two private
writes/simulation. The throughput plateaus at around 12 MB/s,
around 6x faster than the configuration where hidden writes are
made with each public write. The benefits of performing hidden
writes only with updates is visible even in this case.

since the overall read complexity is asymptotically the
same for DL-ORAM and HIVE-ORAM [7].
Latency. Table 2 shows the latency comparison for
DataLair, HIVE and dm-crypt. Expectedly, DataLair
public reads are almost 100x faster than HIVE [7]. It
also interesting to note that DataLair public writes are
almost 15x faster than HIVE [7]. This is due to the
reduced number of I/Os that needs to be performed per
access due to the better write-complexity of DL-ORAM.
Writing hidden data with public updates. A
straightforward optimization for DataLair is to use only
public updates (in-place) for hidden writes/simulations,
avoiding the expensive free block selection. In fact, since
filesystem block access patterns typically follows a zip-
fian distribution [16] – only a small group of existing
blocks are accessed/updated frequently – an update to
a group of already existing public data blocks is more
likely than inserting new data. Also, since filesystems do
not indicate deletes to the device, once the public vol-
ume is completely occupied, all subsequent operations
during the lifetime of the disk will be treated as updates
by the device mapper.
Frequency of Hidden Writes. DataLair features a
solution for PD-CPA (Section 3) where the number of
hidden operations performed with each public opera-

tion, φ = 1. For real world applications, it is reasonable
to assume that a user will access hidden data less often
that public data. In that case, φ can be configured ac-
cording to an estimated workload to improve the public
write throughput.

Figure 9 shows the variations in the public write
throughput while increasing the public write to pri-
vate write ratio. The throughput achieves a maximum
of around 12MB/s when hidden writes/simulations are
made every 10 public writes (inserts and updates).
When hidden writes/simulations are performed only
with updates (as described above), the write through-
put achieves a maximum of around 30MB/s, around 40x
faster than HIVE [7]. Note that since HIVE [7] uses a
write-only ORAM for public writes, excluding hidden
writes for a fraction of the public writes does not result
in significant gains when compared to the overhead of
the ORAM. Although, DataLair is still 7x slower than
dm-crypt (Table 1), the additional PD guarantees over
full disk encryption makes this acceptable in practice.

7 Conclusion
This work shows that it is not necessary to sacrifice
performance to achieve plausible deniability (PD), even
in the presence of a powerful multi-snapshot adver-
sary. DataLair is a block device with practical perfor-
mance and PD assurances, designed around a new ef-
ficient write-only ORAM construction. DataLair public
data reads are two orders of magnitude faster than ex-
isting approaches while accesses to hidden data are 5
times faster. For more restricted settings, DataLair can
achieve public data write performance almost 50x faster
than existing work.

Acknowledgement
This work was supported by the National Science Foun-
dation through awards 1161541, 1318572, 1526102, and
152670. We would like to thank our shepherd, Giulia
Fanti and the anonymous reviewers for their suggestions
on improving the paper. We also thank Vinay Ganesh-
mal jain for helping us implement DataLair.



DataLair 191

References
[1] Bonnie++. "http://www.coker.com.au/bonnie++".
[2] Hive. "http://www.onarlioglu.com/hive".
[3] Plausible Deniability. "http://en.wikipedia.org/wiki/

Plausible_deniability".
[4] Rubberhose. "http://en.wikipedia.org/wiki/Rubberhose_

(filesystem)".
[5] TrueCrypt. "http://truecrypt.sourceforge.net/".
[6] Ross Anderson, Roger Needham, and Adi Shamir. The

steganographic file system. pages 43–60, 1998.
[7] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and

Kaan Onarlioglu. Toward robust hidden volumes using
write-only oblivious ram. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, pages 203–214, New York, NY, USA, 2014.
ACM.

[8] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Os-
trovsky. Deniable encryption. In Proceedings of the 17th
Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’97, pages 90–104, London, UK, UK,
1997. Springer-Verlag.

[9] Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D.
Gribble, Tadayoshi Kohno, and Bruce Schneier. Defeating
encrypted and deniable file systems: Truecrypt v5.1a and the
case of the tattling os and applications. In Proceedings of
the 3rd Conference on Hot Topics in Security, HOTSEC’08,
pages 7:1–7:7, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[10] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 43(3):431–473,
May 1996.

