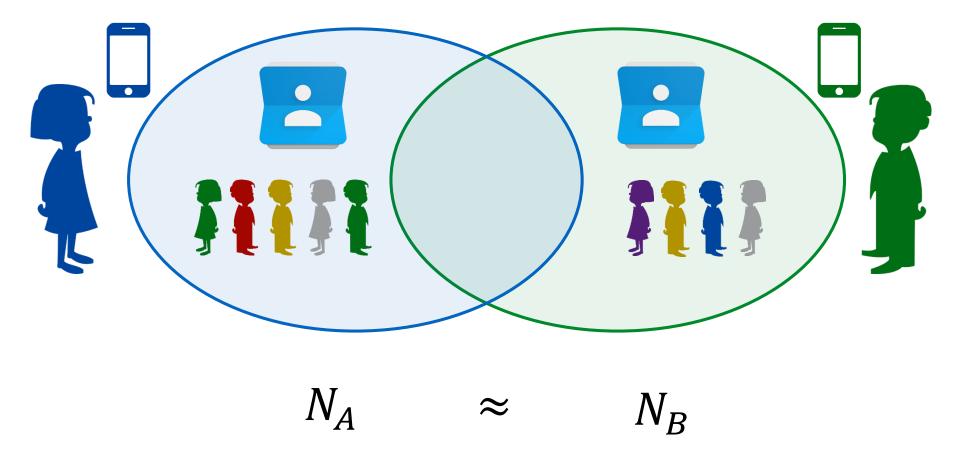
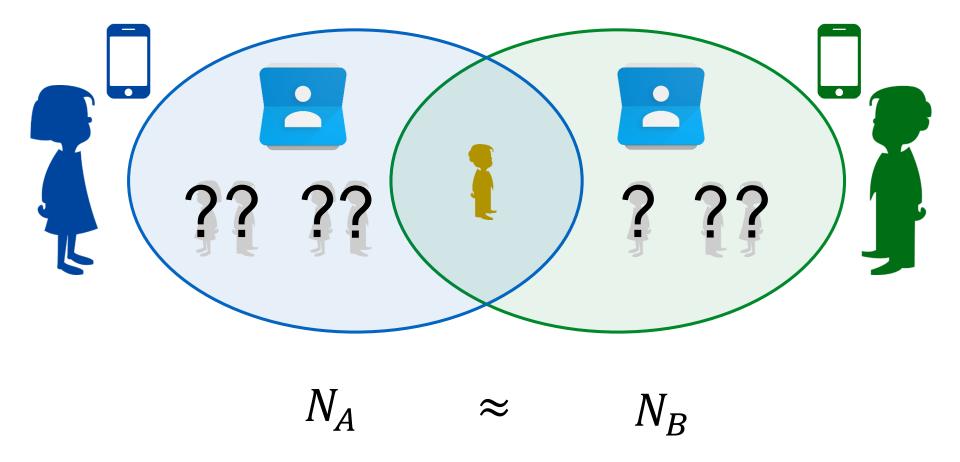
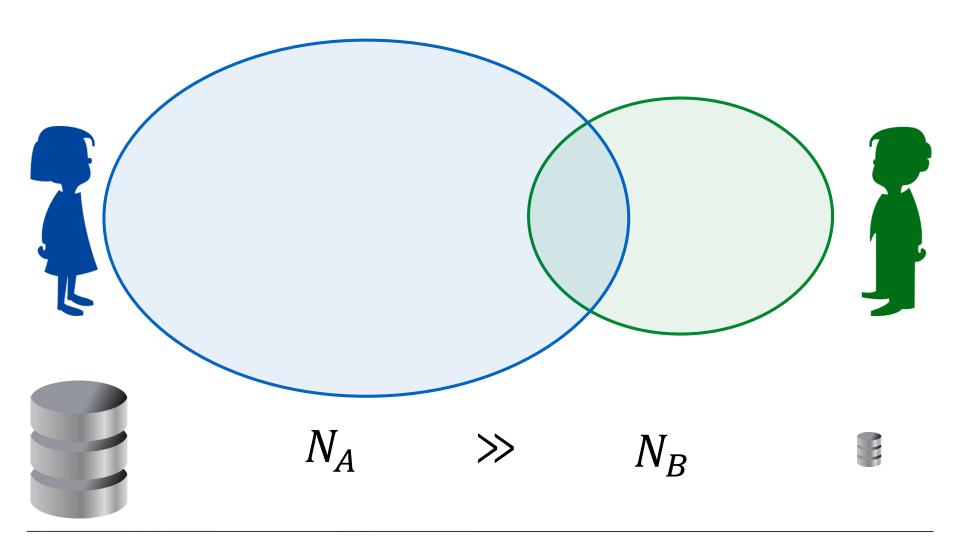
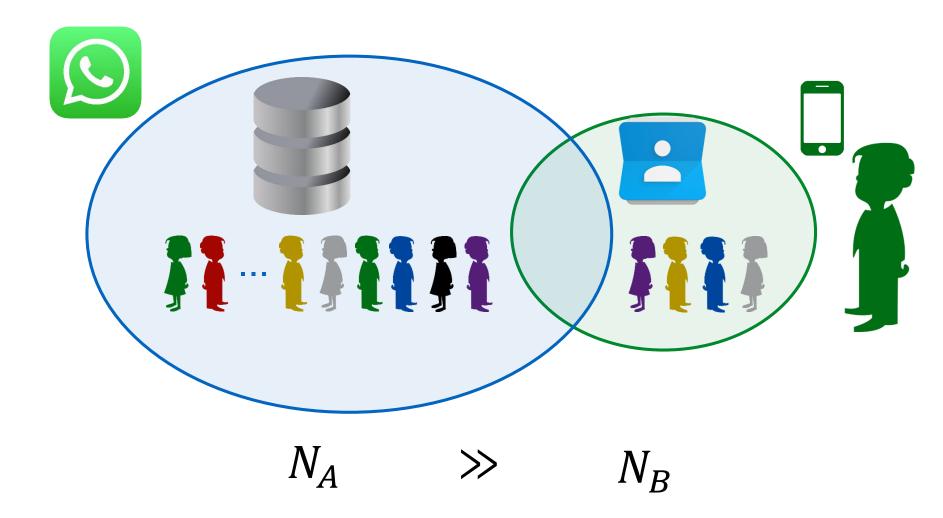
Private Set Intersection for Unequal Set Sizes with Mobile Applications

