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Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks
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Problem

The threat is real: relay falsely advertise bandwidth.
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TorFlow
Design
1. Relays are divided into 50-relay 

slices by estimated capacity.
2. Bandwidth Authorities (BWAuths) 

time fetching test files through 
pairs of relay in each slice.

3. Relays given capacities by 
multiplying self-reported bandwidth 
by test speed divided by average 
speed.
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TorFlow
Design
1. Relays are divided into 50-relay 

slices by estimated capacity.
2. Bandwidth Authorities (BWAuths) 

time fetching test files through 
pairs of relay in each slice.

3. Relays given capacities by 
multiplying self-reported bandwidth 
by test speed divided by average 
speed.

Attacks
1. Self-reported bandwidth can be set 

arbitrarily high.
2. Relays can recognize test 

downloads and relay data only in 
those cases

3. Malicious pairs need not actually 
download the file (no validation).

Shadow experiments w/ #1&$2:
- Goodput: 22.5è0.2
- Weight: 7è11
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EigenSpeed
Design
1. Relays periodically send max speed 

of other relays to a BWAuth.
2. Aggregator calculates capacities as 

eigenvector of largest connected 
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during 

computation, or
2. Too different from eigenvector

(Snader and Borisov, IPTPS 2009)

0 s12 s13 s14

s21 0 s23 s24

s31 s32 0 s34

s41 s42 s43 0

T=

Normalize T: T’
Output v*: v*T=λT, λ≥1
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EigenSpeed
Design
1. Relays periodically send max speed 

of other relays to a BWAuth.
2. Aggregator calculates capacities as 

eigenvector of largest connected 
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during 

computation, or
2. Too different from eigenvector

(Snader and Borisov, IPTPS 2009)

Fat-pipe attack: Large false 
speeds among malicious 
relays, small elsewhere. 
EigenSpeed’s liar detection 
is designed to prevent this.
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EigenSpeed
Design
1. Relays periodically send max speed 

of other relays to a BWAuth.
2. Aggregator calculates capacities as 

eigenvector of largest connected 
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during 

computation, or
2. Too different from eigenvector

Attack
1. “Frame” some honest non-trusted 

relays under liar metric #1 with avg
speeds with all but framed relays.

(Snader and Borisov, IPTPS 2009)

Framing attack: With 1118 
trusted relays and 2.83% 
malicious BW, and 558 
malicious relays, 559 of 5000 
honest relays are framed.
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PeerFlow: Design
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PeerFlow: Design
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PeerFlow: Design
1. Measuring relays (largest by 

capacity) record total bytes 
transferred with all other relays

2. Measurements added to random 
noise and divided by position 
probabilities. Result (ρi) submitted 
to BW Authorities (BWAuths).

3. BWAuths estimate the total bytes 
relayed ρ’ as the windowed, 
trimmed mean, trimming fractions 
by current capacity and windowing 
from trusted measurements.

4. If ρ’ is comparable to that of peers, 
capacity updated using ρ’, else 
relay enters probation.

5. New relays only selected for 
middle position
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PeerFlow: Security

Single-round capacity inflation

Attack Weight multiple
Only carry traffic in one direction 2
Only exchange traffic with measuring relays 1.33
Do not exchange traffic with the lower trimmed fraction of relays 1.34
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Multiple-round capacity inflation
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PeerFlow: Performance

380 400 420 440 460 480 500 520 540
Goodput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

0 5 10 15 20 25
Download Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

Shadow experiments comparing PeerFlow, TorFlow, and Ideal
• 4 Tor directory authorities
• 498 Tor relays
• 7,500 Tor clients
• 1,000 servers 

Aggregate relay goodput per second Time to last byte of 320KiB file
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Conclusion

1. Tor needs secure load balancing
2. Demonstrated attacks on existing solutions

• TorFlow
• EigenSpeed

3. Presented PeerFlow
• Demonstrated secure against bandwidth-limited 

adversary
• Experimentally showed performance is similar to 

current Tor performance


