Quantifying the Risk of Re-identification in Data Anonymization Competition

Takao Murakami (AIST*, Japan)

*AIST: National Institute of Advanced Industrial Science & Technology

Outline

- Data Anonymization Mechanism
 - Plays an important role in balancing users' privacy & data utility.
- PWS (Privacy Workshop) CUP 2016
 - Was held in Japan to understand pros & cons of various mechanisms.

In this talk

We introduce how the privacy level of each mechanism was evaluated. We introduce some sample re-identification algorithms and their design issue.

PWS CUP 2016 (Dataset, Anonymization/Re-identification)

Re-identification Sample Algorithms

Conclusion

PWS CUP 2016

Schedule

- Preliminary Competition: 2016/08/25 201610/03
 - The main purpose of preliminary competition was to see the feasibility of the rule, utility metrics, privacy metrics... before final competition.
- Final Competition: 2017/10/11
- Notification of Results: 2017/10/12

Dataset

- Online Retail Data Set (UCI Machine Learning Repository)
 - Publicly available dataset (<u>https://archive.ics.uci.edu/ml/datasets/Online+Retail</u>).
 - Contains transactions between December 2010 and December 2011 for a UK-based and registered non-store online retail.
 - We performed data cleansing.
 - E.g. deleted cancel receipts, deleted records who had missing values.
 - We performed data sampling (due to the limited computational resource).
 - ▶ 4333 customer IDs \rightarrow 400 customer IDs.

Description	Value
#Records	38,087
#Customer IDs	400
#Receipts	1,763
#Items	2,781
#Countries	30

Dataset

Master Data & Transaction Data

- We divided the data set into master data & transaction data.
- We artificially generated gender & birthday.

Customer ID	Gender	Birthday	Country
 12346	f	1960/12/25	UK
12347	f	1957/5/15	Iceland
12348	m	1947/2/19	Finland

Master M

Transaction T

Customer ID	Receipt	Date	Time	Item ID	Unit Price	Quantity
12347	544203	2011/2/17	10:30	21913	3.75	4
12347	544203	2011/2/17	10:30	22431	1.95	6
 12346	545017	2011/2/25	13:51	22630	1.95	12
 12346	545017	2011/2/25	13:51	22555	1.65	12
 12346	551346	2011/4/28	9:12	21866	1.25	8
12348	554132	2011/5/23	9:43	21094	0.85	12

Anonymization/Re-identification

Attacker estimates, for each line in M', the corresponding line no. in M.

Re-identification rate: Re-ID(P,Q) = (#correct lines) / |P| = 2/3

Data Anonymization/Re-identification Phase

- Data Anonymization Phase:
 - Each team submits anonymized data M' & T' (and line P)
 - Utility (resp. privacy) are evaluated using 4 (resp. 13) algorithms.
 - ▶ U_i ($0 \le U_i \le 1$): utility score based on the *i*-th algorithm ($1 \le i \le 4$).
 - E_i ($0 \le E_i \le 1$): re-identification rate based on the *i*-th algorithm ($1 \le i \le 13$).
 - Total score S (the smaller is the better) is calculated as follows:

Data Anonymization/Re-identification Phase

- Re-identification Phase:
 - Each team tries to re-identify other teams' data.
 - Privacy was evaluated again based on max of re-identification rate.

Re-identification rate by other teams

$$S = \max_{1 \le i \le 4} U_i + \max_{1 \le i \le 13} (E_i, E_{user})$$

PWS CUP 2016

(Dataset, Anonymization/Re-identification, Interface)

Re-identification Sample Algorithms

Conclusion

Basic Design Strategy

- We designed the following sample algorithms:
 - (1) Simple (so that everyone can easily understand them).
 - (2) Modestly accurate (but there is a lot of room for improvement).
 - In the identification phase, each team develops more sophisticated algorithms.

11

► (3) Fast (O(m²) (m: #customers) may be slow \rightarrow O(mlogm) is better).

ID	Name		Maste	aster Data Transaction Data								
		ID	Gen der	Birth day	Coun try	ID	Recei pt	Date	Time	ltem	Unit Price	Quan tity
E1	re-birthday			✓ ←	- "E1	re-bir:	thday	" usec	l the b	oirthda	iy attri	bute.
E2	re-eqi	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
E3	re-sort		✓	✓	✓							
E4	re-sort2			✓								
E5	re-recnum					✓						
E6	re-eqtr	✓				✓	✓	✓	✓	✓	✓	✓
E7	re-tnum	✓				✓						
E8	re-meantime							✓	✓			
E9	re											
E10	re-tnum-bi	✓		✓		✓						
E11	re-totprice										✓	✓
E12	re-cid	✓										
E13	re-random											

Re-identification Rate at Preliminary Competition

I calculated the average re-identification rate over all anonymized data.

I will introduce E10,11,12, and 8, which achieved the 1st to 4th places.

E8:re-meantime (4th) & E11:re-totprice (2nd)

13

E8:re-meantime (4th) & E11:re-totprice (2nd)

Scalar Feature

- > These algorithms extract a scalar feature for each customer ID/pseudonym.
 - E8:re-meantime \rightarrow average purchase time
 - E11:re-totprice \rightarrow total price

Attacker searches, for each feature in M', the closest feature in M.

average(re-meantime)

E8:re-meantime (4th) & E11:re-totprice (2nd)

Scalar Feature → Simple, Modestly Accurate, and Fast (O(mlogm)).

