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Private Set Intersection (PSI)

• Compute the intersection 𝐴 ∩ 𝐵

•without revealing elements ∉ 𝐴 ∩ 𝐵

? ?



Applications of PSI: Common Interests



Applications of PSI: Common Customers



Classical Definition for PSI

• ℱ𝑃𝑆𝐼: 𝑋, 𝑌 → 𝑋 ∩ 𝑌, ⊥

• Well established notion in crypto and security communities

• Other variants: fair PSI (both parties obtain 𝑋 ∩ 𝑌), multi-party PSI (>2 participants), etc.

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚}

𝑋 ∩ 𝑌

Input:

Output: ⊥

client server



Classical Definition for PSI (limitation)

• ℱ𝑃𝑆𝐼: 𝑋, 𝑌 → ( , ⊥)

• One party ALAWYS learns the outcome

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚}Input:

Output: ⊥𝑋 ∩ 𝑌

client server



They do not really match that well



Classical Definition (limitation)

• Traditional PSI always reveals the intersection

• Intersection set itself could be:
• Sensitive: threat information

• Commercial asset: customer list

• Personal info: friend list, hobbies, preferences

• Intersection should only be revealed when 
necessary (i.e., the interaction satisfying some policy 𝑃(⋅))

• e.g., the size exceeds some threshold number



More “Privacy-Friendly” PSI

• Our new notion: PSI with (monotone) access structure

• Reveal 𝐴 ∩ 𝐵 only if 

• Special cases:

• (over) threshold PSI

• Applications:
• Private match-making

• Auditing leakage in information sharing
• Intersection of threat information / suspect lists / customer list

𝑃 𝐴 ∩ 𝐵 =  
1 if 𝐴 ∩ 𝐵 ≥ 𝑡
0 if 𝐴 ∩ 𝐵 < 𝑡

𝑃 𝐴 ∩ 𝐵 = 1



Concrete Construction

• We construct PSI with access structure in a modular way

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with 

Access Structure

PSI with Access 

Structure

Oblivious Transfer 

for a Sparse Array



Oblivious Transfer for a Sparse Array

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with 

Access Structure

PSI with Access 

Structure

Oblivious Transfer 

for a Sparse Array



Oblivious Transfer for a Sparse Array (OTSA)

• ℱ𝑂𝑇𝑆𝐴: 𝑥, 𝑦 → (𝐷, ⊥)

• Generalizing standard 𝑛-out-of-𝑚 OT:
• 𝑥1, … , 𝑥𝑛 ⊈ {𝑦1, … , 𝑦𝑚}

• 𝑥1, … , 𝑥𝑛 ∩ {𝑦1, … , 𝑦𝑚} is hidden from receiver

𝑥 = {𝑥1, … , 𝑥𝑛} 𝑦 = {(𝑦1, 𝑑1), … , (𝑦𝑚, 𝑑𝑚)}

𝐷 = {𝑑𝑖|𝑦𝑖 ∈ {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}}

Input:

Output: ⊥



Oblivious Polynomial Evaluation (OPE)

• Encode the set {𝑥1, … , 𝑥𝑛} as polynomial:
𝑝 = 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥

𝑛

• Observation: 𝑦𝑖 ∈ 𝑋 ⟺ 𝑝 𝑦𝑖 = 0

• Given encrypted coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 of a polynomial 𝑝

• We can evaluate its value at 𝑥 via homomorphic encryption:

𝐸𝑛𝑐𝑝𝑘 𝑝 𝑥 = 𝐸𝑛𝑐𝑝𝑘 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛

= 𝐸𝑛𝑐𝑝𝑘 𝑎0 ⊕ 𝐸𝑛𝑐𝑝𝑘 𝑎1 ⨂𝑥 ⊕⋯⊕ (𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)⨂𝑥𝑛)



OTSA from Oblivious Polynomial Evaluation

(𝑝𝑘, 𝑠𝑘)
{𝑥1, … , 𝑥𝑛}

{𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)
𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝 𝑦𝑖 + 𝑑𝑖)

{𝑧1, … , 𝑧𝑚}

if 𝑦𝑖 ∈ {𝑥1, … , 𝑥𝑛} 𝑧𝑖 will be decrypted to 𝑑𝑖

𝑧𝑖 will be decrypted to random

{𝑑1, … , 𝑑𝑚}

if 𝑦𝑖 ∉ {𝑥1, … , 𝑥𝑛}

(permuted)



