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Abstract: Human mobility is often represented as a
mobility network, or graph, with nodes representing
places of significance which an individual visits, such
as their home, work, places of social amenity, etc., and
edge weights corresponding to probability estimates of
movements between these places. Previous research has
shown that individuals can be identified by a small num-
ber of geolocated nodes in their mobility network, ren-
dering mobility trace anonymization a hard task. In this
paper we build on prior work and demonstrate that even
when all location and timestamp information is removed
from nodes, the graph topology of an individual mobil-
ity network itself is often uniquely identifying. Further,
we observe that a mobility network is often unique, even
when only a small number of the most popular nodes
and edges are considered. We evaluate our approach us-
ing a large dataset of cell-tower location traces from
1 500 smartphone handsets with a mean duration of 430
days. We process the data to derive the top−N places
visited by the device in the trace, and find that 93% of
traces have a unique top−10 mobility network, and all
traces are unique when considering top−15 mobility net-
works. Since mobility patterns, and therefore mobility
networks for an individual, vary over time, we use graph
kernel distance functions, to determine whether two mo-
bility networks, taken at different points in time, rep-
resent the same individual. We then show that our dis-
tance metrics, while imperfect predictors, perform sig-
nificantly better than a random strategy and therefore
our approach represents a significant loss in privacy.
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1 Introduction
Our mobile devices collect a significant amount of data
about us and location data of individuals are particu-
larly privacy sensitive. Furthermore, previous work has
shown that removing direct identifiers from mobility
traces does not provide anonymity: users can easily be
reidentified by a small number of unique locations that
they visit frequently [6, 43].

Consequently, some approaches have been proposed
that protect location privacy by replacing location co-
ordinates with encrypted identifiers, using different en-
cryption keys for each location trace in the popula-
tion. This preprocessing results in locations that are
strictly user-specific and cannot be cross-referenced be-
tween users. Examples include the research track of
the Nokia Mobile Data Challenge,1 where visited places
were represented by random integers [14]; and identifi-
able location information collected by the Device An-
alyzer dataset,2 including WiFi access point MAC ad-
dresses and cell tower identifiers, are mapped to a set
of pseudonyms defined separately for each handset [35].
Moreover, temporal resolution may also be deliberately
decreased to improve anonymization [11] since previous
work has demonstrated that sparsity in the temporal
evolution of mobility can cause privacy breaches [6].

In this paper, we examine the degree to which mo-
bility traces without either semantically-meaningful lo-
cation labels, or fine-grained temporal information, are
identifying. To do so, we represent location data for an
individual as a mobility network, where nodes corre-
spond to abstract locations and edges to their connec-
tivity, i.e. the respective transitions made by an individ-
ual between locations. We then examine whether or not
these graphs reflect user-specific behavioural attributes
that could act as a fingerprint, perhaps allowing the re-
identification of the individual they represent. In partic-
ular, we show how graph kernel distance functions [34]
can be used to assist reidentification of anonymous mo-
bility networks. This opens up new opportunities for
both attack and defense. For example, patterns found

1 http://www.idiap.ch/project/mdc
2 https://deviceanalyzer.cl.cam.ac.uk

http://www.idiap.ch/project/mdc
https://deviceanalyzer.cl.cam.ac.uk
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in mobility networks could be used to support auto-
mated user verification where the mobility network acts
as a behavioural signature of the legitimate user of the
device. However the technique could also be used to link
together different user profiles which represent the same
individual.

Our approach differs from previous studies in loca-
tion data deanonymization [7, 9, 10, 21], in that we aim
to quantify the breach risk in preprocessed location data
that do not disclose explicit geographic information, and
where instead locations are replaced with a set of user-
specific pseudonyms. Moreover, we also do not assume
specific timing information for the visits to abstract lo-
cations, merely ordering.

We evaluate the power of our approach over a large
dataset of traces from 1 500 smartphones, where cell
tower identifiers (cids) are used for localization. Our
results show that the data contains structural informa-
tion which may uniquely identify users. This fact then
supports the development of techniques to efficiently
re-identify individual mobility profiles. Conversely, our
analysis may also support the development of techniques
to cluster into larger groups with similar mobility; such
an approach may then be able to offer better anonymity
guarantees.

