
Are you the one to share?
Secret Transfer with Access Structure

Yongjun Zhao, Sherman S.M. Chow

Department of Information Engineering

The Chinese University of Hong Kong, Hong Kong

Private Set Intersection (PSI)

• Compute the intersection 𝐴 ∩ 𝐵

•without revealing elements ∉ 𝐴 ∩ 𝐵

? ?

Applications of PSI: Common Interests

Applications of PSI: Common Customers

Classical Definition for PSI

• ℱ𝑃𝑆𝐼: 𝑋, 𝑌 → 𝑋 ∩ 𝑌, ⊥

• Well established notion in crypto and security communities

• Other variants: fair PSI (both parties obtain 𝑋 ∩ 𝑌), multi-party PSI (>2 participants), etc.

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚}

𝑋 ∩ 𝑌

Input:

Output: ⊥

client server

Classical Definition for PSI (limitation)

• ℱ𝑃𝑆𝐼: 𝑋, 𝑌 → (, ⊥)

• One party ALAWYS learns the outcome

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚}Input:

Output: ⊥𝑋 ∩ 𝑌

client server

They do not really match that well

Classical Definition (limitation)

• Traditional PSI always reveals the intersection

• Intersection set itself could be:
• Sensitive: threat information

• Commercial asset: customer list

• Personal info: friend list, hobbies, preferences

• Intersection should only be revealed when
necessary (i.e., the interaction satisfying some policy 𝑃(⋅))

• e.g., the size exceeds some threshold number

More “Privacy-Friendly” PSI

• Our new notion: PSI with (monotone) access structure

• Reveal 𝐴 ∩ 𝐵 only if

• Special cases:

• (over) threshold PSI

• Applications:
• Private match-making

• Auditing leakage in information sharing
• Intersection of threat information / suspect lists / customer list

𝑃 𝐴 ∩ 𝐵 =
1 if 𝐴 ∩ 𝐵 ≥ 𝑡
0 if 𝐴 ∩ 𝐵 < 𝑡

𝑃 𝐴 ∩ 𝐵 = 1

Concrete Construction

• We construct PSI with access structure in a modular way

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with

Access Structure

PSI with Access

Structure

Oblivious Transfer

for a Sparse Array

Oblivious Transfer for a Sparse Array

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with

Access Structure

PSI with Access

Structure

Oblivious Transfer

for a Sparse Array

Oblivious Transfer for a Sparse Array (OTSA)

• ℱ𝑂𝑇𝑆𝐴: 𝑥, 𝑦 → (𝐷, ⊥)

• Generalizing standard 𝑛-out-of-𝑚 OT:
• 𝑥1, … , 𝑥𝑛 ⊈ {𝑦1, … , 𝑦𝑚}

• 𝑥1, … , 𝑥𝑛 ∩ {𝑦1, … , 𝑦𝑚} is hidden from receiver

𝑥 = {𝑥1, … , 𝑥𝑛} 𝑦 = {(𝑦1, 𝑑1), … , (𝑦𝑚, 𝑑𝑚)}

𝐷 = {𝑑𝑖|𝑦𝑖 ∈ {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}}

Input:

Output: ⊥

Oblivious Polynomial Evaluation (OPE)

• Encode the set {𝑥1, … , 𝑥𝑛} as polynomial:
𝑝 = 𝑥 − 𝑥1 𝑥 − 𝑥2 ⋯ 𝑥 − 𝑥𝑛 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥

𝑛

• Observation: 𝑦𝑖 ∈ 𝑋 ⟺ 𝑝 𝑦𝑖 = 0

• Given encrypted coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 of a polynomial 𝑝

• We can evaluate its value at 𝑥 via homomorphic encryption:

𝐸𝑛𝑐𝑝𝑘 𝑝 𝑥 = 𝐸𝑛𝑐𝑝𝑘 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛

= 𝐸𝑛𝑐𝑝𝑘 𝑎0 ⊕ 𝐸𝑛𝑐𝑝𝑘 𝑎1 ⨂𝑥 ⊕⋯⊕ (𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)⨂𝑥𝑛)

OTSA from Oblivious Polynomial Evaluation

(𝑝𝑘, 𝑠𝑘)
{𝑥1, … , 𝑥𝑛}

{𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)
𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝 𝑦𝑖 + 𝑑𝑖)

{𝑧1, … , 𝑧𝑚}

if 𝑦𝑖 ∈ {𝑥1, … , 𝑥𝑛} 𝑧𝑖 will be decrypted to 𝑑𝑖

𝑧𝑖 will be decrypted to random

{𝑑1, … , 𝑑𝑚}

if 𝑦𝑖 ∉ {𝑥1, … , 𝑥𝑛}

(permuted)

Construction of OTSA

• Honest-but-curious model
• extended to malicious model using zero-knowledge proofs (details in the paper)

