
Proceedings on Privacy Enhancing Technologies ; 2017 (4):19–72

Peeter Laud*, Alisa Pankova, and Roman Jagomägis

Preprocessing Based Verification of Multiparty
Protocols with Honest Majority
Abstract: This paper presents a generic “GMW-style”
method for turning passively secure protocols into pro-
tocols secure against covert attacks, adding relatively
cheap offline preprocessing and post-execution verifi-
cation phases. Our construction performs best with a
small number of parties, and its main benefit is the
total cost of the online and the offline phases. In the
preprocessing phase, each party generates and shares a
sufficient amount of verified multiplication triples that
will be later used to assist that party’s proof. The ex-
ecution phase, after which the computed result is al-
ready available to the parties, has only negligible over-
head that comes from signatures on sent messages. In
the postprocessing phase, the verifiers repeat the com-
putation of the prover in secret-shared manner, checking
that they obtain the same messages that the prover sent
out during execution. The verification preserves the pri-
vacy guarantees of the original protocol. It is applicable
to protocols doing computations over finite rings, even
if the same protocol performs its computation over sev-
eral distinct rings. We apply our verification method to
the Sharemind platform for secure multiparty computa-
tions (SMC), evaluate its performance and compare it to
other existing SMC platforms offering security against
stronger than passive attackers.

Keywords: Secure multiparty computation, covert secu-
rity

DOI 10.1515/popets-2017-0036
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction
Suppose that mutually distrustful parties communicat-
ing over a network want to solve a common computa-

*Corresponding Author: Peeter Laud: Cybernetica AS,
E-mail: peeter.laud@cyber.ee
Alisa Pankova: Cybernetica AS, University of Tartu,
STACC, E-mail: alisa.pankova@cyber.ee
Roman Jagomägis: Cybernetica AS, E-mail:
roman.jagomagis@cyber.ee

tional problem. It is known that such a computation
can be performed in a manner that the participants
only learn their own outputs and nothing else [33], re-
gardless of the functionality that the parties actually
compute. This general result is based on a construction
expensive in both computation and communication, but
now there exist more efficient general secure multiparty
computation (SMC) platforms [9, 13, 19, 24], as well
as various protocols optimized to solve concrete prob-
lems [12, 15, 18, 30].

Two main kinds of adversaries against SMC proto-
cols are typically considered: passive and active. The
highest performance and greatest variety is achieved for
protocols secure against passive adversaries. In practice
one would like to achieve stronger security guarantees
(see e.g. [46]). Achieving security against active adver-
saries may be expensive, hence intermediate classes (be-
tween passive and active) have been introduced.

In practical settings, it is often sufficient that the
active adversary is detected not immediately after the
malicious act, but at some point later. In this case, it
suffices that, after execution, each party proves to others
that it has correctly followed the protocol.

In this work we propose a distributed verification
mechanism allowing one party (the prover) to convince
others (the verifiers) that it followed the protocol cor-
rectly. All the inputs and the incoming/outgoing mes-
sages of the prover are secret-shared (using a thresh-
old linear secret-sharing scheme) among all the other
parties. The verifiers repeat the prover’s computations,
using verifiable hints from the prover. The verification
is zero-knowledge to any minority coalition of parties.
Our construction performs best with a small number of
parties, and its efficiency linearly depends on the total
number of local non-linear operations performed by the
parties. If the number of parties is n > 3, it also linearly
depends on the number of bits communicated between
the parties in the initial protocol, but this overhead is
less significant.

Prover’s hints are based on precomputed multipli-
cation triples [5] (Beaver triples), which we adapt for
verification. Before starting the verification (and even
the execution), the prover generates and shares among
the other parties sufficiently many such triples. Impor-

Verification of Multiparty Protocols with Honest Majority 20

tantly, the prover provides a proof that these triples are
generated and shared correctly. During verification, the
correctness of precomputed triples implies the correct-
ness of prover’s computations.

Applying this verification mechanism n times to any
n-party computation protocol, with each party acting
as the prover in one instance, gives us a protocol secure
against covert (if verification is performed at the end)
or fully malicious (if each protocol round is immediately
verified) adversaries corrupting a minority of parties. In
this work we apply that mechanism to the SMC pro-
tocol set [9] employed in the Sharemind platform [8],
demonstrating for the first time a method to achieve se-
curity against active adversaries for Sharemind. We note
that the protocol set of Sharemind is very efficient [37],
and its deployments [10, 34, 55] include the largest SMC
applications ever [6, 7]. We discuss the difficulties with
previous methods in Sec. 2.

From covert to active security. The verifica-
tion step converts a protocol secure against passive ad-
versary to a protocol secure against covert adversary [1]
that is prevented from deviating from the prescribed
protocol by a non-negligible chance of getting caught.
In our case, the probability of not being caught is neg-
ligible, based on the properties of underlying message
transmission functionality (signatures), hash functions,
and the protocols that generate preshared randomness.

In general, we believe that in most situations, where
sufficiently strong legal or contractual frameworks are in
place, providing protection against covert adversaries is
sufficient to cover possible active corruptions. The com-
puting parties should have a contract describing their
duties in place anyway [27], this contract can also spec-
ify appropriate punishments for being caught deviating
from the protocol.

Moreover, the protocol set [9] is private against ac-
tive adversaries, as long as no values are declassified [49].
If declassification is applied only to computation results
at the end of the protocol, then prepending it with our
verification step gives us an actively secure protocol [42].

Cost of precomputation. There exist other pro-
tocols for SMC secure against active adversaries (see
Sec. 2) where the additional verification of the behaviour
of parties causes only very modest overheads. Our ver-
ification phase, even while having a reasonable cost of
its own, is not competitive with these approaches. How-
ever, the efficiency of the verification of these other ap-
proaches comes at the expense of very costly precom-
putation (see Sec. 2), significantly hampering the de-
ployment. Our approach also has the precomputation
phase, which is still the most expensive part of the pro-

tocol, but it is orders of magnitude faster than previous
methods (see Sec. 5).

The reduction of the total cost of actively secure
computation in the 3-party case, tolerating one cor-
rupted party, is the main benefit of our work. We achieve
this through novel constructions of verifiable comput-
ing, reducing the correctness of computations to the
correctness of pre-generated multiplication triples and
tuples for other operations. An important difference of
our triple generation from the other works is that the
prover is allowed to know the values of the triples, which
makes the triple generation significantly more efficient.

2 Related Work
Several techniques exist for two-party or multiparty
computation secure against malicious adversaries. We
are aware of implementations based on garbled cir-
cuits [38, 47], on additive sharing with MACs to check
for correct behaviour [22, 24, 26], on Shamir’s secret
sharing [19, 53], and on the GMW protocol [33] paired
with actively secure oblivious transfer [47]. Different
techniques suit the secure execution of different kinds
of computations, as we discuss below. The verification
technique we propose in this paper is mostly suitable for
secret-sharing based SMC, with no preference towards
the algebraic structures underlying the computation.

Our protocol uses precomputed multiplication
triples, and also precomputed tuples for other opera-
tions to verify whether parties have followed the proto-
col. Such triples [5] are used by several existing SMC
frameworks, including SPDZ [24] or ABY [29]. Differing
from them, we use the triples not for performing compu-
tations, but for verifying them. This is a new idea that
allows us to sidestep the most significant difficulties in
pre-generating the tuples.

The difficulty is, that the precomputed tuples for se-
cure computation must be private. Heavyweight cryp-
tographic tools are used to generate them under the
same privacy constraints as obeyed by the main phase
of the protocol. Existing frameworks utilize homomor-
phic [29, 48, 50] or somewhat (fully) homomorphic en-
cryption systems [11, 22] or oblivious transfer [47]. For
ensuring the correctness of tuples, the generation is fol-
lowed by a much cheaper correctness check [22]. Our ap-
proach keeps the correctness check, but the generation
can be done “in the open” by the party whose behaviour
is going to be checked.

Verification of Multiparty Protocols with Honest Majority 21

While these methods can be secure for dishonest
majority, they lead to protocols that are in some sense
weaker than ours — they do not allow the identifica-
tion of a misbehaving party. Recently, several identifi-
cation mechanisms for SPDZ-like protocols have been
proposed [4, 17, 54]. They scale better with the num-
ber of parties n than our protocol does. Let C be the
circuit describing the functionality that the parties com-
pute. In similar settings, our protocol would have com-
plexity O(|C|n3). The complexity of the online phase
of [4] is O(|C|n2), but their preprocessing phase needs
O(|C|n3) ZK proofs. The complexity of [54] is O(|C|n),
but it is possible that different honest parties do not
agree on the same set of cheaters, and enforcing this
agreement requires O(|C|n2) cryptographic operations
to repeat the computation of each party from its com-
mitments. All honest parties agree on the same set of
cheaters in [17], which has complexity O(|C|n), but their
method requires additional ZK proofs in the preprocess-
ing phase, and the overhead of the online and the offline
phases together is unclear. Our protocol uses the honest
majority assumption to avoid cryptographic operations,
and its benefit comes from the total cost of both the on-
line and the offline phases.

For honest majority and three parties, a recent
method [32] proposes the use of a highly efficient pas-
sively secure protocol for precomputing multiplication
triples. Again, this method only allows the detection of
misbehaviour, but no identification of the guilty party.

Previously, methods for post-execution verification
of the correct behaviour of protocol participants have
been presented in [2, 20, 41]. We note that the general
outline of our verification scheme is similar to [2] — we
both commit to certain values during protocol execution
and perform computations with them afterwards. How-
ever, the committed values and the underlying commit-
ment scheme are very different. One important result-
ing difference is that our work can be directly applied
to computation over rings.

We apply our verification to the protocol set of
Sharemind [8], which is based on additive sharing over
finite rings among three computing parties. The number
of parties providing inputs or receiving outputs may be
much larger. Typically, the rings represent integers of
certain length. The protocol set tolerates one passive
corruption. Existing MAC-based methods for ensuring
the correct behaviour of parties are not applicable to
this protocol set, because these methods presume the
sharing to be done over a finite field. Also, these meth-
ods can protect only a limited set of operations that
the computing parties may do, namely the linear com-

binations and declassification. Sharemind derives its ef-
ficiency from the great variety of protocols it has and
from the various operations performed with the shares.

Complexity of actively secure integer
multiplication and AES

We are interested in bringing security against active ad-
versaries to integer and floating-point operations, to be
used in secure statistical analyses [7], scientific compu-
tations [34] or risk analysis [6]. Such applications use
protocols for different operations on private data, but
an important subprotocol in all of them is the multipli-
cation of private integers. Hence, let us study the state
of the art in performing integer multiplications in ac-
tively secure computation protocol sets. All times re-
ported below are amortized over the parallel execution
of many protocol instances. All reported tests have used
modern (at the time of the test) servers (one per party),
connected to each other over a local-area network.

Such protocol sets are based either on garbled cir-
cuits or secret sharing (over various fields). Lindell and
Riva [45] have recently measured the performance of
maliciously secure garbled circuits using state-of-the-
art optimizations. Their total execution time for a sin-
gle AES circuit is around 80ms, when doing 1024 ex-
ecutions in parallel and using the security parameter
η = 80 (bits). The size of their AES circuit is 6800 non-
XOR gates. According to [28], a 32-bit multiplier can be
built with ca. 1700 non-XOR gates. Hence we extrapo-
late that such multiplication may take ca. 20ms under
the same conditions. Our extrapolation cannot be very
precise due to the very different shape of the circuits
computing AES or multiplication, but it should be valid
at least as an order-of-magnitude approximation.

A more efficient solution based on garbled circuits
with TinyOT has emerged in parallel with our paper [35,
56]. Doing 1024 executions in parallel, it computes a
single AES circuit in 6.7ms, which has the same order of
magnitude as our solution. Their benchmarks are done
using 10Gbps LAN while we have used 1Gbps LAN.

A protocol based on secret sharing over Z2 [47]
would use the same circuit to perform integer multi-
plication. In [31], a single non-XOR gate is estimated
to require ca. 70µs during preprocessing (with two par-
ties). Hence a whole 32-bit multiplier would require ca.
120ms. As the preprocessing takes the lion’s share of
total costs, there is no need for us to estimate the per-
formance of the online phase.

Verification of Multiparty Protocols with Honest Majority 22

Recent estimations of the costs of somewhat homo-
morphic encryption based preprocessing for maliciously
secure multiparty computation protocols based on addi-
tively secret sharing over Zp are hard to come by. In [21],
the time to produce a multiplication triple for p ≈ 264

is estimated as 2ms for covert security and 6ms for fully
malicious security (with two parties, with η = 40). We
presume that the cost is smaller for smaller p, but for
p ≈ 232, it should not be more than twice as fast. On
the other hand, the increase of η to 80 would double the
costs [21]. In [22], the time to produce a multiplication
triple for p ≈ 232 is measured to be 1.4ms (two par-
ties, η = 40, escape probability of a cheating adversary
bounded by 20%).

The running time for actively secure multiplication
protocol for 32-bit numbers shared using Shamir’s shar-
ing has been reported as 9ms in [19] (with four parties,
tolerating a single malicious party). We are not aware
of any more modern investigations into Shamir’s secret
sharing based SMC.

A more efficient N -bit multiplication circuit is pro-
posed in [25], making use computations in Z2 and in Zp
for p ≈ N . Using this circuit instead of the one reported
in [28] might improve the running times of certain inte-
ger multiplication protocols. But it is unclear, what is
the cost of obtaining multiplication triples for Zp.

In this work, we present a set of protocols that is ca-
pable of performing a 32-bit integer multiplication with
covert security (on a 1Gbps LAN, with three parties, tol-
erating a single actively corrupted party, η = 80, negligi-
ble escape probability for a cheating adversary) in 15µs.
This is around two orders of magnitude faster than the
performance reported above.

In concurrent work [36], the oblivious transfer meth-
ods of [31] have been extended to construct SPDZ mul-
tiplication triples over Zp. They report amortized tim-
ings of ca. 200µs for a single triple with two parties on
a 1Gbps network, where p ≈ 2128 and η = 64. Reduc-
ing the size of integers would probably also reduce the
timings, perhaps even bringing them to the same or-
der of magnitude with our results. But their techniques
(as well as most others described here) only work for
finite fields, not rings. For fields, there exist methods
to reduce the number of discarded triples during triple
verification, which also apply for us.

Recently [23], amortized time 0.5µs was reported for
computing a single AES block. However, it takes into ac-
count only the online phase. The authors do not provide
benchmarks for preprocessing, but they estimate that
using recent mechanisms for doing preprocessing, up to
105 AND gates could be computed per second. Assum-

ing that a single AES block contains ca 6400 AND gates
(as in our benchmarks), this would suffice for around 16
AES blocks per second, or 63ms per AES block. In this
work, we compute a 128-bit AES block with covert se-
curity in 3.1ms, including the preprocessing.

3 Ideal Functionality
We propose a transformation that converts a passively
secure multiparty protocol to one that is covertly secure
under honest majority assumption. In this section, we
formalize the initial protocol and state the properties
that the transformed protocol should have.

Notation. Throughout this work, we use ~x to de-
note vectors, where xi is the i-th coordinate of ~x. Let
~0 = (0, . . . , 0). All operations on vectors are defined ele-
mentwise. We denote [n] = {1, . . . , n}.

The UC framework. We specify our transfor-
mation in the universal composability (UC) frame-
work [14]. In UC, the protocol runs in parallel with the
adversary A that may corrupt the parties, getting access
to their internal states, and the environment Z specify-
ing the protocol inputs and receiving the outputs. There
is also communication between Z and A. The security
proofs are based on indistinguishability of executing the
real protocol Π from executing the ideal functionality F
that precisely states the desired correctness and secu-
rity properties. A protocol Π UC-realizes F if for any
adversary A attacking Π there exists an adversary AS
attacking F, such that no Z may distinguish whether it
is interacting with F and AS , or with Π and A.

The initial passively secure protocol. The
protocol is run by n parties, indexed by [n], where
C ⊆ [n] are corrupted, |C| < n/2. We denote H = [n]\C.
There is a secure channel between each pair of parties.
The protocol is synchronous; it has r rounds, where the
`-th round computations of the party Pi, the results of
which are sent to the party Pj , are given by a publicly
known arithmetic circuit C`ij . This circuit computes the
`-th round messages ~m`

ij to the party j ∈ [n] from the
input ~xi, uniformly distributed randomness ~ri and the
messages ~mk

j′i (k < `) that Pi has received before. All
values ~xi, ~ri, ~m`

ij are vectors over rings Z2N . The mes-
sages received during the r-th round comprise the output
of the protocol.

Arithmetic circuits C`ij over rings Z2n1 , . . . ,Z2nK

represent local computation of parties. Such a circuit
consists of connected gates, performing arithmetic op-
erations on inputs and producing outputs. An operation

Verification of Multiparty Protocols with Honest Majority 23

may be either an addition, a constant multiplication, or
a multiplication in one of the rings Z2nk . It may also be
“x = trunc(y)” or “y = zext(x)” for x ∈ Z2n and y ∈ Z2m ,
where n < m. The first of them computes x = y mod 2n,
while the second lifts x ∈ Z2n to the larger ring Z2m .
Finally, there is an operation (z1, . . . , zm) = bd(x) that
decomposes x ∈ Z2m into bits zi ∈ Z2. The gate out-
puts can be used as inputs of some other gates. The
gate inputs that are not outputs of any other gates of
C`ij are called the inputs of C`ij . Some gate outputs are
treated as the final result of computing C`ij on its inputs
~x, and these are called the outputs of C`ij . Computing
the outputs ~y from the inputs ~x is denoted ~y = C`ij(~x).

This set of gates is sufficient to represent any com-
putation. Any other operations can be expressed as a
composition of the available ones. Nevertheless, the ver-
ifications designed for special gates may be more effi-
cient, and we discuss some of them in App. A.

Compared to the circuit C describing the function-
ality f that the parties compute, the sizes of C`ij depend
on the particular protocols used to compute f , and they
may vary for different SMC platforms. In general, the to-
tal asymptotic size of local circuits of C taken altogether
is O(|C|n). For example, let C consist of linear gates, bi-
nary multiplication gates, and conversions between Z2m

and Zm2 . Let 3-party Sharemind protocols [9] be used.
A single multiplication in Z2m needs 6 local multipli-
cations in Z2m . For bit decompositions and transitions
between rings, we need to use share conversion algo-
rithms, where transition from Z2m to Zm2 has 64m AND
gates and 64 bit decompositions in Z2m , and transition
from Zm2 to Z2m has 64 multiplications and 96 bit de-
compositions in Z2m . We have not counted local linear
combinations since they do not affect verification cost.

The resulting covertly secure protocol. The
protocol transformation is specified by the ideal func-
tionality Fvmpc given in Fig. 1. Parties are given a set
of publicly known arithmetic circuits C`ij specifying the
initial passively secure protocol. Honest parties use C`ij
to compute their outgoing messages m`

ij . The outgoing
messages m∗`ij of corrupted parties are chosen by the ad-
versary. After the computation ends, Fvmpc outputs to
all honest parties a setM containing all corrupted par-
ties Pi that have sent ~m∗`ij 6= ~m`

ij to any honest party
Pj during the execution, and also all parties that have
caused the protocol to abort (the set B0). Even if only
some rounds of the protocol are computed, all the par-
ties that deviated from the protocol in completed rounds
will be detected.

The sets Bi of parties that are finally blamed by Pi
may contain some additional parties that do not belong

toM. This is related to unsuccessful cheating that may
have been detected only by some parties. Since Bi ⊆ C,
no honest parties (in H) can be falsely blamed.

We note that if M = ∅, then AS does not learn
anything that a semi-honest adversary could not learn.
In this way, the transformed protocol defines a covertly
secure execution of the protocol specified by C`ij : even
though the corrupted parties may cheat, they will be
finally detected if they do it.

Differently from the initial passively secure proto-
col, the parties are no longer trusted to generate their
randomness ~ri themselves. Instead, ~ri is generated by
Fvmpc, before the parties get their inputs ~xi from Z.
At this point, the adversary may stop the functionality.
This corresponds to the failure of randomness genera-
tion in the real protocol, and it is allowed by Fvmpc,
since it is safe to abort the computation that does not
involve private inputs.

The aim of this paper is to construct a protocol
transformation Πvmpc such that, applying it to efficient
passively secure protocols, we get new verifiable proto-
cols that outperform state-of-the art protocols with sim-
ilar security requirements. We prove Theorem 1, stating
that Πvmpc UC-realizes Fvmpc.

Theorem 1. Let C be the set of corrupted parties. If
|C| < n/2, then Πvmpc UC-realizes Fvmpc.

The next section gives the construction of the protocol
and sketches its security proof.

4 The Real Protocol
The initial passively secure protocol is defined by cir-
cuits C`ij representing local computation of parties, as
defined in Sec. 3. We transform such a protocol to a
verifiable one, outlined as follows.

At the beginning of the execution phase, Pi com-
mits itself to its inputs ~xi and the randomness ~ri. The
commitment method ensures that ~ri is distributed uni-
formly. Then the parties start executing the protocol
defined by C`ij . During the execution, Pi computes the
messages ~m`

ij using C`ij , committing itself and the re-
ceiver Pj to them. If Pi and Pj are both corrupted, then
they are allowed to commit to arbitrary ~m∗`ij .

After the execution phase ends, the verification
phase starts. Each party (the prover P) has to prove
to the other parties (the verifiers V1, . . . , Vn−1) that it
computed its local circuits C`ij correctly w.r.t. commit-

Verification of Multiparty Protocols with Honest Majority 24

• In the beginning, Fvmpc gets from Z for each party Pi the message (circuits, i, (C`ij)
n,n,r
i,j,`=1,1,1) and forwards it

to AS .
For each i ∈ [n], Fvmpc generates the randomness ~ri for the party Pi. For i ∈ C, it sends (randomness, i, ~ri) to AS .
At this point, AS may stop the functionality. If it continues, then for each i ∈ H [resp i ∈ C], Fvmpc gets the
inputs (input, ~xi) for the party Pi from Z [resp. AS].
• For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`ij to compute the message ~m`

ij that the party Pi is
supposed to deliver to Pj on the `-th round. For all j ∈ C, it sends ~m`

ij to AS . For each j ∈ C and i ∈ H, it receives
~m`
ji from AS .
• After r rounds, Fvmpc sends (output, ~mr

1i, . . . , ~m
r
ni) to each party Pi with i ∈ H. Let r′ = r and B0 = ∅.

Alternatively, at any time before outputs are delivered to parties, AS may send (stop,B0) to Fvmpc, where B0 ⊆ C
are the parties that cause the protocol to abort. In this case the outputs are not sent. Let r′ ∈ {0, . . . , r − 1} be
the last completed round.
• After r′ rounds, AS sends to Fvmpc the messages ~m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines the set of cheatersM = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : ~m`

ij 6= C`ij(~xi, ~ri, ~m1
1i, . . . , ~m

`−1
ni)}.

• Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, withM⊆ Bi ⊆ C. Fvmpc forwards this message to Pi.
Fig. 1. The ideal functionality Fvmpc for verifiable computations

ted ~xi, ~ri, ~m`
ij , ~m`

j′i. All n interactive proofs of the n
provers take place in parallel. It is possible that some
verifiers Vi misbehave during the proof, and they should
be blamed for that, even if they have not cheated in the
execution phase. The proofs of all parties should termi-
nate even if the corrupted verifiers leave the protocol.

The previous discussion is summarized by the ideal
functionality Fverify given in Fig. 2. It treats all circuits
C`ij of one party Pi as a single circuit Ci. It assigns a
unique index id to each input and output of the circuit.
Such indexation makes it easier to see which commit-
ments correspond to which inputs and outputs of Ci.

In the rest of this section, we describe the protocol
implementing Fverify, and the building blocks used by
it. The protocol is going to have its own preprocessing
phase, aiming to make the verification phase cheaper.

Throughout this section, we assume that the num-
ber of parties is 3, and at most one of them is corrupted.
This assumption makes the presentation simpler, and it
describes precisely our actual implementation, includ-
ing all optimizations specific to 3 parties. We discuss in
Sec. 6 how the transformation can be generalized to n
parties with honest majority. In all protocols, we assume
a fully malicious adversary and static corruptions.

4.1 Building Blocks

Ensuring Message Delivery. At any time during
the protocol execution, a corrupted sender may refuse
to send the message. If the receiver complains about
not receiving it, the other parties do not know whether

they should blame the sender or the receiver. It would
be especially sad to allow a corrupted party to abort
the verification phase in this way, so that the cheaters
would not be pinpointed.

We want to achieve identifiable abort, i.e. if some
party stops the protocol, it is blamed by all (honest)
parties. For this purpose, we use the transmission func-
tionality Ftransmit proposed in [20] that we repeat in
Figure 3. It allows to ensure message delivery, and to
reveal previously received messages. The adversary may
still interrupt transmission, but in this case a message
(cheater, k) will be output to all honest parties, where
k ∈ C has caused the interruption.

The outline of the protocol implementing Ftransmit
is the following. All transmitted messages are provided
with signatures. This allows to reveal previously sent
messages by letting the receiver present the sender’s sig-
nature. If the receiver complains that the sender has not
sent the message or did not sign it properly, then the
sender is required to deliver the message to each other
party, so that at least one other honest party forwards it
to the receiver. If no honest party receives the message,
the sender will be blamed by all of them. In a single
adversary model (like UC), opening the message to all
parties does not break privacy, since if there is a con-
flict between the sender and the receiver, then at least
one of them is corrupted, and the adversary would get
that message anyway. As long as all the parties follow
the protocol, this opening will not be needed. In order to
maintain synchronicity, the parties first wait for possible
complaints, so formally Ftransmit increases the number

Verification of Multiparty Protocols with Honest Majority 25

Fverify uses arrays comm and sent for storing the commitments. It works with unique indices id, defining a
commitment comm[id] and its ring size m(id). The messages are first stored as sent[id] before being committed.
• Initialization: On input (init, (C`ij)

n,n,r
i,j,`) from all (honest) parties, where C`ij is an arithmetic circuit, initialize

comm and sent to empty arrays. For all i ∈ [n], treat the composition of C`ij for j ∈ [n], ` ∈ [r] as a single circuit
Ci. Generate a unique index xidik for the k-th input of Ci, and yidik for the k-th output of Ci. For all obtained
indices id, read out from Ci the ring size m(id) of the value indexed by id. Store Ci and all id, m(id).
• Randomness Commitment: On input (commit_rnd, xidik) from all (honest) parties, if comm[xidik] is not
defined yet, generate r $← Zm(xidi

k
), and assign comm[xidik]← r. Output r to Pi. If i ∈ C, output r also to AS .

• Input Commitment: On input (commit_input, x, xidik) from Pi, and (commit_input, xidik) from all (honest)
parties, if comm[xidik] is not defined yet, assign comm[xidik]← x. If i ∈ C, then x is chosen by AS .
• Message Commitment:
1. On input (send_msg, x, yidil , xid

j
k) from Pi, output x to Pj . If i ∈ C, then x is chosen by AS . If j ∈ C, output

x to AS . If sent[yidil] is not defined yet, assign sent[yidil]← x.
2. On input (commit_msg, yidil , xid

j
k) from all (honest) parties, if sent[yidil] is defined, and comm[yidil] is not

defined, assign comm[yidil] = comm[xidjk]← sent[yidil]. If i, j ∈ C, assign comm[yidil] = comm[xidjk]← x∗, where
x∗ is chosen by AS .

• Verification: On input (verify, i) from all (honest) parties, if comm[id] have been defined for all identifiers id of
Ci, construct vectors ~x and ~y such that xj ← comm[xidij], and yj ← comm[yidij]. Compute ~y′ ← Ci(~x).
If ~y′ − ~y = ~0, output 1 to each party and AS . Otherwise, output 0 to each party and AS .
• Cheater detection: On input (cheater, k) from AS for k ∈ C, output (cheater, k) to each party. Do not accept
any inputs from Pk anymore.
Fig. 2. The ideal functionality Fverify for verifying circuit computation w.r.t. the committed inputs and outputs

Ftransmit works with unique message identifiers id, encoding a sender s(id) ∈ [n] and a receiver r(id) ∈ [n].
• Initialization: On input (init, s, r) from all (honest) parties, where s, r map a message identifier id to its sender
and receiver respectively, deliver (init, s, r) to AS .
• Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest) parties, output
(id,m) to Pr(id), and (id, |m|) to AS . If r(id) ∈ C, output (id,m) to AS .
• Reveal received message: On input (reveal, id, i) from a party Pj that at any point received (id,m), output
(id,m) to Pi. If i ∈ C, output (id,m) also to AS . If both s(id), j ∈ C, then AS can ask Ftransmit to output (id,m′)
for any m′.
• Cheater detection: If {s(id), r(id)} ∩ C 6= ∅, AS may interrupt the transmission and ask Ftransmit to output
(cheater, k) to all parties for k ∈ C ∩ {s(id), r(id)}. If (cheater, k) is output for both k ∈ {s(id), r(id)}, then no
(id,m) is output to the parties.
Fig. 3. Ideal functionality Ftransmit

of rounds. In [20], cheap exception handling is proposed
for this.

We use Ftransmit as a blackbox. For simplicity, we
write that a message has been transmitted or revealed
using Ftransmit , and avoid using its formal interface. If
Ftransmit outputs a set of messages (cheater, k) for some
round, the behaviour of honest parties depends on the
protocol that uses Ftransmit . We describe this behaviour
in the point “cheater detection” of the figures depicting
our protocols, and it can be summarized as follows. In
the preprocessing phase, each party aborts. In the ex-

ecution phase, each party includes k into the set M of
cheaters and jumps to the verification phase. In the ver-
ification phase, each party includes k into the setM of
cheaters, and the verification proceeds with the remain-
ing parties, which is always possible due to an honest
majority and the nature of commitments (if n = 3, the
verification stops and the remaining parties are claimed
honest, since the cheater has already been detected).

Broadcast and opening. For 3 parties, broad-
cast with identifiable abort can be built on top of
Ftransmit . If a party P wants to broadcast a message

Verification of Multiparty Protocols with Honest Majority 26

m, it uses Ftransmit to deliver m to the other receiver.
Upon receiving mi and mj respectively, the parties Pi
and Pj exchange hi = H(mi) and hj = H(mj), where H
is a collision-resistant hash function, i.e. hi = hj implies
mi = mj with high probability, even if the adversary
chooses mi and mj . If hi 6= hj , then Pi and Pj reveal
mi and mj to each other using Ftransmit . If it turns out
that Pi has cheated, then Pj may proceed with mj . If
P has cheated, then Pi and Pj have agreed on cheater’s
identity, and they behave in the same way as if cheating
was detected using Ftransmit .

To open a previously transmitted message to both
other parties, the hash exchange is not necessary. Since
at most one party of 3 is corrupted, Ftransmit does not
allow two different messages (id,m) and (id,m′) to be
revealed to different parties.

Throughout this section, by broadcast and by open-
ing we mean these Ftransmit-based protocols. In order to
avoid ambiguity, no other definitions of broadcast and
opening are used.

Commitments. All the inputs, the randomness,
and the messages of the prover P are committed by
additively sharing them among the verifiers V1 and V2.
To commit x ∈ Zm, the prover P generates random
x1 $← Zm and computes x2 = x − x1 in Zm. P uses
Ftransmit to deliver xi to Vi. Using Ftransmit allows to
argue about the authenticity of xi later, if there are
conflicts between P and Vi. We write JxK to denote the
sharing of x, and x = x1 + x2 to denote that x was
shared to the particular shares x1 and x2. The resulting
commitment scheme is homomorphic.

Throughout this section, by commitment we mean
this sharing-based commitment. In order to avoid am-
biguity, no other definition of commitment is used.

Precomputed tuples. To reduce the work of the
verifiers, we add a preprocessing phase generating cor-
related randomness, i.e. precomputed tuples. They are
secret-shared among the verifiers, who have been con-
vinced that the correlation holds. The prover P gets all
the shares. The verified multiplication triples are triples
(a, b, c) from some ring, such that a · b = c. The trusted
bits are values b from some ring Zm, m > 2, such that
b ∈ {0, 1}. The tuple generation may fail, and it is possi-
ble that the deviator cannot be identified. This is not a
problem since no private data is involved into this phase.
However, it should be possible to open later the shares of
precomputed tuples on demand, and if the tuples have
already been generated once, the opening should always
succeed. We formalize the functionality Fpre in Fig. 4,
and we give the implementation of Fpre in Sec. 4.2.