A summary of our contributions is as follows:
– We show that network representations of individual

longitudinal mobility display distinct topology, even
for a small number of nodes corresponding to the
most frequently visited locations.

– We evaluate the sizes of identifiability sets formed
in a large population of mobile users for increas-
ing network size. Our empirical results demonstrate
that all networks become quickly uniquely identifi-
able with less than 20 locations.

– We propose kernel-based distance metrics to quan-
tify mobility network similarity in the absence of se-
mantically meaningful spatial labels or fine-grained
temporal information.

– Based on these distance metrics, we devise a
probabilistic retrieval mechanism to reidentify
pseudonymized mobility traces.

– We evaluate our methods over a large dataset of
smartphone mobility traces. We consider an at-
tack scenario where an adversary has access to
historical mobility networks of the population she
tries to deanonymize. We show that by inform-
ing her retrieval mechanism with structural similar-
ity information computed via a deep shortest-path
graph kernel, the adversary can achieve a median
deanonymization probability 3.52 times higher than

a randomised mechanism using no structural infor-
mation contained in the mobility networks.

2 Related Work

2.1 Mobility Deanonymization

Protecting the anonymity of personal mobility is no-
toriously difficult due to sparsity [1] and hence mo-
bility data are often vulnerable to deanonymization
attacks [22]. Numerous studies into location privacy
have shown that even when an individual’s data are
anonymized, they continue to possess unique patterns
that can be exploited by a malicious adversary with
access to auxiliary information. Zang et al. analysed
nationwide call-data records (CDRs) and showed that
the N most frequently visited places, so called top−N
data, correlated with publicly released side information
and resulted in privacy risks, even for small values of
Ns [43]. This finding underlines the need for reductions
in spatial or temporal data fidelity before publication.
De Montjoye et al. quantified the unicity of human mo-
bility on a mobile phone dataset of approximately 1.5M
users with intrinsic temporal resolution of one hour and
a 15-month measurement period [6]. They found that
four random spatio-temporal points suffice to uniquely
identify 95% of the traces. They also observe that the
uniqueness of traces decreases as a power law of spatio-
temporal granularity, stressing the hardness of achieving
privacy via obfuscation of time and space information.

Several inference attacks on longitudinal mobility
are based on probabilistic models trained on individ-
ual traces and rely on the regularity of human mobil-
ity. Mulder et al. developed a re-identification technique
by building a Markov model for each individual in the
training set, and then using this to re-identify individu-
als in the test set by likelihood maximisation [7]. Simi-
larly, Gambs et al. used Markov chains to model mobil-
ity traces in support of re-identification [9].

Naini et al. explored the privacy impact of releas-
ing statistics of individuals mobility traces in the form
of histograms, instead of their actual location informa-
tion [21]. They demonstrated that even this statistical
information suffices to successfully recover the identity
of individuals in datasets of few hundred people, via
jointly matching labeled and unlabeled histograms of
a population. Other researchers have investigated the
privacy threats from information sharing on location-
based social networks, including the impact of location
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semantics on the difficulty of re-identification [27] and
location inference [2].

All the above previous work assumes locations are
expressed using a universal symbol or global identi-
fier, either corresponding to (potentially obfuscated)
geographic coordinates, or pseudonymous stay points.
Hence, cross-referencing between individuals in the pop-
ulation is possible. This is inapplicable when location in-
formation is anonymised separately for each individual.
Lin et al. presented a user verification method in this
setting [16]. It is based on statistical profiles of individ-
ual indoor and outdoor mobility, including cell tower ID
and WiFi access point information. In contrast, we em-
ploy network representations based solely on cell tower
ID sequences without explicit time information.

Often, studies in human mobility aim to model
properties of a population, thus location data are pub-
lished as aggregate statistics computed over the loca-
tions of individuals. This has traditionally been con-
sidered a secure way to obfuscate the sensitive infor-
mation contained in individual location data, especially
when released aggregates conform to k−anonymity [32]
principles. However, recent results have questioned this
assumption. Xu et al. recovered movement trajecto-
ries of individuals with accuracy levels of between 73%
and 91% from aggregate location information computed
from cellular location information involving 100 000
users [38]. Similarly, Pyrgelis et al. performed a set of
inference attacks on aggregate location time-series data
and detected serious privacy loss, even when individual
data are perturbed by differential privacy mechanisms
before aggregation [26].

