
Proceedings on Privacy Enhancing Technologies ; 2017 (4):191–209

Qiuyu Xiao*, Michael K. Reiter, and Yinqian Zhang

Personalized Pseudonyms for Servers in the
Cloud
Abstract: A considerable and growing fraction of
servers, especially of web servers, is hosted in compute
clouds. In this paper we opportunistically leverage this
trend to improve privacy of clients from network at-
tackers residing between the clients and the cloud: We
design a system that can be deployed by the cloud op-
erator to prevent a network adversary from determin-
ing which of the cloud’s tenant servers a client is ac-
cessing. The core innovation in our design is a PoP-
SiCl (pronounced “popsicle”), a persistent pseudonym
for a tenant server that can be used by a single client
to access the server, whose real identity is protected
by the cloud from both passive and active network at-
tackers. When instantiated for TLS-based access to web
servers, our design works with all major browsers and
requires no additional client-side software and minimal
changes to the client user experience. Moreover, changes
to tenant servers can be hidden in supporting software
(operating systems and web-programming frameworks)
without imposing on web-content development. Perhaps
most notably, our system boosts privacy with minimal
impact to web-browsing performance, after some initial
setup during a user’s first access to each web server.

Keywords: server anonymity, pseudonyms, cloud com-
puting

DOI 10.1515/popets-2017-0034
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction
Monitoring of online activities is a fact of life for many
users, be it by, e.g., an employer to detect activity that
is inconsistent with corporate policy or a government
to monitor sites accessed by its citizens. While encryp-
tion is a first line of defense against monitoring, addi-

*Corresponding Author: Qiuyu Xiao: University of
North Carolina at Chapel Hill, E-mail: qiuyu@cs.unc.edu
Michael K. Reiter: University of North Carolina at Chapel
Hill, E-mail: reiter@cs.unc.edu
Yinqian Zhang: The Ohio State University, E-mail:
yinqian@cse.ohio-state.edu

tional steps must be taken to hide the servers accessed
by users. Numerous techniques have thus been devel-
oped to support server-anonymous access, i.e., access
to a server in a way that hides the server identity from
a monitor. The socalled “hidden service”, supported by
Tor [11], is an example of a technology that enables
server-anonymous access.

The growth of large hosting infrastructures such
as compute clouds and content distribution networks
(CDNs) has opened new opportunities for deploying
server-anonymous systems (see Section 2 for a discus-
sion). Because these hosting platforms serve content
from many tenant servers, intermingling controversial
server content or anonymizing proxies among them (i.e.,
as other tenants) can make it more difficult or expen-
sive for a monitor to disambiguate which tenant server
a client is accessing. The vast resources and connec-
tivity available via these infrastructures can also ex-
pand the capacity of server-anonymous systems. How-
ever, prior attempts (of which we are aware) to leverage
these infrastructures to support server anonymity have
been designed for an oblivious cloud operator that (at
best) provides no specific support for server anonymity
(e.g., [4, 16]). Changes are thus typically hoisted onto
the client users of these systems, who often lack the
permissions, trust, or know-how to do so.

In this paper, we instead propose a design for server-
anonymous communication to tenant servers of a cloud
that leverages support and cooperation of the cloud
provider and, in doing so, avoids requiring any changes
to client software. Our central innovation to enable
this capability is a PoPSiCl (pronounced “popsicle”),
a Personalized Pseudonym for a Server in the Cloud.
Specifically, a PoPSiCl is a domain name with the fol-
lowing properties: First, it is personalized: A PoPSiCl
can be used to access the tenant server only by the
client for which the cloud generated it. Second, it is a
pseudonym: A PoPSiCl is a persistent identifier that the
client to whom it is issued can use to access the server
over time (e.g., by bookmarking it). Moreover, the cloud
protects the identity of the tenant server accessed using
this PoPSiCl from an attacker who can both observe the
client’s communication with the cloud and probe the
cloud as another client or tenant server itself. Though
the cloud is trusted in our design, note that today the



Personalized Pseudonyms for Servers in the Cloud 192

cloud is already typically trusted with knowing which
users frequent a tenant server. Even if the user connects
to a tenant server using an anonymizing service such as
Tor, the cloud can access any identifying information
the user provides to the tenant server, either intention-
ally (e.g., an email address) or not (e.g., HTTP cookies
or browser fingerprints [5, 28, 29]1). In such cases, our
trust in the cloud does not substantially increase the
trusted computing base for user privacy.

A design goal for PoPSiCls is that they can be im-
plemented by the cloud operator in a way that is unob-
trusive to their tenants or their tenants’ clients. Specif-
ically, we demonstrate an implementation of PoPSiCls
to support private TLS accesses to web servers in the
cloud that has the following features:
– Our implementation requires no changes to client-side

software and works with all major web browsers. This
stands in contrast to most work on anonymous access
to servers (see Section 2) that requires the installa-
tion of proxies on client computers or the installation
of a custom browser (e.g., Tor). Requiring no changes
to the client is important for users who lack either
the permissions needed to modify their client plat-
forms (as an employee using a company-owned com-
puter might) or the willingness to do so (e.g., since
even security software is often riddled with vulnera-
bilities [9, 35, 38]).

– The only changes in user experience for supporting
use of PoPSiCls is the use of client-side TLS certifi-
cates to support TLS connections, and a visit to a
cloud-operated PoPSiCl store to obtain a PoPSiCl
and the client-side certificate for a tenant server prior
to her first (server-anonymous) access to that server.

– A tenant server requires some changes to its OS and, if
the server is a web server, minimal other changes that
can be hidden within high-level web programming
frameworks like Ruby on Rails. So, these changes can
be packaged either in a platform-as-a-service (PaaS)
cloud offering or a virtual machine (VM) image for
deployment to an infrastructure-as-a-service (IaaS)
cloud, without imposing on web-content developers.
Supporting PoPSiCls does impose more substan-

tially on cloud infrastructure, notably through the es-
tablishment of the PoPSiCl store; in dynamic gener-
ation of switching rules to configure software-defined

1 The Tor Browser tries to mitigate browser fingerprinting by
restricting browser features, but this requires reacting to new at-
tacks as they are discovered [5, 29] and has an inevitable impact
on usability.

networking (SDN) switches in the cloud infrastructure;
and, as mentioned above, in tenant server operating
systems. We detail the changes needed to OpenStack
and Linux to implement the needed functionality. Our
implementation therefore most directly reflects how an
IaaS cloud operator could deploy and support PoPSi-
Cls, with OS modifications provided through PoPSiCl-
enabled virtual-machine images. We envision that a
cloud operator might be motivated to support PoPSiCls
as one component of a larger “security as a service” of-
fering, charging tenant servers for PoPSiCl use, perhaps
per PoPSiCl or even per PoPSiCl-based connection.

We have used CloudLab (https://www.cloudlab.us
/) to characterize the performance impact of PoP-
SiCl usage, versus regular (non-server-anonymous) web
browsing over TLS. Our results show that our design in-
troduces modest overhead to server access latency and
throughput, and is capable of scaling to large numbers of
users, should PoPSiCl use catch on. We also show that
the access latency of our implementation is considerably
better than proxy-based systems such as Tor, which also
enhance privacy for server access, as discussed above.
(We caution the reader, however, that the threat model
and protections offered by PoPSiCls are different than
those for which systems like Tor were designed, as we
will discuss in Section 2 and especially Section 7.)

The rest of this paper is structured as follows. We
provide background and related work in Section 2, and
outline the principles behind our design in Section 3.
Section 4 contains our high-level system design, and Sec-
tion 5 describes our current implementation. We eval-
uate that implementation in Section 6 and detail the
limitations of our design in Section 7. Finally, we con-
clude in Section 8. In Appendix A, we extend our design
to address some forms of traffic analysis.

2 Background and Related Work
The goal of our design of PoPSiCls is to provide server
anonymity (elsewhere called recipient anonymity [34] or
recipient untraceability [6]) against network attackers.
That is, a network attacker can observe that a client is
initiating communication with a server in the cloud, but
the attacker is unable to determine the specific server
with which the client is communicating. In this context,
a PoPSiCl is an implicit address [34] for a tenant server;
moreover, it is visible in that its reuse to reconnect to
the server is evident—both to the cloud, which can use
the PoPSiCl to route the client to the physical machine

https://www.cloudlab.us/
https://www.cloudlab.us/


Personalized Pseudonyms for Servers in the Cloud 193

currently hosting the tenant server, and to the attacker.
The servers that appear to the adversary to be the pos-
sible targets of the client (i.e., the server’s anonymity
set [6]) is the set of all tenant servers in the same cloud
datacenter as the target.

The most widely used methods to achieve server
anonymity today are based on proxying (e.g., Tor [11],
Psiphon (https://psiphon.ca/), and early versions of
the Anonymizer [3]) or VPNs (such as the cur-
rent Anonymizer, https://www.anonymizer.com/). Un-
like these systems, PoPSiCls are not supported in our
design through proxying or VPN tunneling. In partic-
ular, communication to a PoPSiCl is encrypted by the
client and decrypted only by the tenant server in the
cloud (vs. at a proxy or tunnel endpoint), leaving few
opportunities for accidental leakage. Moreover, as we
will show, proxies can become performance bottlenecks,
and so our design scales better to heavy usage.