Construction of OTSA

• Honest-but-curious model
• extended to malicious model using zero-knowledge proofs (details in the paper)

• Computational complexity: 𝑂(𝑚𝑛) (worse than 𝑂(𝑛 log 𝑛) via generic approach)

• 𝑂(𝑛) construction (honest-but-curious) in the paper 
• based on garbled Bloom filter [Dong-Chen@CCS’13]

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)
𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝 𝑦𝑖 + 𝑑𝑖)

𝑧1, … , 𝑧𝑚



PSI with Access Structure

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with 

Access Structure

PSI with Access 

Structure

Oblivious Transfer 

for a Sparse Array



Secret Sharing

• Split a secret 𝑠 into shares

• 𝑠 can be reconstructed only if “qualified” subset of shares are combined

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑛}

Reconstruct(𝑠𝑖1 , 𝑠𝑖2 , … , 𝑠𝑖𝑘) → 𝑠 or ⊥

• Example:

access structure:

𝑠1 AND {𝑠2 OR 𝑠3} AND 𝑠4 AND 𝑠5

{𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}

{𝑠1, 𝑠2, 𝑠4, 𝑠5}

{𝑠1, 𝑠3, 𝑠4, 𝑠5}

“qualified” subsets:



Secret Transfer with Access Structure

• ℱ𝑆𝑇𝐴𝑆:

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑠, 𝑌 = 𝑦1, … , 𝑦𝑚

𝑠 iff 𝑃 𝑋 ∩ 𝑌 = 1

Input:

Output: ⊥
|𝑋 ∩ 𝑌| and



OTSA + Secret Sharing = STAS

(𝑝𝑘, 𝑠𝑘)
𝑋 = {𝑥1, … , 𝑥𝑛}

𝑌 = {𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)

𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝𝑋 𝑦𝑖 + 𝑠𝑖)𝑧1, … , 𝑧𝑚

if 𝑦𝑖 ∈ 𝑋 𝑧𝑖 will be decrypted to 𝑠𝑖

if 𝑦𝑖 ∉ 𝑋 𝑧𝑖 will be decrypted to random

𝑠

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑚}



OTSA + Secret Sharing = STAS

If 𝑋 ∩ 𝑌 satisfies the access structure

The receiver can reconstruct the secret 𝑠 !

(𝑝𝑘, 𝑠𝑘)
𝑋 = {𝑥1, … , 𝑥𝑛}

𝑌 = {𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)

𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝𝑋 𝑦𝑖 + 𝑠𝑖)𝑧1, … , 𝑧𝑚

𝑠

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑚}



PSI with Access Structure

• Roadmap:

PSI w/ DT STAS PSI w/ AS

Secret Transfer with 

Access Structure

PSI with Access 

Structure

Oblivious Transfer 

for a Sparse Array



PSI with Access Structure from STAS

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚} and 𝑠

STAS protocol

The receiver can reconstruct the secret 𝑠
if and only if 𝑋 ∩ 𝑌 satisfies the access structure



STAS + PSI = PSI with Access Structure

𝑋′ = {𝑥1| 𝑠, … , 𝑥𝑛 |𝑠}

Normal PSI

𝑌′ = {𝑦1| 𝑠, … , 𝑦𝑚 |𝑠}

If 𝑋 ∩ 𝑌 satisfies the access structure

The receiver can learn 𝑋′ ∩ 𝑌′, which is essentially 𝑋 ∩ 𝑌



PSI with Access Structure

𝑋′ = {𝑥1||𝑠
′, … , 𝑥𝑛||𝑠

′}

If 𝑋 ∩ 𝑌 does not satisfies the access structure

The receiver can learn 𝑋′ ∩ 𝑌′, which is an empty set

Normal PSI

𝑌′ = {𝑦1| 𝑠, … , 𝑦𝑚 |𝑠}



Concluding Remarks

• We introduce the notions of
• Oblivious Transfer with Spare Array (OTSA)

• Secret Transfer with Access Structure (STAS)

• PSI with Access Structure

• We then construct
• Two OTSA schemes (from OPE / garbled Bloom filter)

• OTSA + Secret Sharing = STAS

• STAS + PSI = PSI with Access Structure

• Future work 1: can we hide |𝑋 ∩ 𝑌| in STAS?

• Future work 2: can we support non-monotone access structure?

• {zy113, sherman}@ie.cuhk.edu.hk

Under submission