[11] Jin Han, Meng Pan, Debin Gao, and HweeHwa Pang. A
multi-user steganographic file system on untrusted shared
storage. In Proceedings of the 26th Annual Computer Se-
curity Applications Conference, ACSAC ’10, pages 317–326,
New York, NY, USA, 2010. ACM.

[12] Lichun Li and Anwitaman Datta. Write-only oblivi-
ous ram based privacy-preserved access of outsourced
data. Cryptology ePrint Archive, Report 2013/694, 2013.
http://eprint.iacr.org/.

[13] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine
Shi, Krste Asanovic, John Kubiatowicz, and Dawn Song.
Phantom: Practical oblivious computation in a secure pro-
cessor. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer &#38; Communications Security, CCS ’13,
pages 311–324, New York, NY, USA, 2013. ACM.

[14] Andrew D. Mcdonald and Markus G. Kuhn. Stegfs: A
steganographic file system for linux. In In Information Hid-
ing, 1999.

[15] Andrew D. McDonald and Markus G. Kuhn. Stegfs: A
steganographic file system for linux. In Proceedings of the
Third International Workshop on Information Hiding, IH ’99,
pages 462–477, London, UK, UK, 2000. Springer-Verlag.

[16] Ranjit Noronha, Xiangyong Ouyang, and Dhabaleswar K.
Panda. Designing a high-performance clustered nas: A case
study with pnfs over rdma on infiniband. In Proceedings
of the 15th International Conference on High Performance
Computing, HiPC’08, pages 465–477, Berlin, Heidelberg,

2008. Springer-Verlag.
[17] HweeHwa Pang, K.-L. Tan, and X. Zhou. Stegfs: a stegano-

graphic file system. In Data Engineering, 2003. Proceedings.
19th International Conference on, pages 657–667, March
2003.

[18] Timothy Peters, Mark Gondree, and Zachary N. J. Peterson.
DEFY: A deniable, encrypted file system for log-structured
storage. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2014, 2015.

[19] Elaine Shi, T h. Hubert Chan, Emil Stefanov, and Mingfei
Li. Oblivious ram with o((log n) 3) worst-case cost.

[20] A. Skillen and M. Mannan. Mobiflage: Deniable storage
encryptionfor mobile devices. Dependable and Secure Com-
puting, IEEE Transactions on, 11(3):224–237, May 2014.

[21] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC Conference on
Computer &#38; Communications Security, CCS ’13, pages
299–310, New York, NY, USA, 2013. ACM.

[22] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC Conference on
Computer &#38; Communications Security, CCS ’13, pages
299–310, New York, NY, USA, 2013. ACM.

[23] Yinglei Wang, Wing kei Yu, S.Q. Xu, E. Kan, and G.E. Suh.
Hiding information in flash memory. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 271–285, May 2013.

[24] "How a Syrian refugee risked his life to bear witness to
atrocities". "https://www.thestar.com/news/world/2012/
03/14/how_a_syrian_refugee_risked_his_life_to_bear_
witness_to_atrocities.html".

[25] "Former Press Writer Mike Giglio Detained, Beaten and Re-
leased During Egypt Protests". "http://www.houstonpress.
com/news/former-press-writer-mike-giglio-detained-beaten-
and-released-during-egypt-protests-6722336".

[26] Anrin Chakraborti, Chen Chen, and Radu Sion. Poster:
Datalair: A storage block device with plausible deniability.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages
1757–1759, New York, NY, USA, 2016. ACM.

"http://www.coker.com.au/bonnie++" 
"http://www.onarlioglu.com/hive" 
"http://en.wikipedia.org/wiki/Plausible_deniability" 
"http://en.wikipedia.org/wiki/Plausible_deniability" 
"http://en.wikipedia.org/wiki/Rubberhose_(filesystem)" 
"http://en.wikipedia.org/wiki/Rubberhose_(filesystem)" 
"http://truecrypt.sourceforge.net/" 
http://eprint.iacr.org/
"https://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html" 
"https://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html" 
"https://www.thestar.com/news/world/2012/03/14/how_a_syrian_refugee_risked_his_life_to_bear_witness_to_atrocities.html" 
"http://www.houstonpress.com/news/former-press-writer-mike-giglio-detained-beaten-and-released-during-egypt-protests-6722336" 
"http://www.houstonpress.com/news/former-press-writer-mike-giglio-detained-beaten-and-released-during-egypt-protests-6722336" 
"http://www.houstonpress.com/news/former-press-writer-mike-giglio-detained-beaten-and-released-during-egypt-protests-6722336" 


DataLair 192

A Proofs
Theorem 1. A storage mechanism is PD-CPA se-
cure iff. it guarantees indistinguishability between hid-
den write access patterns (HWA) and indistinguishabil-
ity between public operations with and without hidden
writes (PAT).

