
Website Fingerprinting Defenses
at the Application Layer

Giovanni Cherubin1 Jamie Hayes2 Marc Juarez3

1Royal Holloway University of London
2University College London

3imec-COSIC KU Leuven

19th July 2017, PETS’17, Minneapolis, MN, USA

Introduction: Website Fingerprinting (WF)

2

Adversary

Tor network

User

WWW

Entry
Middle

Exit

Tor Hidden Services (HS)

3

xyz.onionUser

• HS: user visits xyz.onion without resolving it to an IP

• Examples: SecureDrop, Silkroad, DuckDuckGo, Facebook

Website Fingerprinting on
Hidden Services (HSes)

• WF adversary can distinguish HSes from regular sites

• Website Fingerprinting in HSes is more threatening:

- Smaller world makes HSes more identifiable

- HS users vulnerable because content is sensitive

4

Website Fingerprinting defenses

5

Tor network

Entry
Middle

Dummy
Real

User

These are TCP packets or Tor messages

WF Defenses
BuFLO
Tamaraw
CS-BuFLO
WTF-PAD
 …

• Existing defenses are designed at the network layer

Key observation: identifying info originates at app layer!

Application-layer Defenses

 HTTP(S)

 Tor

 TCP

 ...

 TLS

Adversary

Web content‘Latent‘ features: F1, …, Fn

Observed features: O1, ..., On

Identifying info

Last layer of encryption

T(·)

6

The main advantage is that they are easier to implement:

• do not depend on Tor to be implemented

Cons:
• padding runs end-to-end

• may require server collaboration:

 ...but HSes have incentives!

7

Pros and Cons of app-layer Defenses

8

 LLaMA ALPaCA

• Server-side (first one)

• Applied on hosted content

• More bandwidth overhead

• Client-side (FF add-on)

• Applied on HTTP requests

• More latency overhead

(two different solutions, not a client-server solution)

ALPaCA

• Abstract web pages as num objects and object sizes:

 pad them to match a target page

• Does not impact user experience:

 e.g., comments in HTML/JS, images’ metadata, hidden styles

9

Original MorphedTarget

ALPaCA strategies (1)

securedrop.pngindex.html fake.css

index.html facebook.png style.css

Example: protect a SecureDrop page

- Strategy 1: target page is Facebook

securedrop

 facebook

10

Padding

ALPaCA strategies (2)
- Strategy 2: pad to an “anonymity set” target page

target

securedrop.pngindex.html fake.css

index.html facebook.png style.css

securedrop

 facebook

Defines num objects and object sizes by:

● Deterministic: next multiple of λ, δ

● Probabilistic: sampled from empirical distribution

11

Padding

LLaMA

• Inspired by Randomized Pipelining

 Goal: randomize HTTP requests

• Same goal from a FF add-on:

- Random delays (δ)

- Repeat previous requests (C1)

12

C1

Client Server

C2
C1’
C2

δ

• Collect with and without defense: 100 HSes (cached)

○ Security: accuracy of attacks

 kNN, k-Fingerprinting (kFP), CUMUL

○ Performance: overheads

- latency (extra delay)

- bandwidth (extra padding/time)

13

Evaluation: methodology

ALPaCA: results

14

• From 60% to 40% decrease in accuracy

• 50% latency and 85% bandwidth overheads

LLaMA: results

15

• Accuracy drops between 20% and 30%

• Less than 10% latency and bandwidth overheads

• WF defenses at the app layer are easier to implement

• HSes have incentives to support server-side defenses:

 SecureDrop has implemented a prototype of ALPaCA

• ALPaCA is running on a HS: 3tmaadslguc72xc2.onion

• Source code: github.com/camelids

16

Take aways

http://github.com/camelids

17

