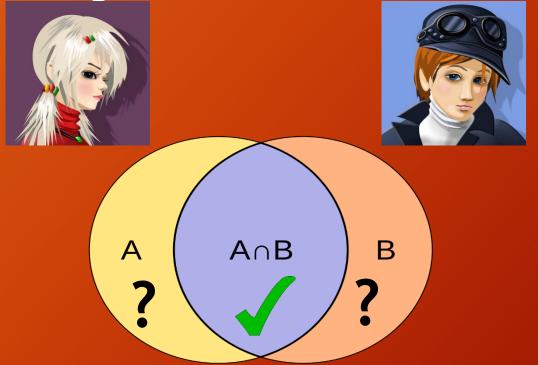


Are you the one to share? Secret Transfer with Access Structure

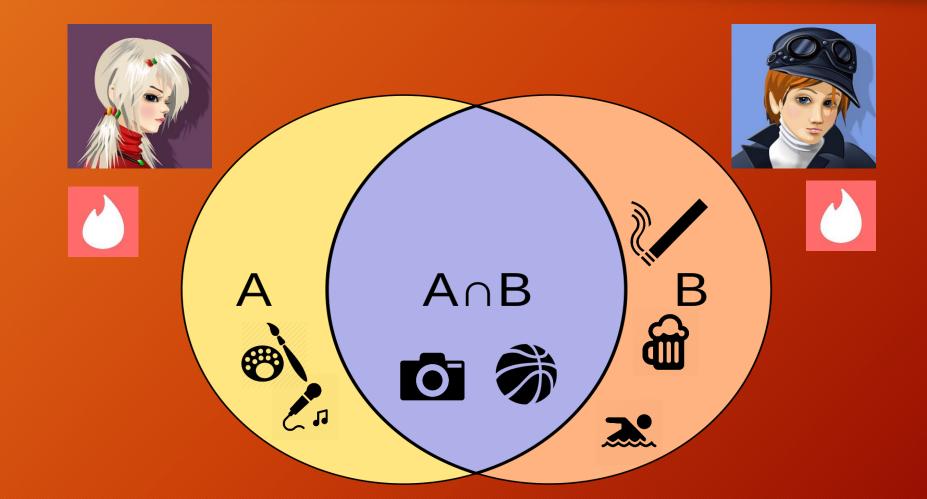
Yongjun Zhao, Sherman S.M. Chow Department of Information Engineering The Chinese University of Hong Kong, Hong Kong

Private Set Intersection (PSI)

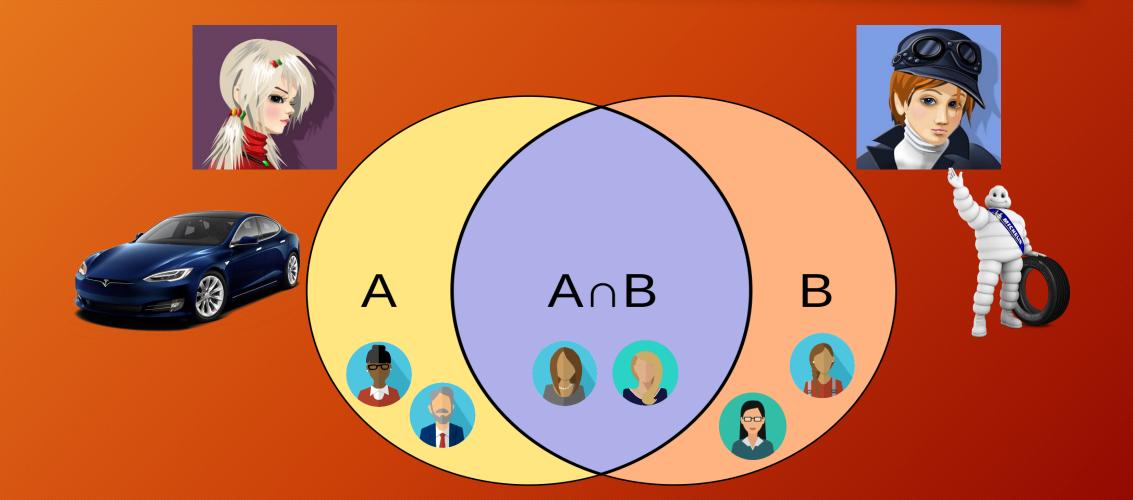
Compute the intersection A ∩ B
without revealing elements ∉ A ∩ B