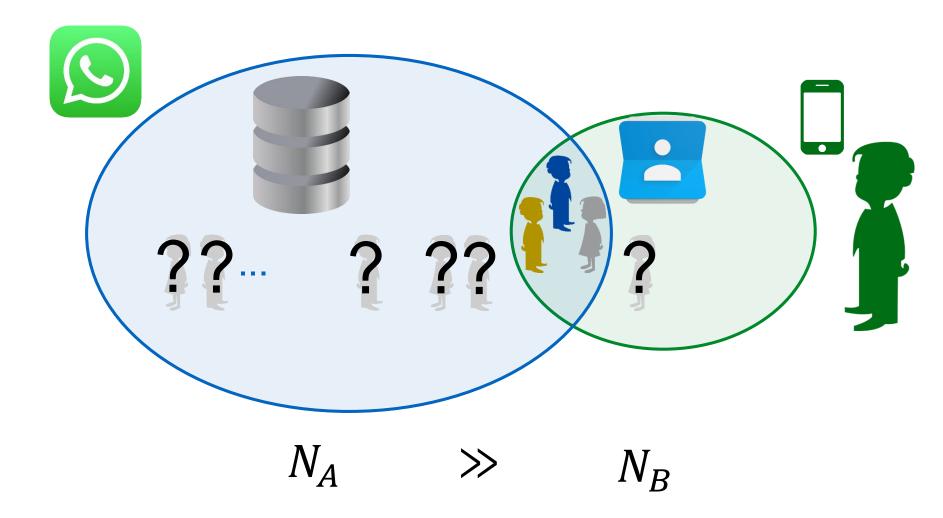
Ágnes Kiss (TU Darmstadt)

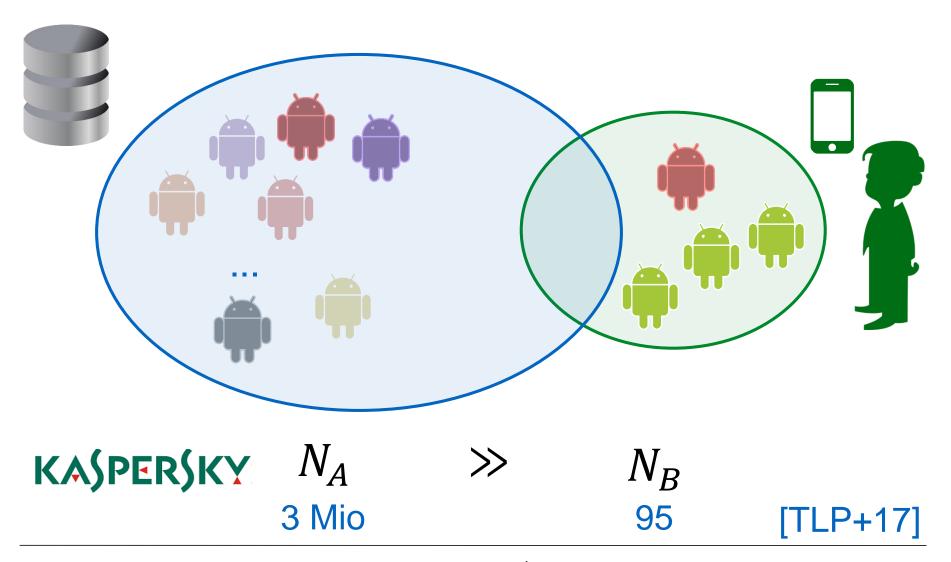

Jian Liu (Aalto University) Thomas Schneider (TU Darmstadt) N. Asokan (Aalto University) Benny Pinkas (Bar-Ilan University)