Variations on the goal of server anonymity have
been studied in several forms, often under the rubric
of censorship resistance. Like our design, several in
this space leverage infrastructure providers explicitly
(clouds, CDNs, or ISPs) to hide the server with which
a client is trying to interact.
– In domain fronting [16], a client connects to a CDN

edge server or reflector web application run in the
cloud via a front domain other than the hidden do-
main of actual interest. The edge server or reflector
then inspects the plaintext payload (e.g., the HTTP
Host header) to discover the hidden domain and re-
trieves it for the client. A PoPSiCl can be viewed
as a front domain, though the mapping to its hidden
domain is maintained by the cloud operator and man-
aged without inspecting the client’s payload or, more
to the point, without decrypting it, which is better
for client/tenant security.

– CacheBrowser [20] enables a website’s content to be
retrieved from any CDN edge server without a DNS
resolution, leveraging the assumption that it is unten-
able for censors to block IP addresses of CDN edge
servers due to the collateral damage it would cause.
However, this system still exposes the true server do-
main in the SNI field (see Section 3.1) and so is not
truly server-anonymous. Recent improvements [41]
rectify this concern, but do so in a way that is in-
compatible with some CDNs. In either case, these so-
lutions work only for cacheable content.

– CloudTransport [4] repurposes cloud storage to im-
plement interactive communication to a server in a
way that will evade common censorship techniques.

– Telex [40] enables friendly on-path ISPs to recognize
“tagged” traffic addressed to uncensored websites and
divert it to the censored websites for which it is really
intended. Tagging is implemented in the SSL hand-
shake protocols, by embedding a tag into the random
value field in the ClientHello message.

– LAP [21], Dovetail [37], HORNET [7], and PHI [8]
are network-layer protocols that aim to provide low-
latency and high-throughput anonymous communi-
cation. In these protocols, the source and destination
addresses are encrypted so that the intermediate rout-
ing node only knows its adjacent nodes in the path
(similar to Tor).

– There have been several proposals to host Tor re-
lays in clouds [22, 27]. Moreover, systems like Tor
have tended to be vulnerable to censors because users
are connected to a small set of entry points that can
be blocked. So, prior works have proposed to reduce
the disclosure of IP addresses of Tor entry points
through Tor bridges (a variation of keyspace hop-
ping [15]; see https://www.torproject.org/docs/bri
dges) and, through the deployment of the Tor Cloud
project (https://cloud.torproject.org/), to run Tor
bridges inside clouds.
As they relate to our work, all of the above ap-

proaches require modifying client-side software. In con-
trast, our design requires no client-side software changes
at all (albeit while requiring changes to infrastructure,
as many of the above designs also require). That said,
we stress that in contrast to some of the works above,
our goal here is not censorship resistance, per se, but
rather server anonymity, as the assumption of a trust-
worthy and cooperative cloud is somewhat at odds with
the former. We discuss this issue further in Section 7.

3 Design Principles
In this section we detail the security (Section 3.1) and
usability (Section 3.2) goals of our system.

3.1 Security

Threat model. We begin our discussion of the se-
curity principles of our design by recalling our threat
model. A cloud hosts tenant servers, to which clients
can connect (e.g., using TLS). As is the case today, the
cloud operator is trusted by both tenant servers and
their clients. We are concerned with enabling a client

https://psiphon.ca/
https://www.anonymizer.com/
https://www.torproject.org/docs/bridges
https://www.torproject.org/docs/bridges
https://cloud.torproject.org/


Personalized Pseudonyms for Servers in the Cloud 194

to connect to a tenant server without divulging to an
attacker the tenant server to which it is connecting. The
client machine is trusted, as is the tenant server to which
it connects. Other clients and other tenant servers are
not trusted in the context of this client-server interac-
tion; i.e., the identity of the server to which the client
connects should remain hidden despite the efforts of
other clients and other tenant servers. We also allow
the attacker to capture and manipulate all traffic out-
side the cloud premises, including traffic to or from the
client, but traffic within the cloud is invisible to the
attacker (except if the attacker controls the source or
destination of the traffic).

Fig. 1. In our threat model, the server identity can leak via the
client’s DNS query, the SNI field of the client-to-server TLS con-
nection, the server IP address, or the server public key

Our threat model gives the attacker many oppor-
tunities to observe the identity of the tenant server to
which a client connects in today’s clouds (see Fig. 1).
First, the DNS resolution of the server domain name can
reveal that domain name to the attacker. Second, the IP
address to which the client connects will be visible to the
attacker; the attacker can then connect to this IP ad-
dress itself to see what the server provides, or simply use
this IP address to determine the server’s identity from
a preassembled database (like a reverse DNS lookup).
The connection process itself can offer additional op-
portunities for the attacker to identify the server; in
particular, a TLS connection exposes the server domain
name in the Server Name Identification (SNI) field that
the client sends, and in the certificate that the server
provides to the client. The certificate also exposes the
server’s public key, which can be matched against the
public keys in certificates obtained by other clients.

We leave several types of attack outside our scope,
relying on orthogonal defenses to address them. For ex-
ample, we assume the security of TLS and that the at-
tacker can impersonate neither any cloud-provided ser-
vice or tenant server that it does not control (by virtue
of not having the needed server private key), nor any
client that it does not control (by virtue of not having
the client private key).

Also outside our scope are connection-level features
that can divulge indications of the server involved in the
connection, such as have been used in TCP fingerprint-
ing (e.g., [17]), TLS fingerprinting (e.g., [26]), or web-
site fingerprinting (e.g., [13, 31, 39]). Such features in-
clude the number of servers to which the client connects,
the timing connections to relative to one another, con-
nection volume patterns, etc. That said, we have made
initial progress toward a framework for traffic-analysis
defense, as we will discuss in Appendix A.

Security principles. To achieve server anonymity
in the threat model described above, several steps are
necessary. The first is to replace the server’s domain
name with a different domain name—the PoPSiCl—
everywhere it is visible to the attacker. So, it will be
necessary to cause the PoPSiCl to be used in the client’s
DNS lookup, the TLS SNI field, and the certificate that
the tenant server sends to the client. In our system,
the PoPSiCl takes the form str.popsicls.com where
popsicls.com is the domain name of the cloud and str
is a string that represents the PoPSiCl prefix. So, for
example, 1f5qz7nfhj1uworr7laduh9fen.popsicls.com
might be a PoPSiCl. Of course, the PoPSiCl prefix str
must be generated for this client in a way that prevents
the attacker from correlating it with PoPSiCls gener-
ated for other clients to access the same tenant server.
R1:The PoPSiCl for a client to access a tenant server

is independent of the PoPSiCl generated for other
clients, and the PoPSiCl is used in place of the ten-
ant server’s domain name everywhere that domain
name appears in client communication.

The PoPSiCl is intended to be a long-lived identifier
that the client can use to access the server. To that end,
the client uses the PoPSiCl just like any other domain
name—by performing a DNS lookup on it to obtain an
IP address to which to address network packets. To pre-
vent the attacker from using this IP address to identify
the server, however, the DNS resolution must produce
a pseudo-address, which is a different IP address that
the one the server actually uses. More specifically, a
pseudo-address is a publicly routable IP address that
is part of the IP address block allocated to the cloud,



Personalized Pseudonyms for Servers in the Cloud 195

so that a packet addressed to the pseudo-address will
eventually reach a switch in the cloud datacenter. How-
ever, the pseudo-address should be otherwise unrelated
to the actual IP address of the tenant server.
R2:The pseudo-address to which a client addresses

packets for the tenant server (and from which re-
turn packets arrive to this client) is independent
from the actual network endpoint (i.e., IP address)
of the tenant server in the cloud.

A pseudo-address can be used in our system to es-
tablish a TLS connection to the tenant server associated
with the PoPSiCl. TLS connection establishment intro-
duces other potential identifiers that might be used to
deanonymize the tenant server, particularly the public-
key certificate for the server. As such, the tenant server
should use a different public key per client.
R3:In a TLS connection setup with a client that is

accessing the server using a PoPSiCl, the tenant-
server public key used was generated independently
of the server public keys used in its TLS connec-
tions with other clients (regardless of whether those
clients use PoPSiCls to access the server).

There remains the risk that the attacker who ob-
serves the pseudo-address could simply connect to that
pseudo-address itself and identify the server based on
the content returned. To prevent this possibility, the
client for which the PoPSiCl was created should be the
only one that can complete a secure connection using it.
R4:A tenant server completes a TLS connection setup

with a client using a PoPSiCl only if that PoPSiCl
was registered for use by that client, with this ten-
ant server.

3.2 Usability

Here, usability refers to the operational impact of PoP-
SiCls on all actors in the cloud ecosystem—the cloud
operator, cloud tenants, and the tenant’s clients. The
approach we take in our design of a system to support
PoPSiCls is to place a larger usability burden of deploy-
ing PoPSiCls on those groups of actors with greater
technical capabilities. Major cloud operators arguably
offer the highest concentration of technical capability,
as their datacenter functioning is integral to all ten-
ants’ availability and security. As such, they will bear
the greatest burden in supporting our design. Tenants
who deploy servers to the cloud typically require at least
a knowledge of how to populate a server with content,

and so we will limit our design to small modifications
to that process (at least in the case of web servers). Fi-
nally, we presume the tenants’ clients might be driven by
wholly nontechnical users (e.g., via web browsers) who
might not have the permissions needed to install soft-
ware on their computers (e.g., as a user of a corporate-
controlled computer might not) or a willingness to do
so (e.g., due to the vulnerabilities that such software
can introduce [9, 35, 38]). So, we place a priority on
minimizing client-side changes.

Treating these groups in reverse order, then, our
first requirement is that changes to clients be very lim-
ited.
R5:PoPSiCls are usable with no changes to client-side

software, including no browser extensions or add-
ons, in the case of web clients. While PoPSiCls are
visible to clients and may require some adaptation
of client user procedures (in the case of typical web
browsing, for example), these adaptations are al-
ready supported by the dominant software clients
in the market.

