

Study from Data Anonymization Competition of Online Retail Data

Hiroaki Kikuchi Meiji University, Japan

Issues in Anonymization

1. No real dataset

- Data owner won't publish confidential dataset. Inconsistent Quasi-identifiers
- 2. No standard metrics for quantifying risk
 - Complicated models. Risk depends on many factors, e.g. dataset, technical skill, availability of background data. Utility depends on use case (but which is unknown when collecting data)
- 3. No standard model of adversary
 - "mildly motivated adversary" vs. "highly motivated adversary"

Competition PWSCUP 2015, 2016

- Privacy Workshop
- Organized by IPSJ, CSEC SIG

	2015	2016
Venue	Nagasaki (Brick Hall)	Akita (Castel Hotel)
When	Oct. 21, 22	Oct. 11, 12
Partici pants	13 Teams (20 in total)	15 Teams (42 in Total)
Datas et	NSTAC synthesized data	UCI Dataset, Online Retail

Our Approach

- 1. Common Dataset
 - We have used "pseudo microdata" synthesized by governmental agency, NSTAC, in 2015, and UCI Online Retail in 2016.
- 2. Quantifying risk
 - We focus on "records re-identification" risk and defines baseline utility functions and some reidentification algorithms. With arbitrary techniques, the best anonymization dataset is determined.
- 3. Adversary Model
 - We adopt Josef Domingo's "maximumknowledge attacker" model.

Dataset 'Online Retail'

- Available from UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/Online+Retail
- Real payment transaction of UK Online Shop
 - □One year transactions from 2010 Dec.
 - □Gift shop
 - □540,000 records

Dataset 'Online Retail'

Master M
 n = 400 customers
 From 36 countries

Transaction T

code)

- □ m = 38,087 records
- □ 2,781 goods (stock

Customer ID	Sex	Birthday	Nationality	Custo mer ID	Invoice ID	Data	Time	Stock Code	Unit Price	Qu ant
Online retail	syntl	hesized	Online retail							ity
12360	М	1876/2/24	Australia	12362	544203	2011/2/17	10:30	21913	3.75	4
12361	F	1954/2/14	Belgium	12362	544203	2011/2/17	10:30	22431	1.95	6
12362	F	1963/12/2	Belgium	12361	545017	2011/2/25	13:51	22630	1.95	12
12364	F	1960/9/16	Belgium	12361	545017	2011/2/25	13:51	22326	2.95	6

Privacy Risks (in Japan)

The Game

Re-identification rate Re-ID(P,Q) = $\frac{\# \text{ Correct records}}{\# \text{ Correct records}}$ n

Adversary Model

Maximum Knowledge Adversary Model

Use cases and Utility

- 1. RFM Analysis
 - Classification of customers based on Recency (last purchase), Frequency (of puchase), Monetary (Amount of payment)
 U3: ut-rfm
- 2. Association Rule mining
 Association rule of stock code

U4: ut-top_item

3. Cross tabulation

Accumulation of payment for several categories, sex, age, countries.

U1: ut-cmae U2: ut-cmae2

Sample Re-identification

No	Algorithm	Description	Μ	Т
E1	Re-birthday.py	Find the shortest birthday	\checkmark	
E2	Re-eqi.rb	Find exact match	\checkmark	\checkmark
E3	Re-sort.rb	Sort and match	\checkmark	
E4	Re-sort.rb	Sort by M and match	\checkmark	
E5	Re-recnum.py	Find the shortest # recipients		✓
E6	Re-eqtr.rb	Find the same T		\checkmark
E7	Re-tnum.rb	Sort by # records		✓
E8	Re-voting.py	Voting by birth, mean time, payment		\checkmark
E9	Re-meantime.py	Find the shortest mean time		✓
E10	Re-ret.jar	Find similar set of goods		✓
E11	Re-sort2.tb	Sort by time and match		✓
E12	Re-search.rb Find the shortest total payments			✓
E13	Re-totprice.py Find the nearest set of goods			\checkmark

E7 re-tnum-bi (best re-id score)

- □ Step 1: count # records in T for each customer
- □ Step 2: sort C-ID and P-ID by # records and birthday
- □ Step 3: match two sorted sequence and output Q