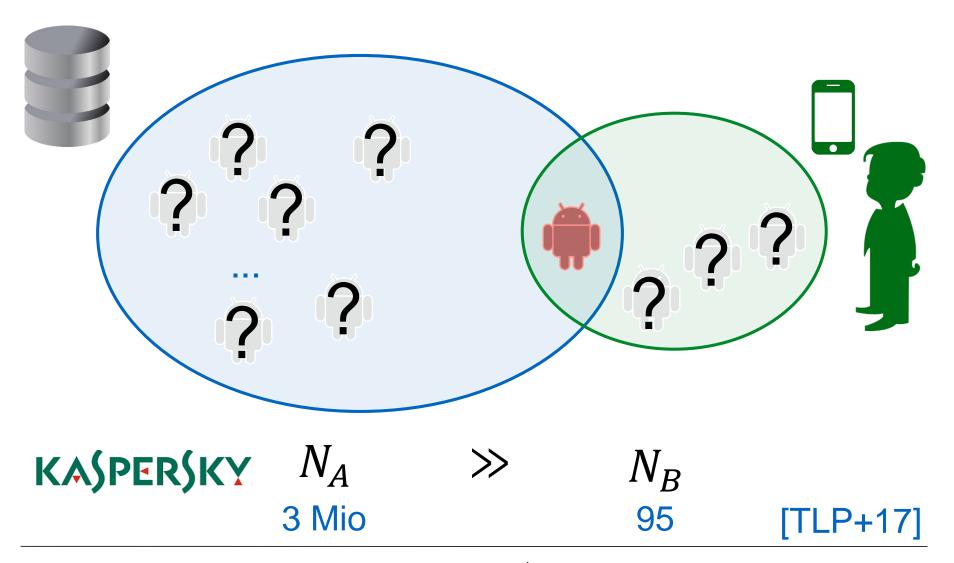

TECHNISCHE UNIVERSITÄT DARMSTADT


Private Set Intersection (PSI)


Private Set Intersection (PSI)


PSI with Unequal Set Sizes


PSI with Unequal Set Sizes – Mobile Messaging Service


PSI with Unequal Set Sizes – Mobile Messaging Service

PSI with Unequal Set Sizes – Malware Detection Service

PSI with Unequal Set Sizes – Malware Detection Service

- OT-based protocols efficient for $N_A \approx N_B$
 - Garbled BF based protocols [DCW13,RR17]
 - Hashing-based protocols [PSZ14, PSSZ15, KKRT16]

- OT-based protocols efficient for $N_A \approx N_B$
 - Garbled BF based protocols [DCW13,RR17]
 - Hashing-based protocols [PSZ14, PSSZ15, KKRT16]

Require sending data linear in N_A for each element of the client $(O(N_A N_B))$

- OT-based protocols efficient for $N_A \approx N_B$
 - Garbled BF based protocols [DCW13,RR17]
 - Hashing-based protocols [PSZ14, PSSZ15, KKRT16]

Require sending data linear in N_A for each element of the client $(O(N_A N_B))$

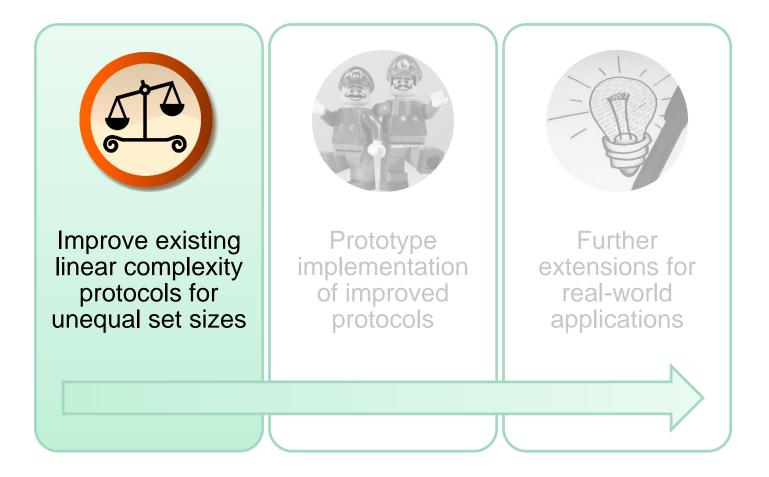
- Protocols linear in the set sizes $(O(N_A + N_B))$
 - Based on public-key crypto: OPE [FNP04], DH [HFH99]
 - Based on Oblivious PRF evaluation: NR [FIPR05,HL08], AES [PSSW09], RSA [CT10]

- OT-based protocols efficient for $N_A \approx N_B$
 - Garbled BF based protocols [DCW13,RR17]
 - Hashing-based protocols [PSZ14, PSSZ15, KKRT16]

Require sending data linear in N_A for each element of the client $(O(N_A N_B))$

- Protocols linear in the set sizes $(O(N_A + N_B))$
 - Based on public-key crypto: OPE [FNP04], DH [HFH99]
 - Based on Oblivious PRF evaluation: NR [FIPR05,HL08], AES [PSSW09], RSA [CT10]

Can these be adapted to unequal set sizes?


- OT-based protocols efficient for $N_A \approx N_B$
 - Garbled BF based protocols [DCW13,RR17]
 - Hashing-based protocols [PSZ14, PSSZ15, KKRT16]

Require sending data linear in N_A for each element of the client $(O(N_A N_B))$

- Protocols linear in the set sizes $(O(N_A + N_B))$
 - Based on public-key crypto: OPE [FNP04], DH [HFH99]
 - Based on Oblivious PRF evaluation: NR [FIPR05,HL08], AES [PSSW09], RSA [CT10]

Can these be adapted to unequal set sizes?

