
PeerFlow: Secure Load
Balancing in Tor
Aaron Johnson1 Rob Jansen1 Aaron Segal2

Nicholas Hopper3 Paul Syverson1

1U.S. Naval Research Laboratory
2Yale University
3University of Minnesota

July 18th, 2017
Privacy Enhancing Technologies Symposiu

2

Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks

3

Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks

4

Problem

Clients Relays Destinations
Guards Exits

5

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities

6

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities
• Clients must balance load

7

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities
• Clients must balance load
• Insecure load balancing allows adversary to attack more

client traffic

8

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities
• Clients must balance load
• Insecure load balancing allows adversary to attack more

client traffic

9

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities
• Clients must balance load
• Insecure load balancing allows adversary to attack more

client traffic

10

Problem

Clients Relays Destinations
Guards Exits

• Tor relays have varying unknown capacities
• Clients must balance load
• Insecure load balancing allows adversary to attack more

client traffic

11U.S. Naval Research Laboratory

Problem

The threat is real: relay falsely advertise bandwidth.

12

Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks

13

Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks

14

TorFlow
Design
1. Relays are divided into 50-relay

slices by estimated capacity.
2. Bandwidth Authorities (BWAuths)

time fetching test files through
pairs of relay in each slice.

3. Relays given capacities by
multiplying self-reported bandwidth
by test speed divided by average
speed.

15

TorFlow
Design
1. Relays are divided into 50-relay

slices by estimated capacity.
2. Bandwidth Authorities (BWAuths)

time fetching test files through
pairs of relay in each slice.

3. Relays given capacities by
multiplying self-reported bandwidth
by test speed divided by average
speed.

Attacks
1. Self-reported bandwidth can be set

arbitrarily high.
2. Relays can recognize test

downloads and relay data only in
those cases

3. Malicious pairs need not actually
download the file (no validation).

16

TorFlow
Design
1. Relays are divided into 50-relay

slices by estimated capacity.
2. Bandwidth Authorities (BWAuths)

time fetching test files through
pairs of relay in each slice.

3. Relays given capacities by
multiplying self-reported bandwidth
by test speed divided by average
speed.

Attacks
1. Self-reported bandwidth can be set

arbitrarily high.
2. Relays can recognize test

downloads and relay data only in
those cases

3. Malicious pairs need not actually
download the file (no validation).

Shadow experiments w/ #1&$2:
- Goodput: 22.5è0.2
- Weight: 7è11

17

EigenSpeed
Design
1. Relays periodically send max speed

of other relays to a BWAuth.
2. Aggregator calculates capacities as

eigenvector of largest connected
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during

computation, or
2. Too different from eigenvector

(Snader and Borisov, IPTPS 2009)

0 s12 s13 s14

s21 0 s23 s24

s31 s32 0 s34

s41 s42 s43 0

T=

Normalize T: T’
Output v*: v*T=λT, λ≥1

18

EigenSpeed
Design
1. Relays periodically send max speed

of other relays to a BWAuth.
2. Aggregator calculates capacities as

eigenvector of largest connected
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during

computation, or
2. Too different from eigenvector

(Snader and Borisov, IPTPS 2009)

Fat-pipe attack: Large false
speeds among malicious
relays, small elsewhere.
EigenSpeed’s liar detection
is designed to prevent this.

19

EigenSpeed
Design
1. Relays periodically send max speed

of other relays to a BWAuth.
2. Aggregator calculates capacities as

eigenvector of largest connected
component with trusted relays.

3. Exclude as “liars” relays w/ reports
1. Changing too quickly during

computation, or
2. Too different from eigenvector

Attack
1. “Frame” some honest non-trusted

relays under liar metric #1 with avg
speeds with all but framed relays.

(Snader and Borisov, IPTPS 2009)

Framing attack: With 1118
trusted relays and 2.83%
malicious BW, and 558
malicious relays, 559 of 5000
honest relays are framed.