The primary operational adaptations required by
our design for a web user, for example, are the follow-
ing. First, our design involves the use of client authen-
tication via a client-side certificate in TLS. While not
without its issues [32], support for client authentication
is already in all major browsers and is in use by large
communities (e.g., in Estonia, due to its national PKI
initiative [32], and by MIT faculty, staff, and students
to access some web services2). Second, a user must take
an additional, online step to obtain (“register”) a PoP-
SiCl for future accesses to a website. We will describe
PoPSiCl registration in Section 4.1.

For tenant servers, who might range from large,
well-staffed organizations to small online vendors, we
allow changes to the software they use but require that
those changes can be made largely “invisible” to them,
if they so choose.
R6:Changes to tenant servers can be hidden so that

they do not impose on server content creation. For
example, changes involving the tenant-server oper-
ating system (OS) or content-programming frame-
works can be packaged within a virtual-machine
image that respects existing application program-
mer interfaces (APIs). As such, a tenant-server
creator should be able to “port” his content to this
VM image with minimal effort.

2 http://ist.mit.edu/certificates/guide

http://ist.mit.edu/certificates/guide


Personalized Pseudonyms for Servers in the Cloud 196

Our design intrudes on tenant servers primarily by
requiring specific OS-level changes, discussed in Sec-
tion 4.2. These can be packaged within a VM for de-
ployment to Infrastructure-as-a-Service (IaaS) clouds.
Alternatively, in a Platform-as-a-Service (PaaS) cloud,
the OS is managed by the cloud operator, and so these
changes would be invisible to the tenant server. In addi-
tion, some defenses specific to HTTP servers described
in Section 4.3 and an optional extension described in
Appendix A induce very minor additional changes to
modern web programming frameworks (such as Ruby
on Rails).

We allow for our design to impact cloud operators
more directly. Again, though, cloud operators are the
most technically savvy and so presumably the most ca-
pable of accommodating such changes.

4 Design
In this section we describe the design of a system to
enable a cloud operator to implement PoPSiCls for its
tenants and their clients. In order to use a PoPSiCl to
access a tenant server, a client must first register the
PoPSiCl, a process described in Section 4.1. The mech-
anisms supporting the use of a PoPSiCl to connect to
a tenant server are described in Section 4.2. Adapta-
tions specific to supporting HTTP clients using PoPSi-
Cls are described in Section 4.3. Finally, how our design
achieves the requirements laid out in Section 3 is the
topic of Section 4.4.

4.1 Registering a PoPSiCl

The registration of a PoPSiCl is a user-initiated process,
involving connecting to a particular cloud-operated ser-
vice, the PoPSiCl store, using a web browser. The con-
nection should employ TLS, though need not require a
password login or any other form of client authentica-
tion. Rather, TLS is employed here simply to protect the
privacy of the user. Upon accessing the PoPSiCl store,
the user is presented with a web form to indicate the
domain name, say tenantA.com, for which she wishes
to register a PoPSiCl. Since we are trusting the cloud
operator, we assume that if tenantA.com is not, in fact,
hosted by the cloud, then it will decline the registration.

If tenantA.com is one of its tenants, then the PoP-
SiCl store takes the following actions (see Fig. 2a).

(i) The PoPSiCl store first creates a new PoPSiCl for
tenantA.com, of the form str.popsicls.com, where
str denotes a string of characters allowed in do-
main names. It then creates and exports a DNS
record for str.popsicls.com that maps this PoP-
SiCl to one or more publicly routable IP addresses
in the address ranges allocated to popsicls.com,
to which we refer as pseudo-addresses. As we will
see in Section 4.2, these pseudo-addresses are ad-
dresses of SDN controllers in the same datacenter
(region) as tenantA.com. The PoPSiCl store also
informs these SDN controllers that this PoPSiCl
corresponds to tenantA.com.

(ii) The PoPSiCl store creates a new public/private
keypair for use by tenantA.com and binds the pub-
lic key to str.popsicls.com in a TLS server cer-
tificate signed by the PoPSiCl store. The PoPSiCl
store delivers this private key and server certifi-
cate to the tenant server. It also delivers to the
tenant server a root certificate for authenticating
client certificates in TLS connection attempts to
str.popsicls.com. For our purposes, it suffices for
the newly generated server certificate to be used
as this root certificate, as well. (Alternatively, a
different root certificate generated for this specific
purpose could be used.) This step assumes a ten-
ant server capable of receiving this information.
As described in Section 5, the Nginx web server
already supports this capability, for example.

(iii) The PoPSiCl store generates a public/private key-
pair for the client to use to authenticate itself when
connecting to str.popsicls.com; creates a certifi-
cate for this public key that can be verified using
the root certificate of Step (ii); and returns the
private key, public-key certificate, and PoPSiCl to
the user. The user then saves this information and
takes whatever steps are necessary to permit its
TLS client to make use of this key when connecting
to str.popsicls.com. For example, if the client is a
web browser, then the client might bookmark the
PoPSiCl and import this key pair and certificate
into the browser. This step is already supported
by major browsers.

Prior to connecting to str.popsicls.com, the client
must also be configured with the PoPSiCl store as a
certificate authority (CA) for TLS server certificates.
In this way, the client will accept the tenant server’s
certificate (see Step (ii)) during TLS connection setup.

A user’s first (or any) connection to the PoPSiCl
store could be used to obtain a PoPSiCl for the PoPSiCl



Personalized Pseudonyms for Servers in the Cloud 197

(a) Registration, described in Section 4.1 (b) Access, described in Section 4.2

Fig. 2. Steps for registering a PoPSiCl (Fig. 2a) and then using it (Fig. 2b)

store, so that subsequent accesses to the PoPSiCl store
can be hidden from an attacker.

4.2 Connection establishment

Via the steps described in Section 4.1, the client is in
possession of a PoPSiCl for the server to which it wants
to connect. To connect to this server, the client performs
a DNS lookup on the PoPSiCl, as it would any other
server domain name (steps 1–2 in Fig. 2b). Because
the PoPSiCl is of the form str.popsicls.com where
popsicls.com is the cloud domain name, the cloud ul-
timately provides the IP address returned to this DNS
query. The IP address provided by the cloud is not the
actual IP address of the machine hosting the tenant
server (this would violate R2), but rather must be inde-
pendent of it. One option would be to return the IP ad-
dress of a (reverse) proxy in the cloud that relays client
requests to the tenant server associated with the PoP-
SiCl (and responses back to the client); this design has
similar security properties to ours, but as we will see in
Section 6.2, this proxy will become a bottleneck. Rather,
in our design, the DNS query is resolved to a publicly
routable IP address of an SDN controller in the same
datacenter (region) as the tenant server corresponding
to str.popsicls.com; we refer to this IP address as a
pseudo-address for the tenant server.

Let the pseudo-address be denoted by pseudo-IP,
and let client-IP and client-port denote the source IP
address and source port of the first packet that the client
sends to pseudo-IP (a TCP SYN), when it arrives at the

cloud switch (step 3 in Fig. 2b). client-IP and client-port
need not be the actual IP address and port of the client;
rather, these could instead be the address and port of
a network-address translator (NAT) or proxy between
the client and the cloud. Unless it has a higher-priority
rule (see below) that matches specifically this source
IP address (client-IP), source port (client-port), desti-
nation address (pseudo-IP), and destination port (de-
noted server-port), the switch forwards the packet using
the default routing rule for this destination (pseudo-IP).
Since in our design, the pseudo-IP is set to an IP ad-
dress of the SDN switch controller in the cloud datacen-
ter, this TCP SYN packet is forwarded to the controller
(step 4 in Fig. 2b). In this case, the controller responds
with a TCP SYN-ACK and completes the TCP connec-
tion with the client (step 5 in Fig. 2b).

After completing the TCP connection, the client
then launches the TLS handshake. At this point,
the controller learns str.popsicls.com from the
ClientHello SNI field, with which it can look up the
tenant server to which this PoPSiCl corresponds, say
with IP address tenant-IP. The controller then takes the
following steps (without responding with a ServerHello
message), in order:
(i) The controller installs two new rules in the switch

(step 6 in Fig. 2b). One matches packets with
source address client-IP, source port client-port,
destination address pseudo-IP, and destination
port server-port; this rule simply drops any such
packet silently. The second matches packets with
source address tenant-IP, source port server-port,



Personalized Pseudonyms for Servers in the Cloud 198

destination address client-IP, and destination port
client-port; changes the source address to pseudo-
IP; and forwards the packet toward client-IP.3

These rules have higher priority than any other
rules that apply to the same packets.

(ii) The controller then transfers the TCP connection
state to the tenant server OS (step 7 in Fig. 2b),
including the buffer containing the ClientHello,
and so the tenant server picks up the TCP session
where the controller left off (by responding with a
ServerHello). Our implementation of TCP con-
nection transfer uses the technique in the tcpcp
tool [1].

(iii) The controller then replaces the drop rule in-
stalled in Step (i) above (i.e., matching packets
with source address client-IP, source port client-
port, destination address pseudo-IP, and destina-
tion port server-port) to instead change the desti-
nation address of any matching packet to tenant-
IP and then to forward the packet toward tenant-
IP (step 8 in Fig. 2b).

The TLS connection establishment that the tenant
server continues with the client requires the client to
present a client certificate that can be verified by the
server certificate for this PoPSiCl (step 9 in Fig. 2b).
The tenant server received the server certificate for this
PoPSiCl, and the client received this matching client
certificate, in the PoPSiCl registration process (Sec-
tion 4.1). If this client certificate is not sent, then the
TLS connection fails; otherwise, the TLS connection can
be established and communication proceeds as normal
(step 10 in Fig. 2b).