4.2 Protocol Implementing Fpre

The protocol Πpre implementing Fpre is given in Fig. 5.
The prover P , allowed to know the sharings, generates
and shares the bits and the triples itself. The shares are
delivered to the verifiers through Ftransmit , so that the
shares could be opened later, and P gets committed to
the values it has generated. The prover is interested in
generating the tuples randomly, because his (and only
his) privacy depends on it.

The verifiers check whether P generated the tuples
correctly. The check is based on cut-and-choose and
pairwise check, similarly to e.g. [24, 32]. The check is
probabilistic, and it depends on parameters µ and κ. In
particular, in order to obtain u tuples of certain kind,
µ · u+ κ tuples have to be generated and shared by P .

First, the parties agree on a joint random seed,
defining a random permutation π of the tuples. In the
cut-and-choose step, they take the first κ randomly per-
muted tuples and open them. The check fails if any of
the opened tuples are wrong. If all of them are correct,
then only a small fraction of remaining tuples is wrong.

The remaining tuples are partitioned into groups of
size µ. In each group, the first µ − 1 tuples are used to
verify the µ-th one in µ − 1 pairwise checks. The core
of each check is using homomorphic properties of secret
sharing to compute a certain linear combination z of the
tuple elements and verify that z = 0 (we call such z an
alleged zero). The check is certain to fail if only one of
the tuples in the pair is correct. Let JzK be computed
as in Fig. 5. We show that, if z = 0, and one tuple is
correct, then the other tuple is certainly also correct.

Trusted bits. Let the bit Jb′K in a ring Zm be
used to verify that JbK is a bit. Let b′ ∈ {0, 1}. The
prover broadcasts a bit c indicating whether b = b′.

– If c = 1, then JzK = JbK− Jb′K is computed. If z = 0,
then it should be b = b′ ∈ {0, 1}.

– If c = 0, then JzK = JbK + Jb′K − 1 is computed. If
z = 0, then it should be b = 1− b′ ∈ {0, 1}.

– If c /∈ {0, 1}, the protocol aborts.

Multiplication triples. Let the triple
(Ja′K, Jb′K, Jc′K) be used to verify the correctness of the
triple (JaK, JbK, JcK). Let c′ = a′ ·b′. The values â = a−a′,
b̂ = b− b′ are computed and declassified by the verifiers,
so there is no way for P to cheat with them. The verifiers
compute and declassify JzK = â · JbK + b̂ · Ja′K + Jc′K− JcK.
Since c′ = a′ ·b′, we have z = â·b+b̂·a′+a′ ·b′−c = a·b−c.
Therefore, if z = 0, then a · b = c.

Verification of Multiparty Protocols with Honest Majority 27

One instance of Fpre is used to generate u preprocessed tuples in a ring Zm for one party Pi. It works with unique
indices id defining a multiplication triple triple[id] or a trusted bit bit[id].
• Initialization: On input (init, i,m, u) from all (honest) parties, where i ∈ [n] is a party index, initialize triple and
bit to empty arrays. Generate u unique indices id. Store m, u, i and all id for further use. As shorthand notation,
let P = Pi. Let V1 and V2 denote the verifiers of P .
• Trusted bit generation: On input (bit, id) from all (honest) parties, check if bit[id] exists. If it does, take
(~b1,~b2)← bit[id]. Otherwise, generate a vector of random bits ~b $← Zu2 . If i ∈ C, then ~b ∈ Zu2 is chosen by AS . Share
elementwise ~b = ~b1 +~b2 over Zm. Assign bit[id]← (~b1,~b2).
Output ~bj to Vj . Output (~b1,~b2) to P . For k ∈ C, send ~bk to AS . If i ∈ C, send (~b1,~b2) to AS .
•Multiplication triple generation: On input (triple, id) from all (honest) parties, check if triple[id] exists. If it
does, take ((~a1,~b1,~c1), (~a2,~b2,~c2))← triple[id]. Otherwise, generate random vectors ~a $← Zum, ~b $← Zum, and compute
elementwise ~c← ~a ·~b. If i ∈ C, then ~a,~b ∈ Zum are chosen by AS . Share elementwise ~a = ~a1 + ~a2, ~b = ~b1 +~b2, and
~c = ~c1 + ~c2 over Zm. Assign triple[id]← ((~a1,~b1,~c1), (~a2,~b2,~c2)).
Output (~aj ,~bj ,~cj) to Vj . Output ((~a1,~b1,~c1), (~a2,~b2,~c2)) to P . For k ∈ C, send (~ak,~bk,~ck) also to AS . If i ∈ C, send
((~a1,~b1,~c1), (~a2,~b2,~c2)) to AS .
• Share open: On input (share_open, id, k) from all (honest) parties, if the bit b [a triple (a, b, c)] identified by id
has already been generated, output the share bk [the shares (ak, bk, ck)] to each party and to AS .
• Stopping: At any time, on input (stop) from AS , stop the functionality and output ⊥ to all parties.
Fig. 4. Ideal functionality Fpre

The bit c denoting whether b = b′ and the values
â = a−a′, b̂ = b− b′ are all distributed uniformly in the
corresponding rings, since one of the tuples serves as a
mask for the other tuple. All these values can be simu-
lated in the security proof, being sampled uniformly.

In the protocol of Fig. 5, the verifiers do not check
~z = ~0 directly. Instead, they exchange h1 = H(~z1) and
h2 = H(−~z2), where H is a collision-resistant hash func-
tion, and ~zi is the share of ~z held by Vi. Similarly to the
broadcast of Sec. 4.1, if h1 = h2, it should with high
probability be ~z1 = −~z2, implying ~z = ~z1 + ~z2 = ~0.
These shares are easy to simulate in the security proof
since one share ~zi is already known to the adversary,
and the other one can be computed as ~zj = −~zi. The
hash hi can be computed directly from ~zi.

A corrupted verifier may intentionally provide
wrong hi, âi, or b̂i, causing the correctness check to fail.
It will not be clear whether P or Vi is guilty. Such fail-
ure is allowed by Fpre since it does not handle private
data. Alternatively, all shares could be revealed through
Ftransmit to identify the cheater.

If all µ−1 checks succeed, then the first µ−1 tuples
in each group are discarded and only the last one is
used. Since a pairwise check passes only if both tuples
are incorrect, the corrupted prover needs to make all µ
tuples in a group incorrect to make a single incorrect
tuple accepted, and this probability is made negligible
by adjusting the parameters µ and κ.

A combinatorial analysis, omitted due to space con-
straints (its results are quite similar to [32]), shows that
values µ and κ do not need to be large to bound the
prover’s cheating probability by 2−80. For example, if
u = 220, then it is sufficient to take µ = 5 and κ = 1300.
If u = 230 then µ = 4 and κ = 14500 are sufficient. At
the other extreme, if u = 10, then µ = 26 and κ = 168
are sufficient for the same security level.

In a finite field, more efficient methods than cut-
and-choose and pairwise check are available. For exam-
ple, we can replace them with an application of linear
error correcting codes [3]. This technique allows to con-
struct u verified tuples from only u+κ initial ones, where
κ is proportional to the security parameter η.

The discussion of this section can be seen as a proof
sketch for the following lemma:

Lemma 1. Let n = 3. Assuming at most one corrupted
party, the protocol Πpre UC-realizes Fpre in Ftransmit-
hybrid model.

The cut-and-choose with pairwise check works similarly
to [24, 32], so we refer to [32] for a more formal proof.

4.3 Protocol Implementing Fverify

The protocol Πverify implementing Fverify is given in
Fig. 6-7. All communication between parties takes place

Verification of Multiparty Protocols with Honest Majority 28

• Initialization: The protocol starts with each party getting the input (init, i,m, u), where Pi is the prover, m is
the ring size, and u is the number of tuples to be generated. The protocol uses parameters µ and κ that depend
on the security parameter. As shorthand notation, let P = Pi. Let V1 and V2 denote the verifiers of P .
• Trusted bits: On input (bit, id), the party expects that the following protocol is executed:

1. The party P generates (µ · u+ κ) random bits b $← Z2.
2. P shares b = b1 + b2 in Zm, and sends bi to Vi using Ftransmit .
3. The parties agree on a public random permutation π of generated bits ~b. For b ∈ {bπ(1), . . . , bπ(κ)}, V1 and V2

reveal b1 and b2 through Ftransmit , and each party computes b = b1 + b2. If b /∈ {0, 1}, each party outputs ⊥.
4. The remaining bits are split into groups of µ, where the first µ − 1 bits are used to verify the µ-th one. Let

the bit Jb′K be used to verify that JbK is a bit. P broadcasts a bit c indicating whether b = b′ or not. If c = 1
(indicating b = b′), the verifiers compute JzK = JbK − Jb′K. If c = 1, the verifiers compute JzK = JbK + Jb′K − 1.
This process is repeated µ− 1 times with the same JbK, choosing different Jb′K.

5. After V1 and V2 have computed JzK for all bit pairs, they are holding the vector shares ~z1 and ~z2 respectively.
They compute and exchange hashes h1 = H(~z1) and h2 = H(−~z2), checking if h1 = h2. If the check fails, V1
and V2 inform P about the failure, and each party outputs ⊥. If it succeeds, V1 and V2 inform P about success.
For each of the remaining u bits b, P outputs b, and V1 and V2 output the shares b1 and b2 respectively.

• Multiplication triples: On input (triple, id), the party expects that the following protocol is executed:
1. The party P generates (µ · u+ κ) triples (a, b, c) such that a $← Zm, b $← Zm, c = a · b.
2. P shares a = a1 + a2, b = b1 + b2, c = c1 + c2 in Zm, and sends (ai, bi, ci) to Vi using Ftransmit .
3. The parties agree on a public random permutation π of generated triples. For a ∈ {aπ(1), . . . , aπ(κ)}, b ∈
{bπ(1), . . . , bπ(κ)}, c ∈ {cπ(1), . . . , cπ(κ)}, V1 and V2 reveal a1, b1, c1, a2, b2, c2 through Ftransmit . Each party
computes a = a1 + a2, b = b1 + b2, c = c1 + c2. If a · b 6= c, each party outputs ⊥.

4. The remaining triples are split into groups of µ, where the first µ− 1 triples are used to verify the µ-th one.
Let the triple (Ja′K, Jb′K, Jc′K) be used to verify the correctness of the triple (JaK, JbK, JcK). The verifiers compute
JâK = JaK− Ja′K and Jb̂K = JbK− Jb′K, and declassify â, b̂ by exchanging the shares âi = ai − a′i and b̂i = bi − b′i.
Then they compute JzK = â · JbK + b̂ · Ja′K + Jc′K− JcK. This process is repeated µ− 1 times with the same triple
(JaK, JbK, JcK), choosing different triples (JaK′, JbK′, JcK′).

5. The checks z = 0 are done similarly to the step (5) of trusted bits. If the check fails, each party outputs ⊥.
If it succeeds, for each of the remaining u triples (a, b, c), P outputs (a, b, c), and V1 and V2 output the shares
(a1, b1, c1) and (a2, b2, c2) respectively.

• Share open: On input (share_open, id, k), the party Pk opens its share of the tuple identified by id using
Ftransmit . If Pk refuses to open, each party outputs (cheater, k).
• Stopping: If at any time (cheater, k) comes from Ftransmit , each party outputs ⊥.
Fig. 5. Real protocol Πpre

using Ftransmit . In this way, if a party refuses to send a
properly formatted message, it will be publicly blamed.
If the prover is blamed, then its proof does not proceed
further. If one of the verifiers is blamed, then the proofs
of other parties may be halted, since they should be
honest assuming at most one corrupted party. Hence,
without loss of generality, we assume that all the trans-
missions of Ftransmit succeed.

Initialization. The initialization fixes the circuits
C`ij that are going to be verified. A sufficient number of
precomputed tuples is generated by Fpre. The number
of these tuples and their types depends on the gates of

C`ij , described more precisely in Fig. 6. The verification
phase clarifies why exactly these tuples are generated.

Randomness commitment. The prover P must
fairly choose the (uniformly distributed) randomness it
is going to use as the input of the composition of its
circuits Ci, and commit to it. For this purpose, the ver-
ifiers jointly generate this randomness. Each verifier Vj
generates a uniformly distributed rj and uses Ftransmit
to deliver rj to P . After receiving r1 and r2, P takes
the randomness r = r1 + r2 that is additively shared
among V1 and V2. Since at least one verifier Vj is hon-
est, and the other verifier does not know anything about
the value rj , the randomness r is distributed uniformly.

Verification of Multiparty Protocols with Honest Majority 29

• Initialization: The protocol starts with each party getting the input (init, (C`ij)
n,n,r
i,j,`), where the composition

of C`ij for each i is denoted Ci. The circuit defines the ring sizes m(xidik) of inputs and m(yidik) of outputs of Ci.
As a shorthand notation, let P = Pi, P ′ = Pj . Let V1, V2 be the verifiers of P , and V ′1 , V ′2 the verifiers of P ′.
The subroutine Fpre is called to generate a sufficient number of precomputed tuples for each party. The number
of tuples and their types depend on the gates of the circuits Ci.
1. Linear combination, conversion to a smaller ring: no tuples needed;
2. Multiplication in Zm: one multiplication triple over Zm;
3. Bit decomposition in Z2m : m trusted bits over Z2m ;
4. Conversion from Z2n to a larger ring Z2m : n trusted bits over Z2m .

• Randomness Commitment: On input (commit_rnd, xidik), V1 generates r1
$← Zm, and V2 generates r2

$← Zm.
They send r1 and r2 to P using Ftransmit . On input (commit_rnd, xidik), P expects to receive r1 and r2 from
Ftransmit . It takes r = r1 + r2. Now r is treated as the committed k-th input of Ci.
• Input Commitment: On input (commit_input, x, xidik), P shares x = x1 + x2 in Zm and uses Ftransmit to
deliver x1 to V1 and x2 to V2. On input (commit_input, xidik), V1 and V2 expect to receive x1 and x2 respectively
from Ftransmit . Now x is treated as the committed k-th input of Ci.
• Message Commitment:
1. On input (send_msg, x, yidil , xid

j
k), P uses Ftransmit to deliver x to P ′. On input (send_msg, yidil , xid

j
k), P ′

expects to receive x from Ftransmit .
2. On input (commit_msg, yidil , xid

j
k), the verifier V1 = P ′ takes the share m1 = m, and the other verifier V2 6= P ′

takes the share m2 = 0. Analogously, treating P ′ as a prover, the verifier V ′1 = P takes the share m1 = m, and
the other verifier V ′2 6= P takes the share m2 = 0. Now m is treated as the committed l-th output of Ci and
the committed k-th input of Cj .

Fig. 6. Real protocol Πverify (initialization and commitments)

In the security proof, the simulator is able to simulate
exactly the same r that has been chosen by Fverify, tak-
ing rj = r− ri after the adversary has chosen ri for the
corrupted verifier.

Input commitment. At the beginning of proto-
col execution, P commits to its input x by sharing it as
x = x1 + x2 and using Ftransmit to deliver xi to Vi. The
share issued to the corrupted verifier is distributed uni-
formly and is easy to simulate. A corrupted prover may
share any x in an arbitrary way, as allowed by Fverify.

Message commitment. During the protocol ex-
ecution, the sender transmits each message m using
Ftransmit . The sender can be the prover P as well as
some other party P ′. As the result, each message m

that has been sent or received by P is known at least
to one verifier V1 or V2 that has been on the other side
of the communication. Since each such message m has
been delivered using Ftransmit , it is possible to prove its
authenticity later, and hence both the sender and the
receiver have been committed to the same m. For both
of them, it can be viewed as being additively shared
among the verifiers as m = m+ 0.

Verifying local computations. The local com-
putation of Pi is represented by circuits C`ij turning al-

ready received messages to new messages of the next
round (see Sec. 3).

The circuits are verified gate-by-gate. For each gate,
we have the following setup. The gate operation op
takes k inputs in some ring Zm and produces l out-
puts in some ring Zm′ . The input values are shared as
Jx1K, . . . , JxkK among the verifiers. The prover knows all
these shares. During the computation of the circuit, the
prover was expected to apply op to x1, . . . , xk and ob-
tain the outputs y1, . . . , yl. The verifiers are sure that
the shares they have indeed correspond to x1, . . . , xk
(subject to some deferred checks). A verification step
gives us Jy1K, . . . , JylK shared among the verifiers, where
the prover again knows the shares of both verifiers, but
no verifier has learned anything new. The verification
step also gives us a number of alleged zeroes — shared
values Jz1K, . . . , JzsK (all known to the prover), such that,
if z1 = · · · = zs = 0 then the verifiers are sure that the
sharings Jy1K, . . . , JylK indeed correspond to y1, . . . , yl.
All these equality checks are deferred to be succinctly
verified one round later.

Repeating this process gate by gate, the verifiers
finally obtain a sharing JyK of some output of the circuit
from the commitments to its inputs. The prover has

Verification of Multiparty Protocols with Honest Majority 30

• Verification (1st round): On input (verify, i), the prover P broadcasts some hints that will be used by V1 and
V2 to localize their computation. These values depend on the gates of the circuit Ci.
1. Linear combination. No broadcasts needed.
2. Conversion from Z2n to a smaller ring Z2m . No broadcasts needed.
3. Multiplication in Zm. Let JyK = Jx1K · Jx2K be the statement being verified. Let (JaK, JbK, JcK) be a precomputed

multiplication triple over Zm. P broadcasts x̂1 = x1 − a and x̂2 = x2 − b.
4. Bit decomposition in Z2m . Let (Jy0K, . . . , Jym−1K) = bd(JxK) be the statement being verified. Let Jb0K, . . . , Jbm−1K

be precomputed trusted bits, shared over Zm. P broadcasts bits c0, . . . , cm−1, where ck = 1 iff bk = yk.
5. Conversion from Z2n to a larger ring Z2m . Let y = zext(x) be the statement being verified. Let Jb0K, . . . , Jbn−1K

be precomputed trusted bits, shared over Z2m . P performs bit decomposition of x over Z2m , getting m bits
xk. It takes the first n of these bits, and broadcasts c0, . . . , cn−1, where ck = 1 iff bk = xk.

• Verification (2nd round): After the broadcasts have been done, the verifiers start computing Ci locally on
shares, collecting the alleged zeroes. V1 and V2 compute the gates as follows.
1. Linear combination. Let y =

∑t
j=1 cj · xj be the statement being verified. Compute JyK =

∑t
j=1 cj · JxjK.

2. Conversion from Z2n to a smaller ring Z2m . Drop n−m highest bits from all shares of x.
3. Multiplication in Zm. Using x̂1 and x̂2 that P has broadcast before, compute JyK = x̂1 ·JbK+x̂2 ·JaK+JcK+x̂1 ·x̂2.

Compute the alleged zeroes Jz1K = Jx1K− JaK− x̂1 and Jz2K = Jx2K− JbK− x̂2.
4. Bit decomposition in Z2m . Using the bits ck that P has broadcast before, take JykK = JbkK if ck = 0, and

JykK = 1− JbkK, if ck = 1. Compute the alleged zero JzK = JxK−
∑m−1
i=0 2k · JykK.

5. Conversion from Z2n to a larger ring Z2m : Using the broadcast bits c0, . . . , cn−1, perform the bit decomposition
of JxK, obtaining the shared bits Jy0K, . . . , Jyn−1K; the bits are shared over the ring Z2m . Compute JyK =∑n−1
i=0 2k · JykK and the alleged zero JzK = JxK−

∑n−1
i=1 2k · trunc(JykK).

6. Circuit outputs: Let JyK be the output locally computed by the verifiers. Let Jy′K be the output committed
before. Compute the alleged zero JzK = JyK− Jy′K.

V1 computes h1 = H(z1
1 , z

1
2 , · · · , z1

s) and V2 computes h2 = H((−z2
1), (−z2

2), · · · , (−z2
s)), where H is a collision-

resistant hash function and z1
k, z

2
k are the shares of JzkK held by V1 and V2 respectively. They send h1 and h2 to

each other and to the prover, checking if h1 = h2. If h1 6= h2, then P computes h1 and h2 from its own shares (it
holds all of them) and looks which one was opened incorrectly. Let it be hk. P broadcasts a complaint against Vk.
All shares of Vk are opened using Ftransmit and Fpre, and the other verifier Vj repeats the computation of Vk.
• Cheater detection: At any time, when Ftransmit outputs a message (cheater, k), output (cheater, k) and stop.
Fig. 7. Real protocol Πverify (verification and cheater detection)

previously committed that output as Jy′K (the output is
a message that the prover has sent to another party).
To verify the correctness of prover’s commitment, the
parties produce an alleged zero JzK = JyK− Jy′K.

For particular gate operations, the values JyiK and
JziK are computed as shown in Fig. 6. First, the prover
broadcasts to the verifiers some hints, which are just dif-
ferences between private values and components of the
precomputed tuples. Similarly to the pairwise check of
Πpre, since each tuple is used only once, all these val-
ues come from uniform distribution and can be easily
simulated in the security proof. Using these hints and
the precomputed tuples, all circuit operations can be
reduced to linear combinations of shared values, com-
puted using the homomorphic properties of the sharing
scheme.

It is easy to check that, if z = 0 for all alleged zeroes
z, then (y1, . . . , yl) = op(x1, . . . , xk) for all gate opera-
tions op. The correctness of all broadcast hints is verified
using alleged zeroes. The multiplication check is analo-
gous to the pairwise check of Πpre, and for the bit oper-
ations, since yi ∈ {0, 1} (it follows from bi ∈ {0, 1}), the
equality JxK =

∑m−1
i=0 2i ·JyiK implies that (y0, . . . , ym−1)

is an m-bit decomposition of x.
So far, all the communication between parties only

originates from the prover. Thus the verification of a
circuit can be done by the prover first broadcasting a
single long message, followed by the verifiers performing
local computations.

Checking of alleged zeroes. The verifiers check
if ~z = (z1, . . . , zs) is equal to ~0 similarly to Πpre, ex-
changing the hashes h1 and h2 of shares ~z1 and (−~z2).

Verification of Multiparty Protocols with Honest Majority 31

If h1 6= h2, it is still possible that not P , but some Vk
has cheated by publishing an incorrect hk. In this case,
h1 and h2 are also opened to P , who holds all the shares
and hence knows how h1 and h2 should look like. P is
allowed to complain against one of the verifiers Vk. All
the shares of Vk are revealed through Ftransmit and Fpre.
The other verifier Vj can now repeat the computation
of Vk and check whether P or Vk was cheating. After
this step, Vj knows exactly who the cheater was. Both
honest parties now agree on the cheater’s identity.

Similarly to the conflict resolving of Ftransmit , re-
vealing these shares can be easily simulated in UC model
since if there is a conflict between P and Vk, then all
these shares are already known to the adversary.

All communication in the checking step originates
from the verifiers, unless there are complaints. All these
messages can be transmitted in the same round. The
whole post-execution phase, in the case of no com-
plaints, only requires two rounds of communication. The
broadcasts of hints take place in the first round while
exchanging the hashes of alleged zero shares takes place
during the second round.

Summary. The discussion above gives us a proof
sketch for the following lemma.

Lemma 2. Let the number of parties be n = 3. Assum-
ing one corrupted party, there exists a protocol Πverify
UC-realizing Fverify in Fpre-Ftransmit-hybrid model.

Using Fverify for commitments of all the input, random-
ness, and communication, and to later verify the compu-
tation on this values, we get an implementation Πvmpc
of Fvmpc, thus proving Theorem. 1 for the 3-party case.

Proposition 1. Let n = 3. Assuming one corrupted
party, there exists a protocol Πvmpc UC-realizing Fvmpc.

In Sec. 6, we show how to extend our transformation to
the n-party case, proving the general case of Theorem. 1.

5 Evaluation

5.1 Implementation

We have implemented the verification of computations
for the Sharemind protocol set [9, 37, 39, 44]. This set
covers integer, fix- and floating point operations, as well
as shuffling the arrays. Almost all these protocols are
generated from a clear description of how messages are

computed and exchanged between parties [43], which is
very similar to the circuits C`ij defined in Sec. 3.

Preprocessing phase. The verified tuple gener-
ator has been implemented in C, compiled with gcc ver.
4.8.4, using -O3 optimization level, and linking against
the cryptographic library of OpenSSL 1.0.1k. We have
tried to simplify the communication pattern of the tuple
generator as much as possible, believing it to maximize
performance. On the other hand, we have not tried to
parallelize the generator, neither its computation, nor
the interplay of computation and communication. Hence
we believe that further optimizations are possible.

The generator works as follows. If the parties want
to produce u verified tuples, then (i) they will select
µ and κ appropriately for the desired security level
(Sec. 4.2); (ii) the prover sends shares of (µu + κ) tu-
ples to verifiers; (iii) verifiers agree on a random seed
(used to determine, which tuples are opened and which
are grouped together) and send it back to the prover;
(iv) prover sends to the verifiers κ tuples that were to
be opened, as well as the differences between compo-
nents of tuples that are needed for pairwise verification;
(v) verifiers check the well-formedness of opened tuples
and check the alleged zeroes stating that they received
from the prover the same values, these values match
the tuples, and the pairwise checks go through. Steps
(ii) and (iv) are communication intensive. In step (iii),
each verifier generates a short random vector and sends
it to both the prover and the other verifier. The con-
catenation of these vectors is used as the random seed
for step (iv). Step (v) involves the verifiers comparing
that they’ve computed the same hash value (Sec. 4.1).
We use SHA-256 as the hash function.

To reduce the communication in step (ii) above,
we let the prover share a common random seed with
each of the verifiers. In this manner, the random values
do not have to be sent. E.g. for a multiplication triple
(JaK, JbK, JcK), both shares of JaK, both shares of JbK and
one share of JcK are random. The prover only has to send
one of the shares of JcK to one of the verifiers.

Execution phase. A Sharemind computation
server consists of several subsystems on top of each
other. Central of those is the virtual machine (VM).
This component reads the description of the privacy-
preserving application and executes it. The description
is stated in the form of a bytecode (compiled from a
high-level language) which specifies the operations with
public data, as well as the protocols to be called on pri-
vate data. The protocols call the networking methods
to send a sequence of values to one of the other two
computation servers, or to receive messages from them.

Verification of Multiparty Protocols with Honest Majority 32

In order to support verification, a computation
server of Sharemind must log the randomness the server
is using, as well as the messages that it has sent or re-
ceived. Using these logs, the descriptions of the privacy-
preserving application and the primitive protocols, it is
possible to restore the execution of the server.

We have modified the network layer of Sharemind,
making it sign each message it sends, and verify the sig-
nature of each message it receives. We have not added
the logic to detect whether two outgoing messages be-
long to the same round or not (in the former case, they
could be signed together), but this would not have been
necessary, because our compiled protocols produce only
a single message for each round. We have used GNU
Nettle for the cryptographic operations. For signing, we
use 2 kbit RSA and SHA-256. Beside message signing
and verification, we have also added the logging of all
outgoing and incoming messages.

Verification phase. The virtual machine of the
post-execution phase reads the application bytecode
and the log of messages to learn, which protocols were
invoked in which order and with which data during the
execution phase. The information about invoked proto-
cols is present in both the prover’s log, as well as in
the verifiers’ logs. Indeed, the identity of invoked proto-
cols depends only on the application, and on the public
data it operates on. This is identical for all computation
servers. The post-execution VM then reads the descrip-
tions of protocols and performs the steps described in
Sec. 4.3. The post-execution VM has been implemented
in Java, translated with the OpenJDK 6 compiler and
run in the OpenJDK 7 runtime environment. The verifi-
cation phase requires parties to sign their messages, we
have used 2 kbit RSA with SHA-256 for that purpose.

5.2 The Cost of Covertly Secure Protocols

For benchmarking, we have chosen the most gen-
eral protocols of Sharemind over Z232 : multiplication
(MULT32), 128-bit AES (AES128), bitwise conjunction
(AND32), conversion from additive sharing (i.e. over
Z232) to xor sharing (i.e. over Z32

2) (A2X32) and vice
versa (X2A32). We have measured the total cost of
covert security of these protocols, using the tools that we
have implemented. Our tests make use of three 2× In-
tel Xeon E5-2640 v3 2.6 GHz/8GT/20M servers, with
125GB RAM running on a 1Gbps LAN, similarly to the
benchmarks reported in Sec. 2. We run a large number
of protocol instances in parallel, and report the amor-
tized execution time for a single protocol.

Preprocessing. In the described set-up, we are
able to generate 100 million verification triples for 32-
bit multiplication in ca. 236 seconds (Table 1). To verify
a single multiplication protocol, we need 6 such triples.
We use Sharemind protocol [9, Alg. 2] that formally has
3 multiplications per party, but all of them are of the
form x1y1 +x1y2 +x2y1 and can be trivially rewritten to
x1(y1 + y2) + x2y1. The amortized preprocessing effort
to verify a single 32-bit multiplication is ca. 14µs.

Sharemind uses 6400 AND gates per AES128 block.
Each AND gate is just a multiplication, and it requires
6 one-bit triples. The time of generating 108 xor-shared
32-bit AND triples is 236 s. The amortized preprocessing
effort to verify a single 128-bit AES block is ca. 2.8ms.

The A2X [resp. X2A] protocol requires 96 xor-
shared AND triples [resp. 64 additively shared 32-bit
multiplication triples], and 64 [resp. 96] 32-bit trusted
bits. The amortized effort of these protocols is ca. 273µs
for A2X, and 220µs for X2A.

Table 1. Time to generate u = 108 verified tuples for η = 80
(µ = 4, κ = 15000)

tuple width time

Multiplication triples 32 bits 236 s
64 bits 352 s

Trusted bits 32 bits 72 s
64 bits 101 s

xor-shared AND triples 32 bits 236 s

Execution. We have measured runtimes of pas-
sively secure Sharemind with and without signing and
logging. The execution times in milliseconds are given
in Table 2. If a large number of these operations are
computed in parallel, the amortized time (including all
necessary signing and logging) is ca 0.16µs for AND32
and MULT32, 0.04ms for one AES128 block, 2.3µs for
A2X, and 5.1µs for X2A. In general, for sufficiently large
inputs, the signing and logging appears to reduce the
performance of the current implementation of Share-
mind up to three times. It is likely that a more careful
parallelization of the networking layer would eliminate
most of that overhead.

Verification. Assuming that all the inputs and
the communication have already been committed, and
the correlated randomness precomputed, we run the ver-
ification phase in parallel for all 3 provers, and measure
the total execution time (for asymmetric protocols, we
report the times of all 3 provers). We consider the op-
timistic setting, where the prover only signs the broad-

Verification of Multiparty Protocols with Honest Majority 33

Table 2. Times of the execution phase with and without signing and logging (ms)

runs AND32 MULT32 AES128 A2X32 X2A32
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

101 0.362 4.75 0.349 3.96 11.3 485 0.785 38.8 0.19 8.75
102 0.345 4.42 0.237 3.84 13.4 496 0.928 38.7 1.05 8.59
103 0.147 4.58 0.282 4.04 33.0 600 1.73 45.0 2.28 12.8
104 0.668 6.37 0.733 5.40 214 726 8.44 55.6 27.3 60.4
105 7.46 15.1 8.13 15.1 2090 3740 98.4 227 252 481
106 73.9 166 73.8 184 – – 909 2290 2690 5050
107 683 1550 717 1630 – – – – – –

cast message, and the verifiers exchange the hash of the
message to ensure that they got the same message. The
results are given in Table 4. When performing 10 mil-
lion verifications in parallel, the cost of verification is
ca. 1.7µs for MULT32 (or AND32), 0.29ms for a single
AES128 block, 22µs for A2X32, and 43µs for X2A32.

