
Preprocessing Based Verification
of Multiparty Protocols
with an Honest Majority

20.07.17

Peeter Laud Alisa Pankova Roman Jagomägis

1 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.

I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.

I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.

I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.

I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.

I Covert adversary: will not cheat if it will be caught.

2 / 10



Secure Multiparty Computation

I Passive adversary: all parties follow the protocol.
I Active adversary: corrupted parties may cheat.
I Covert adversary: will not cheat if it will be caught.

2 / 10



Verifiable MPC with Honest Majority

I Preprocessing: generate correlated randomness.

I Execution: run the passively secure protocol.

I Verification: each party proves that it followed the protocol.

3 / 10



Verifiable MPC with Honest Majority

I Preprocessing: generate correlated randomness.

I Execution: run the passively secure protocol.
I Verification: each party proves that it followed the protocol.

3 / 10



Verifiable MPC with Honest Majority
I Preprocessing: generate correlated randomness.
I Execution: run the passively secure protocol.
I Verification: each party proves that it followed the protocol.

3 / 10



Verifiable MPC with Honest Majority
I Preprocessing: generate correlated randomness.
I Execution: run the passively secure protocol.
I Verification: each party proves that it followed the protocol.

3 / 10



Execution Phase
I Run the initial passively secure protocol.
I Each message m is provided with a sender’s signature σm.

I If Alice refuses to send (m, σm) Bob asks Chris to deliver it.
I If Alice or Bob is corrupt, (m, σm) is already known to the

attacker anyway.

4 / 10



Execution Phase
I Run the initial passively secure protocol.
I Each message m is provided with a sender’s signature σm.

I If Alice refuses to send (m, σm) Bob asks Chris to deliver it.
I If Alice or Bob is corrupt, (m, σm) is already known to the

attacker anyway.

4 / 10



Execution Phase
I Run the initial passively secure protocol.
I Each message m is provided with a sender’s signature σm.

I If Alice refuses to send (m, σm) Bob asks Chris to deliver it.
I If Alice or Bob is corrupt, (m, σm) is already known to the

attacker anyway.

4 / 10



Execution Phase
I Run the initial passively secure protocol.
I Each message m is provided with a sender’s signature σm.

I If Alice refuses to send (m, σm) Bob asks Chris to deliver it.
I If Alice or Bob is corrupt, (m, σm) is already known to the

attacker anyway.
4 / 10



Verification phase
Each party (the prover P) proves its honesty
to the other parties (the verifiers V1 and V2) .

All relevant values of P are shared among V1 and V2:
I Message m: m + 0 or 0 + m
I Input x: x1 + x2

I Correlated randomness r: r1 + r2
known by P, shared in the preprocessing phase.

All shares are signed by the prover.

5 / 10



Verification phase (reproducing computation of P)

I P takes precomputed correlated randomness
(e.g. Beaver triples (a,b, c) s.t. c = a · b).

I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).

I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).
I P sends hints to V1 and V2.

I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).
I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.

I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).
I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.

I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).
I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (reproducing computation of P)
I P takes precomputed correlated randomness

(e.g. Beaver triples (a,b, c) s.t. c = a · b).
I P sends hints to V1 and V2.
I V1 and V2 use the hints to reproduce computation of P.
I V1 and V2 verify the hints.
I V1 and V2 check if they get committed messages of P.

6 / 10



Verification phase (checking if z = 0)
I V1 and V2 exchange h1 = H(z1) and h2 = H(−z2),

and check h1 = h2.

I If h1 6= h2, they send h1 and h2 to P.
I P has right to complain against one verifier (e.g V1).
I V1 opens its shares of P commitments with all signatures.
I V2 repeats the computation of V1, getting h1.

7 / 10



Verification phase (checking if z = 0)
I V1 and V2 exchange h1 = H(z1) and h2 = H(−z2),

and check h1 = h2.
I If h1 6= h2, they send h1 and h2 to P.

I P has right to complain against one verifier (e.g V1).
I V1 opens its shares of P commitments with all signatures.
I V2 repeats the computation of V1, getting h1.

7 / 10



Verification phase (checking if z = 0)
I V1 and V2 exchange h1 = H(z1) and h2 = H(−z2),

and check h1 = h2.
I If h1 6= h2, they send h1 and h2 to P.
I P has right to complain against one verifier (e.g V1).

I V1 opens its shares of P commitments with all signatures.
I V2 repeats the computation of V1, getting h1.

7 / 10



Verification phase (checking if z = 0)
I V1 and V2 exchange h1 = H(z1) and h2 = H(−z2),

and check h1 = h2.
I If h1 6= h2, they send h1 and h2 to P.
I P has right to complain against one verifier (e.g V1).
I V1 opens its shares of P commitments with all signatures.

I V2 repeats the computation of V1, getting h1.

7 / 10



Verification phase (checking if z = 0)
I V1 and V2 exchange h1 = H(z1) and h2 = H(−z2),

and check h1 = h2.
I If h1 6= h2, they send h1 and h2 to P.
I P has right to complain against one verifier (e.g V1).
I V1 opens its shares of P commitments with all signatures.
I V2 repeats the computation of V1, getting h1.

7 / 10



Preprocessing Phase
I The prover P generates correlated randomness

(e.g. Beaver triples in a certain ring Zm).

I It additively shares the randomness among V1 and V2.
I V1 and V2 run cut-and-choose and pairwise checks

to verify that correlation holds (e.g. that a · b = c).

8 / 10



Preprocessing Phase
I The prover P generates correlated randomness

(e.g. Beaver triples in a certain ring Zm).
I It additively shares the randomness among V1 and V2.

I V1 and V2 run cut-and-choose and pairwise checks
to verify that correlation holds (e.g. that a · b = c).

8 / 10



Preprocessing Phase
I The prover P generates correlated randomness

(e.g. Beaver triples in a certain ring Zm).
I It additively shares the randomness among V1 and V2.
I V1 and V2 run cut-and-choose and pairwise checks

to verify that correlation holds (e.g. that a · b = c).

8 / 10



Preprocessing Phase
I The prover P generates correlated randomness

(e.g. Beaver triples in a certain ring Zm).
I It additively shares the randomness among V1 and V2.
I V1 and V2 run cut-and-choose and pairwise checks

to verify that correlation holds (e.g. that a · b = c).

8 / 10



Preprocessing Phase (other preprocessed tuples)
I We also have other types of preprocessed tuples:

I Trusted bits b ∈ {0,1} shared over Z2m .
I Characteristic vector tuple (r , ~b) (i.e br = 0 iff i 6= r ).
I Rotation tuple (r , ~a, ~b) s.t the vector ~b is ~a rotated by r .
I Permutation tuple (π,~a, ~b) s.t ~b = π(~a).

I Their generation and verification is analogous.

9 / 10



Summary

I We proposed a generic method for achieving covert
security under honest majority assumption.

I Applying it to Sharemind SMC platform, we get efficient
actively secure protocols with identifiable abort.

I The overhead of the execution phase is insignificant.
I In practice, the bottleneck of active security is generation

of preprocessed tuples.

10 / 10