2.2 Anonymity of Graph Data

Most of the aforementioned data can be represented as
microdata with rows of fixed dimensionality in a table.
Microdata can thus be embedded into a vector space. In
other applications, datapoints are relational and can be
naturally represented as graphs. Measuring the similar-
ity of such data is significantly more challenging, since
there is no definitive method. Deanonymization attacks
on graphs have mostly been studied in the context of so-
cial networks and aimed to either align nodes between
an auxiliary and an unknown targeted graph [23, 29], or
quantify the leakage of private information of a graph
node via its neighbors [44].

In the problem studied here, each individual’s in-
formation is an entire graph, rather than a node in a
graph or a node attribute, and thus deanonymization is

reduced to a graph matching or classification problem.
To the best of our knowledge, this is the first attempt
to deanonymize an individual’s structured data by ap-
plying graph similarity metrics. Since we are looking at
relational data, not microdata, standard theoretical re-
sults on microdata anonymization, such as differential
privacy [8], are not directly applicable. However, metrics
related to structural similiarity, including k−anonymity,
can be generalized in this framework.

3 Proposed Methodology
In this section, we first adapt the privacy framework of
k−anonymity to the case of graph data (Section 3.1).
Next we introduce our methodology: We assume that
all mobility data are initially represented as a se-
quence of pseudonymous locations. We also assume
the pseudonymisation process is distinct per user, and
therefore locations cannot be compared between indi-
viduals. In other words, it is not possible to determine
whether pseudonymous location lu for user u is the same
as (or different from) location lv for user v. We convert
a location sequence for each user into a mobility net-
work (Section 3.2). We then extract feature representa-
tions of these networks and embed them into a vector
space. Finally, in the vector space, we can define pair-
wise distances between the network embeddings (Sec-
tion 3.3) and use them in a deanonymization scenario
(Section 3.4).

Our methodology is, in principle, applicable to
many other categories of recurrent behavioural trajecto-
ries that can be abstracted as graphs, such web brows-
ing sessions [24, 42] or smartphone application usage
sequences [37]. We leave such analysis as future work.

3.1 k−anonymity on Graphs

Anonymity among networks refers to topological (or
structural) equivalence. In our analysis we adopt the
privacy framework of k−anonymity [32] which we sum-
marize as follows:

Definition 3.1. (k−anonymity) A microdata release
of statistics containing separate entries for a number of
individuals in the population satisfies the k−anonymity
property if the information for each individual contained
in the release is indistinguishable from at least k − 1
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other individuals whose information also appears in the
release.

Therefore we interpret k−anonymity in this paper
to mean that the mobility network of an individ-
ual in a population should be identical to the mobil-
ity network of at least k − 1 other individuals. Re-
cent work casts doubt on the protection guarantees of-
fered by k−anonymity in location privacy [31], moti-
vating the definition of l−diversity [17] and t−closeness
[15]. Although k−anonymity may be insufficient to en-
sure privacy in the presence of adversarial knowledge,
k−anonymity is a good metric to use to measure the
uniqueness of an individual in the data. Moreover, this
framework is straightforwardly generalizable to the case
of graph data.

Structural equivalence in the space of graphs corre-
sponds to isomorphism and, based on this, we can define
k−anonymity on unweighted graphs as follows:

Definition 3.2. (Graph Isomorphism) Two graphs
G = (V,E) and G′ = (V ′, E′) are isomorphic (or be-
long to the same isomorphism class) if there exists a
bijective mapping g : V → V ′ such that (vi, vj) ∈ E iff(
g(vi), g(vj)

)
∈ E′.

Definition 3.3. (Graph k−anonymity) Graph
k−anonymity is the minimum cardinality of isomor-
phism classes within a population of graphs.

After clustering our population of graphs into isomor-
phism classes, we can also define the identifiability set
and anonymity size [25] as follows:

Definition 3.4. (Identifiability Set) Identifiability
set is the percentage of the population which is uniquely
identified given their top−N network.

Definition 3.5. (Anonymity Size) The anonymity
size of a network within a population is the cardinality
of the isomorphism class to which the network belongs.

3.2 Mobility Information Networks

To study the topological patterns of mobility, we repre-
sent user movements by a mobility network. A prelimi-
nary step is to check whether a first-order network is a
reasonable representation of movement data, or whether
a higher-order network is required.