The above ordering of steps is chosen purposely. The
drop rule is installed in Step (i) to drop any inbound
messages from the client during the TCP state transfer,
which could confuse the transfer process. The other rule
in Step (i) is installed to ensure that the ServerHello
and the following messages sent by the tenant server
in Step (ii), when the TCP state transfer completes,
are forwarded to the client with the pseudo-IP as their
source addresses. The controller replaces the drop rule
from Step (i) as described in Step (iii) to permit the con-
nection between the client and tenant server to continue.
Of course, it is possible that the controller does not fin-
ish Step (iii) before the client sends another message, in

3 The installation of this second rule assumes that return pack-
ets traverse this same switch. If they do not, then this second
rule would need to be inserted into another switch that they will
traverse.

which case the drop rule from Step (i) will drop it. We
leverage TCP’s retransmission capabilities to overcome
any such drops that occur.

A possible denial-of-service attack against our ar-
chitecture is to overwhelm the SDN controller(s), which
will handle all TCP connections established using PoP-
SiCls until they are handed off to their tenant servers.
For this reason, the controllers must be defended us-
ing state-of-the-art denial-of-service defenses. That said,
note that our design allows for multiple SDN controllers
and switches, and load-balancing among them.

4.3 HTTP-specific mechanisms

PoPSiCls can be used to support any type of server
accessed using TLS. Overwhelmingly, however, the most
common example today is HTTP, and so in this section
we address several issues specific to their use to support
access to HTTP servers.

Same-origin policy and cookies. Our architec-
ture for supporting PoPSiCls permits the browser to
accurately track origins, i.e., to support its same ori-
gin policy [36], since the browser is provided a unique
domain name (the PoPSiCl) per tenant domain. This
same property also enables the browser to send cookies
to (only) the right domains—avoiding a pitfall of some
previous anonymous communication systems (e.g., early
versions of the Anonymizer [3]). To prohibit tenants
from setting cookies for the cloud domain (e.g., pops
icls.com), the cloud operator should add popsicls.com
to the public suffix list4, just as is, e.g., amazonaws.com
today.

Object hyperlinking. When a tenant web server
accessed using a PoPSiCl serves hyperlinks to its own
objects, their URLs should leverage the PoPSiCl as their
domain name. Otherwise, the browser would retrieve
these objects using a URL with a different domain name,
causing them to be viewed by the browser as coming
from a different origin. This could cause the web page
to malfunction, or it could result in disclosure of the
true domain name to an attacker. Fortunately, this is
achieved easily by hyperlinking to relative URLs, or by
authoring web content with the domain name inserted
by a macro that is resolved to the PoPSiCl with which
the current client is accessing the server.

4 https://publicsuffix.org/

https://publicsuffix.org/


Personalized Pseudonyms for Servers in the Cloud 199

Hyperlinking between servers requires additional at-
tention, since one server should not learn the PoP-
SiCl that a client uses to access another server. First,
to ensure that a client browser does not disclose the
PoPSiCl that it uses for accessing a tenant server, say
tenantA.com, to another server to which tenantA.com
refers the client (i.e., in the HTTP Referer field),
tenantA.com should set the referrer policy of its re-
ferring page to no-referrer or same-origin.5 Second,
to allow referrals to a tenant server, say tenantB.com,
without disclosing the server’s identity to our attacker,
the cloud operator popsicls.com can support hyper-
linking to it using a URL such as https://linker.p
opsicls.com?tenantB.com/ ..., where linker.popsicl
s.com is a cloud-operated server. Upon receiving the
TLS connection from the client, linker.popsicls.com
can look up the PoPSiCl that this client uses to ac-
cess tenantB.com (authenticating the client using its
client certificate) and then redirect the client browser
to that PoPSiCl. (For reasons discussed below, however,
linker.popsicls.com will have to apply additional pol-
icy before doing so.) If no such PoPSiCl exists, then
linker.popsicls.com can simply redirect the client to
tenantB.com. To support hyperlinking in this fashion,
the PoPSiCl store should provide a client-side certificate
and accompanying private key for the client to use to
connect to linker.popsicls.com, during the client’s first
PoPSiCl registration (for a web server) at the PoPSiCl
store.

Cross-origin attacks in browsers. A tenant server
accessed using a PoPSiCl does not complete a TLS con-
nection setup with a client other than the one that regis-
tered that PoPSiCl. An attacker who obtains a PoPSiCl
in use by a client, say 1f5...fen.popsicls.com, is thus
unable to connect to it directly in an effort to retrieve
content from it (and thereby deanonymize it). Through
cross-origin side channels, however, the attacker could
potentially infer the true server identity behind a PoP-
SiCl. For example, the attacker could set up a web server
(not necessarily in the cloud) and, if it could convince
the client browser to visit its server, could serve back to
the client a hyperlink, say https://1f5...fen.popsicls
.com/path, that uses the PoPSiCl as its domain name.
An attacker script could then test if the browser success-

5 See https://www.w3.org/TR/referrer-policy/. As of this writ-
ing, the latest versions of Edge and Safari support an older draft
of the referrer-policy specification, for which the referring policy
should be set to never.

fully retrieved the object at this URL,6 thereby inferring
whether path is a valid path at the tenant server. Since
this might be a distinctive pathname, the attacker could
deanonymize the server this way.

To prevent such cross-origin attacks, the tenant
server refuses requests for URLs containing the PoP-
SiCl 1f5...fen.popsicls.com except from its own pages
or via redirections from linker.popsicls.com. The ten-
ant server enforces this property by requiring any URL
utilizing 1f5...fen.popsicls.com to be appended with
a capability, specific to this PoPSiCl, that only itself
and linker.popsicls.com can obtain. This capability
is implemented as a random, unguessable string that
must be encoded as a query string in any URL using
1f5...fen.popsicls.com, so that it is always transmitted
under TLS protection. It is created by the PoPSiCl store
when 1f5...fen.popsicls.com is first registered and is
returned in the URL that the user is invited to book-
mark. Both the tenant server and linker.popsicls.com
are then permitted to retrieve the capability (from a
cloud-operated database) when needed, for the purposes
of producing URLs containing that PoPSiCl.

There remains a cross-origin attack that a web
server with which the client is interacting can mount,
to infer the PoPSiCl the client uses to contact a ten-
ant server, say tenantA.com, provided that the adver-
sary controlling the web server can simultaneously mon-
itor the traffic from the client to the cloud. If the web
server directs the client to retrieve https://linker.pop
sicls.com?tenantA.com/... and then monitors traffic
for an interaction with linker.popsicls.com and then
a connection using a PoPSiCl in close temporal proxim-
ity, then the attacker can infer that the client uses this
PoPSiCl for tenantA.com. Fortunately, the intervening
interaction with the trusted linker.popsicls.com pro-
vides an opportunity to mitigate this attack. For exam-
ple, a reasonable policy might be for linker.popsicl
s.com to redirect the request to https://linker.popsi
cls.com?tenantA.com/... to one that uses the client’s
PoPSiCl for tenantA.com only if the referrer site is
trusted by tenantA.com and the client is also access-
ing the referrer site using a PoPSiCl. (Otherwise, li
nker.popsicls.com redirects the client to tenantA.com,
sans PoPSiCl.) The referrer site can indicate compli-
ance with this last condition to linker.popsicls.com

6 There are many ways to perform this test, e.g., by hyperlink-
ing to an image and then testing the height of the image, which
would typically differ depending on whether the image retrieval
succeeded or failed.

https://www.w3.org/TR/referrer-policy/


Personalized Pseudonyms for Servers in the Cloud 200

by, say, appending the client’s capability for the re-
ferring site to the referral https://linker.popsicls.c
om?tenantA.com/..., which linker.popsicls.com can
check by looking up the capability and corresponding
referrer in a database.

4.4 Design principles, revisited

In this section we revisit the principles outlined in Sec-
tion 3 to describe how our design achieves them.

Security. Requirement R1 is met by having the PoP-
SiCl store generate each PoPSiCl (specifically, the str
part of str.popsicls.com) pseudorandomly. The tenant
server to which this PoPSiCl corresponds is protected
during the registration process by TLS (Section 4.1) and
thereafter is accessible only to the cloud’s SDN con-
troller(s) (Section 4.2) in order to route connection traf-
fic appropriately (and the tenant server itself, of course).
The PoPSiCl is used by the client as any other do-
main name would be, and so it appears everywhere that
the domain name would in the normal course of client
communication—notably in DNS queries, the TLS SNI
field, and the server TLS certificate.

Requirement R2 is met by having the cloud’s DNS
server resolve the PoPSiCl to an IP address of an SDN
controller in the datacenter hosting the corresponding
tenant server. This reveals the datacenter (region) in
which the tenant resides, but nothing else.

Requirement R3 is met in a manner similar to that
for R1, i.e., by the PoPSiCl store generating a new pub-
lic key (and public-key certificate) for the tenant server
per client who registers a PoPSiCl for that server. This
certificate is then provided to the tenant server for use
in TLS connection setups when accessed using the cor-
responding PoPSiCl.

Finally, requirement R4 is met because the ten-
ant server will accept a TLS connection to a PoPSiCl
only from the client that registered it. Additionally, in
the case of HTTP traffic, cross-origin attacks to indi-
rectly query a PoPSiCl are prevented through refusing
requests for URLs containing the PoPSiCl unless those
URLs are appended with the PoPSiCl-specific capabil-
ity that only the tenant server or linker.popsicls.com
can obtain (Section 4.3).