	Μ	т					
# records	C-ID	birthday			C-ID		
2	12346	1960/12/25			12346	• • •	
1	12347	1957/5/15			12346	•••	
0	12348	1947/2/19			12347	•••	
Μ'					Г'		
_	P-ID	Birthday			Pseudo		
1	10	1947/01/01		•	10	•••	
2	20	1960/01/01			20	••••	
0	30	1960/01/01			20	•••	

Competition rule

Rule Ver. 1.3

- (1) Each team submits one anonymized data.
- (2) Reject cheating anonymization
- (3) Each team is allowed to re-identify the anonymized data submitted by others in hour.
- (4) Winner is determined by grade defined by U+ E, the sum of minimum utilities and the minimum security (max re-identification rate).
- (5) Best Re-identification is award to team who succeeds to re-idetentify the winner's data.

The "Cheating"

Cheating anonimization

Cheating detection
 Y1 (subset) > 50,000
 Y2 (Jaccard) > 0.7

Y1: $\mu_{P(x)}$ = Total monthly payment of P(X) = 305 $\mu_{P(x)}$ = Total monthly payment of X = 405 Y2: $S'_x = \text{set of goods paid by X}$ $S_{P(X)} = \text{set of goods paid by P(X)}$

Two Phases of games

Phase 1
 Online (web based)
 Onsite

7/27-8/16 (2.5 weeks)	Team entry		
8/25-9/20 (3 weeks)	To submit anonymized data (update any times)	10/11 (10 min)	To submit one anonymized data (one time)
9/26-10/3 (1 week)	To submit estimated permutation (10 times per data)	(1 hour)	To submit estimated permutation (10 times per data)

UWeight 9

Anonymization and re-identification contest

In the "anonymous and re-identification contest", to the anonymous data that participants submitted, other participants will attempt to re-identify. By re-identified by the researchers to each other, to verify the safety of anonymous data.

https://pwscup.pe	rsonal-data.biz/login/WorldCup/data_ 印 C Q 検	索 ☆ 自 ♣	♠ ද 🙉 - 💟	
gle ⊜ Translated to: ⊑	nglish Show original		(Options ▼
<u>WS CI</u>	TRASter By NIFTY Powered. E名加工・ 再識別コンナ次トnumber data Contest - Ranking	Test team Logout ■	uration - manual -	
	Automated Ris	sk Evalua	ation	
Use Program	n Re-identification program description	rate]	Result detail	
E1-birthday	Re-identify the customer ID distance of the date of birth to each other becomes the minimum % preliminary round of the defect corrected	396/400 [0.99000000]	[inspection result]	
E2-eqi	I guess the record the transaction is fully consistent with the master of the attributes (except for the temporary ID). If not random	400/400 [1.00000000]	[inspection result]	
E3-sort	(Sex, date of birth, country) in the sort	400/400 [1.00000000]	[inspection result]	
E4-sort2	Sorted by date of birth	400/400 [1.00000000]	[inspection result]	
E5-recnum	Record number of matching (re-identification to the nearest customer distance of the record number of each other transaction)	168/400 [0.42000000]	[inspection result]	
E6-eqtr	I guess the record that the transaction is complete match. If not random	400/400 [1.00000000]	[inspection result]	
		400/400	[inspection	

useorg 🗘	Safety (Max) ≎	Usefulness (Max)	(Safety + 🗢	Y1 (Subset) ≎ /10000	Y2 (Jaccard) ≎	^
検索語	検索語	検索語	検索語	検索語	検索語	Top of page
root: test3	1.0000000	0.00000000	0.50000000	0.00000000	0.00000000	Back
root: test2	1.00000000	0.00000000	0.50000000	0.00000000	0.00000000	

Oct. 11, Pwscup Final

(Onsite) Rank Transition

Competition Result (Top 10 teams)

Automated and Manual re-id.

Conclusions

- Data anonymization competition 2016 with real online retail data was done successfully.
- Average re-identification is 188 (47%) out of 400 customers. The best (minimum) reidentification ratio is 22%.
- Mean Automated re-identification was 18%, manual re-identification was 47%.
 - Kikuchi, et.al, "A Study from the Data Anonymization Competition Pwscup 2015", DPM 2016, LNCS 9963.
 - Kikuchi, et. Al, "Ice and Fire: Quantifying the Risk of Re-identification and Utility in Data Anonymization", IEEE AINA 2016.