Table 3. Total amortized cost of covertly secure protocols

AND MULT32 AES128 A2X32 X2A32
cost(µs) 0.5 16 3100 297 268

When adding the costs of three phases, we get the
results given in Table. 3. These numbers are given for
covert security, since we have not applied the verifica-
tion after each round of these protocols. However, as
discussed in Sec. 1, since Sharemind protocols are ac-
tively private, and no declassifications take place in the
intermediate protocol rounds, we achieve active secu-
rity for given protocols. Hence, it is fair to compare our
results with state-of-the-art actively secure protocols.

We find that the total amortized cost of performing
a 32-bit multiplication in our three-party SMC protocol
tolerating one covertly corrupted party is ca. 16µs. This
is more than two orders of magnitude faster than any
existing solution. For a single AND gate, we get 0.5µs.
The total cost of evaluating a 128-bit AES block is ca
3.1ms, which is at least one order of magnitude faster
than the existing solutions. The total cost of conversions
between additive and bitwise sharing is ca. 297µs for
A2X32 and 268µs for X2A32, and we could not find
similar results in related work for comparison.

The recent result of computing AND gates [32] does
not report times, but uses total number of communi-
cated bits per AND gate instead. Their reported num-
ber is 30 bits per AND gate for 3 parties. Using the same
security parameter η = 40 (taking m = 3), and making
use of shared randomness, we get that the generation
one 1-bit multiplication triple requires 1 bit of commu-

nication and each pairwise verification 4 bits (opening
the 2 masked values by 2 verifiers to each other), adding
up to 1 + 4 · (m− 1) = 9 bits for a single verified triple.
Since we require a triple for each of the 6 local multipli-
cations of Sharemind protocol, we already get 54 bits.
The execution phase requires 6 bits of communication,
and the verification phase 24 bits (8 for each party). This
is 84 bits in total, or almost three times more. Some
additional overhead may come from signatures (their
cost becomes negligible as the communication grows).
However, our security property is stronger, allowing to
pinpoint the cheating party. Our method is also more
generic and allows to easily generate precomputed tu-
ples other than multiplication triples, that are useful in
verifying protocols other than multiplication.

6 Generalization to n parties
Let the number of parties be n. We assume that the
majority of parties is honest. We show that this allows
us to use linear threshold secret sharing to make P and
V1, . . . , Vn−1 (some of which may be corrupted) together
act as an honest verifier. The largest challenge coming
from n > 3 is that the corrupted prover P is now able to
collaborate with some of the corrupted verifiers Vi. In
this section, we show how the building blocks of Sec. 4.1
can be extended to n-party case. We review the defini-
tions of Πpre and Πverify, extending them to n parties.

6.1 Building Blocks

Ensuring message delivery. Assuming an honest
majority, the functionality Ftransmit of [20] works for
any number n of parties. If both the sender and the re-
ceiver are corrupted, they are not bound to transmitted
messages, and may reveal anything afterwards. How-
ever, we may only implement broadcast with abort if we
use the same approach as we did in the 3-party case.

Verification of Multiparty Protocols with Honest Majority 34

Table 4. Time and communication of the verification phase

runs time (s)
AND32 MULT32 AES128 A2X32 X2A32

P1 P2 P3 P1 P2 P3
101 0.315 0.322 0.472 0.324 0.337 0.323 0.333 0.340 0.337
102 0.335 0.337 0.694 0.377 0.387 0.383 0.383 0.413 0.411
103 0.387 0.384 1.21 0.496 0.494 0.488 0.465 0.532 0.559
104 0.564 0.557 4.46 0.896 0.949 0.930 0.868 1.17 1.21
105 0.939 0.952 29.1 2.72 3.08 3.02 2.60 5.31 5.95
106 2.72 2.68 – 18.5 21.8 21.4 16.9 37.6 43.0
107 16.7 16.7 – – – – – – –

Namely, if the sender is corrupted, then a corrupted re-
ceiver may exchange hj 6= hi only with some parties,
while the others think that there are no problems. To
solve this, after hashes have been exchanged, the par-
ties will need to wait for a single broadcast with unan-
imous abort round (using e.g. protocols of [40]) within
which complaints may be presented. If there is at least
one complaint, then broadcast with unanimous abort
should be executed on the same message. Opening can
be implemented similarly.

Commitments. The commitments can be ex-
tended to n parties using any linearly homomorphic
(n, t)-threshold sharing scheme. Formally, the prover P
is treated as one of the share holders, but in practice P
needs to come into play only after all t−1 corrupted ver-
ifiers have been caught in cheating. For this reason, in
the 3-party protocols of Sec. 4, we need to consider only
one sharing, the one that does not involve P . Hence, it
can be viewed as an instance of (3, 2)-threshold sharing.

All shares that P sends to Vi are delivered by
Ftransmit . It prevents corrupted parties from tamper-
ing with the shares of honest provers, and prevents a
corrupted prover from deviating from the shares that it
has given to the honest verifiers. If the number of honest
parties is at least t, then there is a subset of t verifiers
H that lists only honest parties. In this case, a set of
shares can be reconstructed to at most one value. Even
if corrupted verifiers collaborate with a corrupted prover
and modify their shares later (Ftransmit does not com-
mit corrupted parties to each other), this may only lead
to inconsistency of shares, and failure to open the com-
mitment. Availability of at least t honest parties allows
to maintain the commitment even if all the corrupted
parties have left the protocol.

Shamir’s sharing is an example of (n, t)-threshold
sharing that works over any finite field. For ring oper-
ations, replicated secret sharing [16] can be used. We
note that the size of shares in the latter case grows ex-
ponentially with n.

Preprocessed tuples. Using linear (n, t)-
threshold sharing instead of additive, the ideal func-
tionality Fpre can be directly generalized to n parties.
Since the sharing scheme is still linear, all the steps of
Πpre, up to alleged zero check, can be repeated similarly
to the 3-party case, without additional interaction. By
properties of (n, t)-threshold sharing, either the shares
of z (and also the opened â and b̂) are inconsistent, or z
is equal to the value that has been computed according
to the protocol rules from the shares of H. The only
difference from the 3-party case is that the verifiers
cannot simply exchange the hashes h1 = H(z1

1 , . . . , z
1
s)

and h2 = H((−z2
1), . . . , (−z2

s)), and all shares zij need
to be broadcast, which is more expensive, especially
taking into account that the cost of broadcast itself
grows with the number of parties. If the opened shares
are inconsistent, the protocol aborts.

6.2 Generalization of Πverify

All the commitments are done using linear (n, t)-
threshold sharing instead of additive.

Input commitment. The shares are generated
by the prover itself, similarly to the 3-party case. The
consistency of shares is not being checked. The commit-
ment is determined by the shares of H anyway, and it
may be only more difficult for the prover to make its
proof hold for inconsistent shares.

Randomness commitment. Each verifier Vj

first generates rj
$← Zm and commits itself to it by shar-

ing. After Vj has received the shares rji of all the other
verifiers Vi, it uses Ftransmit to deliver rji to P . After re-
ceiving all rji , P reconstructs ri, and takes r =

∑
i ri. If

the shares of some ri are inconsistent, then all the shares
are revealed through Ftransmit . The cheater is discarded,
and the randomness commitment is restarted, this time
without the cheater.

Verification of Multiparty Protocols with Honest Majority 35

It is very important that Vj opens rji to P only after
it receives rji for all i. This prevents a corrupted P from
getting rj of honest verifiers before all corrupted Vi have
been committed to ri that they generated.

Message commitment. During the execution,
all messages are transmitted using Ftransmit , as in the
3-party case. After the execution phase ends, the sender
Ps secret-shares the message ms it had sent to some re-
ceiver Pr during the execution, and sends each share
mi
s to Vi using Ftransmit . At the same time, the receiver

Pr shares the message mr that it actually received, us-
ing the same pre-agreed sharing as Ps uses (i.e. such
that if ms = mr, then mi

s = mi
r for all i). After receiv-

ing mi
s and mi

r, Vi checks that mi
s = mi

r. If they are
different, then mi

s and mi
r are both revealed through

Ftransmit . If they are indeed different, then either Ps
or Pr is corrupted, and the adversary already knows m
that was actually transmitted in the execution phase.
Hence Ftransmit can be used to reveal m.

At this point, both Ps and Pr are committed to
the shares of JmK that have been issued to the honest
parties. It may happen that the sharing JmK does not
correspond to the m transmitted in the execution phase
only if Ps and Pr both are corrupted. In this case, the
value of m that was actually transmitted is meaningless
anyway, as it can be viewed as an inner value of the
joint circuit of Ps and Pr. It is only important that Ps
and Pr are committed to the same value. We recall that
it is allowed by Fverify.

Verification. The first round only involves some
broadcasts by the prover, similarly to the 3-party case.
On the second round, all the local computations can be
done by the verifiers as in the 3-party case, since the
linear (n, t)-threshold sharing has the necessary homo-
morphic properties.

Similarly to Πpre, the verifiers cannot use hashing
to verify if z = 0, and they need to broadcast all shares
of z instead. As in the 3-party case, the shares zk do
not leak any private information of an honest prover. In
particular, any share zk for k /∈ C is uniquely determined
by the t− 1 shares of corrupted parties and the value z,
which equals 0.

If z = 0, then it should be 0 also if we only take
into account the shares zk of k ∈ H that have honestly
computed all the linear combinations w.r.t. the commit-
ments. If z 6= 0, then it is not clear whether P or some
verifier Vi has cheated (or both). In this case, P is al-
lowed to complain about up to t − 1 verifiers. All the
shares of these verifiers are revealed through Ftransmit ,
and all the other verifiers repeat their proof steps to re-
compute their shares zi. Similarly to the 3-party case,

if there is a conflict, then all these shares are known to
the adversary anyway, so they can be revealed.

Cheater detection. There are many steps in
which a cheater can be detected due to use of Ftransmit .
If one of the corrupted verifiers gets detected during the
proof, then we still want the proof to finish, since it is
not immediately clear whether P itself is a cheater. In
all such cases, the corrupted verifier is discarded from
the proof. Using (n, t)-threshold sharing allows the re-
maining parties to proceed with the proof, even after all
t− 1 corrupted parties have left the protocol.

7 Conclusions and Further Work
We have proposed a scheme transforming passively se-
cure protocols with honest majority to covertly secure
ones. The protocol transformation is most suitable to
be implemented on top of passively secure SMC frame-
works that use 3 parties and computation over rings of
size 2m. The framework will retain its efficiency, as the
time from starting a computation to obtaining the re-
sult at the end of the execution phase will increase only
slightly. We evaluated our method on top of the Share-
mind SMC framework and found its overhead to be of
acceptable size, roughly an order of magnitude larger
than the complexity of the SMC protocols included in
the framework (which are already practicable).

The notion of verifiability that we achieve in this
paper is very strong — a misbehaving party will re-
main undetected with only a negligible probability. The
original notion of covert security [1] only required a ma-
licious party to be caught with non-negligible probabil-
ity. By randomly deciding (with probability p) after a
protocol run whether it should be verified, our method
still achieves covert security, but the average overhead
of verification is reduced by 1/p times. It is likely that
overheads smaller than the execution time of the orig-
inal passively secure protocol may be achieved in this
manner, while keeping the consequences of misbehav-
ing sufficiently severe.

Acknowledgements. The authors are grateful to
Emmanuela Orsini for verifying and commenting on the
correctness and presentation of proofs. They are also
grateful to Aaron Johnson and the anonymous review-
ers of PoPETs for their comments. This research has
been supported by Estonian Research Council through
grant No. IUT27-1, and by the European Regional De-
velopment Fund through the Software Technology and
Applications Competence Centre (STACC).

Verification of Multiparty Protocols with Honest Majority 36

References
[1] Aumann, Y., and Lindell, Y. Security against covert

adversaries: Efficient protocols for realistic adversaries. J.
Cryptology 23, 2 (2010), 281–343.

[2] Baum, C., Damgård, I., and Orlandi, C. Publicly au-
ditable secure multi-party computation. In Security and
Cryptography for Networks - 9th International Confer-
ence, SCN 2014. Proceedings (2014), M. Abdalla and R. D.
Prisco, Eds., vol. 8642 of LNCS, Springer, pp. 175–196.

[3] Baum, C., Damgård, I., Toft, T., and Zakarias, R.
Better preprocessing for secure multiparty computation.
In Applied Cryptography and Network Security: 14th In-
ternational Conference, ACNS 2016. Proceedings (2016),
M. Manulis, A.-R. Sadeghi, and S. Schneider, Eds., Springer
International Publishing, pp. 327–345.

[4] Baum, C., Orsini, E., and Scholl, P. Efficient secure
multiparty computation with identifiable abort. In Theory of
Cryptography - 14th International Conference, TCC 2016-B,
2016, Proceedings, Part I (2016), M. Hirt and A. D. Smith,
Eds., vol. 9985 of LNCS, pp. 461–490.

[5] Beaver, D. Efficient multiparty protocols using circuit
randomization. In CRYPTO (1991), J. Feigenbaum, Ed.,
vol. 576 of LNCS, Springer, pp. 420–432.

[6] Bogdanov, D., Jõemets, M., Siim, S., and Vaht, M.
How the estonian tax and customs board evaluated a tax
fraud detection system based on secure multi-party compu-
tation. In Financial Cryptography, FC 2015, Revised Selected
Papers (2015), R. Böhme and T. Okamoto, Eds., vol. 8975
of LNCS, Springer, pp. 227–234.

[7] Bogdanov, D., Kamm, L., Kubo, B., Rebane, R.,
Sokk, V., and Talviste, R. Students and taxes: a
privacy-preserving study using secure computation. PoPETs
2016, 3 (2016), 117–135.

[8] Bogdanov, D., Laur, S., and Willemson, J. Sharemind:
A framework for fast privacy-preserving computations. In
ESORICS (2008), S. Jajodia and J. López, Eds., vol. 5283
of LNCS, Springer, pp. 192–206.

[9] Bogdanov, D., Niitsoo, M., Toft, T., and Willem-
son, J. High-performance secure multi-party computation
for data mining applications. Int. J. Inf. Sec. 11, 6 (2012),
403–418.

[10] Bogdanov, D., Talviste, R., and Willemson, J. De-
ploying secure multi-party computation for financial data
analysis (short paper). In Financial Cryptography (2012),
A. D. Keromytis, Ed., vol. 7397 of LNCS, Springer, pp. 57–
64.

[11] Brakerski, Z., Gentry, C., and Vaikuntanathan, V.
(leveled) fully homomorphic encryption without bootstrap-
ping. In Innovations in Theoretical Computer Science 2012
(2012), S. Goldwasser, Ed., ACM, pp. 309–325.

[12] Brickell, J., and Shmatikov, V. Privacy-preserving
graph algorithms in the semi-honest model. In ASIACRYPT
(2005), B. K. Roy, Ed., vol. 3788 of LNCS, Springer,
pp. 236–252.

[13] Burkhart, M., Strasser, M., Many, D., and Dim-
itropoulos, X. SEPIA: Privacy-preserving aggregation
of multi-domain network events and statistics. In USENIX
Security Symposium (2010), pp. 223–239.

[14] Canetti, R. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS (2001),
IEEE Computer Society, pp. 136–145.

[15] Catrina, O., and de Hoogh, S. Secure multiparty linear
programming using fixed-point arithmetic. In ESORICS
(2010), D. Gritzalis, B. Preneel, and M. Theoharidou, Eds.,
vol. 6345 of LNCS, Springer, pp. 134–150.

[16] Cramer, R., Damgård, I., and Ishai, Y. Share conver-
sion, pseudorandom secret-sharing and applications to secure
computation. In Theory of Cryptography, Second Theory of
Cryptography Conference, TCC 2005, Proceedings (2005),
J. Kilian, Ed., vol. 3378 of LNCS, Springer, pp. 342–362.

[17] Cunningham, R., Fuller, B., and Yakoubov, S.
Catching MPC cheaters: Identification and openabil-
ity. Cryptology ePrint Archive, Report 2016/611, 2016.
http://eprint.iacr.org/2016/611.

[18] Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J. B., and
Toft, T. Unconditionally secure constant-rounds multi-
party computation for equality, comparison, bits and expo-
nentiation. In TCC (2006), S. Halevi and T. Rabin, Eds.,
vol. 3876 of LNCS, Springer, pp. 285–304.

[19] Damgård, I., Geisler, M., Krøigaard, M., and
Nielsen, J. B. Asynchronous Multiparty Computation:
Theory and Implementation. In Public Key Cryptography
(2009), S. Jarecki and G. Tsudik, Eds., vol. 5443 of LNCS,
Springer, pp. 160–179.

[20] Damgård, I., Geisler, M., and Nielsen, J. B. From
passive to covert security at low cost. In TCC (2010),
D. Micciancio, Ed., vol. 5978 of LNCS, Springer, pp. 128–
145.

[21] Damgård, I., Keller, M., Larraia, E., Miles, C., and
Smart, N. P. Implementing AES via an actively/covertly
secure dishonest-majority MPC protocol. In Security and
Cryptography for Networks - 8th International Conference,
SCN 2012. Proceedings (2012), I. Visconti and R. D. Prisco,
Eds., vol. 7485 of LNCS, Springer, pp. 241–263.

[22] Damgård, I., Keller, M., Larraia, E., Pastro, V.,
Scholl, P., and Smart, N. P. Practical Covertly Se-
cure MPC for Dishonest Majority - Or: Breaking the SPDZ
Limits. In ESORICS (2013), J. Crampton, S. Jajodia, and
K. Mayes, Eds., vol. 8134 of LNCS, Springer, pp. 1–18.

[23] Damgård, I., Nielsen, J. B., Nielsen, M., and Ranel-
lucci, S. Gate-scrambling revisited - or: The tinytable
protocol for 2-party secure computation. Cryptology ePrint
Archive, Report 2016/695, 2016. http://eprint.iacr.org/
2016/695.

[24] Damgård, I., Pastro, V., Smart, N. P., and Zakarias,
S. Multiparty computation from somewhat homomorphic
encryption. In Safavi-Naini and Canetti [52], pp. 643–662.

[25] Damgård, I., Toft, T., and Zakarias, R. W. Fast
multiparty multiplications from shared bits. Cryptology
ePrint Archive, Report 2016/109, 2016. http://eprint.iacr.
org/.

[26] Damgård, I., and Zakarias, S. Constant-overhead secure
computation of boolean circuits using preprocessing. In TCC
(2013), pp. 621–641.

[27] Damiani, E., Bellandi, V., Cimato, S., Gianini, G.,
Spindler, G., Grenzer, M., Heitmüller, N., and
Schmechel, P. PRACTICE Deliverable D31.2: risk-aware
deployment and intermediate report on status of legislative

http://eprint.iacr.org/2016/611
http://eprint.iacr.org/2016/695
http://eprint.iacr.org/2016/695
http://eprint.iacr.org/
http://eprint.iacr.org/

Verification of Multiparty Protocols with Honest Majority 37

developments in data protection, October 2015. Available
from http://www.practice-project.eu.

[28] Demmler, D., Dessouky, G., Koushanfar, F.,
Sadeghi, A., Schneider, T., and Zeitouni, S. Auto-
mated synthesis of optimized circuits for secure computa-
tion. In Ray et al. [51], pp. 1504–1517.

[29] Demmler, D., Schneider, T., and Zohner, M. ABY -
A framework for efficient mixed-protocol secure two-party
computation. In 22nd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2015 (2015), The Internet
Society.

[30] Franklin, M. K., Gondree, M., and Mohassel, P.
Communication-efficient private protocols for longest com-
mon subsequence. In CT-RSA (2009), M. Fischlin, Ed.,
vol. 5473 of LNCS, Springer, pp. 265–278.

[31] Frederiksen, T. K., Keller, M., Orsini, E., and
Scholl, P. A Unified Approach to MPC with Preprocessing
Using OT. In Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application
of Cryptology and Information Security, 2015, Proceedings,
Part I (2015), T. Iwata and J. H. Cheon, Eds., vol. 9452 of
LNCS, Springer, pp. 711–735.

[32] Furukawa, J., Lindell, Y., Nof, A., and Weinstein,
O. High-throughput secure three-party computation for ma-
licious adversaries and an honest majority. In Advances
in Cryptology - EUROCRYPT 2017, Proceedings, Part
II (2017), J. Coron and J. B. Nielsen, Eds., vol. 10211 of
LNCS, pp. 225–255.

[33] Goldreich, O., Micali, S., and Wigderson, A. How
to Play any Mental Game or A Completeness Theorem for
Protocols with Honest Majority. In STOC (1987), ACM,
pp. 218–229.

[34] Kamm, L., and Willemson, J. Secure floating point arith-
metic and private satellite collision analysis. International
Journal of Information Security (2014), 1–18.

[35] Katz, J., Ranellucci, S., and Wang, X. Authenticated
garbling and efficient maliciously secure multi-party compu-
tation. Cryptology ePrint Archive, Report 2017/189, 2017.
http://eprint.iacr.org/2017/189.

[36] Keller, M., Orsini, E., and Scholl, P. MASCOT:
faster malicious arithmetic secure computation with oblivi-
ous transfer. In Proceedings of the 2016 ACM CCS, 2016
(2016), E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds., ACM, pp. 830–842.

[37] Kerik, L., Laud, P., and Randmets, J. Optimizing
MPC for robust and scalable integer and floating-point
arithmetic. In Proceedings of WAHC’16 - 4th Workshop
on Encrypted Computing and Applied Homomorphic Cryp-
tography (2016), M. Brenner and K. Rohloff, Eds.

[38] Kreuter, B., Shelat, A., and Shen, C. Billion-gate
secure computation with malicious adversaries. In Proceed-
ings of the 21th USENIX Security Symposium, 2012 (2012),
T. Kohno, Ed., USENIX Association, pp. 285–300.

[39] Krips, T., and Willemson, J. Hybrid model of fixed and
floating point numbers in secure multiparty computations.
In Information Security - 17th International Conference, ISC
2014. Proceedings (2014), S. S. M. Chow, J. Camenisch,
L. C. K. Hui, and S. Yiu, Eds., vol. 8783 of LNCS, Springer,
pp. 179–197.

[40] Lamport, L., Shostak, R., and Pease, M. The byzan-

tine generals problem. ACM Trans. Program. Lang. Syst. 4,
3 (July 1982), 382–401.

[41] Laud, P., and Pankova, A. Verifiable Computation in
Multiparty Protocols with Honest Majority. In Provable
Security - 8th International Conference, ProvSec 2014. Pro-
ceedings (2014), S. S. M. Chow, J. K. Liu, L. C. K. Hui,
and S. Yiu, Eds., vol. 8782 of LNCS, Springer, pp. 146–161.

[42] Laud, P., and Pettai, M. Secure multiparty sorting pro-
tocols with covert privacy. In Proceedings of Nordsec 2016
(2016).

[43] Laud, P., and Randmets, J. A domain-specific language
for low-level secure multiparty computation protocols. In
Proceedings of the 22nd ACM SIGSAC CCS, 2015 (2015),
ACM, pp. 1492–1503.

[44] Laur, S., Willemson, J., and Zhang, B. Round-Efficient
Oblivious Database Manipulation. In Proceedings of the
14th International Conference on Information Security.
ISC’11 (2011), pp. 262–277.

[45] Lindell, Y., and Riva, B. Blazing Fast 2PC in the Of-
fline/Online Setting with Security for Malicious Adversaries.
In Ray et al. [51], pp. 579–590.

[46] Mohassel, P., Orobets, O., and Riva, B. Efficient
Server-Aided 2PC for Mobile Phones. Proceedings of Pri-
vacy Enhancing Technologies 2016, 2 (2016), 82–99.

[47] Nielsen, J. B., Nordholt, P. S., Orlandi, C., and
Burra, S. S. A new approach to practical active-secure
two-party computation. In Safavi-Naini and Canetti [52],
pp. 681–700.

[48] Paillier, P. Public-key cryptosystems based on compos-
ite degree residuosity classes. In EUROCRYPT (1999),
pp. 223–238.

[49] Pettai, M., and Laud, P. Automatic proofs of privacy
of secure multi-party computation protocols against active
adversaries. In IEEE 28th Computer Security Foundations
Symposium, CSF 2015 (2015), C. Fournet, M. W. Hicks,
and L. Viganò, Eds., IEEE, pp. 75–89.

[50] Pullonen, P. Actively secure two-party computation:
Efficient Beaver triple generation. Master’s thesis, University
of Tartu, Aalto University, 2013.

[51] Ray, I., Li, N., and Kruegel, C., Eds. Proceedings of
the 22nd ACM CCS, Denver, CO, USA, October 12-6, 2015
(2015), ACM.

[52] Safavi-Naini, R., and Canetti, R., Eds. Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings (2012), vol. 7417 of LNCS, Springer.

[53] Shamir, A. How to share a secret. Commun. ACM 22, 11
(1979), 612–613.

[54] Spini, G., and Fehr, S. Cheater detection in SPDZ mul-
tiparty computation. In Information Theoretic Security -
9th International Conference, ICITS 2016, Revised Selected
Papers (2016), A. C. A. Nascimento and P. Barreto, Eds.,
vol. 10015 of LNCS, pp. 151–176.

[55] Vaht, M. The Analysis and Design of a Privacy-Preserving
Survey System. Master’s thesis, Institute of Computer Sci-
ence, University of Tartu, 2015.

[56] Wang, X., Ranellucci, S., and Katz, J. Authenticated
garbling and efficient maliciously secure two-party compu-
tation. Cryptology ePrint Archive, Report 2017/030, 2017.
http://eprint.iacr.org/2017/030.

http://www.practice-project.eu
http://eprint.iacr.org/2017/189
http://eprint.iacr.org/2017/030

Verification of Multiparty Protocols with Honest Majority 38

A Other operations
The circuits for computing the messages in certain pro-
tocols of Sharemind use some more operations in addi-
tion to those described in Sec. 4. We now describe their
verification. Note that the multiplication protocol only
needs multiplications to be verified [9, Alg. 2].

Comparison. The computation of a shared bit
JyK from Jx1K, Jx2K ∈ Z2n , indicating whether x1 < x2,
proceeds by the following composition. First, convert
the inputs to the ring Z2n+1 , let the results be Jx′1K and
Jx′2K. Next, compute JwK = Jx′1K−Jx′2K in the ring Z2n+1 .
Decompose JwK into bits and let JyK be the highest bit.

Bit shifts. To compute JyK = JxK � Jx′K, where
JyK and JxK are shared over Z2n and Jx′K is shared over
Zn, the parties need a precomputed characteristic vector
(CV) tuple (JrK, J~sK), where JrK is shared over Zn, JsiK
are shared over Z2n , the values si are bits, the length of
~s is n, and si = 1 iff i = r. The prover broadcasts x̂ = r−
x′ ∈ Zn. The verifiers compute J~s′K = rot(x̂, J~sK), defined
by Js′iK = Js(i+x̂) mod nK for all i < n. Note that s′i = 1
iff i = x′. The verifiers compute J2x′

K =
∑n−1
i=0 2iJs′iK

and multiply it with JxK (using a multiplication triple).
They compute the alleged zero JzK = JrK − Jx′K − x̂, as
well as two alleged zeroes from the multiplication.

To compute JyK = JxK � Jx′K, the parties first re-
verse JxK, using bit decomposition. They shift the re-
versed value left by Jx′K, and reverse the result again.

During precomputation phase, the CV tuples have
to be generated. Their correctness control follows
Sec. 4.2, with the following pairwise verification oper-
ation. Given tuples (JrK, J~sK) and (Jr′K, J~s′K), the veri-
fiers compute Jr̂K = Jr′K − JrK, declassify it, compute
J~̂sK = J~sK− rot(r̂, J~s′K), declassify it and check that it is a
vector of zeroes. Recall (Sec. 4.2) that we need the pair-
wise verification to only point out whether one tuple is
correct and the other one is not.

Rotation. The computation of J~yK = rot(Jx′K, J~xK)
for J~xK, J~yK ∈ Zm2n and Jx′K ∈ Zm could be built from bit
shifts, but a direct computation is more efficient. The
parties need a rotation tuple (JrK, J~sK, J~aK, J~bK), where JrK
and J~sK are a CV tuple (with r ∈ Zm and ~s ∈ Zm2n),
~a ∈ Zm2n is random and the elements of ~b satisfy bi =
a(i+r) mod m. The prover broadcasts r̂ = x′ − r and ~̂x =
~x− ~a. The verifiers can now compute

JciK = ~̂x · rot(i, J~sK) (i ∈ {0, . . . ,m− 1})

J~yK = rot(r̂, J~cK) + rot(r̂, J~bK) .

Here · denotes the scalar product; each ci is equal to
some x̂i. The correctness of the computation follows

from ~c = rot(r, ~̂x). The procedure gives the alleged ze-
roes Jz′K = Jx′K− JrK− r̂ and J~zK = J~xK− J~aK− ~̂x.

The pairwise verification of rotation tuples
T = (JrK, J~sK, J~aK, J~bK) and T′ = (Jr′K, J~s′K, J~a′K, J~b′K)
works similarly, using the tuple T′ to rotate J~aK by JrK
positions and checking that the result is equal to J~bK
(i.e. subtract one from another, open and check that
the outcome is a vector of zeroes). Additionally, pair-
wise verification of CV tuples is performed on (JrK, J~sK)
and (Jr′K, J~s′K).

Shuffle. The parties want to apply a permutation
σ to a vector J~xK ∈ Zmn , obtaining J~yK satisfying yi =
xσ(i). Here σ ∈ Sm is known to the prover and to exactly
one of the verifiers [44]. To protect prover’s privacy, it
must not become known to the other verifier. In the
following, we write [σ] to denote that σ is known to the
prover and to one of the verifiers (w.l.o.g., to V1).

The parties need a precomputed permutation triple
([ρ], J~aK, J~bK), where ρ ∈ Sm, ~a,~b ∈ Zmn and ~b = ρ(~a).
Both the prover and verifier V1 sign and send τ = σ◦ρ−1

to V2 (one of them may send H(τ); verifier V2 complains
if received τ -s are different). The prover broadcasts ~̂x =
~x − ~a. The verifiers compute their shares (~y1, ~y2) of J~yK
as ~y1 = τ(~b1 + ρ(~̂x)) and ~y2 = τ(~b2), where ~bi is the i-th
verifier’s share of J~bK. The alleged zeroes J~zK = J~xK −
J~aK− ~̂x are produced.

The pairwise verification of permutation triples
([ρ], J~aK, J~bK) and ([ρ′], J~a′K, J~b′K) again works similarly,
using the second tuple to apply [ρ] to J~a′K. The result is
then checked for its equality to J~b′K.

B Other Sharemind protocols
Our implementations of the preprocessing and verifica-
tion phases are still preliminary, at least compared to
the existing Sharemind platform and the engineering
effort that has been gone into it. We believe that signif-
icant improvements in their running times are possible,
even without changing the underlying algorithms or in-
voking extra protocol-level optimizations. Hence we are
looking for another metric that may predict the running
time of the new phases once they have been optimized.
We believe that the number of needed communication
bits is a good proxy for future performance.