Usability. Registration to obtain a PoPSiCl for a
server is the only per-server procedure that a user must
perform. In this step, the user visits a cloud-run web-
site via HTTPS and enters the web server domain of
interest. In return, it receives a PoPSiCl and a file con-

taining a client public-key certificate and corresponding
private key for use in TLS connections using this PoP-
SiCl. How the user employs this data is client-specific,
but for a modern web browser, it might involve creat-
ing a bookmark using the PoPSiCl and importing the
client certificate and private key into the browser. As
such, we believe that our design meets requirement R5.
It should also be noted that to register a PoPSiCl for a
server, a user needs to learn that the server is hosted in
the cloud. This point is discussed further in Section 7.

Changes to tenant servers are as follows. A ten-
ant server OS must be modified to support the receipt
of TCP connection states from the SDN controllers in
the cloud (Section 4.2), and a tenant server also needs
to be modified to refuse any connection using a PoP-
SiCl except from the client who registered it. A tenant
web server must also check any URL using a PoPSiCl
for the corresponding capability, as discussed in Sec-
tion 4.3, to prevent cross-origin request forgeries that
might deanonymize the PoPSiCl. Finally, the hyperlinks
in the server’s content must be changed to use rela-
tive URLs (for content at the same site) or the cloud-
operated linker service (for content at another site), and
the tenant server must set its referrer policy appropri-
ately (Section 4.3). As discussed below, these changes
can be introduced within VMs (or by a PaaS cloud op-
erator) in such a way that content programming APIs
need not be altered. We thus argue that requirement
R6 is also met.

5 Implementation
We realized our design in an OpenStack7-based IaaS
cloud on top of the CloudLab8 testbed. Each cloud
computing node supports one or more tenant virtual
machines (VMs) using the KVM hypervisor9. All ten-
ant VMs are connected to the cloud network via Open
vSwitch [33]. Open vSwitch is a software switch that
runs in each hypervisor and bridges the virtual network
interfaces of VMs on multiple computing nodes to a sin-
gle layer-two network. Besides normal layer-two switch-
ing, Open vSwitch can be integrated with SDN con-
trollers to support dynamic rule deployment and packet
rewriting. Although our system is built upon Open-

7 https://www.openstack.org/

8 https://www.cloudlab.us/
9 http://www.linux-kvm.org/

https://www.openstack.org/
https://www.cloudlab.us/
http://www.linux-kvm.org/


Personalized Pseudonyms for Servers in the Cloud 201

Stack, KVM and Open vSwitch, we believe that our
design could also integrate easily with other cloud im-
plementations, such as Amazon EC2.

Below we detail our implementation of the three
major components in our design: the PoPSiCl store, the
SDN controller, and tenant web servers. In addition,
a video demonstration of the user experience for our
prototype can be found at http://www.cs.unc.edu/~qi
uyu/popsicl/.

5.1 PoPSiCl store

PoPSiCl store is implemented on one of the web servers
that are controlled by the cloud operator. Its frontend is
a regular HTTPS web server offering a web interface for
browsers, which accepts registration requests from any
client browser. The backend of PoPSiCl store is imple-
mented as a native component (400 lines of C++ code)
that interacts with the frontend using a FastCGI proto-
col. Upon receiving a registration request, the frontend
passes the request to the backend to complete the reg-
istration process.

Generating PoPSiCl and pseudo-address. The
PoPSiCl store backend generates a PoPSiCl for the
client. The newly created PoPSiCl is prefixed by a pseu-
dorandom string str that meets the domain-name for-
mat requirements [25], and so the PoPSiCl takes the
form str.popsicls.com where popsicls.com is the do-
main name of the cloud. The PoPSiCl store also chooses
a pseudo-address for the PoPSiCl uniformly at ran-
dom from a block of addresses for cloud SDN con-
troller(s). Uniqueness is not required for the pseudo-
address; different PoPSiCls may be associated with the
same pseudo-address.

Generating certificates. The PoPSiCl store gener-
ates an X.509 server certificate SvrCert for the tenant
server for which the client is registering a PoPSiCl, and
an X.509 client certificate ClntCert for the client. In
SvrCert, the issuer is the cloud operator, popsicls.com;
the subject name is the generated PoPSiCl; and the
public key comes from a key pair (2048-bit RSA) that is
newly generated by the PoPSiCl store using OpenSSL10.
SvrCert is signed by the cloud operator’s private key,
and so a chain of trust can be established when the
cloud’s certificate is trusted. (To do so, the cloud op-
erator must first obtain a CA certificate that autho-

10 https://www.openssl.org/

rizes its private key to sign new certificates.) The issuer
of ClntCert is the PoPSiCl and the subject name is
a unique string that is derived from the PoPSiCl. The
PoPSiCl store generates another RSA key pair for the
ClntCert and signs the ClntCert using the private key
that was created for the tenant server, so that trust in
the SvrCert can be extended to ClntCert. The PoPSiCl
store bundles each certificate and its corresponding pri-
vate key into a single PKCS#12 format file.

Distributing registration data. The PoPSiCl store
distributes registration data to parties as follows: It
sends the PoPSiCl and the pseudo-address to the cloud
DNS server (which stores them as a DNS record); the
PoPSiCl and the domain name of the tenant server to
the SDN controller; SvrCert and the corresponding pri-
vate key to the tenant server; and the PoPSiCl (or to
support HTTP access, a URL containing the PoPSiCl
and a capability for it, embedded as a query string; see
Section 4.3), ClntCert, and its corresponding private
key to the client through the frontend interface.

5.2 Cloud SDN controller

In our implementation, all Open vSwitch instances are
managed by the same SDN controller, a vSwitch con-
troller we implemented in about 600 lines of C code. The
SDN controller uses ovs-ofctl11, a Linux command-line
tool, to install and remove rules in each Open vSwitch.

As discussed in Section 4.2, every new TCP con-
nection request using a PoPSiCl will be directed to
the SDN controller, which completes the TCP hand-
shake and then, after receiving a ClientHello message,
hands off the TCP connection to the tenant server. To
seamlessly transfer the TCP state from the SDN con-
troller to the tenant server, our system uses a custom
kernel extension (i.e., a kernel driver) to the Linux ker-
nel (v4.2.0) to create a new user-kernel interface on both
the SDN controller and each tenant VM. Userspace pro-
grams can exploit this interface (through ioctl system
calls) to query or make changes to the internal TCP
states. To facilitate TCP state migration, we also de-
veloped a userspace library that enables the SDN con-
troller to obtain a copy of the TCP state information
(sequence number, acknowledgment number, etc.) for a
specific Linux socket descriptor. The state information
is then sent through a long-lived TCP connection to the
tenant server, which uses our helper library to create a

11 http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

http://www.cs.unc.edu/~qiuyu/popsicl/
http://www.cs.unc.edu/~qiuyu/popsicl/
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt


Personalized Pseudonyms for Servers in the Cloud 202

new TCP socket with the specified TCP state and then
resume the TCP session.

5.3 Tenant HTTP server

Key to our tenant web-server implementation is the sup-
port of virtual hosts—or “server blocks” in Nginx, on
which we base our implementation. A virtual host is
a website implemented by a single web server; impor-
tantly, one web server can implement multiple virtual
hosts. In our implementation, each virtual host corre-
sponds to a PoPSiCl and thus a client of the website.

Upon PoPSiCl registration, the tenant web server
receives the registration data for the client (i.e., the
PoPSiCl, the server certificate, and the corresponding
private key) from the PoPSiCl store. The configuration
file of the Nginx web server is updated automatically to
reflect these registration data: a server block is added
to the configuration file, with its server_name direc-
tive set to be the PoPSiCl and the server_certificate
and server_certificate_key directives set as the file-
system paths of the server certificate and private key,
respectively. The server_client_certificate is set to
be the path of the server certificate, as well, so that
the virtual server to be created accepts only connec-
tions from clients who possess a certificate signed by the
server’s private key (see Section 5.1). Nginx supports
server reconfiguration on-the-fly, and so a new virtual
server for the PoPSiCl is created with the updated con-
figuration file without any server down time.

We also adapted the Ruby on Rails web-content
development framework (v2.2.2) to defend the cross-
origin attack (see Section 4.3). Several macros, includ-
ing stylesheet_link_tag, javascript_include_tag,
and link_to, were modified to append the capability
query string to same-origin URLs constructed via these
macros. For each incoming HTTP request, the Ruby
on Rails framework first checks for the capability query
string. If the validation fails, a 404 error is returned.

6 Evaluation
In this section, we evaluate the impact of our design on
performance of server interactions. More specifically, the
goals of our evaluation are to demonstrate the impact
of PoPSiCls on server-access latencies and throughputs,
as well as the scalability of our design.

Our PoPSiCl-enabled OpenStack cloud was de-
ployed in the CloudLab Wisconsin data center. For most
experiments, we configured our cloud with three physi-
cal nodes: one for running OpenStack services (includ-
ing DNS); one for running the PoPSiCl store and SDN
controller; and another for running a tenant web server
in a virtual machine. All nodes ran an Open vSwitch,
though all rule installations described in Section 4.2 oc-
curred on the controller machine. Each physical node
was equipped with two Intel E5-2630 v3 8-core 2.40GHz
CPUs, 128GiB of memory, and a Dual-port Intel X520-
DA2 10Gb NIC. The web client was running on a desk-
top located in the UNC-Chapel Hill network. One ex-
periment that compares our design with a proxy-based
design has different settings, as will be discussed later.