Our Contributions

Base Phase

Data-independent, depends on N_B^{\max} maximum number of client inputs

Setup Phase

Depends on the N_A elements in the database

Online Phase

Depends on the N_B elements in the client set

Base Phase

Data-independent, depends on N_B^{\max} maximum number of client inputs Can be precomputed without any knowledge on the inputs

Setup Phase

Depends on the N_A elements in the database

Online Phase

Depends on the N_B elements in the client set

Base Phase

Data-independent, depends on N_B^{\max} maximum number of client inputs Can be precomputed without any knowledge on the inputs

Setup Phase

Depends on the N_A elements in the database

The server can perform most of the computation in advance

Online Phase

Depends on the N_B elements in the client set

Base Phase

Data-independent, depends on N_B^{\max} maximum number of client inputs Can be precomputed without any knowledge on the inputs

Setup Phase

Depends on the N_A elements in the database

The server can perform most of the computation in advance

Same for all clients?

Online Phase

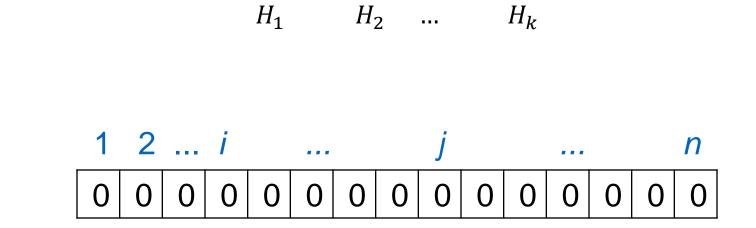
Depends on the N_B elements in the client set

Base Phase

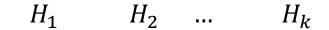
Data-independent, depends on N_B^{\max} maximum number of client inputs Can be precomputed without any knowledge on the inputs

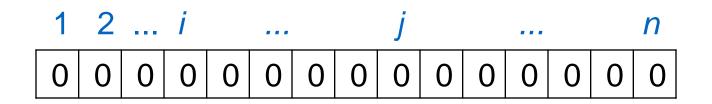
Setup Phase

Depends on the N_A elements in the database

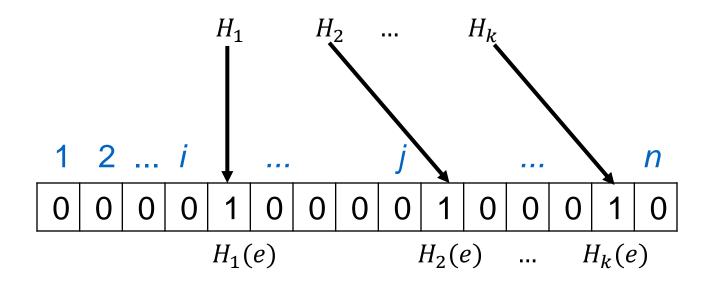

The server can perform most of the computation in advance

Same for all clients?