The existing descriptions of Sharemind’s protocols
make straightforward the computation of their execu-
tion and verification costs in terms of communicated
bits. We have performed the computation for the pro-
tocols working with integers, and counted the number

Verification of Multiparty Protocols with Honest Majority 39

Table 5. Communication overheads of integer operation verification

Operation bit width
8 16 32 64

multiplication 48 : 192 : 1008
1 : 4 : 21

96 : 384 : 2017
1 : 4 : 21

192 : 768 : 4034
1 : 4 : 21

384 : 1536 : 8067
1 : 4 : 21

division 4178 : 46.0K : 1.1M
1 : 10 : 272

9752 : 106.5K : 5.0M
1 : 10 : 514

31.2K : 339.6K : 28.5M
1 : 10 : 914

87.6K : 941.4K : 181.2M
1 : 10 : 2069

div. with pub. 404 : 4812 : 94.4K
1 : 11 : 234

948 : 11.3K : 339.9K
1 : 11 : 359

2180 : 26.1K : 1.3M
1 : 11 : 581

4932 : 59.1K : 4.8M
1 : 11 : 982

priv. � priv. 144 : 1472 : 20.7K
1 : 10 : 144

400 : 5504 : 141.3K
1 : 13 : 353

1296 : 21.2K : 1.1M
1 : 16 : 811

4624 : 83.5K : 8.1M
1 : 18 : 1758

priv. � priv. 328 : 4592 : 35.8K
1 : 14 : 109

864 : 16.9K : 185.9K
1 : 19 : 215

2352 : 52.9K : 314.0K
1 : 22 : 134

7120 : 198.8K : 1.1M
1 : 27 : 161

priv. � pub. 180 : 1626 : 14.8K
1 : 9 : 82

468 : 4090 : 52.9K
1 : 8 : 113

1092 : 9690 : 182.8K
1 : 8 : 167

2564 : 22.4K : 658.2K
1 : 8 : 257

equality 50 : 200 : 1571
1 : 4 : 31

106 : 424 : 4549
1 : 4 : 43

218 : 872 : 14.3K
1 : 4 : 66

442 : 1768 : 49.3K
1 : 4 : 112

less than 280 : 2748 : 16.0K
1 : 9 : 57

719 : 7440 : 46.0K
1 : 10 : 64

1750 : 18.7K : 127.3K
1 : 10 : 73

4109 : 44.7K : 354.7K
1 : 10 : 86

additive to xor 160 : 1120 : 6403
1 : 7 : 40

416 : 3008 : 18.1K
1 : 7 : 44

1024 : 7552 : 49.4K
1 : 7 : 48

2432 : 18.2K : 135.5K
1 : 7 : 56

xor to additive 80 : 560 : 3722
1 : 7 : 47

288 : 2144 : 14.7K
1 : 7 : 51

1088 : 8384 : 58.7K
1 : 7 : 54

4224 : 33.2K : 234.2K
1 : 7 : 55

bits that need to be delivered for executing and verify-
ing an instance of the protocol. We have not taken into
account the signatures, the broadcast overhead, and the
final alleged zero hashes that the verifiers exchange, be-
cause these can be amortized over a large number of
protocols executing either in parallel or sequentially.

Table 5 presents our findings. For each protocol, the
results are presented in the form x:y:z

1 :a:b . The upper line
lists the total communication cost (in bits): x for the
execution of the protocol, y for its verification in the
post-execution phase, and z for the generation of pre-
computed tuples in the preprocessing phase. The suf-
fixes K and M denote the multipliers 103 and 106, re-
spectively. The lower line is computed directly from the
upper line, and it shows how many times more expen-
sive each phase is, compared to the execution phase (i.e.
a = y/x, b = z/x). The most interesting value is a that
shows the overhead of the online phase of our verifica-
tion, compared to passively secure computation.

In estimating the costs of generating precomputed
tuples, we have assumed the tuples to be generated in
batches of 220, with security parameter η = 80. Sec. 4.2
describes the number of extra tuples that we must send
for correctness checks. We consider the selected parame-
ters rather conservative; we would need less extra tuples

and less communication during the preprocessing phase
if we increased the batch size or somewhat lowered the
security parameter. Increasing the batch size to ca. 100
million would drop the parameterm from 5 to 4, thereby
reducing the communication needs of preprocessing by
20%. If we take η = 40, then m = 3 would be sufficient.

The described integer protocols in Table 5 take in-
puts additively shared between three computing parties
and deliver similarly shared outputs. In the “standard”
protocol set, the available protocols include multiplica-
tion, division (with private or with public divisor), bit
shifts (with private or public shift), comparisons and bit
decomposition, for certain bit widths. We left out the
protocols for operations that require no communication
between parties during execution or verification phase:
addition, and multiplication with a constant.

We see that the verification overhead of different
protocols varies quite significantly. While most of the
protocols require 7–20 times more communication dur-
ing the verification phase than in the execution phase,
the important case of integer multiplication has the
overhead of only four times. Even more varied are the
overheads for preprocessing, with integer multiplication
having the overhead of 21 and the protocols working on
smaller data having generally smaller overheads.

Verification of Multiparty Protocols with Honest Majority 40

C Full Security Proofs
We formalize the n-party protocols that have been
briefly described in Sec. 6. We use them to construct
the protocol Πvmpc UC-realizing Fvmpc that we defined
in Sec. 3. We then prove Theorem 2, which is an exten-
sion of Theorem. 1 of Sec. 3, that additionally includes
the cost estimation of Πvmpc.

Theorem 2. Let n be the number of parties. Let C be
the set of actively corrupted parties, |C| < n/2. There
exists a protocol Πvmpc UC-realizing Fvmpc with cor-
rectness error ε ≤ 2−η for a security parameter η. To
achieve this correctness level for verification of r-round
protocols, a signature scheme with probability of existen-
tial forgery δ ≤ 2−η−1−log (7n2(n+r+3)) is assumed.

In the optimistic mode (as far as no party attempts
to cheat), the cost of Πvmpc is the following. Let the lo-
cal circuits of parties have in total Mx, Mr, Mc, bits
of inputs, randomness, and communication respectively,
Nb gates requiring bit decompositions, and Nm multipli-
cation gates (we denote Ng := Nb +Nm). Let 2m be the
cardinality of the largest used ring. Let the used (n, t)-
threshold sharing scheme be such that the bit width of a
single share is shn times larger than the value itself. The
bit communication of different phases has the following
upper bounds:
– Preprocessing: shn ·(4n3ηm(Nbm+3Nm)+4n2Mr)+
o(n3ηmNb).

– Execution: shn · (n ·Mx +Mc) + o(rn2).
– Postprocessing: shn · (2n3Ngm+n2Mc)+o(n2Ngm).
The resulting protocol has 9 + r rounds, of which 5

come from the preprocessing, 1 from the input commit-
ment, 3 from the verification. In addition, two rounds
of broadcast with unanimous abort are executed after the
preprocessing and the execution phases, to check whether
any party has aborted.

If some corrupted party starts deviating from the
protocol, asymptotically, the number of rounds of the
execution phase may at most double, and the commu-
nication may increase at most 2n times. The overhead
of the verification phases may be larger, due to use of a
more expensive broadcast.

Adversary. Throughout this section, we use A to de-
note the adversary that attacks the real protocol Π, and
AS the adversary that attacks the ideal functionality F.
In security proofs, we construct a simulator S that me-
diates the communication between A and F, so that the
environment Z cannot distinguish whether it (together

with A) interacts with the protocol Π, or with F and S.
The ideal adversary AS can be seen as composition of
A and S. Alternatively, we could put S in place of AS ,
letting it communicate not with A, but directly with Z.

For all ideal functionalities F, we implicitly assume
that the inputs of corrupted parties are delivered di-
rectly to AS . For this reason, we will often write that
the simulator starts doing something on input, meaning
the inputs of corrupted parties that are delivered to the
simulator by F.

We will often use an informal expression x is
chosen by AS in definitions of ideal functionali-
ties, where a message of the form (command, id, x)
comes from a corrupted party. Formally, in such cases
the ideal functionality F sends to AS a message
(arrived(command), id, x), and waits until AS sends back
(change(command), id, x′), so that F will further use x′
instead of x. For shortness of presentation, we will avoid
writing out this sequence of messages.

In all protocols, the adversary is fully malicious, and
the corruptions are static. C denotes the set of corrupted
parties, and |C| < n/2 is assumed in all protocols.

Linear threshold secret sharing. As mentioned
in Sec. 6, we use linear (n, t)-threshold sharing for com-
mitments. We write JaK = (~ak)k∈[n] = classify(a) to de-
note the sharing of a, and a = declassify((~ak)k∈[n]) to
denote the reconstruction of a from shares.

Domains of public mappings. We write Dom(f)
to denote the domain of the mapping f , i.e. the set of
arguments on which it is defined. In our protocols, we
require e.g. that Dom(s) = Dom(r) for the mapping s

encoding a sender s(id) and a receiver r(id), thus en-
suring that each message identified by id has both the
sender and the receiver.

Protocol cost. For measuring protocol cost, we
take into account the number of rounds as well as the to-
tal number of bits communicated through the network.
Formally, we define a type Cost = N×N, where the first
component is the bit communication, and the second
component is the number of rounds. We define the op-
erations ⊗ : Cost× Cost→ Cost (parallel composition)
and ⊕ : Cost × Cost → Cost (sequential composition)
as follows:

– (a, b)⊗ (c, d) = (a+ c,max (b, d));
– (a, b)⊕ (c, d) = (a+ c, b+ d).

We will use the shorthand (a, b)⊗n to denote (a, b)⊗
· · ·⊗(a, b), where (a, b) occurs n times. Let the operation
⊗ have higher priority than ⊕.

Verification of Multiparty Protocols with Honest Majority 41

C.1 Building Blocks

C.1.1 Transmission, Broadcast, and Opening

We define an ideal functionality FTR that will be used
for communication between the parties. It allows to
transmit messages between two parties, forward previ-
ously transmitted messages, and also to broadcast and
reveal previously transmitted and forwarded messages
to all parties. We build ΠTR on top of Ftransmit of [20],
although the efficiency would be improved if we took
the internal structure of the protocol Πtransmit that im-
plements Ftransmit and slightly modified it.

The functionality FTR is given in Fig. 8. Similarly
to Ftransmit that it given in Fig. 3, each message has
a unique identifier id, encoding the sender s(id) and
the receiver r(id) of this message, so that all parties
know which messages will need to be transmitted be-
tween which parties. There is one more party f(id) to
which the message should be later forwarded by r(id)
(if no forwarding is foreseen, r(id) = f(id)). For broad-
casts, only s(id) is important, and the values r(id) and
f(id) may be undefined. When a message is revealed
to all parties, we require that it should be approved by
each party of the set {s(id), r(id), f(id)}, and it should
always succeed if at least one of them is honest.

The protocol ΠTR implementing FTR is given in
Fig. 9. This protocol is built on top of Ftransmit of [20].
As described in Sec. 4.1, to implement broadcast, we
let each party use Ftransmit to reveal the message to
each other party, followed by each pair of parties using
Ftransmit to reveal to each other the messages they re-
ceived, checking whether they have received the same
message. If the sender is corrupted, this protocol al-
lows that some parties agree on a unique m while the
other parties observe inconsistency. Therefore, a more
complicated broadcast with unanimous abort (e.g. one
of [40]), that we denote Fbc, is used to wait for possible
complaints. If any party complains, then the message is
broadcast again, this time using Fbc. The advantage of
waiting for complaints instead of using Fbc immediately
is that the size of a complaint does not depend on the
message size, and in our protocols the messages will be
broadcast in large batches. Also, the broadcast of com-
plaints can be postponed to the final round, so that the
verification will be repeated again with Fbc if any party
does complain.

To implement forwarding, it would be sufficient to
let the receiver Pr(id) reveal the message m to another
party Pf(id) using Ftransmit . However, we want that
Pf(id) would be able to prove later that the message has

been confirmed by Pr(id). This requires an additional
transmission from Pr(id). If Pr(id) attempts to transmit
not the same message that it has revealed, then it is
required to reveal the message to all parties, so that all
parties will know what message has been delivered to
Pf(id) by Pr(id), and see that it has been approved by
Ps(id). To ensure that the same message is revealed to
all parties, each pair of parties uses Ftransmit to reveal
to each other the messages they received, similarly to
the broadcast.

To reveal a previously forwarded message, the par-
ties first let Ps(id) broadcast the message to everyone.
If Pr(id) or Pf(id) disagree, or the broadcast fails, they
will use Ftransmit to reveal to the other parties the mes-
sages that they have actually received. To ensure that
the same message is revealed to all parties, each pair of
parties uses Ftransmit to reveal to each other the mes-
sages they received, similarly to the broadcast.

In order to estimate the cost of ΠTR, we summarize
in Fig. 10 the protocol Πtransmit of [20] that UC-realizes
Ftransmit . It is based in top of signatures, and we have
described it briefly in Sec. 4.1.

Table 6. Costs of different subprotocols of Πtransmit applied to
N -bit messages, using λ-bit signatures

operation rounds # bits/op # bits/rnd.
Cheap mode (if all parties follow the protocol)

transmit 1 N + λ n2

reveal 1 N + λ n2

Expensive mode (if some party cheats)
transmit 2 2(n− 1)(N + λ) 0

reveal 2 2(n− 1)(N + λ) 0

Observation 1. Let λ be the number of bits in a sig-
nature. The round and bit communication costs of ap-
plying different functions of Πtransmit to an N-bit mes-
sage are given in Table 6. The costs of signatures γi on
(cheater, k) are counted as one-time overhead that we do
not give in the table, since each such overhead may hap-
pen only once for Pk and Pi (if Pi has claimed Pk to
be corrupted, it will not need to claim that once more).
Similarly, although accusation handling can be expen-
sive if any accusations are actually made, we count them
as one-time overhead since if a conflict between Ps and
Pr occurs once, then all further communication between
them takes place in the expensive mode. The n2 bits per
round in the cheap mode are used to let each party in-
form the other parties whether it wants to complain.

Verification of Multiparty Protocols with Honest Majority 42

FTR works with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver r(id) ∈ [n], and a party f(id) ∈ [n] to
whom the message should be forwarded by the receiver (if no forwarding is foreseen then f(id) = r(id)). For broadcasts, the values
of r(id) and f(id) may be undefined.

• Initialization: On input (init, s, r, f) from all (honest) parties, where s,r,f are mappings s.t. Dom(s) = Dom(r) = Dom(f), store
s, r, f for further use. Deliver (init, s, r, f) to AS .

• Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest) parties:

1. If s(id) ∈ C, let m be chosen by AS . AS may decide to output (cheater, s(id)) to all parties instead of (id,m).
2. If s(id) /∈ C or A has not decided to output (cheater, s(id)), output (id,m) to Pr(id), and (id, |m|) to AS . If r(id) ∈ C, output

(id,m) to AS .

• Broadcast: On input (broadcast, id,m) from Ps(id) and (broadcast, id) from all (honest) parties:

1. If s(id) ∈ C, let m be chosen by AS . AS may decide to output (cheater, s(id)) to all parties instead of (id,m).
2. If s(id) /∈ C or AS has not decided to output (cheater, s(id)), output (id,m) to each party and to AS .

• Forward received message: On input (forward, id) from Pr(id) and on input (forward, id) from all (honest) parties, after (id,m)
has been delivered to Pr(id):

1. For s(id), r(id) ∈ C, m is chosen by AS instead of the value that was actually delivered.
2. If r(id) ∈ C, AS may decide to output (cheater, s(id)) to all parties instead of (id,m).
3. If r(id) /∈ C, or A has not decided to output (cheater, s(id)), output (id,m) to Pf(id), and (id, |m|) to AS . If f(id) ∈ C, output

(id,m) to AS .

• Reveal received message: On input (reveal, id) from all (honest) parties, such that Pf(id) at any point received (id,m), output
(id,m) to each party, and also to AS . If s(id), r(id), f(id) ∈ C, then m is chosen by AS .
AS may decide to output (cheater, k) to all parties for any k ∈ C ∩ {s(id), r(id), f(id)}. If (cheater, k) is output for all k ∈
{s(id), r(id), f(id)}, then no (id,m) is output to the parties.

Fig. 8. Ideal functionality FTR

Assuming that Ftransmit has been implemented using
Πtransmit , from the definition of ΠTR, we can count the
number of rounds and the communicated bits of differ-
ent operations.

Table 7. Costs of different subprotocols of ΠTR applied to N -bit
messages, using λ-bit signatures

operation rounds # bits/op. # bits/rnd.
Cheap mode (if all parties follow the protocol)

transmit 1 N + λ n2

broadcast 2 (n2 − n)(N + λ) n2

forward 1 2(N + λ) n2

reveal 2 (n2 − n)(N + λ) n2

Observation 2. Let λ be the number of bits in a signa-
ture. The round and bit communication complexities of
applying different functions of ΠTR to an N-bit message
are given in Table 7. We have not specified the precise
cost of waiting for complaints, since it does not depend
on the message size, and the number of broadcasts in
our protocols will depend only on the number of parties.

Lemma 3. Let C be the set of corrupted parties. As-
suming |C| < n/2, the protocol ΠTR UC-realizes FTR in
Ftransmit-hybrid model.

Proof. We use the simulator S = STR described in
Fig. 11. It runs local copies of Ftransmit and ΠTR. We
need to show that ΠTR can be properly simulated to
A, maintaining consistency with inputs and outputs of
FTR. Among the other things, since S does not have
control over messages (cheater, k) that are output by
FTR, we need to ensure that FTR outputs (cheater, k)
to all (honest) parties iff S simulates the same in ΠTR.
We explain the simulation of different subprotocols.

Transmission: The emulation of transmission is
reduced to Ftransmit . Any message m that is sent to
a corrupted receiver is delivered by FTR to S, so all
messages that are simulated to A are the same as the
corresponding messages output to corrupted receivers
by Ftransmit . Any message m of a corrupted sender is
chosen by A, and S delivers m to FTR, so that the same
m is output to the receiver by FTR. The message length
` = |m| that S gets from FTR is used to simulate secure
transmissions between honest parties. Hence, the view
of A is consistent with all inputs and outputs of FTR.

Verification of Multiparty Protocols with Honest Majority 43

In ΠTR, each party works locally with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver r(id) ∈ [n], and a
party f(id) ∈ [n] to whom the message should be forwarded by the receiver.

• Initialization: On input (init, s, r, f), where s, r, f are mappings s.t. Dom(s) = Dom(r) = Dom(f), each party stores s, r, f for
further use. The parties initialize Ftransmit by encoding message senders ŝ(id) and receivers r̂(id) as follows.

– For each identifier id ∈ Dom(s) for which forwarding is foreseen, define an additional identifier id′. Define ŝ(id) = s(id),
r̂(id) = ŝ(id′) = r(id), r̂(id′) = f(id). If no forwarding is foreseen, then id = id′.

– For each identifier id ∈ Dom(s) for which either a forwarding, a broadcast or a revealing is foreseen, define (n − 1)
identifiers idj for j ∈ [n] \ {s(id)}, and define ŝ(idj) = s(id), r̂(idj) = j. (For forwarding, these indices will be needed only in
the expensive mode).

– Initialize Ftransmit with the mappings ŝ and r̂ encoding the senders and the receivers respectively.

• Secure transmit: On input (transmit, id,m) the party Ps(id) sends (transmit, id,m) to Ftransmit . On input (transmit, id), each
other party sends (transmit, id) to Ftransmit . Upon receiving (id,m) from Ftransmit , Pr(id) outputs (id,m) to Z.

• Broadcast:

1. On input (broadcast, id,m) the party Ps(id) sends (transmit, idj ,m) to Ftransmit for all j ∈ [n] \ {s(id)}.
2. On input (broadcast, id) each party Pk sends (transmit, idj) to Ftransmit for all j ∈ [n] \ {s(id)}. Upon receiving (idk,m) from
Ftransmit , Pk sends (reveal, idk, i) to Ftransmit for all i ∈ [n] \ {s(id), k}. On the next round, it expects (idj ,mj) from Ftransmit
for all j ∈ [n] \ {s(id), k}. If mk = mj for all j, it outputs (id,mk) to Z.

If any party receives (idk,mk) and (idj ,mj) s.t. mk 6= mj , then it broadcasts a complaint using Fbc. If a party receives at least
one complaint from Fbc, it expects that Fbc is executed to broadcast m.

• Open a received message to all parties: This step will occur several times, so we describe it separately. Suppose that Pi has
transmitted a message identified by id to Pj using Ftransmit , either during transmission or during forwarding. Now the task of Pj
is to reveal m to all other parties, proving that it originated from Pi. As far as there are no complaints, the same 2-round approach
as for the broadcast can be used to do the opening. If there have been complaints, we need to use a more complicated protocol:

– Pj sends (reveal, id, k) for all k ∈ [n] \ {j} to Ftransmit .
– Upon receiving (id,m) from Ftransmit , each party Pk uses Fbc to broadcast m to all parties. Pj itself also uses Fbc to broadcast
m to all parties. If m has not been revealed to Pk, it does not broadcast (or broadcasts ⊥).

– If a party Pk has received at least t broadcast instances of m (even if m has not been revealed to Pk before), it outputs (id,m).
Otherwise, it outputs (cheater, j).

The broadcasts using Fbc ensure that either all parties accept the same m or all of them output (cheater, j). Requiring at least t
confirmations of m ensures that validity of m has been checked by at least one honest party.

• Forward received message:

1. On input (forward, id) if the party Pr(id) has already received (id,m) at some point, it sends (reveal, id, f(id)) to Ftransmit . In
addition, Pr(id) sends (transmit, id′,m) to Ftransmit , and each other party sends (transmit, id′) to Ftransmit . (The same m is
delivered to Pf(id) twice, but we need it to enable Pf(id) to prove later which message Pr(id) has forwarded.)

2. On input (forward, id) the party Pf(id) waits for one round and then expects (id,m) and (id′,m′) from Ftransmit . If m = m′,
Pf(id) outputs (id,m).

Pr(id) may send m 6= m′, or refuse to reveal m. In this case, Pf(id) broadcasts a complaint, and Pr(id) is expected to open the
received m to all parties. Now each party knows m, and they may output the same (id,m) on input (reveal, id) later. Pf(id) also
receives m and outputs (id,m).

• Reveal received message: On input (reveal, id), if (id,m) has already been revealed, a party outputs (id,m). Otherwise, the
parties act as follows:

1. Let ms be the message that Ps(id) has transmitted before. Ps(id) broadcasts ms to the other parties. All parties have now
agreed on the same value ms.

2. Let mr be the message that Pr(id) has received before. If Pr(id) sees that ms 6= mr, it opens received mr to all parties.
3. Let mf = m′f be the messages that Pf(id) has received from Pr(id). If Pf(id) sees that ms 6= mf or mr 6= mf , it opens

received mf and m′f to all parties.

All parties have now agreed on the same set of values ms, mr, mf , m′f . If mf = m′f , then (id,mf) is output by each party,
regardless of what the other messages are. Otherwise, (id,mr) is output. The value (id,ms) is output only in the case when there
are problems with mf , m′f , mr or they have not been broadcast. We discuss in the proof why exactly these choices are made.

• Cheater detection: At any time when a party receives (cheater, k) from Ftransmit , it outputs (cheater, k) to Z. Ftransmit ensures
that (cheater, k) is output to all parties simultaneously.

Fig. 9. Real Protocol ΠTR

Verification of Multiparty Protocols with Honest Majority 44

In Πtransmit , each party works locally with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver r(id) ∈ [n].

• Initialization: On input (init, s, r), where s, r, are mappings s.t. Dom(s) = Dom(r), each party stores s and r for further use.
The parties generate their public and secret keys, and exchange their public keys so that the signatures could be verified later.

• Secure transmit:

1. Cheap mode: use as far as Pr(id) does not complain.
(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends (id,m, σs) to Pr(id).
(b) On input (transmit, id) the party Pr(id) expects a message (id,m, σs) from Ps(id), where σs is a valid signature from Ps(id)

on (id,m). If it receives it, it outputs (id,m) to Z. Otherwise, it publishes a complaint to ensure that everyone goes to
the expensive mode. In [20], cheap exception handling is proposed for publishing complaints, achieving only n2 additional
bits of communication per round if there are actually no complaints.

2. Expensive mode: a party goes to expensive mode if it receives a complaint from Pr(id).
(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends (id,m, σs) to each other party.
(b) If a party Pi has received (id,m, σs), it sends it to Pr(id). Otherwise, it sends a signature γi on (cheater, s(id)) to all

parties.
(c) On input (transmit, id), Pr(id) expects a message (id,m, σs) from each Pi, where σs is a valid signature of Ps(id) on (id,m).

If it arrives from some Pi, then Pr(id) outputs (id,m).

• Reveal received message: On input (reveal, id, i), if the party Pj has at some point output (id,m), it sends (id,m, σs) to Pi,
which outputs (id,m) if σs is valid.

• Cheater detection In all subprotocols of Πtransmit we will need a tool for stopping the protocol “gracefully” when corruption
is detected. This is done by all parties running the following rules in parallel.

1. At any time when a party Pi sees that a party Pd deviates from the protocol, then Pi signs (cheater, d) to get signature γi and
sends the signature to all parties (this happens when Pi does not receive a message from Pj that it was supposed to send).

2. If Pk received a signature γi on (cheater, d) from t distinct parties Pi (the set of γi may have been accumulated during several
rounds), it considers these as a proof that Pd is corrupted, sends this proof to all parties, outputs (cheater, d), waits for one
round and then terminates all protocols.

Fig. 10. Real Protocol Πtransmit

Broadcast: On all broadcast rounds, for messages
moving between the honest parties, S computes |m| di-
rectly from m to simulate transmissions and revealings
between them.

For s(id) /∈ C, the message m is given to S by
FTR, and we need to ensure that each honest party
outputs the same message (id,m). For s(id) ∈ C, A
chooses messages mj to deliver to honest Pj . If some
of these mj are different, S must ensure that all of
parties output (cheater, s(id)). Suppose that s(id) has
transmitted a message mj to the party Pj . First, the
messages between the parties are exchanged. S now as-
sumes that parties are waiting for complaints, simulat-
ing the broadcast round of Fbc. If some party Pk gets
mj 6= mk, or A decides that a corrupted Pk should com-
plain that mj 6= mk has happened, S simulates exe-
cution of Fbc. This stronger broadcast either outputs
(id,m) to all parties, or, if the sender is cheating, out-
puts (cheater, s(id)) to all parties. In the latter case, S
delivers (cheater, s(id)) to FTR to let it output the same.
If no complaints come, then each pair of parties has ex-
changed mi = mj , and hence they output the same
message m. If s(id) /∈ C, then it is the same m that

was given by FTR. If s(id) ∈ C, then S delivers (id,m)
to FTR, so that it would output the same message to
all parties. Finally, FTR outputs to all parties the same
value that Z would expect from a real protocol.

Open a received message to all parties: Let
m be the message whose revealing S needs to simulate.
An important point of the proof is that, after each party
Pj has broadcast its version mj of the revealed message
using Fbc, the decision of all parties depends only on
these broadcast messages, which are the same for each
party, so the final decision of parties is unanimous.

– If j /∈ C, then S simulates revealing m to all parties.
It simulates all honest parties, including the sender,
broadcasting m using Fbc. A chooses up to t − 1
messages mk that Pk for k ∈ C should broadcast
instead of m. Regardless of messages mk that A has
chosen for corrupted parties to broadcast, each hon-
est party gets at least t equal messages m broadcast
by t honest parties (that is, including the one broad-
cast by itself). The corrupted parties may open up
to t − 1 messages different from m, so they cannot
modify m or cause opening to fail.

Verification of Multiparty Protocols with Honest Majority 45

• Initialization: S receives (init, s, r, f) from FTR. It initializes a local copy of Ftransmit .

• Secure transmit: S simulates work of Ftransmit on inputs (transmit, id) and (transmit, id,m).

– If s(id) ∈ C the message m is chosen by A, and S delivers m to FTR to report this choice.
– If s(id) /∈ C, r(id) ∈ C, then S receives the message (id,m) from FTR and uses it in the simulation.
– If s(id), r(id) /∈ C, only |m| is needed for the simulation, and in this case S gets (id, |m|) from FTR.

• Broadcast:

– If s(id) /∈ C, S receives (id,m) from FTR. It takes mj = m for all j ∈ [n] \ {s(id)}.
– If s(id) ∈ C, S receives mj for all j ∈ [n] \ {s(id)} from A.

S simulates sending (transmit, idj ,mj) and the subsequent (reveal, idj , i) to Ftransmit . If both s(id), j ∈ C, then A may reveal
arbitrary m∗j , as allowed by Ftransmit . S now simulates waiting for possible complaints using Fbc. If each party gets mj = mi for
all i, j, then all parties have agreed on the same message (A may still decide that some Pk for k ∈ C will complain). If mj 6= mk
for an honest party Pk, S simulates its complaint. If there is at least one complaint, S simulates broadcast of m using Fbc.

• Open a received message to all parties: Let m be the message whose revealing S needs to simulate. S simulates Pj sending
(reveal, id, k) for all k ∈ [n] to Ftransmit and the further broadcast of m.

– If j /∈ C, then S simulates revealing m to all parties. It simulates all honest parties broadcasting m using Fbc. A chooses up
to t− 1 messages mk that Pk for k ∈ C broadcast instead of m. In any case, S simulates honest parties finally outputting m.

– If j ∈ C, then A may reveal different messages mk to different honest parties Pk. In the subsequent broadcast A chooses up
to t − 1 messages mk that Pk for k ∈ C should broadcast using Fbc. S simulates honest parties outputting m iff the same
message m has been broadcast by at least t parties.

• Forward received message: In the optimistic setting, the simulation of behaviour of Ftransmit on inputs (transmit, id′,m) and
(reveal, id, f(id)) is is analogous to secure transmission. A is allowed to choose m∗ to be revealed instead of m(id) only if both
s(id), r(id) ∈ C.
In addition, in the real protocol, Pf(id) should check if the transmitted message m and the revealed message m′ are the same. S
now simulates waiting for possible complaints using Fbc. The messages m and m′ can be different only if r(id) ∈ C, and in this
case S has already received m and m′ either from FTR or from A. If m 6= m′, then S simulates broadcasting m′ to each other
party, as described in the previous point.
•Reveal received message: On input (reveal, id), S getsm from FTR and simulates the first broadcast ofms, waiting for possible
complaints using Fbc. It simulates the behaviour of honest Pr(id) and Pf(id), checking if the messages mr and mf that they already
hold are equal to ms, simulating revealing mr or mf to all parties if necessary. A may request revealing for r(id), f(id) ∈ C.
Finally, S simulates the final choice of honest parties as defined by ΠTR.

Fig. 11. Simulator STR

– If j ∈ C, then A may reveal different messages mk

to different honest parties Pk. S simulates each hon-
est party that received mk broadcasting it. In order
to make a value m accepted, it should have been
broadcast by at least t parties. Since there are at
most t − 1 corrupted parties, there is at least one
honest party Pj that has also broadcast m, and it
would do it only if it received (reveal, id, j) at some
point, so there is at least one honest party that has
checked that m is indeed a previously transmitted
message. If m has been approved by less than t par-
ties, then it may be the case that no honest party
accepted m, but in this case all parties unanimously
output (cheater, j).

As the result, A is convinced that the message m
has been revealed to all parties in the real protocol.

Forwarding: Forwarding is reduced to using
Ftransmit to reveal the message obtained by Pp(id) to
the party Pf(id), and to transmit the same messagem to
Pf(id). For the expensive mode of forwarding, S needs
the message m to simulate resolving the conflict (i.e.
simulating revealing m by Pr(id) to all other parties). In
this case, the valuem has already been used by S before,
since the expensive mode is entered only if r(id) ∈ C or
f(id) ∈ C. If r(id) ∈ C, then m has been chosen by A,
and S has delivered (id,m) to FTR, so the same mes-
sage is stored in the internal state of FTR. If r(id) /∈ C,
the message (id,m) has come from FTR, and S has sim-
ulated to A the same m. S now simulates revealing m
to all parties, as described in the previous point. As the
result, FTR outputs to Pf(id) the same message m that
A expects the real protocol to output to Pf(id).

Verification of Multiparty Protocols with Honest Majority 46

Revealing messages: S simulates the behaviour of
honest parties as defined by ΠTR, simulating the broad-
cast and the openings whenever necessary. We show
that, even if some values of ms, mr, mf , m′f are dif-
ferent, the parties choose the message that has been
provided by the honest members of {s(id), r(id), f(id)}.

– If mf = m′f , then mf is output regardless of what
the other messages are. Since in Ftransmit a message
that has been sent by an honest party cannot be
modified during revealing, mf = m′f proves that
both Ps(id) and Pr(id) have approved this choice.

– If mf 6= m′f , and mr has been broadcast, then mr

is output. In this case, it is clear that Pf(id) has
cheated by opening different messages, and mr is
preferred to ms since if Ps(id) is honest, Pr(id) can-
not reveal a modified value, and mr should have
been approved by Ps(id).

– If mf 6= m′f (or at least one of them has not been
broadcast), andmr has not been broadcast, thenms

is output. In this case, Pf(id) and Pr(id) are either
both cheating, or are satisfied by the ms that Ps(id)
has broadcast, so ms is acceptable.