6.1 Performance

In this section, we discuss the performance of our PoP-
SiCl implementation. We primarily compare to the per-
formance of HTTPS alone (with no PoPSiCl and no
client authentication) and, in one experiment, the per-
formance of Tor. We caution the reader that our com-
parison with Tor is only somewhat fair: While Tor also
provides server anonymity (a socalled “hidden service”),
it does so against stronger adversaries than our design
does; e.g., our design reveals the cloud datacenter within
which a tenant server resides (Tor would hide this in-
formation) and additionally provides client-server un-
linkability [34], to an extent. Still, we compare to Tor
because it is the most widely used anonymous commu-
nication system today.

Web object download latency. In our first experi-
ment, we measured the latency of downloading web ob-
jects. We chose Firefox as the web client for evaluat-
ing HTTPS and PoPSiCls, and the latest Tor browser
(v5.5.5) for evaluating Tor. To fairly measure the extra
overhead introduced by PoPSiCls, we restarted the web
browser for each test, and so every web access was made
through a new TCP and TLS connection, including the
overheads of TLS client certificate authentication and
TCP session hand-off from the SDN controller to the
tenant server. We also restarted the browser between
accesses when testing HTTPS. For the Tor browser, we
measured the access latency after the Tor circuit had
been built. We repeated the experiment 50 times per
web-object size, which varied from 1KiB to 5MiB.

Average access latencies per object size are shown in
Fig. 3a. As is clear from Fig. 3a, access using PoPSiCls
is minimally more expensive than using HTTPS with



Personalized Pseudonyms for Servers in the Cloud 203

(a) Latency (b) Throughput

Fig. 3. Performance of PoPSiCl access

no client authentication, and is roughly 2.5–4× more
efficient than accessing content using Tor. Moreover, the
standard deviation of download latency for Tor is very
considerable, indicating that for some Tor downloads,
latencies were even worse than 4× more expensive.

The latency of web-object retrieval using PoPSiCls
is robust as the request rate grows. For example, the av-
erage latency for retrieving a 10KiB object increases to
404ms when it is requested at a rate of 200 requests per
second from distinct clients (not shown), an increase of
less than 20% over the corresponding latency in Fig. 3a.
Latency is also relatively unaffected by cross-site hy-
perlinking (see Section 4.3), especially for larger ob-
jects: accessing linker.popsicls.com involves another
HTTPS connection but none of the mechanism in Sec-
tion 4.2, and is unaffected by the retrieved objects’ size.
So, for example, the latency of retrieving a 1MiB object
via linker.popsicls.com (not shown) is less than 11%
larger than when retrieving it using a PoPSiCl directly.

Web access throughput. In this experiment, we
measured the throughput of the web server. We used
httperf12, a popular web server benchmark tool, to mea-
sure the throughput. httperf can be used to dictate the
rate of TCP requests and the number of HTTP requests
per TCP connection, and it then will report the corre-
sponding HTTP response rate. In our experiment, we
measured and compared the server throughput when
the server provides web access through HTTPS, HTTPS
with client authentication, or a PoPSiCl. We scaled the
request rate from 50 requests/s to 600 requests/s, with
one HTTP request/response pair per TCP connection.
The size of the requested web object was 1KiB. For each
request rate and each condition, we took 10 samples of
the response rate and calculated their mean.

As can be seen from Fig. 3b, before the web server
reached its sustainable throughput, its response rate

12 http://www.labs.hpe.com/research/linux/httperf/

kept pace with the request rate. After the web server
reached its limit, the response rate dropped as the re-
quest rate increased further. The maximum through-
puts of HTTPS, HTTPS with client authentication, and
PoPSiCl were 490.5, 450.9, and 325.8 responses/s, re-
spectively. Compared with HTTPS, PoPSiCl induced a
33.5% throughput decrease. The throughput bottleneck
in these tests was the switch rule installation procedure
(see Section 4.2), which increasingly encountered fail-
ures when the request rate grew.

6.2 Scalability

Our design poses several potential scalability pitfalls. In
this section we evaluate these elements of our design.

SDN rule installation and TCP handoff. As dis-
cussed in Section 4.2, our design results in the instal-
lation of two rules per PoPSiCl-based TCP connection
through a switch (or one rule into each of two switches),
followed by the transfer of TCP state from the SDN
controller to the tenant server and then the adjustment
of one of the rules previously installed for this connec-
tion. These steps slow the connection setup to a tenant
server, and so in our first experiment we evaluated the
impact of these overheads, as the number of concurrent
connection setups grows.

We used cURL (https://curl.haxx.se/) as the web
client for both HTTPS and PoPSiCl access. In each test,
we launched concurrent cURL processes; each process
opened a connection (HTTPS in one type of test, or us-
ing a PoPSiCl in the other type), retrieved a web object
from the tenant server, and then terminated its connec-
tion. We measured the completion time of all connec-
tions, and plotted this completion time as a function
of the number of processes (and connections) launched.
The size of the web object in this experiment was 10KiB.

Fig. 4a shows the result of these experiments, where
each point is the average of the results from ten runs. As
can be seen there, the completion time for the PoPSiCl-
based connections was at most 1.4× the completion time
for the same number of concurrent HTTPS connections.
Our SDN controller and tenant web server implemen-
tations already perform the steps for each connection
concurrently, though otherwise the implementations are
relatively unoptimized.

The need for TCP handoff. The motivation for
SDN rule installation and TCP handoff steps detailed in
Section 4.2 and evaluated above becomes evident when
comparing our design to a proxy-based alternative. In

http://www.labs.hpe.com/research/linux/httperf/
https://curl.haxx.se/


Personalized Pseudonyms for Servers in the Cloud 204

(a) Concurrent connections (b) Per-connection volume (c) Open vSwitch rules (d) Virtual hosts

Fig. 4. Scalability of PoPSiCl access along several dimensions

this alternative, each PoPSiCl is resolved to a pseudo-IP
that is the address of a proxy that completes the TCP
connection with the client and then learns which tenant
server the client wants to contact from the ClientHello
SNI field (like our SDN controller does). The proxy then
opens another TCP connection with the tenant server
and relays traffic between the client and server, without
handing off that connection to the server.

We built this proxy alternative and evaluated its
throughput. To ensure that the clients and servers were
not bottlenecks, we set up three httperf clients connect-
ing to three tenant web servers, each on its own physical
node. As can be seen in Fig. 4b, the proxy alternative
outperformed ours when the retrieved web object was
small. But as the web-object size increased, the max-
imum throughput of the proxy decayed dramatically,
owing to the need for the proxy to relay each packet of
the TCP connection. In contrast, our design hands off
the TCP connection to the tenant server at the start
of the connection. Aurelius et al. [2] found that 70%
of Flash video flows from various services transferred
at least 1MiB data. If such streaming services were de-
ployed in the cloud, a proxy could be easily saturated.

SDN switch rules. By default, one million rules can
be installed simultaneously in a vSwitch, which would
thus accommodate up to a half million concurrent client
TCP connections in support of PoPSiCl-based server
accesses. This introduces two scalability concerns.

First, since some clients (notably browsers) tend to
open multiple connections per server access, a vSwitch’s
default rule capacity might accommodate far fewer than
a half million concurrent clients using PoPSiCls. How-
ever, this concern can be addressed by increasing the
rule capacity of a vSwitch and also load-balancing rule
installation across the potentially multiple vSwitches
that a client’s connections traverse. Indeed, addi-
tional vSwitches could be added in the cloud—even
elastically—to boost rule capacity, if needed.

Second, deploying several hundred thousand rules to
a vSwitch could slow the process by which the vSwitch
matches incoming packets to rules, and so we conducted
experiments to evaluate this performance degradation.
Fig. 4c shows the average latency (over 200 trials) suf-
fered by a client using a PoPSiCl to open a connection
and retrieve an object of either 10KiB or 100KiB from
a tenant web server, when the switch starts with the
number of rules indicated on the horizontal axis. The
performance clearly shows two “levels” of latency per
object size, indicating internal switch data structures
that permit searching few rules quickly and more rules
somewhat more slowly (but very scalably). Still, the per-
formance impact with nearly 1000000 rules is less than
2×. It is conceivable that engineering a switch specifi-
cally to accommodate the usage that our design imposes
might further reduce this degradation.

Virtual hosts. As discussed in Section 5.3, our imple-
mentation deploys a virtual host to a tenant web server
per client that registers a PoPSiCl for it. This virtual
host is associated with the PoPSiCl and the server cer-
tificate that the web server should use in TLS connec-
tions using that PoPSiCl (and that doubles as the cer-
tificate for verifying the client certificate). Admittedly
this is perhaps an abuse of the virtual-host mechanism,
which presumably was not designed to accommodate a
virtual host per web-server client—a popular web server
could have millions of virtual hosts.

To get a sense for the scalability limitations that
the existing Nginx virtual-host design would impose,
Fig. 4d shows the degradation in responsiveness of the
tenant web server as a function of the number of virtual
hosts installed. These tests were conducted by first cre-
ating the number of virtual hosts on the horizontal axis
and then connecting to the server using a PoPSiCl that
matches one of these virtual hosts, to retrieve an object
of either 10KiB or 100KiB.



Personalized Pseudonyms for Servers in the Cloud 205

Fig. 4d shows the performance impact of the num-
ber of virtual hosts set up before the connection. Each
point is an average over 200 trials. The number of vir-
tual hosts had no impact on the response latency for the
numbers we tested. However, the memory consumption
of the server with 60000 virtual hosts approached 2GiB.
As in the case of vSwitch rules above, we anticipate
that this scalability limitation could be addressed with
a virtual-host design that anticipates our proposed us-
age, e.g., relieving this memory pressure by writing the
data for inactive virtual hosts to stable storage.