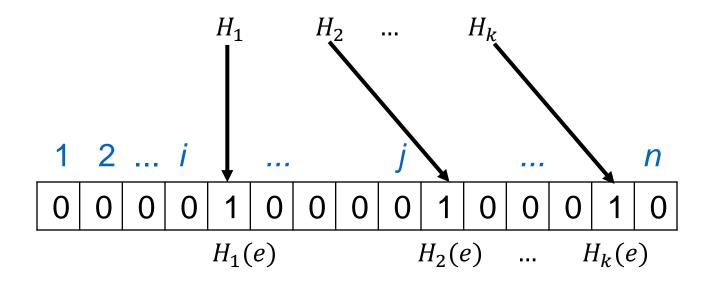

Online Phase

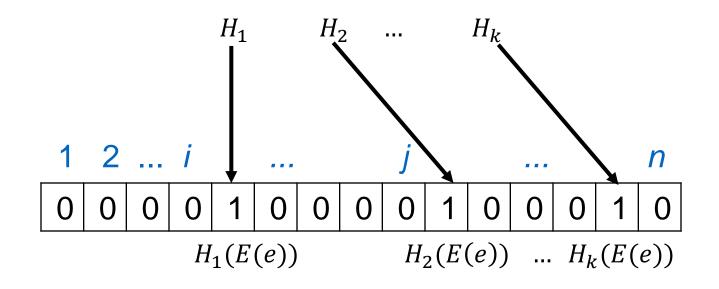

Depends on the N_B elements in the client set

Computation on the client's few elements is fast



e: 004912345678910




e: 004912345678910

e: 004912345678910

E(e): fti45jxcfuu984fghdr56fguew91jm

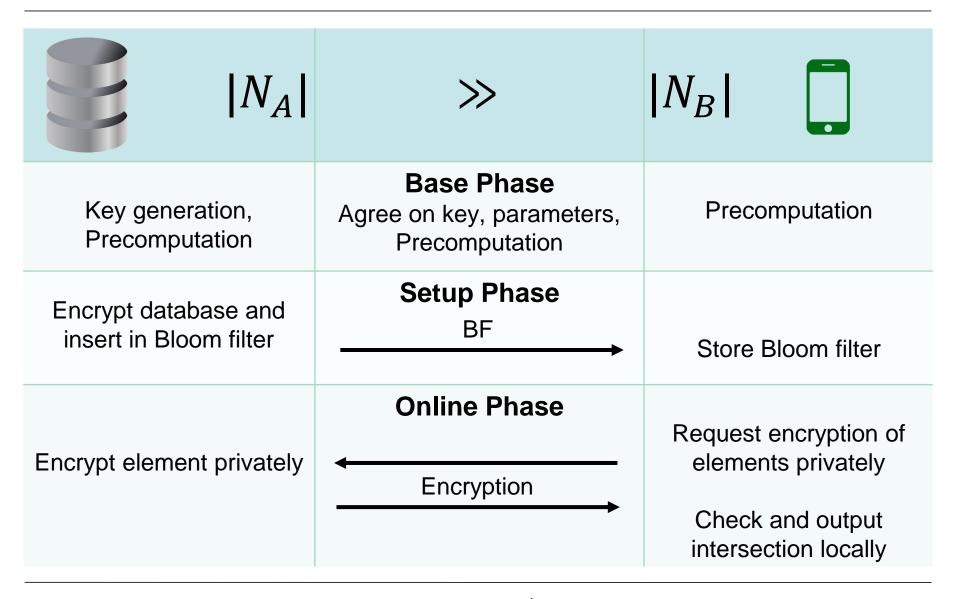
Efficient and Secure Updates

Insertion in Bloom filter

E(e): fti45jxcfuu984fghdr56fguew91jm

 $H_1(E(e)), H_2(E(e)), \dots, H_k(E(e))$

Deletion: Counting Bloom filter

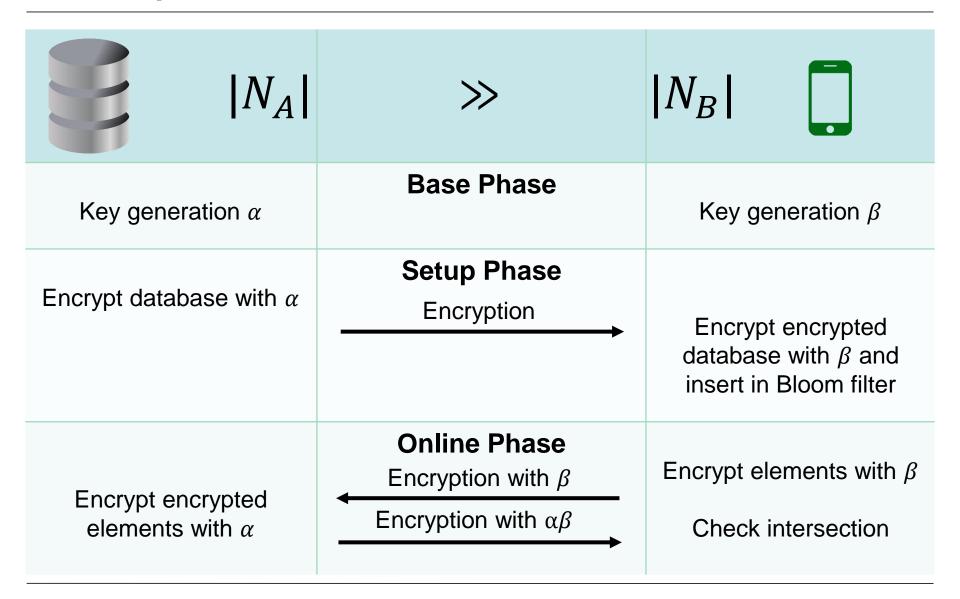

Precomputed PSI – PSI with PRF: RSA-PSI, NR-PSI, GC-PSI

	\gg	$ N_B $
Key generation, Precomputation	Base Phase Agree on key, parameters, Precomputation	Precomputation
Encrypt database and insert in Bloom filter	Setup Phase BF	Store Bloom filter
Encrypt element privately	Online Phase Encryption	Request encryption of elements privately Check and output intersection locally

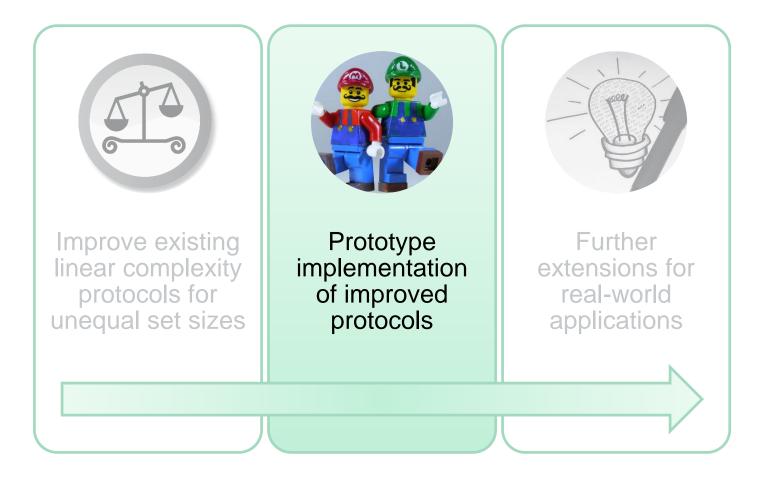
Precomputed PSI – PSI with PRF: RSA-PSI, NR-PSI, GC-PSI

