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 Markov Chain Model-based Attacks
 Attacker can de-anonymize traces (or infer locations) with high accuracy

when the amount of training data is very large.
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 In reality, training data can be sparsely distributed over time…
 Many users disclose a small number of locations not continuously but  

“sporadically” via SNS (e.g. one or two check-ins per day/week/month).
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Outline
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 Worst case scenario for attackers (= reality?)…
 No elements are observed in P2 & P3.  Cannot de-anonymize u2 & u3.

 Our Contributions
 We show the answer is “yes”.
 We propose a training method that outperforms a random guess even 

when no elements are observed in more than 70% of cases.
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 Location-based Services (LBS)
 Many people are using LBS (e.g. map, route finding, check-in).
 “Spatial Big Data” can be provided to a third-party for analysis 

(e.g. popular places), or made public to provide traffic information. 

Location Privacy

 Privacy Issues
 Mobility trace can contain sensitive locations (e.g. homes, hospitals).
 Anonymized trace may be de-anonymized.
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 Markov Chain Model for De-anonymization
 Attacker = anyone who has anonymized traces (except for LBS provider).
 Attacker obtains training locations that are made public (e.g. via SNS).
 Attacker de-anonymizes traces using the trained transition matrices.

Related Work
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 Sporadic Training Data (training data are sparsely distributed over time)
 Many users disclose a small number of locations “sporadically” (via SNS).
 If we don’t estimate missing locations, we cannot train P2 and P3.
  we cannot de-anonymize traces of u2 and u3 using these matrices.

Related Work
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ML

Transition Matrices

? ? ? ? ?
0 0 0 01

? ? ? ? ?

P1

? ? ? ? ?
? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

0 0 0 10? ? ? ? ?
? ? ? ? ?

? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ? ?

? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

P2 P3 P4

? ?
x1
x2
x3
x4x5

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

(ML: Maximum Likelihood Estimation)



8

 Gibbs Sampling Method [Shokri+, S&P11]
 Alternates between estimating Pn and estimating missing locations of un

independently of other users.

Related Work

 Challenge
 When there are few continuous locations in training traces...
 (1) Cannot accurately estimate Pn.
 (2) Cannot accurately estimate missing locations using Pn ((1)).
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Overview of EMTF

(1) Training Transition Matrices:
We estimate unobserved elements (“?”) with the help of “similar users”.
We substitute average matrix over all users for completely unobserved matrices.

(2) Estimating Missing Locations:
We estimate missing locations (we can do this with the help of “similar users”).
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We use the help of “similar users” (other users who have similar behavior):

Go back to (1)  Each matrix captures unique feature of each user’s behavior
since each trace is accurate & user-specific.
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 TF (Tensor Factorization)
 Used for item recommendation. Factorizes tensor into low-rank matrices.
 Estimates unobserved element (“?”) with the help of “similar users”.

 EM (Expectation-Maximization)
 Trains parameter Θ from observed data x while estimating missing data z.
 Each EM cycle is guaranteed to increase the posterior probability Pr(Θ|x).

Details of EMTF
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Estimating missing 
data z (E-step)

Training parameter Θ
via TF (M-step)

z = (x3, x4, x2, x4, x1, x4)
x = (x2, x3, x1, x4, x3, x5)

Can find the most probable Θ and z with the help of “similar users”.
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EMTF Algorithm
E-step: Estimate a distribution of missing location vector z:

Parameter Θ
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Time complexity is exponential in the number of missing locations.
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 Time Complexity of EMTF
 Number of possible missing locations z is exponential in its length.
 E.g. #(regions) = 256, #(missing locations) = 8  possible z is 2568 = 264.

Approximation of EMTF

 Two Approximation Methods: 
 [Method I] Viterbi: Approximates Q(z) by the most probable value z*.
 [Method II] FFBS: Approximates Q(z) by random samples z1, … , zS.

Training Trace

z = (x224, x204, x140, x156, x186, x192 , x224 , x256)

x256 x188x224 x204 x156x140 x186 x192 x224 x256

Q(z) (distribution of z)

Both methods reduce time complexity from exponential to linear.
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FFBS (Forward Filtering Backward Sampling)

z2 zS

Approximate Q(z) in a
more accurate manner
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 Gowalla Dataset
 We used traces in New York & Philadelphia (16 x 16 regions).
 Training: 250 users x 1 traces x 10 locations (time interval: more than 30min).
 Testing: 250 users x 9 traces x 10 locations.
 We randomly deleted each training location with probability 80%.
  No elements in a matrix were observed in more than 70% of cases.

Experimental Set-up
(Here we explain only the most important part. Please see our paper for details)

Transition Matrix
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Training Trace
x3 ?ML

More than 70%
of cases

Extremely Sporadic Training Data (Worst Case Scenario for Attackers)

(ML: Maximum Likelihood Estimation)



16

 De-anonymization Accuracy
 We performed the Bayesian de-anonymization attack, which selects, for 

each testing trace, K (<250) candidates whose probabilities are the highest.
 ML & TF ≈ random guess

 since they did not estimate missing locations.
 GS < random guess

 since it did not accurately estimate missing locations.

Experimental Results
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EMTF outperformed random guess in sporadic training data scenario.
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 Summary of Results
 Our training method (EMTF) significantly outperformed a random guess,  

even when no elements were observed in more than 70% of cases.

Conclusion

Transition Matrix

 Future Work
 Evaluation of state-of-the-art obfuscation (e.g. geo-indistinguishability 

[Andres+, CCS13]) applied to sporadic training traces.
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Thank you for listening.
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 TF (Tensor Factorization)
 Can automatically find a set of users who have “similar behavior”. 
 Trains matrices so that each matrix is influenced by similar users.

Appendix: Similar Users in Gowalla Dataset

 Visualization of “similar users” [Murakami+, TIFS16]
 We visualized “similar users” in Gowalla based on the trained parameters.
 E.g. always stay in Manhattan, go to the western part of Manhattan.

All Users Users who had a large 
value in 1st parameter

Users who had a large 
value in 2nd parameter.
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