DNS entries. Each PoPSiCl registration results in
the creation of a new DNS record for the PoPSiCl, map-
ping the PoPSiCl to the addresses of SDN controllers in
the datacenter where the tenant resides. The number of
DNS records could thus grow large, if the use of PoPSi-
Cls became popular. We have not evaluated the poten-
tial performance impact of this growth on DNS resolu-
tions, however, since backing the DNS server with a sim-
ple database for these records would support ample stor-
age and fast access. Going further, the str portion of a
PoPSiCl str.popsicls.com could be computed to be the
encryption (using a chosen-ciphertext-secure scheme) of
the IP address(es) to which it should be mapped, using
a key that the DNS server holds. The DNS server would
then not need to store the mapping, but upon receiv-
ing a request to resolve str.popsicls.com could instead
decrypt str and return the result.

7 Limitations
Our current implementation of an architecture to sup-
port PoPSiCls is limited in at least the following senses.

Scope of defense. Our design provides PoPSiCls
only for servers hosted in a cloud that supports their
use. While major cloud operators host substantial num-
bers of web servers (e.g., [19]), for example, obviously
numerous web servers do not fall into this category, as
well. Related to this limitation is that a user must know
or be directed to the cloud that hosts a server in or-
der to register a PoPSiCl for it. This information could
be disseminated by the cloud, provided that the cloud is
trusted to not claim to host a web server that it does not
(as a major cloud operator might be); by a link to the
appropriate PoPSiCl store from the web server itself, so
that a user could leverage one access to the server to be
able to access it using a PoPSiCl subsequently; or by
myriad other means (e.g., social media).

Censorship. We assume a trustworthy cloud operator
that is motivated to help tenants protect the privacy of
their customers from an attacker who might try to ob-
serve their customers connecting to them. This assump-
tion is arguably stronger than most (though not all,
c.f., [40]) threat models considered in works addressing
censorship resistance. Indeed, in the context of censor-
ship by governments, clouds are often used by activists
to circumvent censors, but this is typically done with-
out the cloud operator’s consent [12]. Major clouds have
admittedly shown little cooperation for resisting censor-
ship by governments (e.g., [18]), preferring instead to ac-
commodate censorship for business reasons. Moreover,
the PoPSiCl store is vulnerable to being blocked. As
such, our design seems unlikely to be deployed specifi-
cally to resist government censorship, but it still offers
an opportunity for a cloud to actively contribute to pri-
vacy for customers of tenant servers to which censors
permit access (even while disallowing access to servers
that censors forbid).

Going further, it is conceivable that our design of-
fers an attractive balance between social responsibility
and client privacy by assuming a trusted cloud that re-
tains the ability to censor servers. For example, evidence
suggests that a majority of Tor “hidden services” are
criminally oriented and the most frequently requested
sites host child abuse imagery [30]. Such abusive sites
could be shut down by the operator once it is informed
of the abusive content.

Traffic analysis. As discussed previously, our basic
design (Section 4) leaves traffic analysis to the tenant
server to address, should it choose to. While we have
made initial steps to support per-connection traffic-
analysis defense (Appendix A), that defense does not
immediately address traffic analysis based on aggregates
of connections, e.g., the number of servers to which con-
nections are made or the relative timings of these con-
nections. Defending against this type of attack remains
a very active area of research independent of our pro-
posal (e.g., [13, 14, 31, 39]).

OS compatibility. Our current implementation of
TCP hand-off (Section 5) requires that both the con-
troller and the tenant server run on the same Linux OS
kernel version. We also disabled the TCP timestamp
and selective acknowledgment (SACK) options to fa-
cilitate TCP state migration. In future work, we aim to
support TCP hand-off across different TCP stack imple-
mentations so that PoPSiCls will be suitable for more
heterogeneous deployments.



Personalized Pseudonyms for Servers in the Cloud 206

8 Conclusions
In this paper we presented PoPSiCls, which are person-
alized pseudonyms for servers that a client can use like
regular, long-lived server domain names to open TLS
connections to those servers. We described a design and
implementation for PoPSiCls that leverages trust in a
cloud to implement PoPSiCls for tenant servers that
it hosts. PoPSiCls have several desirable security and
usability properties in our threat model. First, TLS
connections established using a PoPSiCl exhibit iden-
tifiers (domain names, IP addresses, and server public
keys) to the attacker that he cannot correlate against
those exhibited in connections involving other clients
or other tenant servers. Second, the burdens placed on
various parties in our implementation of PoPSiCls cor-
respond to their levels of technical capabilities: cloud
operators bear the most (which, based on our experi-
ence, is still minor); changes to tenant web servers can
be hidden from web-content developers by packaging
these changes within VMs (in an IaaS scenario) or the
cloud platform (in a PaaS scenario); and tenants’ clients
need only suffer minor changes to the user experience
and no changes to client software (in the case of web
browsers). The last is important since client users often
lack the permissions or willingness to modify their plat-
forms (e.g., due to the vulnerabilities that those modifi-
cations can introduce [9, 35, 38]). Our evaluations show
that performance for PoPSiCl access to tenant servers
is competitive with baseline HTTPS and scales well as
PoPSiCl use grows. We thus believe that PoPSiCls pro-
vide a promising opportunity for cloud operators to im-
prove privacy for its tenants’ clients. We also illustrated
extensions of our design to permit the implementation
of defenses against traffic analysis with no client-side
changes.

Acknowledgements

This work was supported in part by NSF grant 1330599.

References
[1] W. Almesberger. TCP connection passing. In Linux Sympo-

sium, volume 1, July 2004.
[2] A. Aurelius, C. Lagerstedt, and M. Kihl. Streaming media

over the Internet: Flow based analysis in live access net-
works. In Broadband Multimedia Systems and Broadcasting,
2011 IEEE International Symposium on, 2011.

[3] J. Boyan. The Anonymizer: Protecting user privacy on the
web. Computer-Mediated Communication Magazine, 4(9),
Sept. 1997.

[4] C. Brubaker, A. Houmansadr, and V. Shmatikov. Cloud-
Transport: Using cloud storage for censorship-resistant
networking. In Privacy Enhancing Technologies, 14th In-
ternational Symposium, volume 8555 of Lecture Notes in
Computer Science. July 2014.

[5] Y. Cao, S. Li, and E. Williams. (cross-)browser fingerprint-
ing via OS and hardware level features. In ISOC Network
and Distributed System Security Symposium, Feb. 2017.

[6] D. Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient unlinkability. Journal of Cryptol-
ogy, 1(1), 1988.

[7] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig.
Hornet: High-speed onion routing at the network layer. In
22nd ACM Conference on Computer and Communications
Security, pages 1441–1454, 2015.

[8] C. Chen and A. Perrig. Phi: Path-hidden lightweight
anonymity protocol at network layer. Proceedings on Pri-
vacy Enhancing Technologies, 2017(1):100–117, 2017.

[9] L. Constantin. Antivirus software could make your com-
pany more vulnerable. PCWorld, Jan. 2016. http:
//goo.gl/Amju2A.

[10] S. Coull, M. P. Collins, C. V. Wright, F. Monrose, and
M. K. Reiter. On web browsing privacy in anonymized Net-
Flows. In 16th USENIX Security Symposium, Aug. 2007.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation Onion Router. In 13th USENIX Security
Symposium, Aug. 2004.

[12] E. Dou and A. Barr. U.S. cloud providers face backlash from
China’s censors. The Wall Street Journal, 16 March 2015.

[13] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-boo, I still see you: Why efficient traffic analysis
countermeasures fail. In IEEE Symposium on Security and
Privacy, May 2012.

[14] K. P. Dyer, S. E. Coull, and T. Shrimpton. Marionette: A
programmable network-traffic obfuscation system. In 24th
USENIX Security Symposium, 2015.

[15] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan,
and D. Karger. Thwarting web censorship with untrusted
messenger discovery. In 3rd International Workshop on
Privacy Enhancing Technologies, 2003.

[16] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson.
Blocking-resistant communication through domain fronting.
Proceedings on Privacy Enhancing Technologies, 2, 2015.

[17] Fyodor. Remote OS detection via TCP/IP stack fingerprint-
ing. https://nmap.org/nmap-fingerprinting-article.txt, Oct.
1998.

[18] D. Goldman. Google: The reluctant censor of the Internet.
CNN Money, 4 January 2015.

http://goo.gl/Amju2A
http://goo.gl/Amju2A
https://nmap.org/nmap-fingerprinting-article.txt


Personalized Pseudonyms for Servers in the Cloud 207

[19] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and
T. Ristenpart. Next stop, the cloud: Understanding mod-
ern web service deployment in EC2 and Azure. In Internet
Measurement Conference, Oct. 2013.

[20] J. Holowczak and A. Houmansadr. CacheBrowser: Bypassing
Chinese censorship without proxies using cached content. In
22nd ACM Conference on Computer and Communications
Security, Oct. 2015.

[21] H. C. Hsiao, T. H. J. Kim, A. Perrig, A. Yamada, S. C.
Nelson, M. Gruteser, and W. Meng. Lap: Lightweight
anonymity and privacy. In 2012 IEEE Symposium on Se-
curity and Privacy, pages 506–520, 2012.

[22] N. Jones, M. Arye, J. Cesareo, and M. J. Freedman. Hid-
ing amongst the clouds: A proposal for cloud-based Onion
Routing. In Free and Open Communications on the Internet.
USENIX, 2011.

[23] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
critical evaluation of website fingerprinting attacks. In ACM
Conference on Computer and Communications Security,
2014.

[24] M. Liberatore and B. N. Levine. Inferring the source of
encrypted HTTP connections. In 13th ACM Conference on
Computer and Communications Security, Oct. 2006.