	\gg	$ N_B $
Key generation, Precomputation	Base Phase Agree on key, parameters, Precomputation	Precomputation
Encrypt database and insert in Bloom filter	Setup Phase BF	Store Bloom filter
Encrypt element privately	Online Phase Encryption	Request encryption of elements privately Check and output intersection locally

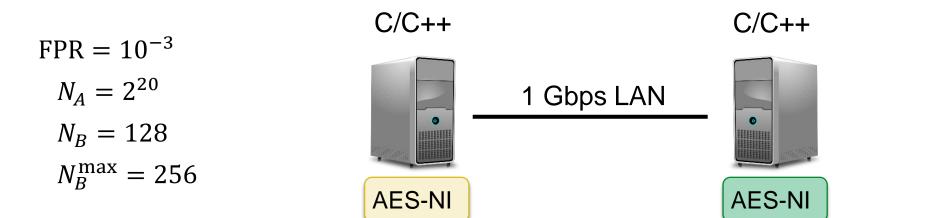
Precomputed PSI – PSI with PRF: RSA-PSI, NR-PSI, GC-PSI


Precomputed PSI – PSI with Diffie-Hellman – DH-PSI

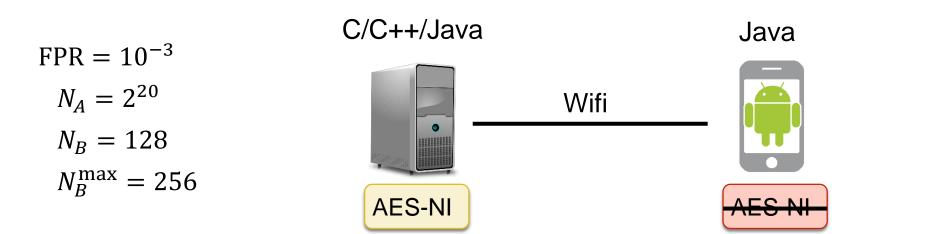
	\gg	$ N_B $
Key generation α	Base Phase	Key generation β
Encrypt database with α	Setup Phase Encryption	Encrypt encrypted database with β and insert in Bloom filter
Encrypt encrypted elements with α	Online Phase Encryption with <i>β</i> Encryption with α <i>β</i>	Encrypt elements with β Check intersection


Precomputed PSI – PSI with Diffie-Hellman – DH-PSI

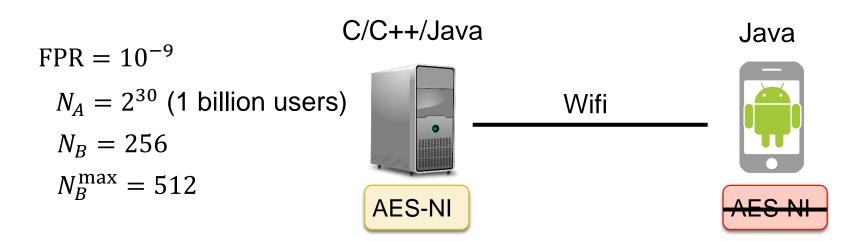
	\gg	$ N_B $
Key generation α	Base Phase	Key generation β
Encrypt database with α	Setup Phase Encryption	Encrypt encrypted database with β and insert in Bloom filter
Encrypt encrypted elements with α	Online Phase Encryption with β Encryption with αβ	Encrypt elements with β Check intersection


Precomputed PSI – PSI with Diffie-Hellman – DH-PSI

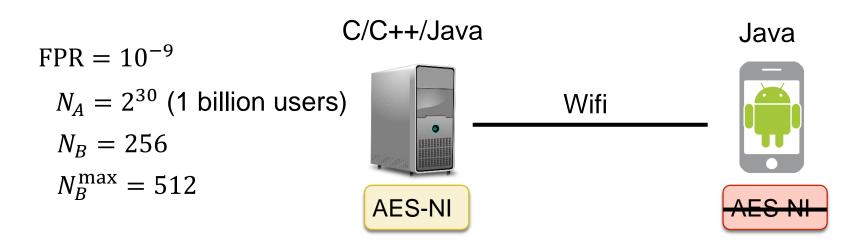
Our Contributions



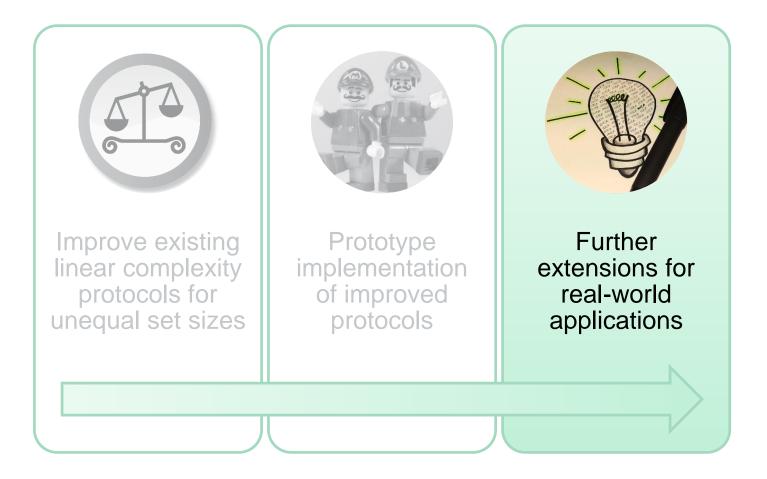
Computation and Communication – PC Malware Detection


