Importance of realistic adversary model for anonymity evaluation: A case study of trajectory data

Shogo Masaki
(NTT Corporation, Japan)
ref.: Masaki et al. in prep.
email: masaki.shogo_at_lab.ntt.co.jp
Plan

- Introduction
 - PWS Cup
 - Motivation
- Anonymity evaluation of trajectory data
 - preliminary
 - consideration of properties
 - data publication model
 - adversary background knowledge model
 - inference attack
 - experiments
- Summary
Introduction: PWS Cup

• PWS Cup 2015, 2016
 – the first attempts of anonymization competition initiated in Japan
 – It was fun!
Introduction: PWS Cup

• PWS Cup
 – the 1st place
 – the 2nd place

We won the 5(!) 1st places in 2015 & the 2nd place in 2016!
Introduction: PWS Cup

- PWS Cup
 - 5(!) 1st places in 2015
 - 2nd place in 2016!
Introduction: PWS Cup

- PWS Cup 2015, 2016
 - the first attempts of anonymization competition initiated in Japan
 - It was fun!

- stimulating and gave us new ideas on anonymization techniques
- going global is very welcomed for progresses in this field
Introduction: Motivation

• Expectation for the competition: indication of effective anonymization methods

• To do so, it is necessary to evaluate anonymity & utility in appropriate manner.
Introduction: Motivation

• Anonymity evaluation?
 – data publication model
 – adversary background knowledge model
 – inference attack model

• The realistic models should be constructed with consideration of the properties of the target data type.
Introduction: Motivation

- Anonymity evaluation?
 - data publication model
 - adversary background knowledge model
 - inference attack model

- The realistic models should be constructed with consideration of the properties of the target data type.

- This talk:
 - our on-going work on the anonymity evaluation of trajectory data
 - preliminary experimental results
Anonymity evaluation of trajectory data: preliminary

- trajectory data:
 - time-series of location data
 - high commercial and research potential
 - can be a scope of the future anonymization competition

<table>
<thead>
<tr>
<th>ID</th>
<th>time</th>
<th>latitude</th>
<th>longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:00</td>
<td>35.6836</td>
<td>139.4710</td>
</tr>
<tr>
<td>1</td>
<td>8:03</td>
<td>35.6830</td>
<td>139.4713</td>
</tr>
<tr>
<td>3</td>
<td>8:00</td>
<td>35.7207</td>
<td>139.5555</td>
</tr>
<tr>
<td>3</td>
<td>8:04</td>
<td>35.7214</td>
<td>139.5577</td>
</tr>
<tr>
<td>3</td>
<td>8:10</td>
<td>35.7216</td>
<td>139.5600</td>
</tr>
<tr>
<td>3</td>
<td>8:20</td>
<td>35.7222</td>
<td>139.5622</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Anonymity evaluation of trajectory data: consideration of properties

- More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.
Anonymity evaluation of trajectory data: consideration of properties

• More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.
Anonymity evaluation of trajectory data: consideration of properties

- More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.
Anonymity evaluation of trajectory data: data publication model

- A trajectory data holder provide another trajectory data holder with the anonymized data.

- Why?
 - The data receiver may want to improve statistics in analyses.

- The data receiver may re-identify individuals in the anonymized data by finding the similar trajectories.
Anonymity evaluation of trajectory data: data publication model

- A trajectory data holder provide another trajectory data holder with the anonymized data.
- Why?

trajectory data holder can be a strong adversary

- The data receiver may re-identify individuals in the anonymized data by finding the similar trajectories.
Anonymity evaluation of trajectory data: adversary background knowledge model

• The data sets of 2 trajectory data holders cannot be available in general.
• We synthesize the adversary background knowledge from the original data in a very simple way.
Anonymity evaluation of trajectory data: adversary background knowledge model

- The original data is given but not the true trajectory.
We linearly interpolate lat. & lon. as a function of time in all time intervals.

\[\text{lat} = \alpha_{\text{lat}} \times \text{time} + \beta_{\text{lat}} \]
\[\text{lon} = \alpha_{\text{lon}} \times \text{time} + \beta_{\text{lon}} \]
Anonymity evaluation of trajectory data: adversary background knowledge model

- We choose a time-stamp randomly between the origin and destination time.
- The total number of time-stamps is $f \times |d_i|$.
- We obtain a trajectory as adversary background knowledge.

\[d_i : \text{original data} \quad |d_i| = 4 \text{ (points)} \]

\[a_i : \text{adversary background knowledge} \quad |a_i| = 3 \text{ (with } f=0.8) \]
Anonymity evaluation of trajectory data: inference attack

- We measure the geological distance between anonymized trajectory and adversary background knowledge using linear interpolation, again.
- We search the closest trajectory to re-identify an individual.
Anonymity evaluation of trajectory data: experiments

• Data set
 – cabspotting data (Piorkowski+’09)
 – 536 taxis trajectories in SF

• Pre-processing
 – use only 15 taxis
 – split by 4 hours
 → 1,333 trajectories (=virtual taxis)
 with 242,416 points (~180 points/trajectory)
Anonymity evaluation of trajectory data: experiments

• Anonymization
 – add the Laplace noise on lat. & lon. (cf., Geoindistinguishability; Andres+’13)
 – 2 different sizes of the noise
 - average spatial error: 110m (small), 2km (large)

• Anonymity evaluation
 – our method with 0.1 < f < 2.0
 – POI extraction attack (drawn from Primault+’15)
Anonymity evaluation of trajectory data: experiments

- an original trajectory
Anonymity evaluation of trajectory data: experiments

- with the anonymized trajectory
Anonymity evaluation of trajectory data: experiments

- with the anonymized trajectory
Anonymity evaluation of trajectory data: experiments

- with the correspondence in the adversary knowledge
Anonymity evaluation of trajectory data: experiments

- Results for small noise
 - more than 98% for all f-values (adversary knowledge volume)
 - much higher than 1.5% from a POI extraction attack (Primault+’15)
Anonymity evaluation of trajectory data: experiments

- Results for large noise
 - still very high re-id ratio (>92%)

- A trajectory data holder can be a strong adversary against to the anonymized trajectory data.
Summary

• The anonymization competition is fun!
• Anonymity evaluation is important.

• As a case study, we show our on-going work on anonymity evaluation of trajectory data.
• Our preliminary results mean that a trajectory data holder can be realistic and a very strong adversary.

• Detailed & realistic model construction is needed for convincing anonymity evaluation.