First-order network representations of mobility
traces are built on the assumption of a first-order tem-

poral correlation among their states. In the case of mo-
bility data, this means that the transition by an indi-
vidual to the next location in the mobility network can
be accurately modelled by considering only their cur-
rent location. For example, the probability that an in-
dividual visits the shops or work next depends only on
where they are located now, and a more detailed past
history of places recently visited does not offer signifi-
cant improvements to the model. The alternative is that
a sequences of the states are better modelled by higher-
order Markov chains, namely that transitions depend
on the current state and one or more previously visited
states. For example, the probability that an individual
visits the shops or work next depends not only on where
they are now, but where they were earlier in the day or
week. If higher-order Markov chains are required, we
should assume a larger state-space and use these states
as the nodes of our individual mobility networks. Re-
cently proposed methods on optimal order selection of
sequential data [28, 39] can be directly applied at this
step.

Let us assume a mobility dataset from a population
of users u ∈ U . We introduce two network representa-
tions of user’s mobility.

Definition 3.6. (State Connectivity Network): A
state connectivity network for u is an unweighted di-
rected graph Cu =

(
V u, Eu

)
. Nodes vi ∈ V u correspond

to states visited by the user throughout the observation
period. An edge eij =

(
vu

i , v
u
j

)
∈ Eu represents the in-

formation that u had at least one recorded transition
from vu

i to vu
j .

Definition 3.7. (Mobility Network): A mobility
network for u is a weighted and directed graph Gu =(
V u, Eu,Wu

)
∈ G, with the same topology as the state

connectivity network and additionally an edge weight
function Wu : Eu → R+. The weight function assigns a
frequency wu

ij to each edge eu
ij , which corresponds to the

number of transitions from vu
i to vu

j recorded through-
out the observation period.

To facilitate comparisons of frequencies across networks
of different sizes in our experiments, we normalize edge
weights on each mobility network to sum to 1.

In first-order networks, nodes correspond to distinct
places the user visits. Given a high-frequency, times-
tamped, sequence of location events for a user, dis-
tinct places can be extracted as small geographic regions
where a user stays longer than a defined time interval,
using existing clustering algorithms [13]. Nodes in the
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mobility network have no geographic or timing informa-
tion associated with them. Nodes may have attributes
attached to them reflecting additional side information.
For example, in this paper we consider whether attach-
ing the frequency of visits a user makes to a specific
node aids an attacker attempting to deanonymize the
user.

In some of our experiments, we prune the mobility
networks of users by reducing the size of the mobility
network to the N most frequent places and rearranging
the edges in the network accordingly. We refer to these
networks as top−N mobility networks.

3.3 Graph Similarity Metrics

It is not possible to apply a graph isomorphism test to
two mobility networks to determine if they represent the
same underlying user because a user’s mobility network
is likely to vary over time. Therefore we need distance
functions that can measure the degree of similarity be-
tween two graphs. Distance functions decompose the
graph into feature vectors (smaller substructures and
pattern counts), or histograms of graph statistics, and
express similarity as the distance between those feature
representations. In the following, we introduce the no-
tion of graph kernels and describe the graph similarity
metrics used later in our experiments.

We wish to compute the similarity between two
graphs G,G′ ∈ G. Kernel functions [34], or kernels,
are symmetric positive semidefinite functions, where
K(G,G′) : G × G → R+, meaning that for all
n > 1, G1, ..., Gn ∈ G, and c1, ..., cn ∈ R, we have∑n

i,j=1 cicjK(Gi, Gj) ≥ 0. Each kernel function cor-
responds to some feature map φ(G), where the kernel
function can be expressed as the inner product between
feature maps, i.e., K(G,G′) =

〈
φ(G), φ(G′)

〉
.

In order to ensure the result from the kernel lies
in the range from −1 to 1 inclusive, we apply cosine
normalization as follows:

K(G,G′) =
〈

φ(G)
||φ(G)|| ,

φ(G′)
||φ(G′)||

〉
. (1)

One interpretation of this function is as the cosine sim-
ilarity of the graphs in the feature space defined by the
map of the kernel.