Protoc	ol\Phase	Base phase		Setup phase		Online phase	
	RSA-PSI	14 ms	0 MB	57.4 min	1.8 MB	0.9 sec	0.1 MB
ECC	C-DH-PSI	1 ms	0 MB	22.1 min	35.5 MB	0.4 sec	0.1 MB
	NR-PSI	0.1 sec	2.2 MB	12.6 min	1.8 MB	1.4 sec	0.5 MB
AES-NI	GC-PSI	1.3 sec	44.5 MB	0.3 sec	1.8 MB	0.3 sec	0.5 MB

Computation and Communication – Mobile Malware Detectio

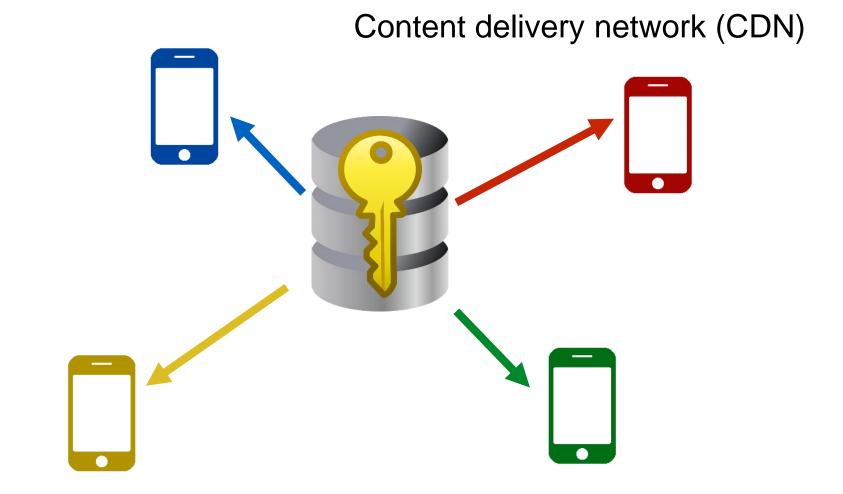

Protocol\Phase		Ва	Base phase		tup phase	Online phase	
	RSA-PSI	1.4 sec	0 MB	57.4 min	1.8 MB	7.7 sec	0.1 MB
ECC-	DH-PSI	1 ms	0 MB	8.6 min	35.5 MB	2.9 sec	0.1 MB
	NR-PSI	0.7 min	2.2 MB	12.7 min	1.8 MB	31.6 sec	0.5 MB
AES-NI	GC-PSI	7.6 min	44.5 MB	1.7 sec	1.8 MB	18.1 min	0.5 MB

Computation and Communication– Mobile Messaging


Protoc	Protocol\Phase		Base phase Set		tup phase	Onl	Online phase	
	RSA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	15.4 sec	0.2 MB	
ECC-	DH-PSI	1 ms	0 MB	6.1 days	256 GB	5.9 sec	0.2 MB	
	NR-PSI	0.7 min	4.2 MB	9.0 days	5.4 GB	1.1 min	1.0 MB	
AES-NI	GC-PSI	7.6 min	89.0 MB	0.5 hour	5.4 GB	0.6 hour	1.0 MB	

Computation and Communication– Mobile Messaging

Protoc	Protocol\Phase		Base phase Set		tup phase (nline phase	
	RSA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	15.4 sec	0.2 MB	
ECC-	DH-PSI	1 ms	0 MB	6 2 b s	256 GB	5.9 sec	0.2 MB	
	NR-PSI	0.7 min	4.2 MB	9.0 uays	5.4 GB	1.1 min	1.0 MB	
AES-NI	GC-PSI	7.6 min	89.0 MB	0.5 hour	5.4 GB	0.6 hour	1.0 MB	


Our Contributions

Same Encrypted Database for Multiple Clients

Same Encrypted Database for Multiple Clients

$$FPR = 10^{-9}$$

$$N_A = 2^{30} \text{ (1 billion users)}$$

$$N_B = 512$$

$$N_B^{\text{max}} = 512$$

n

Protocol\Phase	Base phase		Se	tup phase	Online phase	
RSA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	30.7 sec	0.3 MB
DH-PSI	1 ms	0 MB	6.1 days	256 GB	11.8 sec	0.3 MB
NR-PSI	0.7 min	4.2 MB	9.0 days	5.4 GB	2.1 min	2.0 MB
GC-PSI	7.6 min	89.0 MB	0 b hours	5.4 GB	1.2 hours	2.0 MB