If at least one party in {s(id), r(id), f(id)} is hon-
est, then FTR outputs (id,m) for m that has actually
been transmitted or forwarded. S has ensured that re-
vealing of the same m was simulated to A, since an
honest party is always able to justify its version of m. If
{s(id), r(id), f(id)} are all corrupted, then it is possible
for A to reveal any m∗ since it is able to play any be-
haviour of these parties. In this case, S delivers (id,m∗)
to FTR, so that it outputs (id,m∗) to all parties. In any
case, FTR outputs the message that Z would expect
from a real protocol, based on the view of A.

If forwarding was run in the expensive mode, then
no interaction takes place in the real protocol, and hence
the behaviour of parties on input (reveal, id) does not
need to be simulated. FTR outputs to all parties the
message m that S used while simulating the expensive
mode of forwarding, and Z expects that the samem will
be output by the parties in the real protocol.

Summary: In all cases, the view of corrupted par-
ties that S simulates to A is consistent with a real pro-
tocol that is executed on the same inputs as FTR, and
that produces the same outputs that FTR does. Hence,
no Z can distinguish the simulated execution from a
real protocol.

Substituting Ftransmit with the particular protocol
Πtransmit , we get the following corollary.

Corollary 1. Let C be the set of corrupted parties. As-
suming |C| < n/2 and existence of signature scheme with
probability of existential forgery δ, the protocol ΠTR UC-
realizes FTR with correctness error ε < N · δ and simu-
lation error 0, where N is the total number of sent mes-
sages (including all transmitted, forwarded, broadcast,
and revealed messages).

Proof. For each message identifier id, if A wants to force
m′ 6= m to be delivered for s(id) /∈ C [or r(id) /∈ C
in the case of forwarding], it should falsify at least the
signature of Ps(id) [Pr(id)] on m, which happens with
probability at most δ. Alternatively, if A just wants to
cause the honest parties to blame an innocent Ps(id),
then it should generate another message m′ s.t m 6= m′,
and σm′ is a valid signature of Ps(id) on m′, which also
happens with probability at most δ. If the total number
of sent messages is N , the probability of cheating in at
least one of them is at most N · δ.

Parallelization. If several messages need to be trans-
mitted to the same party in the same round, it is enough
to provide just one signature for all of them. The only
problem is that, only some of these messages may need
to be forwarded or revealed afterwards, and it should be
possible to verify if the signature corresponds to that
particular message. We note that the signature cover-
ing all the messages of one round can be efficiently con-
structed by computing a Merkle hash tree of the single
signatures of all these messages. If the signature should
be verified for only one message, it is necessary to reveal
the authentication path of that message, which is just
taking one node from each level of the tree, and also
the one-time public/private key pair for that particular
message. In this way, instead of sending n signatures for
n messages, it suffices to send just dlogne+3 signatures.

C.1.2 Commitments

For commitments, we define an ideal functionality
Fshare. It is given in Fig. 12. For our protocols, it
would be sufficient to define a functionality that we
could use as a black box for making commitments, com-
puting their linear combinations, and opening them.
Since the precomputed tuple generation functionality
Fpre (Fig. 4) outputs shares of committed tuples to the
parties, and we want to use these shares in another in-
stance of Fshare later, we additionally want Fshare to
output committed values as shares, to open individual
shares, and to accept commitments in form of shares.

Verification of Multiparty Protocols with Honest Majority 47

The ideal functionality. In addition to ordinary
commitments (commit) binding a party to a certain
value, Fshare allows to perform external commitments
(extcommit) of values that have already been shared
among the parties. We will need it to move shares gener-
ated by Fpre into a separate instance of Fshare. A public
commitment (pcommit) allows Fshare to use public val-
ues instead of commitments or some of their shares. If
the committer Pp(id) is corrupted, the work of Fshare on
input (commit, id) may fail. If it happens, (cheater, p(id))
is output to each party.
Fshare allows to compute linear combinations (lc)

and truncations mod 2m (trunc) of commitments, and
to open them. The public opening (open) opens the com-
mitment to all parties. The private opening (priv_open)
allows to open the value to one party, making that party
committed to the value that it receives. Both openings
are weak: they may abort, and more expensive methods
need to be applied to force opening in such a case.

The share opening (share_open) is executed when
some particular shares need to be opened. This is a
strong opening that results in either opening the value,
or causing (cheater, k) (for a corrupted committer Pk)
to be output to all parties.

Each initial commitment, as well as every linear
combination computed from the commitments (let us
call it a derived commitment), is identified by a unique
id. The committed values are stored in an array comm as
comm[id]. A new session of Fshare is initialized when it
gets an input (init,m, p) from all (honest) parties, where
the quantities m, p are mappings such that m(id) is the
bit width of the ring in which the value comm[id] is com-
mitted, and p(id) is the party committed to comm[id].
The formal expression deriv[id] (represented as a tree
whose leaves are identifiers of the initial commitments)
shows how comm[id] has been derived from the initial
commitments: we have deriv[id] = comm[id] for the ini-
tial commitments, and for the derived commitments
deriv[id] describes how each of them has been computed
using linear combinations and truncations (an example
of a derivation tree is deriv[id] = id1 + 3 · id2 (mod 232),
where id1, id2 are leaves).

In order to simplify the initialization of Fshare when
it will be called by outer protocols, these mappings have
to be initialized only for the initial commitments, and
Fshare extends them itself to derived commitments. In
order to make the extensions uniquely determined, we
allow to compute linear combinations only from the val-
ues for which p(id) is the same, which means that com-
mitments of different parties cannot be combined.

For simplicity of definition of Fshare and the proofs,
we assume that |C| = t− 1.

The real protocol. The protocol Πshare (Fig. 13-
14) implementing Fshare works on top of the message
transmission functionality FTR defined in Fig. 9. It uses
a linear (n, t)-threshold secret sharing scheme with t =
dn/2e + 1. It follows the idea of Sec. 6.1: in order to
commit to a value x, the party computes (xk)k∈[n] =
classify(x) and uses FTR to deliver xk to Pk. Since FTR
allows to reveal received messages, such a sharing binds
the committer to the t shares that it issued to honest
parties, which uniquely define the committed value.

Formally, the committing party P is treated as one
of the share holders. However, any subset of t parties
that includes P does not commit P to anything, since
P is always able to tamper with the share that it holds.
In practice, P needs to come into play only after all t−1
corrupted share holders have been caught in cheating.

The sharing that was used in the 3-party protocols
of Sec. 4 can be seen as an instance of replicated (3, 2)-
threshold sharing. Applying the definition of replicated
secret sharing directly, we would get a share (0, xP2 , xP3)
for P , (xV1

1 , xV1
2 , 0) for V1, and (xV2

1 , 0, xV2
3) to V2, where

x = xV1
1 + xV2

1 = xP2 + xV1
2 = xP3 + xV2

3 can be recon-
structed by any two parties. After discarding the shar-
ings xP2 + xV1

2 and xP3 + xV2
3 that involve the prover, we

are left with x = xV1
1 + xV2

1 , as it was in Sec. 4.
For a public commitment, no interaction between

the parties takes place, and the parties locally share x
according to a pre-agreed sharing, and store their input
shares as commk[id]← xk for further use.

For an external commitment, no interaction between
the parties takes place, and the parties store their input
shares as commk[id]← xk for further use. We note that
it does not include the consistency check.

All linear combinations and truncations are com-
puted by parties locally on shares, using linearity of
(n, t)-sharing. The truncation is a local operation since
2m divides 2m′ whenever m < m′.

To open individual shares, the parties use FTR to
reveal commk[id] to all parties. It can be applied only to
the initial commitments, since the derived commitments
have not been delivered by FTR.

The public opening (open) allows the party Pp(id)
to open the value x itself by broadcasting all shares xk.
Since xk is already known to Pk, if it sees that xk is
wrong, it may broadcast a complaint. If any party com-
plains in this way, the opening aborts, and each party
gets a set of suspects K whose guilt has not been proven
yet. Since at least t shares of x are held by honest par-
ties, and they uniquely determine the value of x by prop-

Verification of Multiparty Protocols with Honest Majority 48

Fshare works with unique identifiers id, encoding the bit width m(id) of the ring in which the value is committed, and the party
p(id) committed to the value. The commitments are stored in an array comm, and their derivations in an array deriv. For each
id, the term deriv[id] is a tree whose leaves are the initial commitments, and the inner nodes are lc, trunc operations applied to
them. For the initially committed values, deriv[id] = id. Fshare uses a linear (n, t)-threshold sharing scheme with t = dn/2e + 1.
The shares of comm[id] for the initial commitments are stored as commk[id] for k ∈ [n]. Let H be the set of t honest parties.

• Initialization: On input (init,m, p) from all (honest) parties, where Dom(m) = Dom(p), store the mappings m, p for further
use. Deliver (init,m, p) to AS .

• Public Commit: On input (pcommit, id, x) from all (honest) parties, write comm[id]← x. Output (confirmed, id) to all parties
and to AS . Here comm[id] may already have been defined, and it is rewritten in this case.

On input (pcommit, id, j, xj) from all (honest) parties, if comm[id] has already been defined, write commj [id]← xj and recompute
comm[id] ← declassify(commk[id])k∈H. Output (confirmed, id) to all parties and to AS . Here commj [id] may already have been
defined, and it is rewritten in this case.

• External Commit: On input (extcommit, id, xk) from each (honest) party Pk, compute x = declassify(xk)k∈H and write
comm[id]← x, commk[id]← xk. Output (confirmed, id) to all parties and to AS .

• Commit: On input (commit, id, x) from Pp(id) and (commit, id) from all (honest) parties:

– If p(id) /∈ C, compute (xk)k∈[n] = classify(x).
– If p(id) ∈ C, then (xk)k∈[n] is chosen by AS , who may alternatively tell Fshare to output a message (cheater, p(id)) to all

parties. In this case, take x = declassify(xk)k∈H.

Write comm[id]← x, commk[id]← xk for all k ∈ [n], and output (id, xk) to Pk for k ∈ [n].
Output the shares of corrupted parties to AS .

• Compute Linear Combination: On input (lc, ~c, ~id, id′) from all (honest) parties, where |~c| = |~id| =: `, id′ /∈ Dom(p), and
p′ = p(idi) are the same for all i ∈ {1, . . . , `}, let m′ ← min ({m(idi) | i ∈ {1, . . . , `}}):

1. Compute y ← (
∑`

i=1 ci · comm[idi]) mod 2m′ .
2. Write comm[id′]← y;
3. Assign m(id′)← m′, p(id′)← p′, deriv[id′]← lc(~c, ~id).

Syntactic sugar: we write (id′ =
∑`

i=1 ci · idi) instead of (lc, ~c, ~id, id′).
• Compute Truncation: On input (trunc,m′, id, id′) from all (honest) parties, where m(id) ≥ m′ ∈ N, and id′ /∈ Dom(p):

1. Compute y ← comm[id] mod 2m′ .
2. Write comm[id′]← y;
3. Assign m(id′)← m′, p(id′)← p(id), deriv[id′]← trunc(m′, id).

Syntactic sugar: we write (id′ = id mod 2m′) instead of (trunc,m′, id, id′).
• Share Open: On input (share_open, id, k) from all (honest) parties, if comm[id] has been defined, and id corresponds to an
initial non-public and non-external commitment, output (id, k, commk[id]) to each party and to AS . Otherwise, output (id, k,⊥)
to each party. If both p(id), k ∈ C, AS may choose to output to all parties (cheater, p(id)), or (id, k,m) for any m.

• Public Open: On input (open, id) from all (honest) parties, if (cheater, k) has been output for at least t − 1 parties, output
(id, comm[id]) to all parties and to AS . Otherwise, output comm[id] to AS , who decides whether (id, comm[id]) or (id,⊥,K, deriv[id])
is output to each party, where K ⊆ C if p(id) /∈ C, and K is any set of size at most t− 1 if p(id) ∈ C. Alternatively, AS may choose
to output (cheater, p(id)) for p(id) ∈ C.

• Private Open: On input (priv_open, id, id′) from all (honest) parties, if deriv[id] 6= id, output (id, id′,⊥). Otherwise,
write comm[id′] = comm[id], commk[id′] = commk[id] for all k ∈ [n], output (id, id′, (comm[id])k

k∈[n]) to Pp(id′), and output
(confirmed, id, id′) to all parties. If p(id′) ∈ C, output (id, id′, comm[id]) to AS . If p(id) ∈ C, AS may tell Fshare to output
(id, id′,⊥) to each party instead.

Fig. 12. Ideal functionality Fshare

erties of threshold secret sharing, any attempt of Pp(id)
to deviate from the commitments results in a complaint
from at least one honest party.

If the opening fails, the parties may run share open-
ing (share_open) for each k ∈ K, using FTR to re-

veal the shares of the initial commitments of Pk used
in computation of deriv[id], so that each other party
could reconstruct xk from these shares and see whether
Pp(id) or Pk was the cheater. Let id′ be an identifier
of some initial commitment used as a leaf of deriv[id].

Verification of Multiparty Protocols with Honest Majority 49

Formally, after the value yk of commk[id′] is revealed,
(pcommit, id′, k, yk) should be input by each party to
overwrite shares commk[id′] of the initial commitments
of parties of k ∈ K. Finally, after xk for all k ∈ K have
been reconstructed in this way, either the commitment
x of Pp(id) is opened, or Pp(id) is publicly blamed by all
honest parties (if the shares xk are inconsistent). Since
FTR does not allow corrupted receivers to reveal in-
correct values if the sender was honest, a corrupted Pk
cannot make shares of an honest Pp(id) inconsistent.

A small caveat here is that is not possible to open
shares of external commitments. If the shares have not
been sent using FTR, there is no way to check their va-
lidity. Solving this problem is delegated to the protocol
that embeds Fshare.

From the definition of Πshare, we count the number
of FTR operations called for different subprotocols. This
allows us to estimate the round and the communication
complexity based on the implementation of FTR.

Observation 3. The number of FTR operations for ap-
plying different subprotocols of Πshare to an N-bit input
is given in Table 8, where trM , bcM , fwdM , revM denote
the costs (the number of rounds and the bit communi-
cation) of transmit, broadcast, forward, reveal respectively
on an M-bit message, and shn is the number of times
the bit width the value shared among n parties is smaller
than the bit width of its one share. The notation ⊗ and
⊕ denotes costs of parallel and sequential execution re-
spectively, as discussed in the beginning of Sec. C.

We note that, at least with the linear (n, t)-threshold
schemes used in this work (Shamir’s sharing and repli-
cated sharing), the overhead of share sizes is multi-
plicative w.r.t. the bit width of the shared value, i.e.
shn · (M1 +M2) = shn ·M1 + shn ·M2, which means that
several values can be shared in parallel without addi-
tional overheads to the share size. If n = 3, or Shamir’s
sharing is used, then shn = 1.

Table 8. Calls of FTR for different functionalities of Πshare with
N -bit values

input called FTR functionalities
commit tr⊗nshn·N

open bc⊗nshn·N
share_open revshn·N

priv_open fwd⊗nshn·N ⊕ tr⊗nshn·N
pcommit, extcommit,

lc, trunc –

Lemma 4. Let C be the set of corrupted parties. Assum-
ing |C| < n/2, the protocol Πshare UC-realizes Fshare in
FTR-hybrid model.

Proof. We use the simulator S = Sshare described in
Fig. 15. The simulator runs a local copy of Πshare, to-
gether with a local copy of FTR. Let the number of
honest parties be |H| = t. Throughout the simulation,
the shares commk[id] of p(id) ∈ C held by k ∈ H should
comprise the value comm[id] held by Fshare. This en-
sures that the parties are bound to their commitments.

Transmissions. The delivery of transmitted and
broadcast messages is ensured by FTR. At any time
when (cheater, k) message comes from FTR, the party
Pk is treated as a cheater by all honest parties unan-
imously. In this case, S sends (cheater, k) to Fshare, so
that it outputs (cheater, k) to Z, as it would expect from
a real protocol execution.

During public opening, if at least t − 1 messages
(cheater, k) have been output to the parties, then Fshare
does not accept messages (cheater, s(id)) from S any-
more. Since all corrupted parties would have been de-
tected in the real protocol in this case, their opinion
would not count, and they could not fail the opening.

For the messages moving between honest parties,
S only needs to simulate FTR, which should output the
message length to A. The message length can be derived
from the bit width m(id) of shared values.

We show that, in all transmissions, where at least
the sender and the receiver is corrupted, S is able to
simulate m in such a way that all outputs of Fshare
are the same as Z would expect from a real protocol,
observing the view of A.

Commitments. The shares of a corrupted commit-
ter are chosen by A. The shares for corrupted receivers
(xk)k∈C of x are given to S by Fshare. S does not gen-
erate any shares itself. This way, for all initial commit-
ments, A gets the same t− 1 shares that are output to
corrupted parties by Fshare.

Openings. On input share_open, S gets the share
from Fshare and simulates its broadcast using FTR. On
input open, and also priv_open for p(id′) ∈ C, S needs
to simulate to A all n shares of the value x that is given
to S by Fshare. For p(id) ∈ C, A chooses the shares
to broadcast. For p(id) /∈ C, S needs to simulate the
shares itself. S computes the t − 1 shares xk of k ∈
C directly from the shares of leaves of deriv[id] that it
has simulated so far. The shares of honest parties are
uniquely determined by x and these t− 1 shares.

Verification of Multiparty Protocols with Honest Majority 50

In Πshare, each party works locally with unique identifiers id, encoding the bit width m(id) of the ring in which the value is shared,
and the party p(id) committed to the value. The parties use a linear (n, t)-threshold sharing scheme with t = dn/2e + 1. Each
party stores its own local copy of arrays commk for k ∈ [n], into which it writes the shares known to it. Each party stores a term
deriv[id] (represented by a tree whose leaves are the initial commitments, and the inner nodes are lc, trunc operations applied to
them) to remember in which way each commk[id] has been computed. For the initially committed values, let deriv[id] = id.

• Initialization: On input (init,m, p) where Dom(m) = Dom(p), each party stores m, p for further use. It defines mappings s,
r, and f , such that s(idk

k′) ← p(id), r(idk
k′) ← k, and f(idk

k′) ← k′, for all id ∈ Dom(p), k, k′ ∈ [n]. In addition, it defines
s(idbc

k)← p(id), r(idbc
k)← ⊥, f(idbc

k)← ⊥ for the broadcasts (used for share opening). It sends (init, s, r, f) to FTR.

• Cheater detection: At any time when a party receives (cheater, k) from FTR, it outputs (cheater, k) to Z.

• Public Commit: On input (pcommit, id, x), each party computes (xk)k∈[n] ← classify(x) using a pre-agreed sharing, so that
different parties would get the same xk. It writes commk[id]← xk and outputs (confirmed, id) to Z.

On input (pcommit, id, k, xk), each party writes commk[id]← xk and outputs (confirmed, id) to Z.

• External Commit: On input (extcommit, id, xk), the party Pk writes commk[id]← xk. It outputs (confirmed, id) to Z.

• Commit: Let id′ be the identifier such that the commitment is going to be privately opened to Pp(id′) later (if no private opening
is foreseen, then id = id′).
1. On input (commit, id, x), Pp(id) shares (xk)k∈[n] = classify(x). It sends (transmit, idk

p(id′), x
k) to FTR, for all k ∈ [n].

2. On input (commit, id), Pk waits until (idk
p(id′), x

k) comes from FTR.

If all transmissions succeed, each party Pk writes commk[id] ← xk, deriv[id] ← id, and outputs (id, xk) to Z. Otherwise, if
(cheater, p(id)) comes from FTR, each party outputs (cheater, p(id)) to Z.

Fig. 13. Real Protocol Πshare (init, cheater detection, commitments)

It remains to show that, if the opening succeeds,
then the opened values are the same in the real and the
simulated execution.

– Let p(id) /∈ C. A may argue against up to t−1 shares
of comm[id], causing opening to fail. S defines the
set K that it sends to Fshare in such a way that it
contains all parties that have detected inconsisten-
cies with the shares that they hold. The case K 6⊆ C
may never happen to an honest party, since no Pk
for k /∈ C will present a complaint against an honest
Pp(id). Hence K ⊆ C, and it is suitable for Fshare.

– Let p(id) ∈ C. We need to show that the equality
declassify(commk[id])k∈H = comm[id] is maintained
throughout the computation, where commk[id] are
the shares held by Pk in the local copy of Πshare of
S, and comm[id] is the inner value of Fshare. We will
prove it by induction on the number of operations
that have been applied to the shared values.
– Base: The initial values for comm[id] are chosen

during executing pcommit, extcommit, commit.
In all cases, Fshare reconstructs directly x ←
declassify(xk)k∈H, where xk for p(id) ∈ C are
given by S, and for p(id) /∈ C are inputs
of Fshare. In both cases, S also maintains
commk[id] = xk in the local execution.

– Step: The new values comm[id′] are created by
calling lc and trunc. Since both lc and trunc
are linear operations, we are using linear se-
cret sharing, and in all truncations we reduce

2m′ to 2m for m < m′ (so 2m divides 2m′), for
f ∈ {lc, trunc} we have

declassify(commk[id′])k∈H
= declassify(f(commk[id]))k∈H
= f(declassify(commk[id]))k∈H .

By induction hypothesis, we have
declassify(commk[id]))k∈H = comm[id], and
since f(comm[id]) = comm[id′], we have
declassify(commk[id′])k∈H = comm[id′].

The proof is similar for private opening. The party
Pp(id′) receives xk directly from Pk. Assuming that no
(id, id′,⊥) has been output, the shares are consistent,
and the value x reconstructed from these shares equals
to the value reconstructed from the shares of H. The
fact that Pp(id′) has used FTR to send xk back to Pk
commits Pp(id′) to x′ = declassify(x′k)k∈H. Since each Pk
for k ∈ H verifies xk = x′k, both Pp(id) and Pp(id′) are
committed to the same value x′ = declassify(x′k)k∈H =
declassify(xk)k∈H = x.

Summary: During the commitments, S has simu-
lated to A exactly those shares that are stored in the
internal state of Fshare. Any value that is opened to
some party by Fshare is the same as the value whose
opening is simulated to A. Hence, all inputs and out-
puts of Fshare correspond to what A would expect from
execution of a real protocol, and no Z can distinguish
between the real and the simulated executions.

Verification of Multiparty Protocols with Honest Majority 51

• Compute Linear Combination: On input (lc, ~c, ~id, id′), where |~c| = |~id| =: `, id′ /∈ Dom(p), and p′ = p(idi) are the same for
all i ∈ {1, . . . , `}, for m′ ← min ({m(idi) | i ∈ {1, . . . , `}}), each party Pk

1. computes yk ← (
∑`

i=1 ci · commk[idi]) mod 2m′ (Pp(id) computes all (yk)k∈[n]);
2. writes commk[id′]← yk (Pp(id) does it for all k ∈ [n]);
3. assigns m(id′)← m′, p(id′)← p′, deriv[id′]← lc(~c, ~id).

• Compute Truncation: On input (trunc,m′, id, id′), where m(id) ≥ m′ ∈ N, and id′ /∈ Dom(p), each party Pk

1. computes yk ← commk[id] mod 2m′ (Pp(id) computes all (yk)k∈[n]);
2. writes commk[id′]← yk (Pp(id) does it for all k ∈ [n]);
3. assigns m(id′)← m′, p(id′)← p(id), deriv[id′]← trunc(m′, id).

• Share Open: On input (share_open, id, k), each party sends (reveal, idk
p(id′)) to FTR. After receiving back (idk

p(id′), x
k), it

outputs (id, k, xk) to Z. The revealing may fail if both p(id), k ∈ C or the message has not been transmitted before (if it is a public
or an external share), and in this case the parties output (id, k,⊥).

• Public Open: On input (open, id):

1. Pp(id) takes xk ← commk[id] and sends (broadcast, idbc
k , x

k) to FTR for all k ∈ [n].
2. Upon receiving all shares (idbc

k , x
k) from FTR, each party Pj compares xj with the share commj [id] that it holds. If xj 6=

commj [id], it broadcasts (bad, id).

If the shares are inconsistent, or some of them do not arrive, each party outputs (cheater, p(id)) to Z. If at least one message
(bad, id) has been broadcast by a party Pk for which no messages (cheater, k) have come so far, then each party constructs a
set K := {k | (bad, id) was broadcast by Pk}. If K ≥ t, then each party outputs (cheater, p(id)) to Z, and otherwise it outputs
(id,⊥,K, deriv[id]) to Z. If there are no problems, then each party reconstructs x← declassify(xk)k∈[n] and outputs x to Z.

• Private Open: On input (priv_open, id, id′), if deriv[id] = id:

1. Each party Pk sends (forward, idk
p(id′)) to FTR.

2. Upon receiving all (idk
p(id′), x

k) from FTR, Pp(id′) reconstructs x ← declassify(xk)k∈[n] and sends (transmit, id′kp(id′), x
k) to

FTR to confirm the receipt and make it possible for Pk to prove the confirmation later. If xk are inconsistent, then Pp(id′)
broadcasts a complaint (bad, id, id′).

3. Upon receiving (id′kp(id′), x
∗k) from FTR, Pk checks if xk = x∗k, where xk is the message that Pk received before the opening.

If xk 6= x∗k, then Pk broadcasts a complaint (bad, id, id′).

If at least one (bad, id, id′) is broadcast, or (cheater, k) comes from FTR, all parties output (id, id′,⊥). Otherwise, each party Pk
writes commk[id′]← commk[id], and outputs (confirmed, id, id′) to Z. Pp(id′) outputs (id, id′, x) to Z.

Fig. 14. Real Protocol Πshare (local operations and openings)

C.1.3 Coin Tosses

In the protocol Πpre of Sec. 4.2 that generates precom-
puted tuples, the parties need to agree on common ran-
domness that they will use to decide which tuples will
participate in the cut-and-choose step and which tu-
ples will undergo pairwise verification. In this section
we describe how the parties agree on that randomness
(i.e. toss public coins). The ideal functionality Fcoins for
generating public randomness is given in Fig. 16.

The protocol implementing Fcoins, built on top of
Fshare, is given in Fig. 17. The idea behind the random-
ness generation is quite standard: each party commits
to its own random value rj as an element of Z2m . Af-
ter all values have been committed, they are opened,

and their sum is used as the randomness (alternatively,
the parties could generate random bitstrings of certain
length and open their bitwise xor). It is sufficient that
only some fixed set of t parties contributes to rj , and it
is only important that at least one of them is honest.

Since in our protocols public randomness is needed
to be generated only in the preprocessing phase, before
any parties get their inputs, we allow the adversary to
abort the execution of Fcoins by sending (stop, id) to
Fcoins at any time.

Lemma 5. Let C be the set of corrupted parties. As-
suming |C| < n/2, the protocol Πcoins UC-realizes Fcoins
in Fshare-hybrid model.

Verification of Multiparty Protocols with Honest Majority 52

Let comm be the local array of Fshare, and commk, k ∈ [n] the local arrays of S that it stores for each party. Let H be some fixed
set of t honest parties. The simulator maintains declassify(commk[id])k∈H = comm[id] for all id s.t p(id) ∈ C.

• Initialization: S gets (init,m, p) from Fshare. Based on these values, it initializes its local copy of FTR.

• Cheater detection: At any time when (cheater, k) should be output for each honest party in Πshare, then S forwards (cheater, k)
to Fshare, so that Fshare would output the same.

• Public commit: For k ∈ C, S gets x from Fshare. It computes (xk)k∈[n] according to the same sharing that the parties of the
protocol use, and writes commk[id]← xk. If only one share xk comes from Fshare, S writes commk[id]← xk for that share.

• External commit: For k ∈ C, S gets xk from A. It writes commk[id]← xk.

• Commit: For p(id) ∈ C, S gets the shares (xk)k∈[n] from A. For p(id) /∈ C, S gets the shares (xk)k∈C from Fshare. S simulates
distribution of the shares (xk)k∈[n] using FTR.
If (cheater, k) should have come from FTR, S delivers it to Fshare. If no (cheater, k) has come from FTR, then all the shares xk

have been successfully delivered. S defines x← declassify(xk)k∈H, in the same way as Fshare does.

• Compute Linear Combination and Truncation: S locally performs the computations and assignments for all k ∈ C. No
outputs are produced.

• Public Open: S gets (id, x) from Fshare. For p(id) ∈ C, all broadcast shares (xk)k∈[n] are chosen by A. For p(id) /∈ C,
S needs to generate all shares (xk)k∈[n] by itself. It takes commk[id′] for all leaf identifiers id′ of deriv[id], and repeats the
computation of deriv[id] to reconstruct xk for k ∈ C. Now it needs to generate the remaining shares xk for k /∈ C in such a way
that x = declassify(xk)k∈[n]. These shares are uniquely determined by x and the t− 1 shares of corrupted parties.

S simulates (broadcast, idbc
k , x

k) using FTR. If (bad, id) should be broadcast by any party (either due to bad xk or by orders of A
for k ∈ C), then S orders Fshare to output (id,⊥,K, deriv[id]), where K is the set of all parties that broadcast (bad, id). If K ≥ t,
then S delivers (cheater, p(id)) to Fshare.

• Share Open: If comm[id] is a public or an external commitment, then all parties output (id, k,⊥) in both the real and the ideal
execution. Otherwise, S simulates opening of xk:

– If k ∈ C, then S has already received xk either from Fshare or A.
– If k /∈ C, then S gets xk from Fshare.

S should simulate sending (reveal, idk
p(id′)) to FTR. If both p(id), k ∈ C, then A may cause the revealing to fail, and in this case S

orders Fshare to output (id, k,⊥). It may also choose to reveal any x∗k, and in this case S orders Fshare to output (id, k, x∗k).

• Private Open:

– If p(id) ∈ C, then S simulates opening the shares xk that have been chosen by A and have already been delivered to Fshare.
– If p(id) /∈ C, S needs to simulate the shares by itself. There are up to t− 1 shares issued to Pk for k ∈ C. S needs to simulate

the remaining shares only if p(id′) ∈ C. In this case, S gets x from Fshare, and it computes the remaining xk in such a way
that x = declassify(xk)k∈[n], similarly to public open.

For each k ∈ C, A chooses the share x∗k that should be forwarded by Pk to Pp(id′). S simulates all such forwardings using FTR.
If x∗k 6= xk for some k, or p(id′) ∈ C and A decides to complain, then the broadcast of (bad, id, id′) is simulated, and S delivers
(id, id′,⊥) to Fshare.

Fig. 15. The simulator Sshare

The functionality Fcoins works with unique identifiers id, encoding the bit width m(id) of the randomness.

• Initialization: On input (init,m), store the mapping m for further use. Deliver m to AS .

• Coin toss: On input (pubrnd, id) from all (honest) parties, generate a random value r ∈ Z2m(id) . Output (id, r) to each party,
and also to AS .

• Stopping: On input (stop, id) from AS , output (id,⊥) to all parties.

Fig. 16. Ideal functionality Fcoins

Proof. We use the simulator S = Scoins described in
Fig. 18. The simulator runs a local copy of Πcoins as
well as a local copy of Fshare.
S gets (id, r) from Fcoins. S should be able to sim-

ulate the randomness rj of honest parties. Up to the
last share, S samples rj

$← Z2m(id) , so these values are
distributed uniformly, as Z expects from a real protocol

execution. At most t− 1 of values rj are provided by A,
so there is at least one rk left s.t k ∈ T \ C . This last
rk is computed as rk = r −

∑
j∈T ,j 6=k rj . Since r is dis-

tributed uniformly, so is r−
∑
j∈T ,j 6=k rj , since even if rj

for j ∈ C come from some other distribution, the value r
serves as a mask that makes the final share distributed
uniformly, as Z would expect from a real protocol.

Verification of Multiparty Protocols with Honest Majority 53

The protocol Πcoins works with unique identifiers id, encoding the randomness bit width m(id). It uses Fshare as a subroutine.

• Initialization: On input (init,m), store the mapping m for further use. Let T be an arbitrary set of fixed t parties. For all
id ∈ Dom(m), j ∈ T , for idj = (id, j), assign m(idj)← m(id), p(idj)← j. Send (init,m, p) to Fshare.