Proof. HWA straightforwardly ensures that even if the
same logical locations in Vhid are written by two ac-
cess patterns in two rounds, their write traces are inde-
pendent. Otherwise, an adversary could win one of the
games by observing the same write traces for the same
writes to Vhid in subsequent rounds.

Also, in absence of PAT, an adversary could win
PD-CPA by providing O0 and O1 with the same public
data operations but with and without writes to Vhid re-
spectively. Thus, PAT is a necessary condition to ensure
PD-CPA security.

We now show that HWA and PAT are also suffi-
cient for PD-CPA. First, note that HWA ensures that
writes to locations in hidden volume Vhid map to physi-
cal locations selected independently of their correspond-
ing logical locations. Logical and physical locations are
uncorrelated. An adversary cannot determine the logical
locations corresponding to observed modified physical
locations.

Second, observe that in the context of the PD-CPA
game, PAT ensures that traces due to combined writes
to Vhid and Vpub can be attributed to writes correspond-
ing to Vpub only. And, as the writes to Vpub are the
same in both the sequences, the adversary cannot dis-
tinguish between the write traces non-negligibly better
than guessing.

Now, consider a PD solution, S which provides both
HWA and PAT. Also, consider an adversary A that wins
PD-CPA against S selecting two sequences O0 and O1.
Since, O0 and O1 differ only in the writes to Vhid (writes
to Vpub are the same), either of the following holds:
– O0 and O1 contain different writes to Vhid and they

are distinguishable from the corresponding write
traces in direct contradiction to the HWA property
of S.

– O0 contains writes to Vhid and O1 does not contain
writes to Vhid, and the corresponding write traces
are distinguishable. This implies that traces due to
combined writes to Vhid and Vpub in O0 are distin-
guishable from traces with only the same writes to
Vpub in O1, in direct contradiction to the PAT prop-
erty of S.

Note that ensuring HWA without PAT and vice versa is
not sufficient for PD-CPA since either of the above two
cases will allow the adversary to win with non-negligible
advantage.

B DL-ORAM Protocols

input : logical block address id
1 root:= //determine B+ tree root address from

fixed location on disk;
2 depth := logβ(N);
3 index := βdepth;
4 while not at leaf do
5 root := // child # b id

indexc;
6 // Search subtree rooted at root;
7 blk = // Read physical block corresponding

to root;
8 depth := depth− 1;
9 index := index/β;

10 end
11 addr := // entry for B in root;
12 blk := // Read block from disk with address

addr;
return: Decrypt(blk)

Algorithm 1: read_oram(id)

input : logical block address id,data d
1 root:= //determine B+ tree root address from fixed

location on disk;
2 depth := logβ(N);
3 index := βdepth;
4 while not at leaf do
5 root := // child # b id

index
c;

6 // Search subtree rooted at root;
7 blk = // Read physical block corresponding to root;
8 depth := depth− 1;
9 index := index/β;

10 end
11 // Find free block for new write // ;
12 new_blk_id := // Find free block ;
13 disk.Write(new_blk_id,d) ;
14 Map.updateMap(id, new_blk_id) ;

Algorithm 2: write_oram(β, d)



DataLair 193

input : logical block address for map node id, physical
block address where map node is written
new_blk_id

1 root := //Determine from fixed location;
2 if at root then
3 // Update new root address at fixed location //
4 else
5 l := // READ leaf node for id;
6 id := // ID for leaf node;
7 // Update l with new mapping for id;
8 write_oram(id, l);
Algorithm 3: Map.updateMap(id, new_blk_id)


	DataLair: Efficient Block Storage with Plausible Deniability against Multi-Snapshot Adversaries
	1 Introduction
	2 Related Work
	3 Model
	3.1 Preliminaries
	3.2 Defining Plausible Deniability (PD-CPA)
	3.3 Necessary and sufficient conditions for PD-CPA

	4 Access Pattern Indistinguishability
	4.1 Position Map
	4.2 Finding Free Blocks

	5 Access Type Indistinguishability
	5.1 DataLair Lite: Isolating Volumes
	5.2 DataLair Full: Merging Volumes

	6 Evaluation
	7 Conclusion
	A Proofs
	B DL-ORAM Protocols