- Re-identification Algorithm
 - Step 1: Sort customer IDs/pseudonyms in descending order of features.
 - Step 2: For each pseudonym, find a customer ID whose distance is the smallest (we can find all pairs by sequential search).
 - Step 3: Re-identify each pseudonym as the corresponding customer ID.
 - ➤ Average time complexity is O(mlogm) (m: #customers).

E12:re-cid (3rd)

E12:re-cid (3rd)

Re-identification Algorithm

- Step 1. For each pseudonym, find the completely same customer ID.
- Step 2. Output the corresponding line no. (If there is no such customer IDs, output random value from 1 to M.)

		Master M		Iransactio	n I		
		Customer ID		Customer ID	Purchase Time	Unit Price	Quantity
		12346		12346	2010/12/7 8:32	2.4	5
		12347		• 12346	2010/12/13 15:23	1.0	3
	→	12348	🔶	12347	2011/1/18 21:40	6.3	10
	An	onymized _{Nym}	Master	M' Anonym Nym	ized Transaction	T' Unit	Quantity
Q	An	onymized _{Nym}	Master	M' Anonym Nym	ized Transaction Purchase Time	T' Unit Price	Quantity
Q 3	An	Onymized Nym 12348	Master	M' Anonym Nym 12348	ized Transaction Purchase Time 2010/10/22 11:39	T' Unit Price 3.2	Quantity 2
Q 3 1	An	onymized Nym 12348 12346	Master	M' Anonym Nym 12348 12346	ized Transaction Purchase Time 2010/10/22 11:39 2010/12/7 8:32	T' Unit Price 3.2 2.4	Quantity 2 5
Q 3 1 2	An	onymized Nym 12348 12346 12347	Master	M' Anonym Nym 12348 12346 12346	ized Transaction Purchase Time 2010/10/22 11:39 2010/12/7 8:32 2010/12/14 12:55	T' Unit Price 3.2 2.4 1.0	Quantity 2 5 3

This is just an algorithm to eliminate data not even pseudonymized.

re-cid(3rd)

- Why did this algorithm achieve the 3rd place?
 - Many teams did not even pseudonymize their own data at the preliminary competition.
 - I was shocked to see that this algorithm took the 3rd place. (many of my algorithms were worse than this...)
 - \rightarrow At the final competition, I asked everyone to pseudonymize the data.

E10:re-tnum-bi (1st)

re-tnum-bi(1st)

- Re-identification Algorithm
 - Step 1: Compute #transactions for each customer ID/pseudonym.
 - Step 2: Sort customer IDs & pseudonyms by (#transactions, birthday).
 - Step 3: Make a pair of customer ID & pseudonym in the sorted order.

Re-identification rate can be increased by using multiple features.

Design Strategy for Re-identification Phase

- Anonymization Phase ← sample algorithms were used.
- ▶ Re-identification Phase ← Each team re-identifies other teams' data.

It also made the final competition interesting.

PWS CUP 2016 (Dataset, Anonymization/Re-identification)

Re-identification Sample Algorithms

Conclusion

- Design Strategy for Anonymization Phase
 - We designed the following sample algorithms:
 - (1) Simple.
 - (2) Modestly accurate (but there is a lot of room for improvement).
 - (3) **Fast** (O(m²) (m: #customers) may be slow \rightarrow O(mlogm) is better).

- Design Strategy for Re-identification Phase
 - We gave a "Re-identification Award" to a team who achieved the highest re-identification rate for the "winner team"
 - \blacktriangleright \rightarrow everyone tried to re-identify the strongest data.

Thank you for listening.

Re-identification Phase @ Final

Appendix: Re-identification Rate v.s. Time

From 10 minutes to 16 minutes, team "Justice" kept the 1st place. However, "Justice" was re-identified and the 1st team was changed as follows: "Justice" → "MDLer" → "狛犬(Komainu)" → "T-AND-N". "T-AND-N" won the cup.

Appendix: The "Cheating"

- Cheating Anonymization
 - Each record is anonymized too much.

- Cheating Detection Based on Jaccard Distance
 - We regarded anonymized data as cheating data if Jaccard distance is larger than 0.7 on average.

$$S'_{x}$$
 = set of goods paid by X
 $S_{P(X)}$ = set of goods paid by P(X)
 $S_{P(X)}$ S'_{x}
 A B D E

Jaccard Distance = $1 - |\{B\}| / |\{A,B,C,D,E\}| = 0.8 > 0.7$

Appendix: Re-identification Based on Jaccard Distance

- Re-identification Based on Jaccard Distance
 - For each record in M', search a record whose Jaccard distance is the smallest.
 - Is very strong against the anonymized data whose Jaccard distance is smaller than 0.7 on average.

Master M			Anonymiz	zed Master M'
Customer ID	Set of Items		Nym	Set of Items
12346	A, B, C, D, E		1001	A, B, D, E, G
12347	B, C, E, F		1002	A, B, C, D, E
12348	A, B, D, E, G	\mathbf{i}	1003	B, C, E, F