• Coin toss: On input (pubrnd, id), each party Pi for i ∈ T :

1. Generates a random value ri ∈ Z2m(id) , and sends (commit, idi, ri) to Fshare. For j 6= i, it sends (commit, idj) to Fshare.
2. After receiving (confirmed, idj) from Fshare for all j ∈ T , it sends (open, idj) to Fshare for all j ∈ T .
3. Upon receiving (idj , rj) from Fshare for all j ∈ T , it computes r =

∑
j∈T rj and outputs (id, r) to Z.

• Stopping: At any time when (cheater, k) or (id,⊥) comes from Fshare, output (id,⊥) to Z.

Fig. 17. The protocol Πcoins

• Initialization: On input (init,m), S locally simulates initialization of Fshare.

• Coin toss: On input (pubrnd, id), S gets (id, r) from Fcoins. It needs to simulate sending (commit, idj , rj) and (commit, idj) to
Fshare. The values rj for j ∈ C are provided by A. The values rj for j /∈ C need to be simulated by S. As far the opening has
not started, A does not expect to see the values rj generated by j /∈ C. Since public opening may start only on all honest parties’
agreement, S is free to wait with their generation until A commits to rj for all j ∈ C. After that, S generates rj for j /∈ C in

such a way that
∑

j∈T rj = r. More precisely, up to the last share, it samples rj
$← Z2m(id) , and then computes the last share as

rk = r−
∑

j∈T ,j 6=k rj . Such k ∈ T \ C always exists if at least t parties contribute to rj . For all j ∈ T , S simulates opening rj by
sending (open, idj) to Fshare.

• Stopping: At any time when (cheater, k) or (id,⊥) comes from Fshare, S delivers (stop, id) to Fcoins.

Fig. 18. The simulator Scoins

After S has decided with all values rj , it simulates
opening them using Fshare. As described above, S has
generated rj of j /∈ C in such a way that

∑
j∈T rj = r, so

after all rj are opened and summed up, the final value
of r that A expects to get from the protocol is the same
that is output by Fcoins. Hence, if the protocol does not
abort, no Z can distinguish between the real protocol
and the simulated one.

At any time when (cheater, k) or (id,⊥) should come
from Fshare, S sends the message (stop, id) to Fcoins that
causes honest parties to output (id,⊥). Hence, if the pro-
tocol fails, it fails simultaneously in the real execution
and the simulated one.

Observation 4. From the protocol Πcoins, we can read
out the numbers of Fshare operations needed for generat-
ing N-bit randomness. The results of Table 8 translate
them directly to FTR operations. Let commM , openM ,
trM , bcM denote the calls of commit, open, transmit,
broadcast respectively on an M-bit value. The results are
given in Table 9.

Table 9. Calls of Fshare and FTR (as a subroutine of Πshare)
using Πcoins for generating N -bit randomness

input Fshare calls respective FTR calls
pubrnd comm⊗tN ⊕ open⊗tN tr⊗ntshn·N ⊕ bc⊗ntshn·N

C.1.4 Generation of Precomputed Tuples

Fig. 19 depicts the functionality Fpre that we use to
generate committed verified precomputed multiplica-
tion triples and trusted bits. This is an extension of
the functionality of Fig. 4. It supports n parties and al-
lows to generate tuples for different provers and different
rings using the same instance of Fpre.

In order to share tuple components, and to compute
and open their linear combinations and truncations, we
will use Fshare as a subroutine. The protocol Πpre im-
plementing Fpre is formalized in Fig. 20. A single iden-
tifier id corresponds to generating u(id) tuples in a ring
Zm(id) for the prover Pp(id). The protocol works simi-
larly to the 3-party case described in Sec. 4. The party
Pp(id) first generates µ ·u(id)+κ tuples itself. Some κ of
these tuples are opened using Fshare and verified. The
other µ · u(id) tuples are partitioned into n(id) sets, so
that one tuple of each set undergoes (µ−1) pairwise ver-
ifications with the other tuples (all linear combinations
and openings that are needed for pairwise verifications
are done using Fshare). Finally, the shares of the re-
maining u(id) tuples are output by the parties. In order
to agree which tuples exactly will be opened and how
they will be paired, the parties use Fcoins to agree on
a public randomness. The arrays commk[id] are used to
memorize which shares have been issued to which party,
to make it possible to open them later.

Verification of Multiparty Protocols with Honest Majority 54

Fpre works with unique identifiers id, encoding the bit width m(id) of the ring in which the tuples are shared, the party p(id) that
gets all the tuples, and the number u(id) of tuples to be generated. It stores an array comm of already generated tuples.

• Initialization: On input (init,m, u, p) from all (honest) parties, where Dom(m) = Dom(u) = Dom(p), store the mappings m, u,
p for further use. Deliver m, u, p to AS . For each id, define a couple of identifiers idki for k ∈ [u(id)], and i ∈ [v], where v = 1 for
trusted bits, and v = 3 for triples. Define m̃(idki)← m(id), p̃(idki)← p(id) for all i,k. Send (init, m̃, p̃) to Fshare.

• Trusted bits: On input (bit, id) from all (honest) parties, if comm[id] exists, then output (id,⊥) to all parties. Otherwise:

1. Generate a vector of random bits ~b $← Zu(id)
2 . If p(id) ∈ C, get ~b ∈ Zu(id)

2 from AS .
2. Assign comm[id]← ~b.
3. Compute (~bk)k∈[n] = classify(~b) over Z2m(id) . Output (id,~bk

k∈[n]) to Pp(id), and (id,~bk) to Pk for all k ∈ [n].
If p(id) ∈ C, output (id,~bk

k∈[n]) also to AS . For k ∈ C, output (id,~bk) to AS . Write commk[id] = ~bk

• Multiplication triples: On input (triple, id) from all (honest) parties, if comm[id] exists, then output (id,⊥) to all parties.
Otherwise:

1. Generate ~a $← Zu(id)
2m(id) , ~b

$← Zu(id)
2m(id) . If p(id) ∈ C, get ~a and ~b from AS . Compute elementwise ~c = ~a ·~b in Z2m(id) .

2. Assign comm[id] = (~a,~b,~c).
3. Compute (~ak)k∈[n] = classify(~a), (~bk)k∈[n] = classify(~b), (~ck)k∈[n] = classify(~c) over Z2m(id) .

Output (id, (~ak
k∈[n],

~bk
k∈[n], ~c

k
k∈[n])) to Pp(id), and (id, (~ak,~bk, ~ck)) to Pk for all k ∈ [n].

If p(id) ∈ C, output (id, (~ak
k∈[n],

~bk
k∈[n], ~c

k
k∈[n])) also to AS . For k ∈ C, output (id, (~ak,~bk, ~ck)) to AS . Write commk[id] =

(~ak,~bk, ~ck).

• Share Open: On input (share_open, id, k, j) from all (honest) parties, if commk[id] is defined, take the j-th tuple xkj of commk[id],
and output (id, k, j, xkj) to all parties and to AS . If both p(id), k ∈ C, then AS may choose any message instead of xkj .

• Stopping: At any time while executing (bit, id) or (triple, id), on input (stop, id) from AS , stop the functionality and output
(id,⊥) to all parties.

Fig. 19. Ideal functionality Fpre

Observation 5. From the description of Πpre, we can
extract the total number nbgen(T) of bits needed to en-
code a single tuple of type T , and the numbers nbop1(T)
and nbop2(T) of bits to be opened in the pairwise check,
where nbop1(T) bits are opened before the last nbop2(T)
bits. These values are given in Table 10.

Table 10. Number of tuple bits involved in different steps (ring
cardinality 2m)

x nbgen(x,m) nbop1(x,m) nbop2(x,m)
bit m 1 m

triple 3m 2m m

Lemma 6 (cost of generating tuples using Πpre). Let
Fshare be realized by the protocol Πshare. Let λ be the
number of bits in the randomness seed used by the par-
ties. Given the parameters µ and κ, the number of FTR
operations for generating N tuples of type T using Πpre
can be expressed as the quantity prcNT defined as

prcNT = tr⊗n(µN+κ)·shn·(nbgenT) ⊗ (tr⊗ntshn·λ ⊕ bc⊗ntshn·λ)

⊕ (bc⊗n
κ·shn·(nbgenT) ⊗ bc⊗n(µ−1)N ·shn·(nbop1T)

⊗bc⊗n(µ−1)N ·shn·(nbop2T)) .

Proof. From Table. 8, we get the cost tr⊗nshn·M of commit-
ting an M -bit value using Fshare, and the cost bc⊗nshn·M
of opening an M -bit value using Fshare. The lc opera-
tions do not involve any communication. The sum prcNT
covers all the communication for generating all the N
triples of type T .

– tr⊗n(µN+κ)·shn·(nbgenT) is the cost of sharing the initial
unverified tuples among the n parties in parallel.

– tr⊗ntshn·λ ⊕ bc⊗ntshn·λ is the cost of agreeing on a λ-bit
common randomness seed using public opening.

– bc⊗n
κ·shn·(nbgenT) is the cost of cut-and-choose opening.

All the κ tuples are opened in parallel.
– bc⊗n(µ−1)N ·shn·(nbop1T) and bc⊗n(µ−1)N ·shn·(nbop2T) are

the costs of the pairwise verifications of all the
(µ − 1) pairs, which counts the total cost of the
two openings of this step: the differences between
the two tuples, and the alleged zeroes. For trusted
bits, the share cost multiplier shn can be removed
from nbop1T since the difference between two bits is
broadcast in plain, not as shares.

Since agreeing on public randomness using Πcoins takes
more than one round, and the randomness is not opened
to any party in the first round, the steps (1) and (2) of
Πpre can be done in parallel. Since all communication of

Verification of Multiparty Protocols with Honest Majority 55

In Πpre, each party works with unique identifiers id, encoding the bit width m(id) of the ring in which the tuples are shared, the
party p(id) that gets all the tuples, and the number u(id) of tuples to be generated. Πpre uses Fcoins and Fshare as subroutines.
The parameters µ and κ depend on the security parameter. Let λ be the number of bits in the randomness generator seed.

• Initialization: On input (init,m, u, p) from Z, where Dom(m) = Dom(u) = Dom(p), each party stores the mappings m, u, p for
further use. For each id, it defines a couple of identifiers idki for k ∈ [µ · u(id) + κ], and i ∈ [v], where v = 1 for trusted bits, and
v = 3 for triples. It defines m̃(idki)← m(id), p̃(idki)← p(id) for all i,k. It sends (init, m̃, p̃) to Fshare.
In addition, each party defines m̃(k) = 2λ for some constant identifier k, and sends (init, m̃) to Fcoins.

• Trusted bits: On input (bit, id):

1. The party Pp(id) generates µ · u(id) + κ random bits bk
$← Z2. Pp(id) sends (commit, idk0 , bk) to Fshare. Each party sends

(commit, idk0) to Fshare. After getting (idk0 , B) from Fshare, each party writes comm[idk0] = B, where B = (bj
k
)j∈[n] for Pp(id),

and B = bj
k
for each other party Pj .

2. The parties send (pubrnd, k) to Fcoins, getting back a randomness seed that they use to agree on a random permutation π of
tuple indices.

3. For k ∈ [κ], each party sends (open, idπk0) to Fshare, getting back a bit bk. If the opening fails, or bk /∈ {0, 1}, then output
(id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding bits into pairs. Such pairwise verification is
repeated µ− 1 times with the same u(id) bits, each time taking the next u(id) indices from π.
For each pair (k, k′), Pp(id) broadcasts a bit indicating whether bk = bk′ or not. If bk = bk′ was indicated, each party sends
(idk,k

′

0 = idk0 − idk
′

0) to Fshare. If bk 6= bk′ was indicated, each party sends (idk,k
′

0 = 1− idk0 − idk
′

0) to Fshare. Each party then
sends (open, idk,k

′

0) to Fshare and checks if the value returned by Fshare equals 0. If it does not, then output (id,⊥).
5. Let ~id be the vector of the identifiers of the remaining u(id) bits in Fshare. Each party outputs comm[id′] for id′ ∈ ~id.

• Multiplication triples: On input (triple, id):

1. The party Pp(id) generates µ · u(id) + κ random ring element pairs ak
$← Z2m(id) , bk

$← Z2m(id) . It computes ck = ak · bk for
k ∈ |µ ·u(id) +κ|. Pp(id) sends (commit, idk0 , ak), (commit, idk1 , bk), (commit, idk2 , ck) to Fshare. Each party sends (commit, idk0),
(commit, idk1), (commit, idk2) to Fshare. After getting (idk0 , A), (idk1 , B), (idk2 , C) from Fshare, each party writes comm[idk0] =
(A,B,C), where A = (aj

k
)j∈[n], B = (bj

k
)j∈[n], C = (cj

k
)j∈[n] for Pp(id), and A = aj

k
, B = bj

k
, C = cj

k
for each other Pj .

2. The parties send (pubrnd, k) to Fcoins, getting back a randomness seed that they use to agree on a random permutation π of
tuple indices.

3. For k ∈ [κ], each party sends (open, idπk0), (open, idπk1), (open, idπk2) to Fshare, getting back (ak, bk, ck). If the opening fails,
or ck 6= ak · bk, then output (id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding triples into pairs. Such pairwise verification is
repeated µ− 1 times with the same u(id) triples, each time taking the next u(id) indices from π.
For each pair (k, k′), let us denote (ida, idb, idc) = (idk0 , idk1 , idk2), (ida′

, idb
′
, idc

′) = (idk′
0 , id

k′
1 , id

k′
2), (idâ, idb̂, idĉ) =

(idk,k
′

0 , idk,k
′

1 , idk,k
′

2).
(a) Each party sends (idâ = ida − ida′), (idb̂ = idb − idb′), and then (open, idâ), (open, idb̂) to Fshare, getting back â and b̂

respectively.
(b) Each party then sends (idĉ = â · idb+ b̂ · ida′ + idc

′ − idc) and (open, idĉ) to Fshare. If Fshare returns ĉ 6= 0, output (id,⊥).
5. Let ~id be the vector of the identifiers of the remaining u(id) triples in Fshare. Each party outputs comm[id′] for id′ ∈ ~id.

• Share Open: On input (share_open, id, k, j), each party sends (share_open, idji , k) to Fshare for all i ∈ [v], where v = 1 for
trusted bits and v = 3 for triples. After receiving back all (idji , k, x

k
i), the party outputs (id, k, (xki)i∈[v]) to Z. The opening of

Fshare may fail if both p(id), k ∈ C, and in this case the party outputs (id, k, j,⊥).

• Stopping: If at any time (cheater, k) or (id′,⊥) for some id′ comes from Fshare or Fcoins while executing (bit, id) or (triple, id),
output (id,⊥) to Z.

Fig. 20. Real protocol Πpre

open in Πshare originates from the prover, and comput-
ing linear combinations using Fshare does not introduce
any communication, the steps (3) and (4) of Πpre can
also be done in parallel.

Lemma 7. Let C be the set of corrupted parties. Assum-
ing |C| < n/2, if µ > 1 + η/ logN and κ > max{(N1/µ +
1)η,N1/µ+µ−1}, where N is the total number of gener-
ated tuples, the protocol Πpre UC-realizes Fpre in Fcoins-
Fshare-hybrid model with correctness error ε < 2η, and
simulation error 0.

Verification of Multiparty Protocols with Honest Majority 56

• Initialization: On input (init,m, u, p) from Fpre, S initializes internal Fshare and Fcoins.

• Tuple generation: On input (bit, id) and (triple, id), S behaves according to the following pattern:

1. For p(id) /∈ C, S generates (µ − 1)u(id) + κ additional tuples. It then generates a random seed s $← Z2λ , and checks which
permutation π is generated by s. It then permutes all µ · u(id) + κ tuples (some u(id) of them are “imaginary” tuples that
will never be fully simulated by S) in such a way that the u(id) tuples that will be finally left (based on π) are exactly those
generated by Fpre. It simulates committing them to Fshare.
If p(id) ∈ C, then all the µu(id) + κ tuples are chosen by A.

2. The parties should jointly agree on a random permutation π of tuples.
– In order to agree on the same π, S simulates Fcoins in such a way that it provides the same randomness seed s that S

used to rearrange the tuples before the commitments.
– Now a vector ~s′ of certain κ tuples needs to be revealed. S needs to simulate the public opening of Fshare, and that

requires choosing the values ~s′ to be opened. If p(id) ∈ C, then S takes the ~s′ chosen by A before. If p(id) /∈ C, then
S simulates opening the random valid tuples whose commitment it has simulated before. S either accepts or rejects the
opened tuples from the name of honest parties, exactly in the same way as they would do in Πpre. If any tuple should be
rejected, S sends (stop) to Fpre.

3. The parties start verifying the tuples pairwise. For this, certain values should be computed and opened using Fshare, that
depend on the tuple type. For p(id) ∈ C, S has already received the tuples from A, and it uses them again. If there are any
inconsistencies, S sends (stop) to Fpre. For p(id) /∈ C, S needs to simulate to A two types of values:
– The first component are alleged zeroes. For these, S simulates opening 0.
– The second component are some additional values needed in verification. For these, S simulates opening uniformly

distributed random values in the corresponding rings.
4. There are now u(id) tuples left for each party that are treated as the final output. For p(id) ∈ C, Fpre outputs to the parties

the shares ~s of valid tuples. If the cut-and-choose and the pairwise verification have not failed, then the same holds also in
Πpre with probability that depends on the security parameters.

• Share open: The share opening is delegated to Fshare. Unless both p(id), k ∈ C, it always succeeds since Fshare since no message
of the form (extcommit, id, xk) is being input to Fshare by Πpre. S simulates sending (share_open, idji , k) to Fshare for all i ∈ [v],
and if p(id), k ∈ C, then A may choose to open an arbitrary share that S delivers to Fpre. The shares of k /∈ C are given to S by
Fpre to simulate the opening.

• Stopping: If at any time while executing (bit, id) or (triple, id), (cheater, k) comes from Fshare or Fcoins, output (stop) to Fpre.

Fig. 21. The simulator Spre

Proof. We use the simulator S = Spre described in
Fig. 21. The simulator runs a local copy of Πpre, to-
gether with local copies of Fcoins and Fshare.

The simulator will need to generate some non-trivial
values during the openings of the cut-and-choose and
the pairwise verification, so it should be prepared. Dur-
ing the initial distribution of tuples, for p(id) /∈ C, it
generates (µ−1)u(id)+κ additional valid tuples. S gen-
erates a random seed s, computes the permutation π

from s, and rearranges the tuples in such a way that ex-
actly those tuples that are chosen by Fpre will be finally
left. For p(id) ∈ C, all µ · u(id) + κ tuples are chosen by
A. After S gets all these tuples from A, it simulates the
commitments using Fshare. For this, it does not need
to simulate the values of the tuples of p(id) /∈ C that
are output Fpre, so there is no inconsistency between
the internal state of Fpre and the simulation. The work
proceeds as follows.

1. S initializes Fcoins and simulates its run in such
a way that the seed s will be the same that was
used by S in the beginning. Since S has generated s

uniformly, this is what Z expects to get from Fcoins
in the real protocol.

2. For cut-and-choose of honest provers, S generates
the opened tuples from the same distribution as an
honest prover would. By choice of the randomness
seed s, these tuples are not related to the u(id) tu-
ples generated by Fpre, and hence for Z they seem
as coming from the real protocol.

3. For the pairwise verification, S needs to simulate
different values, depending on the tuple type. For
the first µ− 1 iterations, S generates all the tuples
for honest parties, since they are not included into
Fpre anyway. The most interesting is the last µ-th
iteration. Let k be the tuple that has been chosen
by Fpre and has not been shown to S, and let k′ be
the tuple that S may still choose itself.
(a) Trusted bits: First of all, S needs to broad-

cast a bit indicating whether bk 6= bk′ . This
value is distributed uniformly since bk′ has not
been used anywhere yet. After that, S simulates
Fshare outputting either bk− bk′ , or 1− bk− bk′ .

Verification of Multiparty Protocols with Honest Majority 57

For an honest prover, that value is always 0
since it tells honestly whether bk 6= bk′ .

(b) Multiplication triples: S broadcasts â = ak−ak′

and b̂ = bk−bk′ which are uniformly distributed
due to the masks ak′ and bk′ . For an honest
prover, the value â · bk + b̂ · ak′ + ck′ − ck equals
0, since it would generate ck = ak · bk and ck′ =
ak′ · bk′ .

If the protocol succeeds for p(id) /∈ C, the finally
left u(id) tuples are exactly those that are generated by
Fpre, so the outputs are the same in the real and the
simulated executions, and sinceA has received up to t−1
uniformly distributed shares of remaining tuples that
have not been opened, no Z can distinguish between
these executions. For p(id) ∈ C, these u(id) tuples are
all generated by A. If any of these tuples is invalid, there
will be immediate difference with Fpre that outputs to
the parties only valid tuple shares. We show that, if
finally u(id) tuples are accepted for p(id) ∈ C, then they
are all valid, except with negligible probability.

First of all, we show that, if the tuple with the index
k′ is valid, then the pairwise check passes only if the
tuple k is also valid. We prove it for different kinds of
tuples, one by one.

1. Trusted bits: Let bk′ ∈ {0, 1}. First, the prover de-
cides whether to indicate bk = bk′ , or bk 6= bk′ .
– Suppose the prover indicated bk = bk′ . In this

case, bk − bk′ is output. If indeed bk − bk′ = 0,
then it should be bk = bk′ ∈ {0, 1}.

– Suppose the prover indicated bk 6= bk′ . In this
case, 1−bk−bk′ is output. If indeed 1−bk−bk′ =
0, then it should be bk = 1− bk′ ∈ {0, 1}.

– If the prover indicates something else, the pro-
tocol aborts. No tuples are accepted.

2. Multiplication triples: Let ck′ = ak′ · bk′ . The values
â = ak − ak′ and b̂ = bk − bk′ are computed and
opened by the parties using Fshare, so there is no
way to cheat with them. Suppose that â · bk + b̂ ·
ak′ + ck′ − ck = 0. Since ck′ = ak′ · bk′ , we have
â · bk + b̂ · ak′ + ak′ · bk′ − ck = (ak − ak′) · bk + (bk −
bk′) · ak′ + ak′ · bk′ − ck = ak · bk − ck. If this value is
0, then ak · bk = ck.

We have shown that the only possibility for the
prover to cheat is to put two invalid tuples into the same
pair during the pairwise verification. For the µ− 1 pair-
wise checks, the finally accepted invalid tuple should be
paired with some other invalid tuple on each iteration.

Now we need to show that, for sufficiently large µ and
κ, this happens only with a negligible probability.

Let p(id) ∈ C. Let u := u(id). If Pp(id) wants to have
` bad tuples among the final u ones, it has to do the
following:

1. put µ · ` bad tuples into the initial set of (µ · u+ κ)
tuples;

2. hope that no bad tuple is among the ones opened
during the cut-and-choose step;

3. hope that the µ · ` tuples are put together into `

groups during the pairwise checking step.

We will now give lower bounds for the values µ
and κ, such that, from the point of view of a malicious
prover, the probability of steps (2) and (3) succeeding is
less than 2−η for a security parameter η. We note that
analogous results are achieved by [32],and their bounds
are even better.

Probability of passing cut-and-choose. The κ
tuples to be opened can be selected in

(
µu+κ
κ

)
different

ways. Assuming that some ` of the u tuples are “bad”,
there are

(
µ(u−`)+κ

κ

)
ways of choosing a set that contains

only “good” tuples. The probability of selecting such a
set is

Pc&c(µ, u, κ, `) =
(
µ(u−`)+κ

κ

)(
µu+κ
κ

) (1)

= (µ(u− `) + κ)!
(µu+ κ)! · (µu)!

(µ(u− `))!

= µu · · · (µ(u− `) + 1)
(µu+ κ) · · · (µ(u− `) + κ+ 1)

≤
(

µu

µu+ κ

)µ·`
.

In particular, if ` ≥ cu for some c ∈ [0, 1], then, assuming
κ ≤ µu

2 ,

Pc&c(µ, u, κ, `) ≤
(

µu

µu+ κ

)µuc
=

(
1

1 + κ
µu

)µuc
= 1(

1 + κ
µu

)µu
κ ·cκ

≤ 1
2cκ . (2)

Probability of passing pairwise checking. For
the pairwise checking, we partition the µu tuples into u
groups of size µ, so that only one tuple of each group is
left after checking. We have

(
µu
µ

)
ways to select the first

group,
(
µu−µ
µ

)
ways to select the second group,

(
µu−2µ
µ

)
ways to select the third group, etc. If we multiply all

Verification of Multiparty Protocols with Honest Majority 58

these values, we get the number of all possible group-
ings, where the order of the groups matters. Since the
order of the groups is not important, we have to divide
the final number by u!. The number of groupings of µu
tuples into u groups is

G(µ, u) = 1
u!

u−1∏
i=0

(
µ(u− i)

µ

)
(3)

= 1
u!

(
1
µ!

) u−1∏
i=0

(µ(u− i))!
(µ(u− i− 1))!

= 1
u!

(
1
µ!

)u (µ(u− 0))!
(µ(u− (u− 1)− 1))!

= (µu)!
u!(µ!)u .

In order to pass the pairwise checking, all the µ` bad
tuples should form exactly ` groups of size µ, such that
no “good” tuple is present in any of these groups. The
number of such groupings is G(µ, `)·G(µ, u− `), and thus
the probability of passing the pairwise check is

Ppwc(µ, u, `) = G(µ, `) · G(µ, u− `)
G(µ, u)

= (µ`)!
`!(µ!)`

· (µ(u− `))!
(u− `)!(µ!)(u−`) ·

u!(µ!)u

(µu)!

= u!
`!(u− `)! ·

(µ`)!(µu− µ`)!
(µu)!

=
(
u

`

)
/

(
µu

µ`

)
. (4)

Probability of passing both checks. This is the
product of (1) and (4):

Ppp(µ, u, κ, `) =
(
µ(u−`)+κ

κ

)(
u
`

)(
µu+κ
κ

)(
µu
µ`

)
=

(
u

`

)
/

(
µu+ κ

µ`

)
. (5)

Catching a single bad tuple. Suppose that the
malicious prover aims to have a single bad tuple among
the final u ones, i.e. ` = 1. In this case

Ppp(µ, u, κ, 1) =
(
u

1

)
/

(
µu+ k

µ · 1

)
≤ u/

(
µu+ k

µ

)µ
= u/

(
u+ k

µ

)µ
≤ u1−µ .

In order to have Ppp(µ, u, κ, 1) ≤ 2−η, it is sufficient to
have u1−µ ≤ 2−η or µ ≥ 1 + η/ log u.

Making a single bad tuple the worst case. We
aim to select the parameters µ and κ in such a way, that
aiming for a single bad tuple is the best strategy for the
malicious prover.

First, let ` < cu for some c ∈ [0, 1] (fixed below). We
consider the ratio Ppp(µ, u, κ, `)/Ppp(µ, u, κ, `+ 1) and
search for sufficient conditions for it to be larger than
1. Let an := a(a− 1) · · · (a−n+ 1). An upper bound for
the ratio is

Ppp(µ, u, κ, `)
Ppp(µ, u, κ, `+ 1) =

(
u
`

)(
µu+κ
µ`+µ

)(
u
`+1
)(
µu+κ
µ`

)
= (`+ 1)

(u− `) ·
(µ(u− `) + κ)µ

(µ(`+ 1))µ

≥ (µ(u− `− 1) + κ+ 1)µ

u · (µ`+ 1)µ .(6)

For (6) to be at least 1, it is sufficient to take

µ(u− `− 1) + κ+ 1 ≥ u1/µ(µ`+ 1),

getting a sufficient lower bound Lκ for κ:

Lκ = u1/µ(µ`+ 1)− 1− µ(u− `− 1)
= µ(u1/µ`− u+ `) + u1/µ + µ− 1
≤ µ(u1/µcu− u+ cn) + u1/µ + µ− 1
= µu(c(u1/µ + 1)− 1) + u1/µ + µ− 1 .

If we take c = 1/(u1/µ + 1), then Lκ is upper bounded
by u1/µ + µ− 1, which is a sufficient choice for κ.

Now let ` ≥ cu. In this case, by (2), already the
probability of passing cut-and-choose is less than 2−ck,
on the condition k ≤ µu

2 . It is sufficient to take k ≥
η/c = η(u1/µ+1) for this probability to be smaller than
2−η.

Due to the condition k ≤ µu
2 , we need to show that

η(u1/µ + 1) ≤ µu
2 , and u1/µ + µ − 1 ≤ µu

2 . We have
shown that, for catching a single tuple, we should any-
way choose µ ≥ 1 + η/ log u. We get

η(u1/µ + µ− 1) ≤ u1/(1+η/ logn) + µ− 1
≤ ulogn/η + µ− 1
= 2−η + µ− 1
≤ µ ≤ µu

2

for u ≥ 2, and

η(u1/µ + 1) ≤ η(u1/(1+η/ logn) + 1)
≤ η(ulogn/η + 1)
= η(2−η + 1)

≤ 3
2η .

In order to get µu
2 ≥

3η
2 , we need µ ≥ 3η

u . Since µ ≥
1+η/ log u > η/ log u, it suffices to have log u ≤ u

3 , which
is true for u ≥ 12. Such a choice for u is reasonable, since

Verification of Multiparty Protocols with Honest Majority 59

we may always generate more tuples than we actually
need, and the preprocessing phase is in general run in
advance for several protocol executions.

Summary. In order to allow a bad tuple pass with
the probability of at most 2−η, while ending up with u
tuples, it is sufficient to choose the parameters µ and κ
as follows:

µ ≥ 1 + η/ log u ,

κ ≥ max{(u1/µ + 1)η, u1/µ + µ− 1} .

This choice of µ and κ is given for each type of tuples
separately. If the total number of generated tuples is N ,
then it suffices in any case to take µ ≥ 1 + η/ logN and
κ ≥ max{(N1/µ + 1)η,N1/µ + µ− 1}.

C.2 Verification of Circuit Computation

The ideal functionality Fverify for verification of circuit
computation has been given in Figure 2. It allows to
verify computations w.r.t. committed inputs, outputs,
randomness, and communicated messages. Figure 22 de-
picts essentially the same functionality, but it uses a
different notation. In particular, instead of taking cir-
cuits directly as inputs, it takes a set of subcircuits with
fan-out 1 (we call such a subcircuit a function f), thus
verifying the circuit outputs one by one. Such represen-
tation makes handling of identifiers easier.

The protocol Πverify implementing Fverify is given
in Fig. 23-24. It works on top of the functionality Fshare
depicted in Fig. 12 (used to commit inputs, random-
ness, and communication), and the precomputed tuple
generation functionality Fpre depicted in Fig. 19 (used
to generate tuples for verification). In order to com-
bine shares of these functionalities, the parties insert the
shares that they get from Fpre to Fshare using its inter-
face extcommit. All linear combinations, truncations and
openings that are related to the verification are done us-
ing Fshare only. The functionality Fpre may need to be
called again if opening of Fshare fails, so that the exter-
nal commitments could be published using the help of
Fpre.

We will need to generate shared randomness that
is known only to a certain party. The protocol that we
use for it is very similar to Πcoins of Fig. 17. It also
uses Fshare, and the difference is that the randomness
is opened only to one party. Using the protocol Πshare
for implementing Fshare, we see that each rj of the sum
r = r1 + · · · + rn is in turn shared to (r1

j , . . . , r
n
j) using

linear (n, t)-threshold sharing. In this way, we get the
same protocol for randomness generation that has been

described in Sec. 6.2. Similarly to Πcoins, having just
t values rj is sufficient, and it is only important that
at least one rj in the sum is generated by an honest
party. If we apply the same approach to n = 3, we have
t = 2, and r = r1 + r2, where in turn r = r1

1 + r2
1 and

r2 = r1
2 +r2

2, where the share rkj is meant for the verifier
Vj . Since Vk already holds rkk and it knows rk anyway, it
may just take rkk = rk and let rkj = 0, so that rkj would
not need to be sent to Vj . Each verifier Vk only needs
to send rk to P , and we get the 3-party randomness
generation that was given in Sec. 4.3.