Applications of PSI: Common Interests



Applications of PSI: Common Customers



Classical Definition for PSI

• \mathcal{F}_{PSI} : $(X, Y) \to (X \cap Y, \bot)$

• Well established notion in crypto and security communities

client

Input: $X = \{x_1, \dots, x_n\}$ $Y = \{y_1, \dots, y_m\}$ Output: $X \cap Y$ \bot

• Other variants: fair PSI (both parties obtain $X \cap Y$), multi-party PSI (>2 participants), etc.

Classical Definition for PSI (limitation)

•
$$\mathcal{F}_{PSI}$$
: $(X, Y) \to (X \cap Y, \bot)$

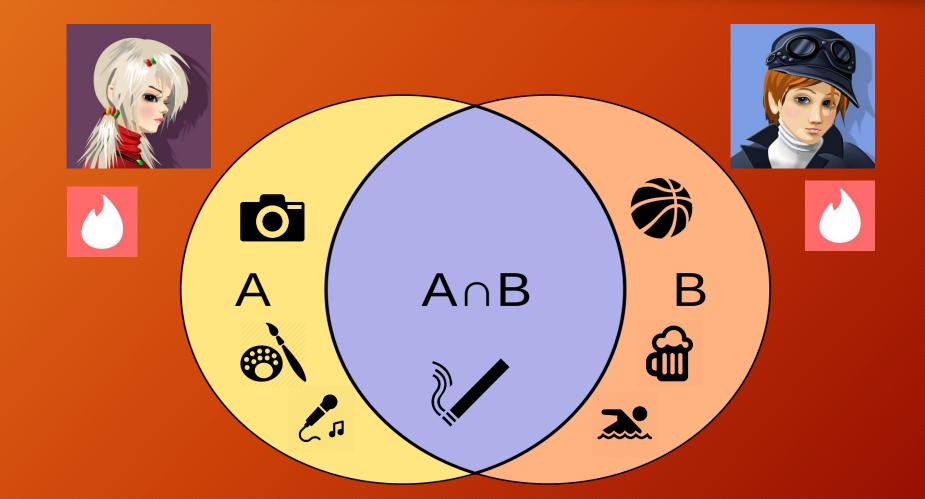
client

 $Y = \{y_1, \dots, y_m\}$

Input: $X = \{x_1, \dots, x_n\}$ Output: $X \cap Y$

• One party ALAWYS learns the outcome

They do not really match that well



Classical Definition (limitation)

- Traditional PSI always reveals the intersection
- Intersection set itself could be:
 - Sensitive: threat information
 - Commercial asset: customer list
 - Personal info: friend list, hobbies, preferences
- Intersection should only be revealed when <u>**Necessary**</u> (i.e., the interaction satisfying some policy $P(\cdot)$)
 - e.g., the size exceeds some threshold number

More "Privacy-Friendly" PSI

- Our new notion: PSI with (monotone) access structure
 Reveal A ∩ B only if P(A ∩ B) = 1
- Special cases: • (over) threshold PSI $P(A \cap B) = \begin{cases} 1 & \text{if } |A \cap B| \ge t \\ 0 & \text{if } |A \cap B| < t \end{cases}$

• Applications:

- Private match-making
- Auditing leakage in information sharing
 - Intersection of threat information / suspect lists / customer list

