

Importance of realistic adversary model for anonymity evaluation: A case study of trajectory data

Shogo Masaki

(NTT Corporation, Japan)

ref.: Masaki et al. in prep.

email: masaki.shogo_at_lab.ntt.co.jp

Plan

- Introduction
 - PWS Cup
 - Motivation
- Anonymity evaluation of trajectory data
 - preliminary
 - consideration of properties
 - data publication model
 - adversary background knowledge model
 - inference attack
 - experiments
- Summary

- PWS Cup 2015, 2016
 - the first attempts of anonymization competition initiated in Japan
 - It was fun!

PWS2015 総合優勝 Best PWS CUP賞 n in ψ沈黙のジャスティスψ We won the 5(!) 1st places in 2015 & the 2nd place in 2016! Ψ The silent justice Ψ team (2015)

- PWS Cup 2015, 2016
 - the first attempts of anonymization competition initiated in Japan
 - It was fun!
 - stimulating and gave us new ideas on anonymization techniques
 - going global is very welcomed for progresses in this field

Introduction: Motivation

 Expectation for the competition: indication of effective anonymization methods

To do so, it is necessary to evaluate anonymity
& utility in appropriate manner.

Introduction: Motivation

- Anonymity evaluation?
 - data publication model
 - adversary background knowledge model
 - inference attack model
- The realistic models should be constructed with consideration of the properties of the target data type.

Introduction: Motivation

- Anonymity evaluation?
 - data publication model
 - adversary background knowledge model
 - inference attack model
- The realistic models should be constructed with consideration of the properties of the target data type.

This talk:

- our on-going work on the anonymity evaluation of trajectory data
- preliminary experimental results

Anonymity evaluation of trajectory data: preliminary

- trajectory data:
 - time-series of location data
 - high commercial and research potential
 - can be a scope of the future anonymization competition

ID	time	latitude	longitude
1	8:00	35.6836	139.4710
1	8:03	35.6830	139.4713
3	8:00	35.7207	139.5555
3	8:04	35.7214	139.5577
3	8:10	35.7216	139.5600
3	8:20	35.7222	139.5622
•••	•••		•••

Anonymity evaluation of trajectory data: consideration of properties

 More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.

Anonymity evaluation of trajectory data: consideration of properties

 More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.

Anonymity evaluation of trajectory data: consideration of properties

 More than 2 entities can obtain the trajectory of one mobility but at different time-stamps.

Anonymity evaluation of trajectory data: data publication model

- A trajectory data holder provide another trajectory data holder with the anonymized data.
- Why?
 - The data receiver may want to improve statistics in analyses.
- The data receiver may re-identify individuals in the anonymized data by finding the similar trajectories.

Anonymity evaluation of trajectory data: data publication model

 A trajectory data holder provide another trajectory data holder with the anonymized data.

11/h./2

trajectory data holder can be a strong adversary

 The data receiver may re-identify individuals in the anonymized data by finding the similar trajectories.

- The data sets of 2 trajectory data holders cannot be available in general.
- We synthesize the adversary background knowledge from the original data in a very simple way.

The original data is given but not the true trajectory.

 We linearly interpolate lat. & lon. as a function of time in all time intervals.

- i.e., lat=
$$\alpha_{lat} \times time + \beta_{lat}$$

lon= $\alpha_{lon} \times time + \beta_{lon}$

- We choose a time-stamp randomly between the origin and destination time.
- The total number of time-stamps is $f \times |d_i|$.
- We obtain a trajectory as adversary background knowledge.

Anonymity evaluation of trajectory data: inference attack

- We measure the geological distance between anonymized trajectory and adversary background knowledge using linear interpolation, again.
- We search the closest trajectory to re-identify an individual.

- Data set
 - cabspotting data (Piorkowski+'09)
 - 536 taxis trajectories in SF
- Pre-processing
 - use only 15 taxis
 - split by 4 hours
 - → 1,333 trajectories (=virtual taxis) with 242,416points (~180 points/trajectory)

- Anonymization
 - add the Laplace noise on lat. & lon. (cf., Geoindistinguishability; Andres+'13)
 - 2 different sizes of the noise
 - average spatial error: 110m (small), 2km (large)

- Anonymity evaluation
 - our method with 0.1 < f < 2.0
 - POI extraction attack (drawn from Primault+'15)

an original trajectory

with the anonymized trajectory

with the anonymized trajectory

with the correspondence in the adversary knowledge

- Results for small noise
 - more than 98% for all f-values (adversary knowledge volume)

 much higher than 1.5% from a POI extraction attack (Primault+'15)

- Results for large noise
 - still very high re-id ratio (>92%)

 A trajectory data holder can be a strong adversary against to the anonymized trajectory data.

Summary

- The anonymization competition is fun!
- Anonymity evaluation is important.

- As a case study, we show our on-going work on anonymity evaluation of trajectory data.
- Our preliminary results mean that a trajectory data holder can be realistic and a very strong adversary.
- Detailed & realistic model construction is needed for convincing anonymity evaluation.