Both Fverify and Πverify use unique identifiers id.
Each such identifier corresponds to some wire of the
circuit that is being verified. It encodes the two par-
ties p(id) and p′(id) (possibly p(id) = p′(id)) com-
mitted to a particular valuation comm[id] of the wire,
and a function f(id) =: f ′, describing the computa-
tion of a single circuit output, with its input identi-
fiers ~xid(id), so that the parties may verify whether
comm[id] = f ′((comm[i])

i∈ ~xid(id)). If the computation
of comm[id] is not needed to be verified (i.e. it is some
input commitment), then formally f(id) = idR (identity
over some ring R), and ~xid(id) = [].

Observation 6. From the definition of Πverify, we ex-
tract the number of different tuples required for each op-
eration type directly from the description of the initial-
ization phase. They are given in Table 11.

Table 11. Number of precomputed tuples for basic operations

operation type # tuples # bits
Linear combination – – –

Conv. to a smaller ring – – –
Bit decomp. in Z2m bit m m

Multiplication in Z2m triple 1 m

Extend Z2mx to Z2my bit mx my

Lemma 8 (cost of initializing Πverify). Let Πverify use
the implementation Πpre of Fpre with λ-bit randomness
seed, and the parameters µ, κ. Let all the functions f
to be verified consist of basic operations fi, such that
there are Nb operations requiring bit decompositions (bit
decomposition, ring extension), and Nm multiplications.
Let 2m be the cardinality of the largest ring involved in
the computation. The cost of initializing Πverify is upper
bounded by

Verification of Multiparty Protocols with Honest Majority 60

Fverify works with unique identifiers id, encoding the party indices p(id) and p′(id) committed to comm[id], the function f(id) to
verify, and the input identifiers ~xid(id) on which f(id) should be verified w.r.t. the output identified by id.
• Initialization: On input (init, f, ~xid, p, p′) from all (honest) parties, where Dom(f) = Dom(~xid) = Dom(p) = Dom(p′), store the
mappings f , ~xid, p, p′ for further use. Deliver (init, f, ~xid, p, p′) to AS . If AS responds with (stop), output ⊥ to all parties.

• Input Commitment: On input (commit_input, id, x) from Pp(id), and (commit_input, id) from all (honest) parties, if comm[id]
it not defined yet, assign comm[id]← x. If p(id) ∈ C, then x is chosen by AS .

• Message Commitment: On input (send_msg, id, x) from Pp(id) and (send_msg, id) from all (honest) parties, output x to
Pp′(id). If p(id) ∈ C, then x is chosen by AS . If p′(id) ∈ C, output x to AS . Assign sent[id]← x.

On input (commit_msg, id) from all (honest) parties, check if sent[id] and comm[id] are defined. If sent[id] is defined, and comm[id]
is not defined, assign comm[id]← sent[id]. If both p(id), p′(id) ∈ C, assign comm[id]← x∗, where x∗ is chosen by AS .

•Randomness Commitment: On input (commit_rnd, id) from Pp(id), and (commit_rnd, id) from all (honest) parties, if comm[id]
is not defined yet, generate a fresh randomness r in Z2m , where Z2m is the range of f(id). If AS sends (stop), output ⊥ to all
parties. Otherwise, assign comm[id]← r. For p(id) ∈ C, deliver r to AS .

• Verification: On input (verify, id) from all (honest) parties, if comm[id] and comm[i] have been defined for all i ∈ ~xid(id), take
~x← (comm[i])

i∈ ~xid(id) and y ← comm[id]. For f ← f(id), compute y′ ← f(~x). If y′−y = 0, output (id, 1) to each party. Otherwise,
output (id, 0) to each party. Output the difference y′ − y, to AS .

• Cheater detection: On all inputs involving id, if p(id) ∈ C, AS may input (cheater, p(id)). In this case, comm[id] and sent[id]
are not assigned, (cheater, p(id)) is output to each party. If AS does not input (cheater, p(id)), then each commitment ends up
outputting (confirmed, id) to each party. If (cheater, p(id)) comes from AS during the execution of (verify, id), then Fverify outputs
(id, 0) to all parties instead of (cheater, p(id)).

Fig. 22. Ideal functionality Fverify

vcostNb,Nm,mpre = tr⊗nshn·m·((µ(Nb·m+3Nm)+κ(m+3))

⊗(tr⊗ntshn·λ ⊕ bc⊗ntshn·λ)
⊕ (bc⊗nshn·m·κ(m+3)

⊗ bc⊗n(µ−1)m(Nb+shn·2Nm)

⊗ bc⊗nshn·(µ−1)m(Nbm+Nm)) .

Proof. The number of different tuples used by each op-
eration is given in Table. 11. By Lemma 6, the cost of
generating N tuples of type x over a ring of size 2m is

prcNT = tr⊗n(µN+κ)·shn·(nbgenT) ⊗ (tr⊗ntshn·λ ⊕ bc⊗ntshn·λ)

⊕ (bc⊗n
κ·shn·(nbgenT) ⊗ bc⊗n(µ−1)N ·shn·(nbop1T)

⊗bc⊗n(µ−1)N ·shn·(nbop2T)) .

where T = (x,m), and the definitions of subterms can
be found in Table 10.

The total number of the transmitted and broad-
cast bits is linear in the terms N · shn · nbgen(x,m),
N · nbop1(x,m), and N · shn · nbop2(x,m). Hence it suf-
fices to find the upper bounds for these three quanti-
ties. We use the fact that the share overhead is linear
w.r.t. the number of shared bits, i.e. shn · (M1 +M2) =
shn ·M1 + shn ·M2 (see Observation 3).

– The bit decomposition and the conversion to a
larger ring both require m trusted bits of m bits
each. As shown in the proof of Lemma 6, the multi-
plier shn can be removed from nbop1(bit,m) since the

prover broadcasts the difference bit in plain. Hence
for the bit-related gates we have

N · shn · nbgen(x,m) ≤ Nb ·m · shn · nbgen(bit,m)
= Nb · shn ·m2 ,

N · nbop1(x,m) ≤ Nb · 1 · nbop1(bit,m)
= Nb ·m ,

N · shn · nbop2(x,m) ≤ Nb ·m · shn · nbop2(bit,m)
= Nb · shn ·m2 .

– Each multiplication gate requires one multiplication
triple. Hence for the multiplication gates we have

N · shn · nbgen(x,m) ≤ Nm · shn · nbgen(triple,m)
= Nm · shn · 3m ,

N · shn · nbop1(x,m) ≤ Nm · shn · nbop1(triple,m)
= Nm · shn · 2m ,

N · shn · nbop2(x,m) ≤ Nm · shn · nbop2(triple,m)
= Nm · shn ·m .

The randomness seed of λ bits may be generated
once for all tuples. Different tuples can be generated
in parallel. For simplicity, let µ and κ be the same for
generating all types of tuples. Let x1 be the total num-
ber of bits transmitted during the first round, when the
initial unverified tuples are shared, and x2, x3, x4 the
total number of bits broadcast in the three parallel pub-
lic openings. The total cost is (tr⊗nx1 ⊗ f(λ)) ⊕ (bc⊗nx2 ⊗
bc⊗nx3 ⊗ bc⊗nx4), where f(λ) := tr⊗ntshn·λ ⊕ bc⊗ntshn·λ does not

Verification of Multiparty Protocols with Honest Majority 61

In Πverify , each party works with unique identifiers id, encoding the party indices p(id) and p′(id) committed to comm[id], the
function f(id) to verify, and the identifiers ~xid(id) of the inputs on which f(id) should be verified w.r.t. the output identified by
id. The prover stores the committed values in a local array comm. The verifiers store the helpful values published by the verifier
in an array pubv. The messages are stored by the sender and the receiver in a local array sent before they finally get committed to
these messages. Πverify uses FTR, Fshare, and Fpre as subroutines.
• Initialization: On input (init, f, ~xid, p, p′), where Dom(f) = Dom(~xid) = Dom(p) = Dom(p′), store the mappings f , ~xid, p, p′

for further use. Initialize comm and sent to empty arrays.

Initialize subroutine protocols:
– Initialize FTR : For all id ∈ Dom(f) s.t p(id) 6= p′(id), define the mappings s, r, f ′ such that s(id) ← p(id), r(id) = f ′(id) ←
p′(id). For all i ∈ [n], define an identifier id′ ← (bc, i) that will be used for broadcast, and s(id)← i, r(id)← ⊥, f ′(id)← ⊥.
Send (init, s, r, f ′) to FTR.

– Initialize Fpre : A message (init, m̄, ū, p̄) is sent to Fpre, where m̄,ū,p̄ depend on the functions f to be verified. Let f(id) be
a composition of basic operations f1, . . . , fNid . Each such fi, introduces to Fpre identifiers of the form id′ ← (idi, type,m, u)
such that type is the type of the tuple, m̄(id′) = m, ū(id′) = u. For all id′, take p̄(id′)← p(id).
1. Linear combination, conversion to a smaller ring: no tuples needed;
2. Bit decomposition in Z2m : (idi, bit,m,m);
3. Multiplication in Z2m : (idi, triple,m, 1);
4. Extending Z2mx to a larger ring Z2my : (idi, bit,my ,mx).

Let pre be the array containing all such identifiers introduced by all basic operations of f(id). Since Fpre generates all the
tuples of the same type simultaneously, the tuple generation is optimized by substituting all the identifiers (idi, type,m, uidi)
for the same type and bit width m with a single identifier id′ = (type,m, u) for u =

∑
uid

i
. After inducing m̄, ū, p̄ from these

new identifiers, each party sends (init, m̄, ū, p̄) to Fpre.
– Initialize Fshare : For commitments of non-random wires, take p̃(id)← p(id), and m̃(id)← m, where Z2m is the range of f(id).

If p(id) 6= p′(id), generate a new identifier id′ and define additionally m̃(id′) ← m(id), p̃(id′) ← p′(id). For commitments of
random wires, for all j ∈ [n], for idj = (id, j), assign m̃(idj)← m(id), p̃(idj)← j, and for id′

j = (id′, j), assign m̃(id′
j)← m(id),

p̃(id′
j)← p(id). After doing it for all id, deliver (init, m̃, p̃) to Fshare.

Generating precomputed tuples: A message (type, id′) is sent to Fpre by each party for each identifier id′ = (type,m, u) on which
Fpre was initialized. Fpre generates the required tuples and outputs to the parties their shares ~sj . Each party Pj sends a couple of
messages (extcommit, idkv , s

j
k
) to Fshare, so that these shares could be used inside Fshare.

Initialization failure: If (id,⊥) comes from Fpre or Fshare for some id, then output ⊥ to Z.

• Failed Openings: At any time during public opening, Fshare may output (id,⊥,K, deriv[id]), where K is the set of parties that
have disagreed with Pp(id) about the correctness of the share commk[id]. By definition of Fshare, |K| < t. If deriv[id] contains any
index id′ for which Pk for k ∈ K has input (extcommit, id′, xk) before, and that has not been rewritten by (pcommit, id′, k, xk)
afterwards, such message needs to be opened using help of Fpre. For any other index id′, the shares xk can be opened directly
using Fshare. In Πverify , the messages (extcommit, id′, xi) may be input only for such id′ for which a value identified by some id′′

has been stored in Fpre. Hence, if an opening fails, each party Pi behaves as follows for all k ∈ K:
1. Send (share_open, id′′, k, j) for corresponding id′′ and j to Fpre. For any non-external commitment id′ of deriv[id], send

(share_open, id′, k) to Fshare. If at least one share opening fails, then both p(id) and k should have been corrupted, so
(cheater, p(id)) can be output. At most t− 1 shares of each value are opened since |K| < t by definition of Fshare.

2. If all share openings succeed, after getting back all shares xk, send (pcommit, id′, k, xk) for all k ∈ K, where xk is the share
that corresponds to the identifier id′ of Fshare. Here xk is treated as a public value, so all parties input the same value xk.

3. Send (open, id) to Fshare. All shares of k ∈ K are now substituted with public values. A may abort the opening as far as all
t− 1 shares of corrupted parties are substituted in this way, and finally Fshare outputs either (id, x) or (cheater, p(id)).

• Cheater detection: At any time, when FTR or Fshare outputs a message (cheater, k), output (cheater, k) to Z. If (cheater, p(id))
comes from Fshare during executing (verify, id), then all parties output (id, 0) instead of (cheater, p(id)).

Fig. 23. Real protocol Πverify (initialization,failed openings, cheater detection)

depend on the tuples, and the upper bounds of xi are

x1 ≤ (µNb + κ) · shn ·m2 + (µNm + κ) · shn · 3m
= shn ·m · ((µNb + κ) ·m+ (µNm + κ) · 3)
= shn ·m · ((µ(Nb ·m+ 3Nm) + κ(m+ 3)) ,

x2 ≤ κ · shn ·m2 + κ · shn · 3m
= shn ·m · κ(m+ 3) ,

x3 ≤ (µ− 1)(Nb ·m+Nm · shn · 2m)
= (µ− 1)m(Nb + shn · 2Nm) ,

x4 ≤ (µ− 1)(Nb · shn ·m2 +Nm · shn ·m)
= shn · (µ− 1)m(Nb ·m+Nm) .

Substituting x1, x2, x3, x4 into (tr⊗nx1 ⊗ f(λ)) ⊕
(bc⊗nx2 ⊗ bc⊗nx3 ⊗ bc⊗nx4), we get the final value.

Verification of Multiparty Protocols with Honest Majority 62

• Input Commitment: On input (commit_input, id, x), Pp(id) sends (commit, id, x) to Fshare. On input (commit_input, id), each
party sends (commit, id) to Fshare. After getting (confirmed, id) from Fshare, Pp(id) assigns comm[id] ← x. Each party outputs
(confirmed, id) to Z.

• Message Commitment:
1. On input (send_msg, id, x), Pp(id) sends (transmit, id, x) to FTR. On input (send_msg, id), Pp′(id) waits for (id, x) from FTR.

If the transmission succeeds, both parties assign sent[id]← x.
2. On input (commit_msg, id), Pp(id) sends to Fshare the message (commit, id, sent[id]). Each other party sends (priv_open, id, id′)

to Fshare. The identifier id′ has been defined for this particular id in the initialization phase in such a way that the party
committed to comm[id′] of Fshare is Pp′(id).

If (id, id′,⊥) is output by Fshare, then each party Pj sends (reveal, id) to FTR, and after getting back (id, x), it sends (pcommit, id, x)
and (pcommit, id′, x) to Fshare. After getting (confirmed, id) from Fshare, Pp(id) and Pp(id′) assign comm[id] ← sent[id], and each
other party outputs (confirmed, id) to Z.

• Randomness Commitment: On input (commit_rnd, id), the parties act as follows. Let T be a set of t parties s.t. p(id) /∈ T .

1. Each Pi for i ∈ T generates ri
$← Z2m(id) and sends (commit, idi, ri) to Fshare. For i 6= j, it sends (commit, idj) to Fshare.

2. Upon receiving (idk, r
i
k) from Fshare for all k 6= p(id), each party sends (priv_open, idk, id

′
k) for all k 6= p(id) to Fshare (this is

done to open the value to Pp(id)).
3. Upon receiving (idk, id

′
k, (r

j
k
)j∈[n]) for all k ∈ T from Fshare, Pp(id) computes rk = declassify(rj

k
)j∈[n] for all k ∈ T , computes

r =
∑

k∈T rk, and writes comm[id]← r.

If Pp(id) complains that it received inconsistent shares rj
k
, each party outputs ⊥ to Z. Otherwise, it outputs (confirmed, id) to Z.

• Verification: On input (verify, id), each party Pk checks whether comm[i] has been defined for all i ∈ ~xid(id). It decomposes
f(id) to basic operations f1, . . . , fN . For each fi, some additional identifiers are defined: idxk

i for the k-th input, idyk
i for the k-th

output, and idzk
i for the k-th alleged zero of fi (some of these will actually overlap). The index k is omitted if there is only one

such identifier. The symbols other than x, y, z are used for intermediate values. Let idtype
i,k

be the index of Fshare storing the k-th
component of the i-th tuple of type type generated by Fpre.

First, Pp(id) computes all the intermediate values comm[idxk
i] using the function descriptions fi and the commitments comm[i] for

i ∈ ~xid(id). Let ~̂xi denote all values that should be broadcast by Pp(id) for verification of fi, defined as follows:
1-2. Linear combination, conversion to a smaller ring: no broadcasts.
3. Multiplication in Z2m : ~̂xi ← [(x1 − a) mod 2m, (x2 − b) mod 2m],

where a = comm[idtriple
i,1], b = comm[idtriple

i,2], x1 = comm[idx1
i], x2 = comm[idx2

i].
4. Bit decomposition in Z2m : ~̂xi ← [c1, . . . , cm], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbit

i,k] is different from
the k-th bit of comm[idx

i].
5. Conversion from Z2mx to a larger ring Z2my : Perform bit decomposition of comm[idx

i] over Z2ny , getting ny bits bk. Take
the first nx bits. Let ~̂xi ← [c1, . . . , cnx], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbit

i,k] is different from bk.

Pp(id) sends (broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]) to FTR. Upon receiving (broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]), each party
writes pubv[idtypei] ← ~̂xi. For simplicity of further verifications, we assume that (idbit

i,k = 1 − idbit
i,k) is immediately sent to Fshare

for all k such that ck = 1 was broadcast, so that we do not need to compute it for each operation separately.
After the verifiers have assigned pubv[idtypei], they start computing fi, for all i ∈ [N]. The basic operations fi are computed by
sending lc and trunc to Fshare. The outputs of fi are stored in Fshare under identifiers idy

i (used also as idx
i′ for computing the next

basic operations fi′ for i′ > i), and the alleged zeroes are stored in Fshare under identifiers idz
i.

1. Linear combination [c0, . . . , cl]: Send (idyi = c0 +
∑

k∈[l] ck · id
xk
i) to Fshare.

2. Conversion to a smaller ring Z2m : Send (idy
i = idx

i mod 2m) to Fshare.
3. Multiplication in Z2m : Let (ida, idb, idc) = (idtriple

i,k
)k∈[3], and [x̂1, x̂2] = pubv[idtriple

i]. Send to Fshare:
– idy

i = x̂1 · idb + x̂2 · ida + idc + x̂1 · x̂2;
– idz1

i = x̂1 + ida − idx1
i ;

– idz2
i = x̂2 + idb − idx2

i .
4. Bit decomposition in Z2m : Let [idb1 , . . . , idbm] = (idbit

i,k)k∈[m]. Send (idz
i = idx

i −
∑m

k=1 2k−1 · idbk) to Fshare.
5. Conversion from Z2mx to a larger ring Z2my : Let [idb1 , . . . , idbmx] = (idbit

i,k)k∈[mx]. Send to Fshare

– idy
i =
∑mx

k=1 2k−1 · idbk ;
– idw

i = idy
i mod mx;

– idz
i = idx

i − id
w
i .

Send also (idzk
N+1 = id

yk
N − id) to Fshare, to verify the final output against comm[id].

After all fi have been processed, for each alleged zero idzk
i , send (open, idzk

i) to Fshare. Upon receiving all (idzk
i , zik) from Fshare,

if zik = 0 for all i, k, then output (id, 1). Otherwise, output (id, 0).

Fig. 24. Real protocol Πverify (commitments, verification)

Verification of Multiparty Protocols with Honest Majority 63

Observation 7. From the description of the commit-
ment functions of Πverify, we count the number of FTR
and Fshare calls that it makes. They are given in Ta-
ble 12. The cost of broadcasting the complaint (bad, k)
is omitted.

Observation 8. By counting the number of the broad-
cast hint bits an the alleged zero bits for each basic oper-
ation, we get the numbers given in Table. 13. Note that
the hint bits ci broadcast for each bit decomposition do
not have to be committed in Z2m , and each such bit is
broadcast as a 1-bit value.

Lemma 9 (cost of the broadcasts of Fverify). Let f be
a function that is going to be verified. Let f consist of
N basic operations fi /∈ {lc, trunc}. Let 2m be the size
of the largest used ring. The total cost of the broadcast
phase of Πverify is upper bounded by bcN ·2m.

Proof. All the bits are broadcast in parallel using FTR.
We use Table 13 to count the number of bits for each op-
eration. We take the upper bound 2m on broadcast bits
per operation, which comes from multiplication. Differ-
ently from the initialization phase of Πverify, the costs
are similar for distinct types of basic operations, and
they are all O(m).

Lemma 10 (cost of the final verification of Πverify).
Let all the functions f to be verified consist of N basic
operations fi /∈ {lc, trunc}. Let My be the total number
of bits output by f . Let Mx, Mr, Mc, Mpre be the total
number of bits in the committed input, randomness,
communicated elements, and precomputed tuples respec-
tively. Let 2m be the size of the largest used ring. The
cost of the verification phase of Πverify is upper bounded
by:
– bc⊗nshn·(N ·2m+My) if all openings (open, id) succeed,

– rev⊗(t−1)
shn·(Mx+Mr+Mc+Mpre+My) if some (open, id) out-

puts (id,⊥).

Proof. Taking into account the costs of different oper-
ations of Πshare given in Obs. 3, the functionalities lc
and trunc do not take any communication. Hence the
cost of verifying basic operations comes only from the
hint broadcast and the alleged zero check.

– Assume that (open, id) succeeds for all alleged ze-
roes. It has cost bc⊗nM for an M -bit value. From Ta-
ble. 13, we see that the largest number of alleged
zero checks per operation is 2m that comes from
multiplication. In addition, there is an alleged zero

bit for each of the My output bits of f . The broad-
cast is parallelizable, so all the bits are broadcast
simultaneously.

– Assume that (open, id) returns (id,⊥) for some al-
leged zero identifier id. In this case the shares held
by parties of K should be revealed, which may in-
clude all the initial inputs from which the alleged
zeroes and the outputs were computed, and also the
shares of the final outputs. By definition of Fshare,
|K| < t, so up to t− 1 shares are revealed.

Lemma 11. Let C be the set of corrupted parties.
Assuming |C| < n/2, the protocol Πverify UC-realizes
Fverify in FTR-Fshare-Fpre-hybrid model.

Proof. We use the simulator S = Sverify described in
Fig. 25. It runs a local copy of Πverify, together with
local copies of FTR, Fshare, Fpre.

Preprocessing. For the generation of precomputed
tuples, S simulates Fpre. If the generation succeeds, A
assumes that the triples generated by Fpre are all copied
to Fshare, since at least the honest parties have input
(extcommit, id, xk) to Fshare for the corresponding iden-
tifiers id and the shares xk that they received from Fpre.
If it fails, then the parties should output ⊥ in the real
execution. In this case, S sends (stop) to Fverify, so that
⊥ is output to Z by Fverify, as it would be expected
from a real protocol execution.

Input and message commitments. For input
and message commitments, S simulates Fshare and FTR,
where the inputs of corrupted parties are provided by
A, and the inputs of honest parties that should be de-
livered to a corrupted party are given to S by Fverify.
Up to t− 1 shares need to be simulated to A, and these
may be sampled by S from a uniform distribution.

For input commitments, if p(id) ∈ C, the commit-
ments may fail. In this case S delivers to Fverify the
message (cheater, p(id)).

For message commitments, S simulates sending
(commit, id, x), (commit, id), and (priv_open, id, id′) to
Fshare. At this point, it either p(id) ∈ C or p′(id) ∈ C,
then S has already simulated x before to both A and to
Fshare, so it uses the same x.

If either (id, id′,⊥), (cheater, p(id)), or
(cheater, p′(id)) is output by Fshare, or A has chosen
that Fshare outputs to Pp(id′) some x′ 6= x, then S
simulates work of FTR on input (reveal, id). The latter
results in opening (id, x) to A, where x is the value that
was actually transmitted, and since Fshare may fail only
if p(id) ∈ C or p′(id) ∈ C, S takes the same x that it has
already used in the simulation before.

Verification of Multiparty Protocols with Honest Majority 64

• Initialization: On input (init, f, ~xid, p, p′), from Fverify , S initializes its local copies of Fpre, Fshare, FTR as parties in Πverify
do. Then S simulates running Fpre to generate tuples. This does not require any knowledge from Fverify . If the generation has not
failed, then A expects that all (valid) tuples are copied to Fshare. If the generation fails, then S delivers (stop) to Fverify , so that
⊥ is output in both the real and the simulated executions.

• Input Commitment: On inputs (commit_input, id, x) and (commit_input, id), S simulates sending (commit, id, x) and
(commit, id) to Fshare. If p(id) ∈ C, then A chooses (xk)k∈[n] for Fshare. S computes x ← declassify(xk)k∈H and delivers x to
Fverify .

•Message Commitment: On inputs (send_msg, id, x) and (send_msg, id), S simulates sending (transmit, id, x) to FTR. On input
(commit_msg, id), S simulates sending (commit, id, x), (commit, id), and (priv_open, id, id′) to Fshare by the corresponding parties.
If p(id) ∈ C, then A chooses (xk)k∈[n], and S delivers x← declassify(xk)k∈H to Fverify . As a side-effect, Fshare requires to deliver
up to t− 1 shares of x of p(id) /∈ C to A. S samples them from uniform distribution.

If (id, id′,⊥), (cheater, p(id)), or (cheater, p′(id)) should be output by Fshare, then S simulates sending (reveal, id) to FTR. It then
writes comm[id]← x in its local copy of Fshare, where x is the value that was initially transmitted.

• Randomness Commitment: On input (commit_rnd, id), S needs to simulate sending (commit, idj , rj) and (priv_open, idj , id
′
j)

to Fshare.
– For p(id) ∈ C, S needs to enforce commitment of the particular randomness r that it receives from Fverify . The commitments
rj for j /∈ C are simulated in exactly the same way as by Scoins, and we now repeat it here. As far the opening has not started,
A does not expect to see the values rj generated by j /∈ C. Since opening may start only on all honest parties’ agreement, S
is free to wait with their generation until A commits to rj for all j ∈ C. After that, S generates rj for j /∈ C: up to the last

share, it samples rj
$← Z2m(id) , and then computes the last share as rj = r−

∑n

k=1,k 6=j rk. This is always possible if at least
t parties contribute rj .

– For p(id) /∈ C, S does not get r from Fverify , but it may generate arbitrary shares rj
$← Z2m(id) since r will not have to be

opened to A anyway.
After (idj , r

k
j) has been output to each party Pk, A waits for (priv_open, idj , id

′
j) for all j ∈ [n] \ {p(id)}. S uses the previously

generated rj to simulate priv_open. If priv_open fails, then the parties should output ⊥ in the real execution. In this case, S sends
(stop) to Fverify , so that ⊥ is output to Z, as it would expect from a real protocol execution.

• Verification: On input (verify, id), S decomposes f(id) to basic operations f1, . . . , fN , and defines the additional identifiers
id

xk
i , idyk

i , idzk
i as the honest parties do. For p(id) ∈ C it computes all the intermediate values comm[idxk

i] and comm[idyk
i], and

broadcasts the values ~̂x chosen by A. For p(id) /∈ C, broadcasting ~̂x is to be simulated by S as follows (we use case distinction on
types of precomputed tuples causing the broadcast):

1. Bit decomposition of x in Z2m : Need to broadcast ~̂xi = [c1, . . . , cm], where ck ∈ {0, 1} denotes whether the trusted bit bk is
different from the k-th bit of x. Generate ck

$← {0, 1}.
2. Multiplication of x1 and x2 in Z2m : Need to broadcast ~̂xi = [(x1 − a) mod 2m, (x2 − b) mod 2m] for the multiplication triple

(a, b, c). Generate ~̂xi
$← Z2

2m .

S simulates (broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]) using FTR. If the broadcast succeeds and no (cheater, p(id)) should be output,
S writes pubv[idtypei] ← ~̂xi for all honest parties. For the trusted bits, it simulates sending the corresponding messages (idbit

i,k =
1− idbit

i,k) to Fshare for ck = 1, as the honest parties do.

The further computation depends on fi, and S just simulates sending to Fshare the same messages that the honest parties send
(linear combinations and truncations). These operations do not involve any interaction between parties, so nothing needs to be
simulated to A.

In the end, S needs to simulate opening to each party the alleged zero vector ~z. If p(id) ∈ C, then S holds all the values needed
to compute ~z, that have already been delivered to Fverify during the simulations of commitments. If p(id) /∈ C, then S obtains the
difference z = f(~x)− y from Fverify . It takes ~zN+1 ← [z], and ~zi ← ~0 for all other i ∈ {1, . . . , N}.

• Failed Openings: At any time when a public opening fails, S simulates (id,⊥,K, deriv[id]) being output to all parties, where
the set K comes from the simulation of Fshare. S needs to simulate the share opening, which is done either using Fshare or Fpre
(depending on whether the corresponding leaf of deriv[id] is a local or an external commitment). S simulates using Fshare and Fpre
to open the shares xk of parties belonging to the set K.

– If p(id) ∈ C, then A is allowed to open any shares xk for k ∈ C using Fshare and Fpre. For k /∈ C, S simulates opening the
same xk that have been simulated to A during the commitments of Fshare and Fpre.

– If p(id) /∈ C, we have K ⊆ C by definition of Fshare. Hence k /∈ C is not possible, so opening xk should be simulated only for
k ∈ C, and S takes the same xk that has been used in the simulation of Fshare or Fpre.

• Cheater detection: At any time, when FTR or Fshare should output a message (cheater, k), S outputs (cheater, k) to Fverify .

Fig. 25. The simulator Sverify

Verification of Multiparty Protocols with Honest Majority 65

Table 12. Number of Fshare and FTR operations needed for committing M values of N bits each in Fverify

commitment call # calls total FTR cost
commit_input commit 1 tr⊗nMshn·N

send_msg transmit 1 tr⊗Mshn·N
commit_msg (optimistic) commit 1 tr⊗nMshn·N

priv_open 1 fwd⊗nMshn·N ⊕ tr⊗nMshn·N
commit_msg (if Pp(id) and Pp′(id) disagree) reveal 1 rev⊗Mshn·N

commit_rnd commit t tr⊗ntMshn·N
priv_open t fwd⊗ntMshn·N ⊕ tr⊗ntMshn·N

Table 13. Number of bits for verifying each operation in Fverify

operation # hint # alleged
bits zero bits

Linear combination 0 0
Conv. to a smaller ring 0 0

Bit decomposition in Z2m m m

Multiplication in Z2m : 2m 2m
Extending Z2mx to Z2my mx mx

For the randomness commitments, S gets r from
Fverify. S needs to simulate rj generated by j /∈ C in
such a way that r will be finally committed to Fshare
in the simulation. The generation of appropriate rj is
done in the same settings as for Scoins, so we refer to
the proof of Lemma 5 here. As the result, for p(id) ∈ C,
A believes that it should be comm[id] = r in the in-
ner state of Fshare in the real protocol. For p(id) /∈ C,
the value r does not have to be simulated to A. All the
commitments of rj are simulated using the local copy
of Fshare. After that, S needs to simulate the private
openings of the shares. If priv_open fails, then the par-
ties should output ⊥ in the real execution. In this case,
S sends (stop) to Fverify, so that ⊥ is output to Z by
Fverify, as expected from a real protocol execution.

For all commitments, the values of comm[id] inside
Fverify are consistent with the view of A of comm[id].

Verification. When the verification starts, S needs
to simulate the broadcast. It needs to generate the val-
ues of the honest provers itself. All these values are some
private values hidden by a random mask (each tuple is
used only once), and hence are distributed uniformly:

1. Bit decomposition of x in Z2m : Since each bk is dis-
tributed uniformly in Z2, the difference bk − xk is
also distributed uniformly in Z2.

2. Multiplication of x1 and x2 in Z2m : Since the en-
tries a and b of the triple (a, b, c) are distributed

uniformly in Z2m , so are the values (x1−a) mod 2m

and (x2 − b) mod 2m.

After all the broadcasts and subsequent local oper-
ations on Fshare are simulated, S simulates opening to
each party the alleged zero vector ~z. If p(id) ∈ C, then S
has already simulated all the values needed to compute
~z to both A and Fshare, so S uses the same values again.
If p(id) /∈ C, then S obtains only the difference f(~x)− y
from Fverify. However, it needs to simulate the alleged
zeroes ~zi of each intermediate basic function fi. Here
we use the fact that, if p(id) /∈ C, then it has broadcast
~̂x that indeed corresponds to the computation of f(~x).
The only non-zero entries of ~z may come due to the
mismatches between f(~x) and y, and these differences
f(~x)− y are provided by Fverify.