$$FPR = 10^{-9}$$

$$N_A = 2^{30} \text{ (1 billion users)}$$

$$N_B = 512$$

$$N_B^{\text{max}} = 512$$

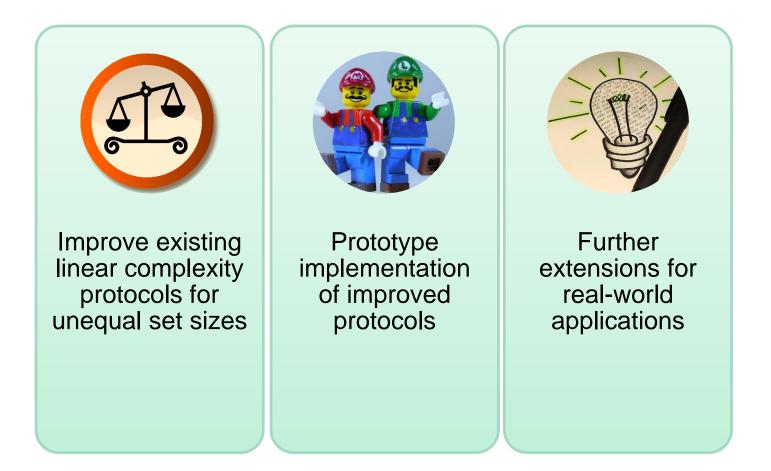
Protocol\Phase	Base phase		Setup phase		Online phase	
RSA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	30.7 sec	0.3 MB
 DH-PSI	<u>1 ms</u>	<u>0 MB</u>	6.1 days	256 GB	11.8 590	0.3 MB
NR-PSI	0.7 min	4.2 MB	9.0 days	5.4 GB	2.1 min	2.0 MB
GC-PSI	7.6 min	89.0 MB	0 5 hours	5.4 GB	1.2 hours	2.0 MB

$$FPR = 10^{-9}$$

$$N_A = 2^{30} \text{ (1 billion users)}$$

$$N_B = 512$$

$$N_B^{\text{max}} = 512$$


Protocol\Phase	Ва	ase phase	Se	tup phase	Onl	ine phase
RSA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	30.7 sec	0.3 MB
DH-PSI	<u>1 ms</u>	<u>0 MB</u>	6.1 days	256 GB	11.8 səc	0.3 MB
NR-PSI	0.7 min	4.2 MB	9.0 days	5.4 GB	2.1 min	2.0 MB
GC-PSI	7.6 min	89.0 MB	0 o hours	5.4 GB	1.2 hours	2.0 MB

 $FPR = 10^{-9}$ $N_A = 2^{30} \text{ (1 billion users)}$ $N_B = 512$ $N_B^{\text{max}} = 512$

Cuckoo filter in follow up work [RA17] \rightarrow 4 GB

	Phase	Ва	ase phase	Se	tup phase	Onl	ine phase
RS RS	SA-PSI	2.7 sec	0 MB	40.8 days	5.4 GB	30.7 sec	0.3 MB
	H-PSI	<u>1 ms</u>	<u>0 MB</u>	6.1 days	256 GB	11.8 soc	0.3 MB
N	IR-PSI	0.7 min	4.2 MB	9.0 days	5.4 GB	2.1 min	2.0 MB
G	iC-PSI	7.6 min	89.0 MB	0 8 hours	5.4 GB	1.2 hours	2.0 MB

Summary

Thank you for your attention!

[CT10]: E. De Cristofaro, G. Tsudik: *Practical private set intersection protocols with linear complexity*. In FC'10.

[DCW13]: C. Dong, L. Chen, Z. Wen: *When private set intersection meets big data: an efficient and scalable protocol.* In CCS'13.

[FIPR05]: M. J. Freedman, Y. Ishai, B. Pinkas, O. Reingold: *Keyword search and oblivious pseudorandom functions.* In TCC'05.

[FNP04]: M. J. Freedman, K. Nissim, B. Pinkas: *Efficient private matching and set intersection*. In Eurocrypt'04.

[HFH99]: B. A. Huberman, M. K. Franklin, T. Hogg: *Enhancing privacy and trust in electronic communities.* In EC'99.

[HL08]: C. Hazay, Y. Lindell: *Efficient protocols for set intersection and pattern matching with security against malicious adversaries.* In TCC'08.

[KKRT16]: V. Kolesnikov, R. Kumaresan, M. Rosulek, N. Trieu: *Efficient batched oblivious PRF with applications to private set intersection.* In CCS'16.

References

[PSSW09]: B. Pinkas, T. Schneider, N. P. Smart, S. C. Williams: *Secure two-party computation is practical.* In Asiacrypt'09.

[PSSZ15]: B. Pinkas, T. Schneider, G. Segev, M. Zohner: *Phasing: Private set intersection using permutation-based hashing.* In USENIX Security'15.

[PSZ14]: B. Pinkas, T. Schneider, M. Zohner: *Faster private set intersection based* on OT extension. In USENIX Security'14.

[RA17]: A. C. D. Resende, D. F. Aranha: *Unbalanced Approximate Private Set Intersection.* Eprint 2017/677.

[RR17]: P. Rindal, M. Rosulek: *Improved private set intersection against malicious adversaries*. In Eurocrypt'17.

[TLP+17]: S. Tamrakar, J. Liu, A. Paverd, J. Ekberg, B. Pinkas, N. Asokan: *The circle game: Scalable private membership test using trusted hardware.* In AsiaCCS'17.