[25] P. Mockapetris. Domain names – implementation and
specification. RFC 1035, RFC Editor, Nov. 1987. http:
//www.rfc-editor.org/rfc/rfc1035.txt.

[26] R. Moore. TLS Prober – an SSL/TLS server fingerprint-
ing tool. https://github.com/WestpointLtd/tls_prober/bl
ob/master/doc/tls_prober.md, Mar. 2015.

[27] R. Mortier, A. Madhavapeddy, T. Hong, D. Murray, and
M. Schwarzkopf. Using dust clouds to enhance anonymous
communication. In 18th International Workshop on Security
Protocols, 2014.

[28] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Peissens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In IEEE
Symposium on Security and Privacy, May 2013.

[29] J. C. Norte. Advanced Tor browser fingerprinting. http:
//jcarlosnorte.com/security/2016/03/06/advanced-tor-
browser-fingerprinting.html, Mar. 2016.

[30] G. Owen and N. Savage. The Tor dark net. No. 20, Global
Commission on Internet Governance Paper Series, Sept.
2015.

[31] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pen-
nekamp, K. Wehrle, and T. Engel. Website fingerprinting
at Internet scale. In ISOC Network and Distributed System
Symposium, Feb. 2016.

[32] A. Parsovs. Practical issues with TLS client certificate au-
thentication. In ISOC Network and Distributed System
Security Symposium, Feb. 2014.

[33] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Ra-
jahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Ami-
don, and M. Casado. The design and implementation of
open vswitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation, May 2015.

[34] A. Pfitzmann and M. Waidner. Networks without user ob-
servability. Computers and Security, 6(2), Apr. 1987.

[35] S. Ragan. Hola VPN client vulnerabilities put millions of
users at risk. CSO, Mar. 2015. http://goo.gl/yZnkzF.

[36] J. Ruderman. Same-origin policy. https://developer.mozill
a.org/en-US/docs/Web/Security/Same-origin_policy, Mar.
2016.

[37] J. Sankey and M. Wright. Dovetail: Stronger anonymity in
next-generation internet routing. Proceedings on Privacy
Enhancing Technologies, pages 283–303, 2014.

[38] L. Seltzer. Research shows antivirus products vulnerable to
attack. ZDNet, Feb. 2016. http://goo.gl/9kbgqX.

[39] T. Wang, X. Cai, R. Johnson, and I. Goldberg. Effective
attacks and provable defenses for website fingerprinting. In
23rd USENIX Security Symposium, Aug. 2014.

[40] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the network infrastructure. In 20th
USENIX Security Symposium, Aug. 2011.

[41] H. Zolfaghari and A. Houmansadr. Practical censorship
evasion leveraging content delivery networks. In ACM Con-
ference on Computer and Communications Security, Oct.
2016.

A Traffic Analysis
As discussed in Section 3.1, PoPSiCls hide the iden-
tity of the servers contacted by clients from being di-
rectly disclosed to an attacker between the clients and
the cloud. However, they do not hide connection char-
acteristics from the attacker, such as the number or
sizes of packets in each direction, connection dura-
tion, etc. What can be inferred from these features
has long been studied and debated, particularly in the
context of traffic directed through anonymizing proxies
(e.g., [13, 16, 23, 24, 31, 39]) and, similarly, traffic logs
in which payloads have been removed (e.g., [10]).

Our design so far has left this issue to tenant servers
to address, should they choose to. However, in this sec-
tion we summarize an approach that we have developed
for HTTP servers that can be used to implement some
proposed defenses. In keeping with R6, this defense can
be deployed with very modest adaptations to web con-
tent. Also, the proposed approach relies on client-side
Javascript and does not require the client user to in-
stall new software (in keeping with R5). We stress that
our goal here is not to innovate in terms of new per-
connection defenses, but instead to provide a framework
in which such defenses can be implemented.

A.1 Design

The key enabler for these defenses without requir-
ing modifications to the client platform is Javascript

http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
https://github.com/WestpointLtd/tls_prober/blob/master/doc/tls_prober.md
https://github.com/WestpointLtd/tls_prober/blob/master/doc/tls_prober.md
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://goo.gl/yZnkzF
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://goo.gl/9kbgqX


Personalized Pseudonyms for Servers in the Cloud 208

blobs13, which provide a way for client-side Javascript
to construct file-like objects and pass them to APIs that
expect URLs. This functionality permits a tenant server
to serve Javascript to the client browser that customizes
how objects are retrieved from the server, and then post-
processes the retrieved contents and provides them to
the browser (as blobs) for rendering. So, for example,
the client-side Javascript could replace the retrieval of
one web object with that of many smaller objects and
then reassemble the original object before providing it
to the browser.

We have prototyped this approach in a simple
adaptation to the Ruby on Rails web-content develop-
ment framework. This adaptation prepends a Javascript
script to every HTML file; the script takes control of re-
trieving the objects that otherwise would have been hy-
perlinked directly in that page. This script patches the
XMLHTTPRequest class to remove padding and reassem-
ble the original object from smaller pieces of that object.
When the send method of a XMLHTTPRequest instance
is called, instead of sending a single HTTP request to
the server, it sends several HTTP requests. The URL
of each request contains the original URL and also an
extra query string that informs the server of the number
of pieces into which to split the object at that URL and
the index of the piece to return in response. After receiv-
ing the first such request, the modified Ruby on Rails
framework splits the web object into the requested num-
ber of pieces; the piece at the index indicated in each
request is then returned as the request’s response, after
appending padding and prepending the length of that
padding to the piece (to allow for padding removal). Af-
ter the XMLHTTPRequest instance gets all the pieces of
the original object, it reads a length field at the begin-
ning of each piece, strips the piece of any content (i.e.,
padding) that extends past that length indicator, re-
assembles the original object, creates a blob containing
the resulting object, and submits it to the browser for
rendering. Rewriting the XMLHTTPRequest class ensures
that even objects retrieved by other Javascript scripts
in the page will be split and reassembled in this way.

While providing a foothold for addressing traffic
analysis based on the features of individual object re-
trievals, this design does not interfere with hints that
might be available to the attacker based on his viewing
multiple connections in aggregate, such as the number of
servers that are accessed simultaneously. Developing a

13 http://developer.mozilla.org/en-US/docs/Web/API/Blob

(a) Latency (b) Throughput

Fig. 5. Performance of PoPSiCl with traffic-analysis defense
(TAD), for retrieving a web page hyperlinking to thirteen objects
of total size 474.3KiB

similar foothold for obfuscating these features is a topic
of ongoing work.

A.2 Evaluation

To evaluate the performance impact of this form of
traffic-analysis defense, we modified an open-source blog
site14, which is written in Ruby on Rails, to adopt it.
In terms of modifications to the application-specific web
content itself, we needed to modify only one line of em-
bedded Ruby code in two templates; the rest of the im-
plementation is embedded in the Ruby on Rails frame-
work, hidden from the web-content developer. In our
implementation, the Javascript code chooses uniformly
from among retrieving a web object in one, two, or three
pieces, and each piece is padded to make its size a multi-
ple of 512 bytes. The root page of this website hyperlinks
to thirteen web objects of total size 474.3KiB. We eval-
uated our traffic analysis defense approach, in terms of
latency and throughput, by visiting this root page re-
peatedly, being sure to clear the browser cache between
retrievals.

Latency. We chose the Firefox browser for evaluating
the latency of root-page retrievals via HTTPS, PoPSi-
Cls, and PoPSiCls with traffic-analysis defense (TAD)
implemented as above, and the Tor browser (v5.5.5).
The latency was measured as the time of downloading
and rendering the whole web page. The experiment was
repeated 20 times for each setting. As can be seen from
Fig. 5a, the latency of accessing the page using PoP-
SiCls with traffic-analysis defense is only 1.35× that
of HTTPS, while the latency of Tor is 6.3× that of
HTTPS.

14 https://github.com/natew/obtvse

http://developer.mozilla.org/en-US/docs/Web/API/Blob
https://github.com/natew/obtvse


Personalized Pseudonyms for Servers in the Cloud 209

Throughput. To measure throughput of root-page
retrievals, we chose a headless browser, PhantomJS15,
as the web client. Though lacking a graphical user in-
terface, PhantomJS still parses HTML documents, runs
Javascript code, and downloads hyperlinked web objects
in a web page. (The httperf tool, used in the through-
put experiments of Section 6, does not parse returned
HTML.) We wrote a script to spawn PhantomJS pro-
cesses in the background, and each PhantomJS instance
was scripted to visit the root page once and then termi-
nate. By adjusting the spawning rate, we adjusted the
web-page request rate, and the response rate was mea-
sured as the number of root-page retrievals completed
per second. To ensure that the client was not the bottle-
neck in these experiments, we ran the client in a physical
node with 32 cores and 128GiB memory. As can be seen
in Fig. 5b, the throughput of root-page retrievals using
PoPSiCls was approximately the same with or without
traffic-analysis defense, and only slightly lower than the
throughput using HTTPS alone.

15 http://phantomjs.org


	Personalized Pseudonyms for Servers in the Cloud
	1 Introduction
	2 Background and Related Work
	3 Design Principles
	3.1 Security
	3.2 Usability

	4 Design
	4.1 Registering a PoPSiCl
	4.2 Connection establishment
	4.3 HTTP-specific mechanisms
	4.4 Design principles, revisited

	5 Implementation
	5.1 PoPSiCl store
	5.2 Cloud SDN controller
	5.3 Tenant HTTP server

	6 Evaluation
	6.1 Performance
	6.2 Scalability

	7 Limitations
	8 Conclusions
	A Traffic Analysis
	A.1 Design
	A.2 Evaluation