• Computational complexity: 𝑂(𝑚𝑛) (worse than 𝑂(𝑛 log 𝑛) via generic approach)

• 𝑂(𝑛) construction (honest-but-curious) in the paper
• based on garbled Bloom filter [Dong-Chen@CCS’13]

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)
𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝 𝑦𝑖 + 𝑑𝑖)

𝑧1, … , 𝑧𝑚

PSI with Access Structure

• Roadmap:

OTSA STAS PSI w/ AS

Secret Transfer with

Access Structure

PSI with Access

Structure

Oblivious Transfer

for a Sparse Array

Secret Sharing

• Split a secret 𝑠 into shares

• 𝑠 can be reconstructed only if “qualified” subset of shares are combined

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑛}

Reconstruct(𝑠𝑖1 , 𝑠𝑖2 , … , 𝑠𝑖𝑘) → 𝑠 or ⊥

• Example:

access structure:

𝑠1 AND {𝑠2 OR 𝑠3} AND 𝑠4 AND 𝑠5

{𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}

{𝑠1, 𝑠2, 𝑠4, 𝑠5}

{𝑠1, 𝑠3, 𝑠4, 𝑠5}

“qualified” subsets:

Secret Transfer with Access Structure

• ℱ𝑆𝑇𝐴𝑆:

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑠, 𝑌 = 𝑦1, … , 𝑦𝑚

𝑠 iff 𝑃 𝑋 ∩ 𝑌 = 1

Input:

Output: ⊥
|𝑋 ∩ 𝑌| and

OTSA + Secret Sharing = STAS

(𝑝𝑘, 𝑠𝑘)
𝑋 = {𝑥1, … , 𝑥𝑛}

𝑌 = {𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)

𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝𝑋 𝑦𝑖 + 𝑠𝑖)𝑧1, … , 𝑧𝑚

if 𝑦𝑖 ∈ 𝑋 𝑧𝑖 will be decrypted to 𝑠𝑖

if 𝑦𝑖 ∉ 𝑋 𝑧𝑖 will be decrypted to random

𝑠

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑚}

OTSA + Secret Sharing = STAS

If 𝑋 ∩ 𝑌 satisfies the access structure

The receiver can reconstruct the secret 𝑠 !

(𝑝𝑘, 𝑠𝑘)
𝑋 = {𝑥1, … , 𝑥𝑛}

𝑌 = {𝑦1, … , 𝑦𝑚}

𝑝𝑘, 𝐸𝑛𝑐𝑝𝑘 𝑎0 , … , 𝐸𝑛𝑐𝑝𝑘(𝑎𝑛)

𝑧𝑖 = 𝐸𝑛𝑐𝑝𝑘(𝑟𝑖 ⋅ 𝑝𝑋 𝑦𝑖 + 𝑠𝑖)𝑧1, … , 𝑧𝑚

𝑠

SecretShare(𝑠) → {𝑠1, 𝑠2, … , 𝑠𝑚}

PSI with Access Structure

• Roadmap:

PSI w/ DT STAS PSI w/ AS

Secret Transfer with

Access Structure

PSI with Access

Structure

Oblivious Transfer

for a Sparse Array

PSI with Access Structure from STAS

𝑋 = {𝑥1, … , 𝑥𝑛} 𝑌 = {𝑦1, … , 𝑦𝑚} and 𝑠

STAS protocol

The receiver can reconstruct the secret 𝑠
if and only if 𝑋 ∩ 𝑌 satisfies the access structure

STAS + PSI = PSI with Access Structure

𝑋′ = {𝑥1| 𝑠, … , 𝑥𝑛 |𝑠}

Normal PSI

𝑌′ = {𝑦1| 𝑠, … , 𝑦𝑚 |𝑠}

If 𝑋 ∩ 𝑌 satisfies the access structure

The receiver can learn 𝑋′ ∩ 𝑌′, which is essentially 𝑋 ∩ 𝑌

PSI with Access Structure

𝑋′ = {𝑥1||𝑠
′, … , 𝑥𝑛||𝑠

′}

If 𝑋 ∩ 𝑌 does not satisfies the access structure

The receiver can learn 𝑋′ ∩ 𝑌′, which is an empty set

Normal PSI

𝑌′ = {𝑦1| 𝑠, … , 𝑦𝑚 |𝑠}

Concluding Remarks

• We introduce the notions of
• Oblivious Transfer with Spare Array (OTSA)

• Secret Transfer with Access Structure (STAS)

• PSI with Access Structure

• We then construct
• Two OTSA schemes (from OPE / garbled Bloom filter)

• OTSA + Secret Sharing = STAS

• STAS + PSI = PSI with Access Structure

• Future work 1: can we hide |𝑋 ∩ 𝑌| in STAS?

• Future work 2: can we support non-monotone access structure?

• {zy113, sherman}@ie.cuhk.edu.hk

Under submission