Concrete Construction

- We construct PSI with access structure in a modular way
- Roadmap:

Oblivious Transfer for a Sparse Array Secret Transfer withPSI with AccessAccess StructureStructure

Oblivious Transfer for a Sparse Array

• Roadmap:

Oblivious Transfer for a Sparse Array Secret Transfer withPSI with AccessAccess StructureStructure

Oblivious Transfer for a Sparse Array (OTSA)

• \mathcal{F}_{OTSA} : $(x, y) \to (D, \bot)$

Input: $x = \{x_1, ..., x_n\}$ $y = \{(y_1, d_1), ..., (y_m, d_m)\}$ Output: $D = \{d_i | y_i \in \{x_1, x_2, ..., x_n\}\}$ \bot

- Generalizing standard *n*-out-of-*m* OT:
 - $\{x_1, \dots, x_n\} \not\subseteq \{y_1, \dots, y_m\}$
 - $\{x_1, \dots, x_n\} \cap \{y_1, \dots, y_m\}$ is hidden from receiver

Oblivious Polynomial Evaluation (OPE)

- Encode the set $\{x_1, \dots, x_n\}$ as polynomial: $p = (x - x_1)(x - x_2) \cdots (x - x_n) = a_0 + a_1 x + \dots + a_n x^n$
- Observation: $y_i \in X \Leftrightarrow p(y_i) = 0$
- Given encrypted coefficients a_0, a_1, \dots, a_n of a polynomial p
- We can evaluate its value at x via homomorphic encryption:

$$Enc_{pk}(p(x)) = Enc_{pk}(a_0 + a_1x + \dots + a_nx^n)$$
$$= Enc_{pk}(a_0) \oplus (Enc_{pk}(a_1) \otimes x) \oplus \dots \oplus (Enc_{pk}(a_n) \otimes x^n)$$

OTSA from Oblivious Polynomial Evaluation

$$pk, Enc_{pk}(a_0), \dots, Enc_{pk}(a_n)$$

 $\{z_1, \dots, z_m\}$ (permuted)

$$z_i = Enc_{pk}(r_i \cdot p(y_i) + d_i)$$

 $(pk, sk) \\ \{x_1, \dots, x_n\}$

 $\{y_1, \dots, y_m\}$ $\{d_1, \dots, d_m\}$

if $y_i \in \{x_1, ..., x_n\}$ z_i will be decrypted to d_i if $y_i \notin \{x_1, ..., x_n\}$ z_i will be decrypted to random

Construction of OTSA

$$pk, Enc_{pk}(a_0), \dots, Enc_{pk}(a_n)$$

$$z_1, \dots, z_m$$

$$z_i = Enc_{pk}(r_i \cdot p(y_i) + d$$

- Honest-but-curious model
 - extended to malicious model using zero-knowledge proofs (details in the paper)
- Computational complexity: O(mn) (worse than $O(n \log n)$ via generic approach)
- O(n) construction (honest-but-curious) in the paper
 - based on garbled Bloom filter [Dong-Chen@CCS'13]

PSI with Access Structure

• Roadmap:

Oblivious Transfer for a Sparse Array Secret Transfer withPSI with AccessAccess StructureStructure

Secret Sharing

- Split a secret *s* into shares
- s can be reconstructed only if "qualified" subset of shares are combined

SecretShare(s) \rightarrow { $s_1, s_2, ..., s_n$ } Reconstruct($s_{i_1}, s_{i_2}, ..., s_{i_k}$) \rightarrow s or \perp

• Example:

access structure: $s_1 \text{ AND } \{s_2 \text{ OR } s_3\} \text{ AND } s_4 \text{ AND } s_5$ "qualified" subsets: $\{s_1, s_2, s_4, s_5\}$ $\{s_1, s_3, s_4, s_5\}$ $\{s_1, s_2, s_3, s_4, s_5\}$

Secret Transfer with Access Structure

 $s, Y = \{y_1, \dots, y_m\}$

Output:

