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Introduction: Website Fingerprinting (WF)
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Tor Hidden Services (HS)
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xyz.onionUser

• HS: user visits xyz.onion without resolving it to an IP

• Examples: SecureDrop, Silkroad, DuckDuckGo, Facebook



Website Fingerprinting on 
Hidden Services (HSes)

• WF adversary can distinguish HSes from regular sites

• Website Fingerprinting in HSes is more threatening:

- Smaller world makes HSes more identifiable

- HS users vulnerable because content is sensitive
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Website Fingerprinting defenses
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• Existing defenses are designed at the network layer

Key observation: identifying info originates at app layer!

Application-layer Defenses
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The main advantage is that they are easier to implement:

• do not depend on Tor to be implemented

Cons: 
• padding runs end-to-end

• may require server collaboration:

                 ...but HSes have incentives!
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Pros and Cons of app-layer Defenses
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    LLaMA                  ALPaCA

• Server-side (first one)

• Applied on hosted content

• More bandwidth overhead

• Client-side (FF add-on)

• Applied on HTTP requests

• More latency overhead

(two different solutions, not a client-server solution)



ALPaCA

• Abstract web pages as num objects and object sizes: 

          pad them to match a target page

• Does not impact user experience:

  e.g., comments in HTML/JS, images’ metadata, hidden styles
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ALPaCA strategies (1)

securedrop.pngindex.html fake.css

index.html facebook.png style.css

Example: protect a SecureDrop page

- Strategy 1: target page is Facebook

securedrop

 facebook
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Padding



ALPaCA strategies (2)
- Strategy 2: pad to an “anonymity set” target page

target

securedrop.pngindex.html fake.css

index.html facebook.png style.css

securedrop

 facebook

Defines num objects and object sizes by:

● Deterministic: next multiple of λ, δ 

● Probabilistic: sampled from empirical distribution
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Padding



LLaMA

• Inspired by Randomized Pipelining

      Goal: randomize HTTP requests

• Same goal from a FF add-on:

- Random delays (δ)

- Repeat previous requests (C1)
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• Collect with and without defense: 100 HSes  (cached)

○ Security: accuracy of attacks

   kNN, k-Fingerprinting (kFP), CUMUL

○ Performance: overheads

- latency (extra delay)

- bandwidth (extra padding/time)
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Evaluation: methodology



ALPaCA: results
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• From 60% to 40% decrease in accuracy

• 50% latency and 85% bandwidth overheads



LLaMA: results
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• Accuracy drops between 20% and 30%

• Less than 10% latency and bandwidth overheads 



• WF defenses at the app layer are easier to implement

• HSes have incentives to support server-side defenses:

        SecureDrop has implemented a prototype of ALPaCA

• ALPaCA is running on a HS: 3tmaadslguc72xc2.onion

• Source code: github.com/camelids
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Take aways

http://github.com/camelids
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