We need to show that the verification either suc-
ceeds in both the real and the simulated execution, or
it fails in both. The inputs [messages] of p(id) /∈ C, the
randomness chosen by Fverify, and the inputs [messages]
of p(id) ∈ C chosen by A are all stored in Fshare. In ad-
dition, the precomputed tuples are also stored in the
same Fshare since the honest parties have transferred
there the shares they obtained from Fpre. Now Fshare
may be used as a black box, doing computation on all
these commitments. It remains to prove that, if all these
values are committed properly (it is ensured by Fshare
on the condition that (cheater, p(id)) is not output for
the prover Pp(id)), then Πverify does verify the compu-
tation of f(id) on input (verify, id).

It easy to see that, if ~zi = ~0 for the alleged zeroes
produced by the basic function fi, then fi has been com-
puted correctly with respect to the committed inputs
and outputs on which it was verified, and ~̂xi has been
computed correctly for fi. The details of verifying each
basic function are analogous to the precomputed tuple
generation proof of Lemma 7, so we do not repeat the
proof here. If all fi have been computed correctly, then
so is the composition of f .

Verification of Multiparty Protocols with Honest Majority 66

Conversely, if ~z 6= ~0 in Πverify, it does not immedi-
ately imply that f(~x)− y = 0, since the problem might
be in the values broadcast by the prover. The parties of
Πverify output (id, 0) in this case. Here we use the fact
that Fverify also outputs (id, 0) to the parties instead of
(cheater, p(id)) during the execution of (verify, id).

Failed openings. In the previous steps, we always
assumed for simplicity that the opening always suc-
ceeds. If (cheater, p(id)) is output instead, then verifi-
cation does not need to proceed further, since the guilt
of Pp(id) is already proven, so it is also not a problem.
However, the opening may fail without identifying the
cheater. In this case, all parties get from Fshare the mes-
sage (id,⊥,K, deriv[id]), where K < t. S needs to simu-
late Fshare and Fpre opening the shares xk of K.

– If p(id) ∈ C, then A is allowed to open any shares
xk for k ∈ C using Fshare and Fpre. However, for
k /∈ C, A cannot prevent opening of xk that has been
actually given to an honest Pk before, and hence
S simulates opening the same xk that have been
simulated to A during the commitments of Fshare
and Fpre. Since A is not able to modify even a single
share of an honest party, the value of comm[id], will
not change inside Fshare.

– If p(id) /∈ C, we have K ⊆ C by definition of Fshare
(an honest party never complains against another
honest party). Hence k ∈ C is not possible, so open-
ing xk should be simulated only for k ∈ C, and S
takes the same xk that have been simulated to A
during the commitments of Fshare and Fpre. By def-
inition of these functionalities, A cannot force open-
ing of these xk to fail or substitute them with other
values. Therefore, the values of leaves comm[id′] of
deriv[id], and hence also the value of comm[id], will
not change inside Fshare.

In both cases, there is no way for A to modify the
value of comm[id] that is stored inside Fshare, and hence
a failed opening does not affect any further opening. On
the next input (open, id), complaints of K will no longer
be taken into account, and if p(id) /∈ C, then the value
comm[id] will finally be opened. For p(id) ∈ C, A may
choose to output (cheater, p(id)) instead.

Summary. The entire simulated view of A, includ-
ing the preprocessing, all commitments, and the veri-
fication, is consistent with the inputs and outputs of
Fverify. Hence the view of A is the same as it would be
in a real protocol execution where the parties have same
inputs and outputs as Fverify does, and no Z can dis-
tinguish the real execution from the simulated one.

C.3 The Main Protocol for Verifiable SMC

The protocol Πvmpc implementing Fvmpc is given in
Fig. 26. The protocol is built on top if the functionality
Fverify of Sec. C.2, used to verify the computation of
each output of each round, with respect to the commit-
ted inputs, messages, and randomness. The execution
of both Fvmpc and Πvmpc takes place only if their ini-
tialization (generation of randomness and precomputed
tuples) succeeds. During execution of Πvmpc, cheating is
detected as follows.

– If a party Pk refuses to properly commit or
transmit messages, Fverify outputs (cheater, k)
on inputs (commit_input, id), (send_msg, id),
(commit_msg, id).

– If a party Pk has cheated in the execution phase,
Fverify outputs (id, 0) on input (verify, id), where id
identifies some output of Pk.

– If a party cheats during the verification, Fverify out-
puts (cheater, k) on input (verify, id).

Lemma 12. Let C be the set of corrupted parties. As-
suming |C| < n/2, the protocol Πvmpc UC-realizes Fvmpc
in Fverify-hybrid model.

Proof. We use the simulator S = Svmpc described in
Fig. 27. The simulator runs a local copy of Πvmpc, to-
gether with a local copy of Fverify.

Preprocessing phase. The preprocessing phase of
Fvmpc and Πvmpc corresponds to their initialization and
the randomness generation. Getting the randomness ~ri
for i ∈ C from Fvmpc, S simulates initialization of Fverify
and the randomness commitment. If Fverify outputs ⊥,
then S delivers (stop) to Fvmpc, so that both the real
and the simulated executions abort.

Execution phase. For the private input commit-
ments (commit_input), S only needs inputs of corrupted
parties for simulation of Fverify. All of them are given
to S by A, and S delivers them to Fvmpc, so that it
would use the same inputs. If (cheater, k) comes from
Fverify during input commitments, then S sends (stop)
to Fvmpc, so that the execution does not proceed neither
in Fvmpc nor Πvmpc (the party that refused to commit
could be blamed by all parties in this case). During the
execution phase, S needs to simulate to A the messages
~m`
ij that are computed by the honest parties Pi for cor-

rupted parties Pj (send_msg). It gets all such messages
from Fvmpc. On the other hand, the messages ~m`

ij that
are computed by corrupted Pi are chosen by A, and S

Verification of Multiparty Protocols with Honest Majority 67

In Πverify , each party Pi maintains a local array mlci of length n, into which it marks the parties that have been detected in
violating the protocol rules. Initially, mlci[k] = 0 for all k ∈ [n]. If Pk has been detected in cheating, Pi writes mlci[k] = 1. Πvmpc
uses Fverify as a subroutine.

• In the beginning, Each party Pi gets the message (circuits, (C`ij)
n,n,r
i,j,`=1,1,1) from Z.

1. Initializing Fverify: Let the n`ij output wires of the circuit C
`
ij be enumerated. For all k ∈ [n`ij], the value id← (i, j, `, k) serves

as an identifier for Fverify . In addition, for each party Pi, there are identifiers (i, x, k) and (i, r, k) for the enumerated inputs
and randomness respectively.
– For each input wire id← (i, x, k) or id← (i, r, k), let Z2m be the ring in which the wire is defined. Define f(id)← idZ2m ,

~xid(id)← [id], p(id) = p′(id) = i.
– For each output wire id ← (i, j, `, k), define f(id) as a function consisting of basic operations of Sec. 3, computing the
k-th coordinate of ~m`ij ← C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) (this is always possible since every gate of C`ij is by definition some

basic operation), ~xid(id) the vector of all the identifiers of ~xi, ~ri, ~m1
1i, . . . , ~m

`−1
ni that are actually used by C`ij , p(id) = i,

p′(id) = j.
Each party sends (init, f, ~xid, p, p′) to Fverify .

2. Randomness generation: For each randomness input wire id← (i, r, k), each party sends (commit_rnd, id) to Fverify .
3. Input commitment: For each input wire id ← (i, x, k), Pi sends (commit_input, id, ~xi) to Fverify , and each other party sends

(commit_input, id) to Fverify .

• For each round ` ∈ [r], Pi computes ~m`ij = C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`−1
ni) for all j ∈ [n], and sends (send_msg, (i, j, `, k),m`ijk) to

Fverify for all k ∈ [|~m`ij |].

• After r rounds, each party Pi outputs (output, ~mr1i, . . . , ~m
r
ni) to Z. Let r′ = r and mlci[k]← 0 for all k ∈ [n].

Alternatively, at any time before outputs are delivered to parties, if a message (cheater, k) comes from Fverify , each party Pi
writes mlci[k]← 1. In this case the outputs are not sent to Z. Let r′ ∈ {0, . . . , r − 1} be the last completed round.

• After r′ rounds:

1. Each party sends (commit_msg, (i, j, `, k)) to Fverify for all i, j ∈ [n], ` ∈ [r′], k ∈ [n`ij]. If (cheater, i) comes from Fverify , then
each party Pj writes mlcj [i]← 1, and the verification of Pi is treated as failed, without even running (verify, id).

2. For each output wire identifier id ← (i, j, `, k), each party sends (verify, id) to Fverify , getting the answer (id, b) from Fverify .
If b = 1, each party Pj writes mlcj [i]← 0. Otherwise, it writes mlcj [i]← 1.

• Finally, each party Pi outputs to Z the set of parties Bi such that mlci[k] = 1 iff k ∈ Bi.

Fig. 26. The protocol Πvmpc for verifiable computations

delivers them to Fvmpc to maintain consistency of all
messages in the real and the simulated execution.

Verification phase. At the beginning of the ver-
ification phase, S simulates commitments to the mes-
sages (commit_msg) that have been transmitted before.
If both the sender and the receiver of the transmitted
message are corrupted, then Fverify allows A to choose
m to commit. In this case, S deliversm to Fvmpc, so that
it would take into account exactly the same messages as
in the simulated real execution.

After all messages have been committed, or
(cheater, k) output for k ∈ C for parties that refuse
to commit, S simulates work of Fverify on inputs
(verify, id), for all circuit output identifiers id. For this,
it needs to simulate the final decision of Fverify, and also
its side-effect f(~x) − y. All the verifiable functions f of
Fverify correspond to the computation of some output
of a circuit C`ij with respect to the committed inputs,
randomness, and messages. By definition of Fverify, un-
less at least one message (cheater, p(id)) has been out-
put to each honest party (in this case, verification is

not executed for p(id) at all), all these values are in-
deed committed as chosen by the party committing to
them. Since each honest party has followed the protocol
and computed C`ij properly, and all its commitments are
valid, the difference f(~x) − y should be 0 for p(id) ∈ C,
and so it is easy to simulate. For p(id) ∈ C, S computes
f(x)−y directly from x and y that have been committed
to Fverify before.

It remains to prove that Fvmpc finally outputs ex-
actly the same values as the parties in Πvmpc would.
Since S has so far simulated to A the messages that
were chosen by Fvmpc, and it has delivered to Fvmpc all
messages that have been chosen by A, it would prove
that the simulated execution is indistinguishable from a
real protocol. Fvmpc has two kinds of outputs:

1. The computation output (output, ~mr
1i, . . . , ~m

r
ni). Let

` be any round. We prove by induction that each
message ~m`

ij , seen by the adversary, is consistent
with Fvmpc’s internal state.

Verification of Multiparty Protocols with Honest Majority 68

The simulator S maintains the commitments comm[id] of the identifiers id denoting the circuit wires whose values are known to
the corrupted parties.

• In the beginning, S gets all the circuits (C`ij)
n,n,r
i,j,`=1,1,1 from Fvmpc. These are the same circuits that the parties would have

obtained from Z in Πvmpc.

1. Initializing Fverify: S simulates the initialization of Fverify . For i ∈ C, it adjusts the randomness generator of Fverify in such a
way that it generates exactly the same randomness ~ri for Pi as chosen by Fvmpc.

2. Randomness generation: S simulates work of Fverify on inputs (commit_rnd, id) for each input wire id← (i, r, k). For all i ∈ C,
the committed randomness r is taken according to ~ri that has been chosen by Fvmpc. S writes comm[id]← r.

3. Input commitment: For each input wire id ← (i, x, k), S simulates work of Fverify on inputs (commit_input, id, xik) and
(commit_input, id), where ~xi is the vector of inputs of the party Pi. For i ∈ C, the vector ~x∗i is chosen by A. S delivers this ~x∗i
to Fvmpc, and writes comm[id]← x∗ik for all id← (i, x, k).

In any of these points, if ⊥ or (cheater, k) is output by Fverify , send (stop) to Fvmpc to stop it. The protocol execution does not
start in this case.
• For each round ` ∈ [r], S needs to simulate computing the messages ~m`ij = C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) for all j ∈ C. If i ∈ C,

then the message ~m∗`ij is generated by the adversary, and S delivers it to Fvmpc. If j ∈ C, then the message ~m`ij comes from Fvmpc,
and S delivers it to A. In all cases, S simulates sending (send_msg, (i, j, `, k),m`ijk) to Fverify for each entry m`ijk of ~m`ij .

• After r rounds, each party Pi should output (output, ~mr1i, . . . , ~m
r
ni) to Z. This does not need to be simulated. Let r′ = r and

mlci[k]← 0 for all k ∈ [n].
Alternatively, at any time before outputs are delivered to parties, if a message (cheater, k) comes from Fverify , S writes mlci[k]← 1
for each honest party Pi. In this case the outputs are not sent to Z. S defines B0 = {k |(cheater, k) has been output}, and sends
(stop,B0) to Fvmpc to prevent it from outputting the results to Z. Let r′ ∈ {0, . . . , r − 1} be the last completed round.

• After r′ rounds:

1. S simulates sending (commit_msg, (i, j, `, k)) to Fverify for all i, j ∈ [n], ` ∈ [r′], k ∈ [n`ij]. If either i ∈ C or j ∈ C, it writes
comm[(i, j, `, k)]← m`ijk. If both i, j ∈ C, then A chooses m∗`ijk, and S writes comm[(i, j, `, k)]← m∗`ijk

2. For each output wire identifier id ← (i, j, `, k), S simulates sending (verify, id) to Fverify . For each k ∈ [n], S simulates the
output bit bk of Fverify .
– Let k ∈ C. If f ′(comm[i]

i∈ ~xid
) 6= comm[id] for f ′ := f(id), then S simulates Fverify outputting (id, 0), and writes

mlci[k] ← 1 for all i /∈ C. Otherwise, it simulates Fverify outputting (id, 1), and writes mlci[k] ← 0. The side-effect
f(~x)− y of Fverify is computed directly from x and y, which have already been delivered by S to Fverify for k ∈ C.

– For all k /∈ C, S simulates Fverify outputting (id, 1) and writes mlci[k] ← 0 for all i /∈ C. It takes 0 as the side-effect of
Fverify .

• Finally, Fvmpc outputs to each party Pi the set of parties B for which ~m∗`ij 6= ~m`ij has been provided by S at some point before.
It now waits for a set of parties Bi from S, containing the parties that will be additionally blamed by Bi. Let B′i = {j |mlci[j] = 1}.
S sends to Fvmpc the sets Bi = B0 ∪ B′i, where B0 is the set defined in the execution phase.

Fig. 27. The simulator Svmpc for verifiable computations

– Base: Initially, there are the inputs ~xi and the
randomness ~ri in the internal state of Fvmpc. So
far, for i /∈ C, A has no information about ~xi,
~ri, and for i ∈ C it expects ~xi = ~x∗i , ~ri = ~r∗i ,
where ~x∗i is chosen by A itself, and ~r∗i is a uni-
formly distributed value that has been provided
by Fverify. Exactly these values are delivered by
S to Fvmpc, so the internal state of Fvmpc is con-
sistent with the view of A.

– Step: In the real world, for each i /∈ C, A
chooses all the messages m`

ji for j ∈ C that
will be delivered to Pi. By induction hypoth-
esis, the rest of the messages m`

ji for j /∈ C
and the inputs/randomness ~xi,~ri of the in-
ner state of Fvmpc do not contradict with the
view of A. In Πvmpc, A expects that an hon-

est Pi will now compute each message ~m`+1 =
C`ij(~xi, ~ri, ~m1

1i, . . . , ~m
`
ni). In the inner state of

Fvmpc, the value ~m`+1 is computed in exactly
the same way.

2. The sets Bi of blamed parties. Fvmpc computes all
the messages ~m`

ij and constructs the setM of par-
ties j for whom ~m`

ij 6= ~m∗`ij , where ~m∗`ij is the
value provided by S (that was actually chosen by
A). After that, it receives a couple of messages
(blame, i,Bi) from S, where Bi = B0 ∪ B′i, and
B0 = {k | (cheater, k) has come from Fverify in the
execution phase }. The ideal functionality Fvmpc ex-
pectsM⊆ Bi ⊆ C. First, we prove that Bi ⊆ C, i.e.
no honest party will be blamed.
(a) For each j ∈ B0, a message (cheater, j) has come

from Fverify at some moment. By definition of

Verification of Multiparty Protocols with Honest Majority 69

Fverify, no (cheater, j) can be sent for j /∈ C.
Hence j ∈ C.

(b) For each j ∈ B′i, the proof of Pj has not passed
the final verification. For j /∈ C, S has simulated
the work of Fverify in such a way that it outputs
(id, 1). Hence j ∈ C.

Secondly, we prove that M ⊆ Bi, i.e. all deviating
parties will be blamed.
(a) The first component ofM is B0 for which S has

sent (stop,B0) during the execution phase. The
same set B0 is a component of each Bi.

(b) The second componentM′ ofM are the parties
Pi for whom inconsistency of ~m`

ij happens in
Fvmpc.
We show that if i /∈ Bk for all k /∈ C, then
i /∈M′. Suppose by contrary that there is some
i ∈ M′, i /∈ Bk. If i /∈ Bk for all k /∈ C, then
the proof of Pi had succeeded for every C`ij .
For all i, j ∈ [n], ` ∈ [r′], i should have come
up with the commitments ~xi, ~ri, ~m`

ij such that
Fverify outputs (id, 1) on input (verify, id) for
each output wire identifier id. The committed
~xi are chosen by A in the beginning of the exe-
cution phase, the randomness ~ri is coming from
the same distribution as the randomness gener-
ated by Fvmpc, the incoming messages ~m`

ji are
those that are treated by Fvmpc as being sent
to Pi by Pj , and the outgoing messages ~m`

ij

are the same that are computed by Fvmpc (the
messages moving between two corrupted parties
have been chosen by A). Hence if verification
has succeeded, ~m`

ij = C`ij(~xi, ~ri, ~m1
1i, . . . , ~m

`−1
ni)

for all i, j ∈ [n], ` ∈ [r′], so i /∈M′.

Lemma 13. Let Πvmpc use the implementation of
Πverify that is built on top of Πpre, ΠTR, and Πshare.
Let the initial protocol defined by the circuits C`ij have
the following parameters (for one prover):
– it has r rounds;
– its largest ring is Z2m ;
– the number of transmitted bits of the protocol is Mc;
– the number of input bits is Mx;
– the number of randomness bits is Mr;
– the number of bit related gates (bit decomposition,
ring extension) is Nb;

– the number of multiplication gates is Nm;
– the number of input and output wires in the circuits
(excluding the intermediate wires) is Nw.

Let λ be the number of bits used for randomness seeds.
The upper bounds for costs of the preprocessing, execu-
tion, and postprocessing phases of Πvmpc are given in

Table 14 for the optimistic case, where the adversary
does not attempt to cheat.

Proof. Let Ng := Nb+Nm. We have taken the numbers
of communicated bits from the previously proven lem-
mata for Πverify. In the optimistic case, FTR works in
the cheap mode. We show how Table 14 is filled.

Preprocessing cost. The total cost vcostNb,Nm,mpre

of generating precomputed tuples is taken from
Lemma 8. The total cost tr⊗ntshn·Mr

⊕ fwd⊗ntshn·Mr
⊕ tr⊗ntshn·Mr

of generating the randomness is taken from Table 12.
All the randomness for one prover can be generated in
parallel using the same transmissions and forwardings,
so Mr moves into the subindex of tr and fwd. Taking
the costs of different FTR operations from Table. 7, the
number of rounds of vcostNb,Nm,mpre is max(1, 1 + 2) +
max(2, 2, 2) = 5, regardless of the parameters Nb, Nm,
m, and it is 1 + 1 + 1 = 3 for the randomness genera-
tion. Since the preprocessed tuples and the randomness
can be generated in parallel, we get the total number of
max(5, 3) = 5 rounds in the cheap mode of FTR. The to-
tal number of called operations is counted by putting to-
gether vcostNb,Nm,mpre and tr⊗ntshn·Mr

⊕ fwd⊗ntshn·Mr
⊕ tr⊗ntshn·Mr

.
The number of FTR operations is counted as follows.

– Transmit: Each of the n parties receives its shares
of initial precomputed tuples as a single message.
The other 3nt transmissions come from generating
λ and Mr, where the randomness is treated as a
single Mr-bit value.

– Forward: The randomness is treated as a singleMr-
bit value. There are nt forwarding for its shares.

– Broadcast: All broadcasts come from openings. The
shares of initially opened κ tuples are broadcast as
a single message for all tuples. Both openings of the
pairwise verification can be also treated as a sin-
gle broadcast message for all tuples. Since all these
broadcasts are done simultaneously by the prover,
all these values can be sent in a single broadcast.
There are also t openings coming from the λ-bit
public randomness used by Πpre. Each party Pj
broadcasts n shares of rj that it has generated. Since
the parties have to agree on public randomness be-
fore the cut-and-choose step, these broadcasts can-
not be parallelized with the previous one.

Execution cost. Before the execution starts, each
input has to be committed. The total cost of input com-
mitment tr⊗nshn·Mx

is taken from Table 12, where all the
Mx bits of one prover are committed in parallel, so Mx

moves into subindex.

Verification of Multiparty Protocols with Honest Majority 70

Table 14. Costs of different phases of Πvmpc for one prover in Z2m

phase # rounds (total) FTR op #ops #rounds # bits

pre 5 transmit n+ 2nt 1 n · shn ·m(µ(Nbm+ 3Nm) + κ(m+ 3))
+nt · shn · λ

+nt · shn ·Mr

nt 1 nt · shn ·Mr

forward nt 1 nt · shn ·Mr

broadcast t 2 n · shn · λ
1 2 n(µ− 1)m · (Nb + shn · 2Nm)

+n · shn · (µ− 1)m · (Nbm+Nm)
+n · shn ·m · κ(m+ 3)

exec 1 + r transmit n(1 + r) 1 + r shn · (n ·Mx +Mc)
post 3 transmit n2 1 shn · n ·Mc

n2 1 shn · n ·Mc

forward n2 1 shn · n ·Mc

broadcast 1 2 Ng · 2m+ n · shn · (Ng · 2m+Mc)

The Mc bits of the original communication are
transmitted in r rounds. On each round, up to n−1 dis-
tinct transmissions may take place for each party, since
it may send something to n − 1 other parties. Treating
the final outputs as a part of these Mc bits, we also
accept that a party may send values “to itself”, so the
upper bound is rn.

Postprocessing cost. The verification cost comes
from the execution of Fverify on inputs (commit_msg, id)
and (verify, id). It consists of the following blocks:

Message commitments: The cost tr⊗nshn·Mc
⊕

fwd⊗nshn·Mc
⊕ tr⊗nshn·Mc

is taken from Table 12. All the
messages can be committed in parallel, similarly to
inputs and randomness. Although Mc bits need to be
delivered only to n parties, different messages should
be approved by different receivers. This results in n2

transmissions (delivering each of the n shares to each
of the n senders), and all these messages need to be
forwarded. Finally, the receiver confirms the shares by
transmitting them back to the share holders. This pro-
cedure takes 3 rounds, and it can actually be reduced
to 2 rounds if the n shares are first delivered to the
receiver, followed by the receiver forwarding them to
share holders.

Hint broadcast: The total number of bits Ng · 2m is
taken from Lemma 9. All these bits are broadcast as a
single message.

Alleged zero broadcast: The total number of bits n ·
shn · (Ng · 2m + Mc) is taken from Lemma 10. Here we
assume that all the outputs of the circuits are exactly
the communication messages output by the circuits, so
we do not introduceMy. All n shares of the alleged zero
vector are broadcast in parallel by the prover, so it can
be treated as a single broadcast.

Putting together the hint broadcast and the al-
leged zero broadcast, we get one broadcast involving
Ng · 2m + n · shn · (Ng · 2m + Mc) bits. Since message
commitment can be done in parallel with these broad-
casts, the verification takes 3 rounds in the optimistic
mode.

C.4 Proof of the Main Theorem

We are now ready to prove Theorem 2. We take Πvmpc
that is built on top of Πverify (which is in turn using
Πshare, Πpre, and ΠTR).

Correctness. For estimating the correctness error,
we need to count the total number of messages sent us-
ing FTR, including all the transmitted, forwarded, and
broadcast messages. By message, we mean a bitstring
that is signed with one signature. For this, we look at
the Table 14 and sum up the total number of different
FTR calls. The total number of transmitted and broad-
cast messages for one prover is

N = n+ 3nt+ nt+ t+ 1 + rn+ n+ 2n2 + n2 + 1
= 3n2 + 4nt+ (r + 2)n+ t+ 2
≤ 7n2 + (r + 3)n .

For n provers, the upper bound on N is 7n2(n+r+3). By
Lemma 3, the error ε of the underlying ΠTR is bounded
by 7n2(n+ r+ 3) · δ. If we want to achieve error 2−η−1,
we need δ ≤ 2−η−1−log (7n2(n+r+3)).

The other source of error is Πpre. In order to achieve
error at most 2−η−1, by Lemma 7 it is sufficient to take
µ = 1 + η+1

logNg ≤ η, and

κ = max({(n1/µ + 1)(η + 1), n1/µ + µ− 1})
≤ max({(2−η−1 + 1)η, 2−η−1 + η + 1}) ≈ η ,

Verification of Multiparty Protocols with Honest Majority 71

which we will need when estimating the cost of prepro-
cessing phase. This gives us an upper bound for the total
error 2 · 2−η−1 = 2−η.

Security. We have proven that Πvmpc securely im-
plements Fvmpc in Lemma 12.

Cost.We combine the numbers of Table 14 with the
costs of particular FTR operations of Table. 7. Since the
variables Nb, Nm,Mx,Mc,Mr are estimated for the en-
tire computation of all the n parties, and the costs are
linear w.r.t. these values, we do not multiply each num-
ber by n to scale it to n provers. The only exception is
the parameter κ of the preprocessing phase that is up-
per bounded by η+1 for each separate proof, and which
is not scaled to n parties, differently from µ. Hence we
take everywhere κ′ := nκ. Let λ′ be the number of bits
used in a signature. We will still need to multiply the
number of used FTR operations by n in the pre- and
postprocessing phases.

Preprocessing cost. In order to achieve the re-
ported correctness, we took µ ≤ η and κ ≤ η + 1 (so
κ′ ≤ n(η+ 1)). We will use these numbers for finding an
upper bound on communication complexity.

– Transmit: The total number of bits per party is

n · shn ·m(µ(Nbm+ 3Nm) + κ′(m+ 3))
+ nt · shn · λ+ 2nt · shn ·Mr .

Since Nb, Nm are already counted for all n provers,
and the same seed λ can be used with different ran-
domness generators, this number is not multiplied
by n. The total number of independent transmis-
sions that need a signature is (n + 3nt) for each
prover. Cheap mode transmission adds the overhead
of a λ′-bit signature and for each transmission round
it adds n2 bits related to “no complaints” notifica-
tion exchanged between the parties.
Using the upper bounds for µ and κ′ presented be-
fore, we get an upper bound of total bit communi-
cation for all n provers:

nbtr
pre = shn · nηm(mNb + 3Nm)

+shn · n2ηm(m+ 3)
+shn · (nt · λ+ 2nt ·Mr)
+n(n+ 3nt)λ′ + 2n2 .

– Forward: The total number of forwarded bits is
nt · shn · Mr. From Table. 7, the cost of forward-
ing is twice the cost of a transmission. There are nt
forwardings for each party, so the total number of
bits is

nbfwd
pre = 2shn · nt ·Mr + 2n · nt · λ′ + n2 .

– Broadcast: The total number of broadcast bits is
n(µ − 1)m · (Nb + shn · 2Nm) + n · shn · (µ − 1)m ·
(Nbm + Nm) + n · shn · m · κ′(m + 3) for the tuple
verification, and n · shn · λ for agreement on pub-
lic randomness. The realization of broadcast that
we use multiplies this number of bits by n2. Using
the same inequalities as for transmission case, and
moving Nb deeper into the brackets, we get

nbbc
pre = shn · n3ηm(mNb + 3Nm) + n3ηmNb

+shn · n4ηm(m+ 3) + shn · n3λ

+n2(t+ 1)λ′ + 2n2 .

Summing together nbtr
pre+ nbfwd

pre+ nbbc
pre, putting all the

non-leading terms into o, treating λ, λ′ as constants, and
assuming for simplicity n ≤ min(Nb, Nm) (each party
computes at least one bit decomposition and one mul-
tiplication gate), and λ ≤ η, we get the total number of
bits upper bounded by

nbpre = shn ·4n2(nηm(Nbm+3Nm)+Mr)+o(n3ηmNb) .

Execution cost. There are rn + n transmissions
per party. Since Mx and Mc are already estimated for
all n parties, the cost of this phase is shn · (n · Mx +
Mc) + (r + 1)(n2 · λ′ + n2). Treating λ′ as constant, we
may write the total cost simply as

nbexec = shn · (n ·Mx +Mc) + o(rn2) .

Postprocessing cost. Translating the values of
Table 14 to communication gives us the following costs:

– Transmit: 2shn · n ·Mc + 2n2λ′ + 2n2.
– Forward: 2shn · n ·Mc + 2n2λ′ + n2.
– Broadcast: n2(Ng ·2m+n·shn·(Ng ·2m+Mc)+λ′)+n2.

Treating λ′ as a constant, and assuming n ≤ Ng
(each party computes at least one non-linear gate), we
may write the cost as

nbpost = shn · (2n3Ngm+ n2Mc) + o(n2Ngm) .

Cheating overhead. In the pessimistic setting, if
any party attempts to cheat, the preprocessing phase
aborts. In the other phases, FTR starts working in its
expensive mode. As can be seen from Table 7, since the
execution phase only involves transmissions, the num-
ber of rounds at most doubles, and the total communi-
cation increases up to 2n times. However, the overhead
of the verification phase may be larger, due to the use
of expensive broadcast.

We note that, if the cheap broadcast fails, and the
expensive one should be called instead, then any party

Verification of Multiparty Protocols with Honest Majority 72

that had to abort is able to prove the fact that the
sender was dishonest. Namely, it may use Ftransmit to
reveal the message that it received to all parties. In this
way, we may assume that a covert adversary will not
cheat with the broadcasts, since it will be caught if it
does so. �

Discussion. Treating the number of parties as a
constant, we get the following complexities of different
phases (in the optimistic setting):

– Preprocessing: O(ηm(Nbm+Nr) +Mr).
– Execution: O(Mx +Mc + r).
– Postprocessing: O(Ngm+Mc).

If replicated secret sharing is used, then for n = 5, the
constant of O is already quite large due to the expo-
nential nature of share cost shn. Shamir’s secret shar-
ing can be used to solve the problem, but then we lose
the advantage of computation in 2m, thus being un-
able to verify bit decomposition gates directly (the con-
struction still works for multiplication in Zp for a prime
p). The gates involving bit decomposition provide addi-
tional multiplicative overhead of m, where 2m is the size
of the ring in which the computation takes place. Other-
wise, all the overheads are linear. We conclude that our
mechanism is most suitable for n = 3 and computations
over 2m.

	Preprocessing Based Verification of Multiparty Protocols with Honest Majority
	1 Introduction
	2 Related Work
	3 Ideal Functionality
	4 The Real Protocol
	4.1 Building Blocks
	4.2 Protocol Implementing Fpre
	4.3 Protocol Implementing Fverify

	5 Evaluation
	5.1 Implementation
	5.2 The Cost of Covertly Secure Protocols

	6 Generalization to n parties
	6.1 Building Blocks
	6.2 Generalization of verify

	7 Conclusions and Further Work
	A Other operations
	B Other Sharemind protocols
	C Full Security Proofs
	C.1 Building Blocks
	C.1.1 Transmission, Broadcast, and Opening
	C.1.2 Commitments
	C.1.3 Coin Tosses
	C.1.4 Generation of Precomputed Tuples

	C.2 Verification of Circuit Computation
	C.3 The Main Protocol for Verifiable SMC
	C.4 Proof of the Main Theorem