Input:

 $X = \{x_1, \dots, x_n\}$ $|X \cap Y| \text{ and }$

s iff $P(X \cap Y) = 1$

OTSA + Secret Sharing = STAS



$$pk, Enc_{pk}(a_0), \dots, Enc_{pk}(a_n)$$

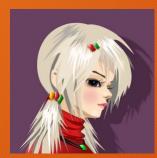
 Z_1, \dots, Z_m

SecretShare(s) $\rightarrow \{s_1, s_2, \dots, s_m\}$ $z_i = Enc_{pk}(r_i \cdot p_X(y_i) + s_i)$

(pk, sk) $X = \{x_1, \dots, x_n\}$ $Y = \{y_1, ..., y_m\}$ S

if $y_i \in X$ z_i will be decrypted to s_i if $y_i \notin X$ z_i will be decrypted to random

OTSA + Secret Sharing = STAS



$$bk, Enc_{pk}(a_0), \dots, Enc_{pk}(a_n)$$

SecretShare(s) $\rightarrow \{s_1, s_2, \dots, s_m\}$ $z_i = Enc_{pk}(r_i \cdot p_X(y_i) + s_i)$

(pk, sk) $X = \{x_1, \dots, x_n\}$

 $Y = \{y_1, \dots, y_m\}$

If $X \cap Y$ satisfies the access structure The receiver can reconstruct the secret s !

PSI with Access Structure

• Roadmap:

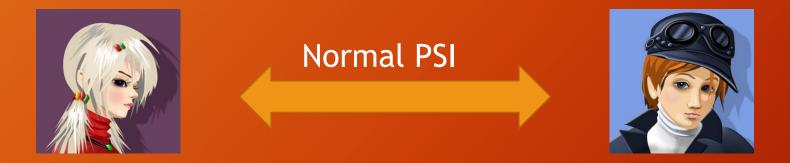
Oblivious Transfer for a Sparse Array Secret Transfer withPSI with AccessAccess StructureStructure

PSI with Access Structure from STAS

 $X = \{x_1, ..., x_n\}$ $Y = \{y_1, ..., y_m\}$ and s

The receiver can reconstruct the secret s if and only if $X \cap Y$ satisfies the access structure

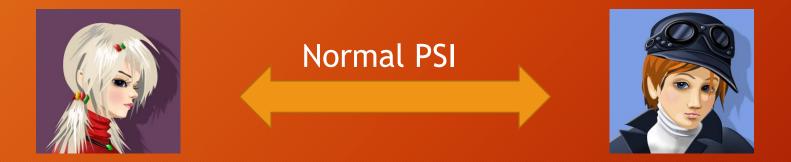
STAS + PSI = PSI with Access Structure



 $X' = \{x_1 | | s, \dots, x_n | | s\}$ $Y' = \{y_1 | | s, \dots, y_m | | s\}$

If $X \cap Y$ satisfies the access structure The receiver can learn $X' \cap Y'$, which is essentially $X \cap Y$

PSI with Access Structure



 $X' = \{x_1 | | s', \dots, x_n | | s'\} \qquad Y' = \{y_1 | | s, \dots, y_m | | s\}$

If $X \cap Y$ does not satisfies the access structure The receiver can learn $X' \cap Y'$, which is an empty set

Concluding Remarks

- We introduce the notions of
 - Oblivious Transfer with Spare Array (OTSA)
 - Secret Transfer with Access Structure (STAS)
 - PSI with Access Structure
- We then construct
 - Two OTSA schemes (from OPE / garbled Bloom filter)
 - OTSA + Secret Sharing = STAS
 - STAS + PSI = PSI with Access Structure
- Future work 1: can we hide $|X \cap Y|$ in STAS?
- Future work 2: can we support non-monotone access structure?
- {zy113, sherman}@ie.cuhk.edu.hk

Under submission