DeltaShaper Enabling Unobservable Censorshipresistant TCP Tunneling over Videoconferencing Streams

Diogo Barradas

Nuno Santos

Luís Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Censors monitor / control Internet access

Censors monitor / control Internet access

Censors attempt to block covert channels

DeltaShaper

Goals

- Establish a covert TCP/IP channel
- Maintain unobservability
- Resist against network perturbations

Multimedia protocol tunneling

	Security	Coverage	
System / Properties	Active/Passive Attack Resistance	Arbitrary Data Transmission	L Interactive Communication
FreeWave (Houmansadr et al.) <u>Audio Modulation</u>	-	\checkmark	\checkmark
Facet <u>(Li et al.)</u> <u>Video Embedding</u>	\checkmark	-	-
CovertCast (McPherson et al.) <u>Video Modulation</u>	\checkmark	\checkmark	-
DeltaShaper <u>Video Modulation</u>	\checkmark	\checkmark	\checkmark

Threat model

• Assumptions:

• Packets carrying multimedia data are encrypted

• Censor's Capabilities:

- Deep Packet Inspection
- Observe, store and analyze traffic flows
- Apply artificial constraints on the network

Censor's Limitations:

- Unable to decipher the content of Skype packets
- Not in collusion with the video-conferencing provider
- Attempts to minimize collateral damage

A naïve approach at data modulation

- Replace chat video frames
- Encode data in all available pixels

Drawbacks of naïve data modulation

Data loss

- Lossy compression (downsampling + quantization)
- Abnormal traffic patterns
 - Poor compression (spatial & inter-frame redundancy)

C1: Can we distinguish regular from irregular Skype streams?

- Traffic signatures appear to be different
 - Packet lengths frequency distribution

C2: How much throughput can we achieve while preserving unobservability?

C3: How to maintain unobservability in adverse network conditions?

Contributions

- DeltaShaper : A censorship-resistant system
 - Tunnel TCP/IP data over Skype videocalls
- Distinguish regular / irregular Skype call streams
 - Packet frequency distribution / EMD
- Maximize throughput and maintain unobservability
 - Explore the space encoding parameters
- Adaptation to network conditions
 - Dynamic calibration of encoding parameters

How to characterize Skype streams?

- Characteristic Function Create a stream signature
 - Frequency distribution of packet lengths
- Similarity Function Quantify streams' differences
 - Earth Mover's Distance (EMD)

Different videos generate distinct traffic

- Differences between signatures can be quantified
 - Earth Movers' Distance

Different videos generate distinct traffic

Censors can identify streams with unusual traffic

Can we encode data and maintain unobservability?

- Strawman: Embed a small payload in each frame
- Generated traffic does not reflect this embedding

A better approach for data modulation

- Strive for unobservability
- Accommodate for lossy compression

╋

(a) Carrier Frame

(b) Payload Frame

(c) Covert Frame

Parameter	Description	
ap	payload frame area (pixel×pixel)	
ac	cell size (pixel×pixel)	
bc	color encoding (bits)	
Гр	payload frame rate (frames/s)	

Adapt to network conditions

Calibrate encoding parameters

- Maintain unobservability
- Modulate max. amount of data

DeltaShaper adaptation mechanism

• Periodically:

- Estimate network conditions from recorded baselines
- Select adequate parameters from pre-computed table

Implementation challenges

- Network interaction
 - Allow transparent TCP/IP communication
- Video processing
 - Combine carrier / payload frames
- Video-conferencing software as a black-box
 - Send covert frames without modifying Skype

DeltaShaper client module

DeltaShaper server module

Evaluation Steps

- 1. Can we distinguish Skype streams?
- 2. Can we balance throughput and unobservability?
- 3. How well does DeltaShaper perform?

Can we distinguish Skype streams?

- 83% accuracy in distinguishing Skype streams
- DeltaShaper streams must remain under ΔI

Can we balance throughput and unobservability?

Parameter	Description	Configuration	
ap payload frame area (pixel×pi		320 x 240	
ac	cell size (pixel×pixel)	8 x 8	
bc	color encoding (bits)	6	
Гр	payload frame rate (frames/s)	1	

How well does DeltaShaper perform?

Achieved configuration:

Parameter	Description	Configuration	
ар	payload frame area (pixel×pixel)	320 x 240	
ac	cell size (pixel×pixel)	8 x 8	
bc	color encoding (bits)	6	
rp	payload frame rate (frames/s)	1	

• Performance

- Raw throughput: **7.2 Kbps**
- Round-Trip-Time: 2s 973ms

How well does DeltaShaper perform?

Use Case	Protocol Session W/ DS (mm:ss)	Protocol Session W/o DS (mm:ss)	Overhead
Wget (4kB file)	0:22	< 0:01	3,142.9 x
FTP (4kB file)	1:43	0:09	11.4 x
SSH + SMTP	2:41	0:38	4.2 x
SSH	1:29	0:06	14.8 x
Telnet	1:13	0:06	12.2 x
Netcat chat	0:01	< 0:01	166.7 x
SSH Tunnel	2:19	0:22	6.3 x

Non-interactive session

Interactive session

 DeltaShaper allows for the execution of traditional TCP/IP applications which cover different users' needs

Conclusions

DeltaShaper: A censorship-resistant system

Supports high-latency / low-throughput TCP applications

Maximize throughput and preserve unobservability

- Greedy exploration of encoding configurations
- Adaptation in multimedia protocol tunneling
 - Provides improved unobservability
 - Could also enhance similar systems

http://web.ist.utl.pt/diogo.barradas