20

Overview

• Problem: Secure load-balancing in Tor
• Existing Solutions

• TorFlow
• EigenSpeed

• New Solution: PeerFlow
• Prove security against bandwidth-limited adversary
• Experiments show similar performance to TorFlow

Demonstrate attacks

21

PeerFlow: Design

22U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays.

ρ1

ρ2
ρ3

23U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays

2. Measurements added to random
noise and divided by position
probabilities. Result (ρi) submitted
to BW Authorities (BWAuths).

ρ1

ρ2
ρ3

24U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays

2. Measurements added to random
noise and divided by position
probabilities. Result (ρi) submitted
to BW Authorities (BWAuths).

3. BWAuths estimate the total bytes
relayed ρ’ as the windowed,
trimmed mean, trimming fractions
by current capacity and windowing
from trusted measurements.

0 1
Measuring relay weights

0.258 0.742

M
ea

su
re

d
ca

pa
ci

tie
s

ρ1

ρ2
ρ3

25U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays

2. Measurements added to random
noise and divided by position
probabilities. Result (ρi) submitted
to BW Authorities (BWAuths).

3. BWAuths estimate the total bytes
relayed ρ’ as the windowed,
trimmed mean, trimming fractions
by current capacity and windowing
from trusted measurements.

0 1
Measuring relay weights

0.258 0.742

M
ea

su
re

d
ca

pa
ci

tie
s ρ’

ρ1

ρ2
ρ3

26U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays

2. Measurements added to random
noise and divided by position
probabilities. Result (ρi) submitted
to BW Authorities (BWAuths).

3. BWAuths estimate the total bytes
relayed ρ’ as the windowed,
trimmed mean, trimming fractions
by current capacity and windowing
from trusted measurements.

4. If ρ’ is comparable to that of peers,
capacity updated using ρ’, else
relay enters probation.

0 1
Measuring relay weights

0.258 0.742

M
ea

su
re

d
ca

pa
ci

tie
s ρ’

ρ1

ρ2
ρ3

27U.S. Naval Research Laboratory

PeerFlow: Design
1. Measuring relays (largest by

capacity) record total bytes
transferred with all other relays

2. Measurements added to random
noise and divided by position
probabilities. Result (ρi) submitted
to BW Authorities (BWAuths).

3. BWAuths estimate the total bytes
relayed ρ’ as the windowed,
trimmed mean, trimming fractions
by current capacity and windowing
from trusted measurements.

4. If ρ’ is comparable to that of peers,
capacity updated using ρ’, else
relay enters probation.

5. New relays only selected for
middle position

0 1
Measuring relay weights

0.258 0.742

M
ea

su
re

d
ca

pa
ci

tie
s

ρ1

ρ2
ρ3

ρ’

28U.S. Naval Research Laboratory

PeerFlow: Security

Single-round capacity inflation

Attack Weight multiple
Only carry traffic in one direction 2
Only exchange traffic with measuring relays 1.33
Do not exchange traffic with the lower trimmed fraction of relays 1.34

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

Adv relative capacity

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

re
la

tiv
e

in
fe

rr
ed

ca
pa

ci
ty

Trusted fraction: 0.00
Trusted fraction: 0.05
Trusted-only frac: 0.05
Trusted fraction: 0.10
Trusted-only frac: 0.10
Trusted fraction: 0.20
Trusted-only frac: 0.20
Trusted fraction: 0.30
Trusted-only frac: 0.30

Multiple-round capacity inflation

Presentation Title | 29U.S. Naval Research Laboratory

PeerFlow: Performance

380 400 420 440 460 480 500 520 540
Goodput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

0 5 10 15 20 25
Download Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

Ideal

TorFlow

PeerFlow

Shadow experiments comparing PeerFlow, TorFlow, and Ideal
• 4 Tor directory authorities
• 498 Tor relays
• 7,500 Tor clients
• 1,000 servers

Aggregate relay goodput per second Time to last byte of 320KiB file

30

Conclusion

1. Tor needs secure load balancing
2. Demonstrated attacks on existing solutions

• TorFlow
• EigenSpeed

3. Presented PeerFlow
• Demonstrated secure against bandwidth-limited

adversary
• Experimentally showed performance is similar to

current Tor performance

