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1. INTRODUCTION
Deep learning is the machine learning (ML) technology of

choice for analyzing personal photos, communications, loca-
tion trajectories, health-care records, transactions, etc. The
resulting models are deployed in apps and online services or
even published. What does this imply for the privacy of the
sensitive data on which these models were trained?

ML models are evaluated by their accuracy on the test
data (e.g., how well they recognize objects in images that
were not used for training). This measures if the model has
learned its task well. What this does not measure, however,
is what else the model has learned about its training data.

Modern deep-learning models are powerful storage and
computing systems, and there is strong evidence that they
are massively overprovisioned. For example, they can mem-
orize randomly labeled data [5]. This hidden capacity can
cause intentional and unintentional leakage of the training
data. Of course, every useful model reveals something about
its training data; for example, a classifier may reveal what
class members look like. We argue, however, that the hidden
capacity of deep-learning models causes them to know—and
leak—much more than generic information about the classes.

We focus on the supervised training of classifier models,
but these observations extend to other types of models, too.

2. UNINTENTIONAL LEAKAGE
The goal of training a classifier is to discover features that

separate the inputs that belong to a class from those that
don’t. For example, when training a binary gender classifier,
the resulting model has an internal representation of the
features that distinguish “male” from “female.”

In addition to the features that help them solve the task
for which they are being trained, modern deep-learning mod-
els discover features in the data that are completely unre-
lated to this task. For example, Fig. 1 plots the t-SNE
projection of the features in different layers of a gender clas-
sification model trained on the LFW dataset of facial images.
The highest layer of the model indeed groups the features
by gender, but this is not all the model does. The lower
layers have learned to separate by features such as race that
are irrelevant and independent of the classification task for
which the model has been trained.

The “unintended” features that emerge during training
leak a lot of information about the training data. In our
experiments, we observed unintended features that are very
significant from the privacy perspective. For example, mod-
els being trained for generic image analysis tasks
such as gender or emotion classification sometimes
come up with an internal representation for individ-

ual people, enabling the adversary to infer that photos of
a certain person were present in the training data.

This behavior is not unique to supervised classifiers. Re-
cent work demonstrated that recurrent language models can
memorize certain strings [1], although the strings in question
consist of digits only and are outside the language model.

3. INTENTIONAL LEAKAGE
Many users of ML are not experts and rely on the third-

party code to train their models: proprietary libraries, black-
box programs from algorithm marketplaces, opaque ML-as-
a-service platforms, etc. This gives an active adversary an
opportunity to exploit the hidden capacity of the models.

In previous work [4], we demonstrated that it is possible
to directly encode the training data (or any other secret, for
that matter) in the model parameters or, alternatively, force
these parameters to be highly correlated with the secrets
that the adversary wants the model to leak. The models are
so overprovisioned that this has no impact on their perfor-
mance on their main tasks. The unused model capacity can
thus be used a powerful covert channel.

A more interesting technique involves tricking the model
into memorizing the secrets. The adversary augments the
labeled training dataset with another dataset, where the in-
puts are pseudo-random and their labels encode the secrets.
There are no changes to any other aspect of the training; all
algorithms are unmodified. When trained on such a dataset,
deep-learning models memorize the labels of the augmented
inputs. This enables black-box extraction: if the adversary
supplies the same pseudo-random input to the model as it
saw during the training, the model outputs the exact label of
this input, thus leaking the secret. In [4], we demonstrated
how this can be used to extract entire texts and images.

The root cause is overprovisioning. During training, the
model comes up with separate internal representations for
the main task and the hidden, “leakage” task. Fig. 2 visu-
alizes the features learned by a CIFAR10 model that has
been trained on its original training images augmented with
maliciously generated synthetic images whose class “labels”
encode the secrets. The representations of the intended and
unintended classes are clearly separate.

This model learned more than it should have. In addition
to its main task, it also learned a hidden task that involves
leaking secrets. Because this task is encoded separately in
the model, it has no impact on the model’s accuracy.

This example illustrates the power of multi-task learning
with overprovisioned models. Another example is collabo-
rative learning [3], where two or more participants train on
their local datasets and exchange model updates.

An adversarial participant in collaborative learning can
trick the joint model into learning a much better internal
separation of the features that are of interest to the adver-
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Figure 1: Features from different layers of an LFW gender classifier: np-0/np-1 is female/male, p0/p1 is “race: black”.

Figure 2: Learned features of a maliciously trained CIFAR10
model. Solid points are from the original training data, hol-
low points are from the adversary-introduced data encoding
the secrets he wants the model to leak.

sary but unrelated to the main task. To achieve this, the
adversary extends his local copy of the main, collaboratively
trained model with an augmented binary classifier connected
to the last layer. This local model is trained simultaneously
to perform well on the main task and to recognize if an-
other participant’s data has the property of interest. On
the training data where each record x has a main label y
and a property label p, the model’s joint loss is calculated
as

Lmt = α · L(x, y; θ) + (1 − α) · L(x, p; θ)

where θ are the model parameters, L is the objective func-
tion. During collaborative training, the adversary uploads
the updates based on this joint loss. They optimize the
global model and simultaneously learn separable represen-
tations for the data with and without the property.

Fig. 3 shows how an active attack (α = 0.7) causes a Face-
Scrub gender classifier also learned to recognize unrelated
features such as race. We have used similar techniques to
infer the presence of someone’s photos in the training images
and identify authorship of the training texts.

4. WHAT IS TO BE DONE?
Today, we have no way to measure what an ML model has

learned from its training data. The fact that it performs well
on its main task says little about what else it may be doing.
This is a challenge for privacy. We need to shine the light
on the hidden storage and functionality of the deep learning
models that have tremendous internal capacity. What do
they reveal about their training data?

We need the principle of least privilege for machine
learning. ML training frameworks should ensure that the
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Figure 3: Separation of features as a result of an active
attack on collaborative learning.

model captures only as much information about its train-
ing data as it needs for its designated task—and nothing
more. Some techniques developed to prevent bias in ML-
based decision-making [2] may be helpful for this purpose.
Differential privacy has a role to play, but we do not know if
there exist differentially private training methods that pro-
duce accurate models and prevent these models from learn-
ing unintended information about the data. Much work re-
mains to be done in this area.
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