
Secure Collaborative Editing Without Central Servers

Benjamin Ylvisaker
Colorado College
bylvisaker@*

Michał Wiśniewski
Colorado College

michal.wis0@gmail.com
* - @coloradocollege.edu

Jay Batavia
Galvanize, Inc.

Jay.Batavia@*

1. INTRODUCTION
Collaborative editing applications like Google Docs and

EtherPad are a popular way for teams to work together on
data. The most common implementations of these tools in-
volve clients sending users’ edits to a central service provider
to be integrated into a single consistent document/database.
This architecture has obvious security and privacy issues:
users’ data are vulnerable to bad behavior by companies,
rogue employees, outsider attacks on the servers, and snoop-
ing and/or litigious governments.

End-to-end encrypted (E2EE) architectures have been used
in messaging applications (Signal, WhatsApp, Telegram) to
provide protection against the attacks alluded to above. In
E2EE applications, the service provider never has access to
unencrypted user data or the keys needed to decrypt such
data. There has been some research on bringing these kinds
of E2EE architectures to collaborative editing applications,
though we are not aware of any such applications that have
reached the level of popularity achieved by messaging appli-
cations.

The current generation of E2EE architectures was de-
signed to cryptographically protect users’ data from the ser-
vice provider. However, the functioning of these applications
still relies on central communication and storage services.
This means that malicious actors can relatively easily carry
out denial of services attacks by blocking access to servers,
or legally forcing organizations to shut down services. In
the last couple of years there have been several instances of
governments engaging in this kind of attack.

This proposal is about a new E2EE architecture for col-
laborative editing applications that has two goals, which are
in some tension with each other:

1. Minimize the role of any central service. Once de-
ployed on client machines, applications should con-
tinue to function even if all resources controlled by the
application authors are blocked or taken down.

2. Require no specialized technical skill or resources on
the parts of users.

The United We Stand (UWS) protocol is our attempt to
achieve these goals. The central concepts in UWS are users
and teams; users can participate in many teams. The com-
ponents of the protocol are:

• A secure messaging protocol for communicating trans-
actions to team members. The current prototype uses
an adaptation of the Signal protocol.

• A mechanism for broadcasting messages to teammates.
The current prototype uses commodity cloud storage
accounts, where each user keeps a copy of each team’s
data in their own cloud storage account.

• An accumulate-only data model. The current proto-
type uses Datomic as inspiration for data modeling.

• A consistency protocol so all teammates can come to
agreement on the state of the database. We currently
use a relatively simple vector clock-based system for
coming to agreement on the order of transactions.

Our work on the protocol is at a fairly early stage, but our
prototype has validated the basic feasibility of the protocol.

2. BLOCKING E2EE SERVICES
The primary impetus behind this work is the (sometimes

successful) attempts governments and law enforcement orga-
nizations have made to interfere with either the basic func-
tioning or cryptographic integrity of E2EE services. We be-
lieve that secure and private communication and collabora-
tion among individuals and groups is on balance a positive
thing in the world, and we seek to strengthen the technolo-
gies that enable it. We begin with a quick recap of some of
the high profile cases of governments interfering with E2EE
services in recent years.

The Brazilian government and WhatsApp have been in
conflict since 2015, when a prosecutor blocked the service
nation-wide. More recently a Brazilian prosecutor froze mil-
lions of dollars worth of assets owned by Facebook, the owner
of WhatsApp. The core of the conflict is WhatsApp’s refusal
to assist in criminal investigations. Of course, if WhatsApp
has implemented the kind of E2EE system that they adver-
tise, it is likely technically infeasible for them to provide the
kind of data that the prosecutors want.

More recently, the Russian government has attempted to
block the Telegram service. Telegram has attempted to
work around the blocking by obscuring its services in var-
ious ways. But the Russian government has kept up with
this cat and mouse game. In general, it will always be hard
to prevent blocking of an open public service.

One technique that can be used to evade digital blockades
is domain fronting. Domain fronting a trick in TLS that
can be used to make the apparent and actual endpoint for
a connection different, if both are host by the same large
provider, like Google App Engine or Amazon Web Services.
The Signal service has used this trick to avoid blockade in



countries like Iran, Egypt, Oman, Qatar, and UAE. Unfor-
tunately, this technique requires at least passive acceptance
by the large provider, and in May 2018 Amazon notified
Signal that they should cease any domain fronting.

Many governments are currently considering key disclo-
sure laws. These laws vary in their details, but in the most
extreme cases they require any software or digital service
provider that enables secure communication to hold copies
of whatever keys are necessary to decrypt users’ data.

Our goal is to completely eliminate these kinds of concerns
by decentralizing the storage and communication for E2EE
collaborative editing applications. If there is no central ser-
vice provider, there is no target for the kinds of attacks
described above.

3. WEAK POINT: CLOUD STORAGE
As mentioned in the introduction, the main storage and

communication medium in UWS is commodity cloud storage
accounts. We need to consider two kinds of attacks. The
first is the storage service providers modifying files in some
way. This could certainly be disruptive, but all uploaded
files are signed by a private key, so making counterfeit files
would be cryptographically infeasible.

The second kind of attack is denial of service from the stor-
age service provider themselves, or externally via blocked
access. It seems fairly unlikely that governments would com-
pletely block cloud storage systems like Dropbox or Google
Drive. However, those storage providers may very well be
motivated to block the storage of files for secure applications,
especially if pressured to do so by governments.

As shown by the examples above, governments are cer-
tainly motivated to block secure communications applica-
tions. However, unlike many E2EE chat applications, in
UWS there is no central service provider. So aspiring block-
ers could not block based solely on the traffic’s destination.

Naturally, storage providers or external network service
providers could examine files or network traffic for patterns
that suggest it is UWS. If this ever became an issue we could
investigate the kinds of steganographic techniques used by
systems like Tor (for example we could make UWS files look
like family photos). It is also conceivable to use decentralized
peer-to-peer cloud storage systems. Several such systems
have been designed, but none has achieved much popularity
as far as the authors know. Perhaps the current anti-privacy
mood in many governments will help these systems become
more widely used.

4. TECHNICAL HIGHLIGHTS
One of the immediate challenges in the UWS protocol is

that the storage and communication service is unreliable.
Our prototype uses an approach inspired by journaling file
systems to address this. A user’s whole UWS collection of
files is organized in a single tree structure. When a user
wants to upload any changes, they first add new files that
represent the changes, then make a single atomic modifica-
tion to the root file pointer.

This means that the technical requirements for the storage
service are quite modest: plain file uploads and download,
and an atomic read-modify-write operation. Many cloud
storage service providers support this kind of operation via
the HTTP ETag headers.

An important issue we face is making the data access and

consistency protocol fast enough for reasonable applications.
There is no central server, so all work must be performed
by clients. We take our inspiration for the database ar-
chitecture part of the project from Datomic, a “functional”
accumulate-only database. In preliminary testing, it seems
that basic user to user communication with all the encryp-
tion and communication through database stored in cloud
storage accounts can happen in less than a second. This
should be low enough latency for many applications.

Our prototype implementation of UWS is quite prelimi-
nary, but all code is available on GitHub:
https://github.com/benjaminy/ManyHands