In our experiments we apply a number of scalable
kernel functions on our mobility datasets and assess
their suitability for deanonymization applications on
mobility networks. We note in advance that as the de-
gree distribution and all substructure counts of a graph

remain unchanged under structure-preserving bijection
of the vertex set, all examined graph kernels are in-
variant under isomorphism. We briefly introduce these
kernels in the remainder of the section.

3.3.1 Kernels on degree distribution

The degree distribution of nodes in the graph can be
used to quantify the similarity between two graphs. For
example, we can use a histogram of weighted or un-
weighted node degree as a feature vector. We can then
compute the pairwise distance of two graphs by taking
either the inner product of the feature vectors or passing
them through a Gaussian radial basis function (RBF)
kernel:

K(G,G′) = exp
(
− ||φ(G)− φ(G′)||2

2σ2

)
.

Here, the parameters of the kernel are the variance σ
(in case RBF is used) and the number of bins in the
histogram.

3.3.2 Kernel on graph atomic substructures

Kernels can use counts on substructures, such as sub-
tree patterns, shortest paths, walks or limited-size sub-
graphs. This family of kernels are called R−convolution
graph kernels [12]. In this way, graphs are represented
as vectors with elements corresponding to the frequency
of each such substructure over the graph. Hence, if
s1, s2, ... ∈ S are the substructures of interest and
#
(
si ∈ G

)
the counts of si in graph G, we get as feature

map vectors

φ(G) = [#
(
s1 ∈ G

)
,#
(
s2 ∈ G

)
, ...]T (2)

with dimension |S| and kernel

K(G,G′) =
∑
s∈S

#
(
s ∈ G

)
#
(
s ∈ G′). (3)

In the following, we briefly present some kernels in
this category and explain how they are adapted in our
experiments.

Shortest-Path Kernel
The Shortest-Path (SP) graph kernel [5] expresses

the similarity between two graphs by counting the co-
occuring shortest paths in the graphs. It can be written
in the form of equation (3) where each element si ∈ S
is a triplet

(
ai

start, a
i
end, n

)
, where n is the length of the
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1
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(a) G
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1
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(b) G′
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3, 1133
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1, 3

(c) G with multiset node
attributes

2, 33 3, 233

3, 1233
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1, 3
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(d) G′ with multiset
node attributes

1, 3 4

2, 33 5

3, 133 6

3, 233

3, 1133

3, 1233

7
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9

(e) Label Compression

7 5

8
7

4
4

(f) G relabeled

5 7

9
6

4
4

(g) G′ relabeled

features 1 2 3 4 5 6 7 8 9

φ1(G) = [2, 1, 3, 2, 1, 0, 2, 1, 0 ]

φ1(G′) = [2, 1, 3, 2, 1, 1, 1, 0, 1 ]

(h) extracted feature vectors

Fig. 1. Computation of the Weisfeiler-Lehman subtree kernel of height h = 1 for two attributed graphs.

path and ai
start, a

i
end the attributes of the starting and

ending nodes. The shortest path set is computable in
polynomial time using, for example, the Floyd-Warshall
algorithm, with complexity O(|V |4), where |V | is num-
ber of nodes in the network.

Weisfeiler-Lehman Subtree Kernel
Shervashidze et al. proposed an efficient

method [30] to construct a graph kernel utilizing the
Weisfeiler-Lehman (WL) test of isomorphism [36]. The
idea of the WL kernel is to measure co-occurences of
subtree patterns across node attributed graphs.

Computation progresses over iterations as follows:
1. each node attribute is augmented with a multiset of

attributes from adjacent nodes;
2. each node attribute is then compressed into a single

attribute label for the next iteration; and
3. the above steps are repeated until a specified thresh-

old h is reached.

An example is shown in Figure 1.
If G and G′ are the two graphs, the WL subtree

kernel is defined as follows:

Kh
W L(G,G′) =

〈
φh(G), φh(G′)

〉
,

where φh(G) and φh(G′) are the vectors of labels ex-
tracted after running h steps of the computation (Fig-
ure 1h). They consist of h blocks, where the i−th com-
ponent of the j−th block corresponds to the frequency
of label i at the j−th iteration of the computation. The
computational complexity of the kernel scales linearly
with the number of edges |E| and the length h of the
WL graph sequence.

Deep Graph Kernels
Deep graph kernels (DKs) are a unified framework

that takes into account similarity relations at the level

of atomic substructures in the kernel computation [41].
Hence, these kernels can quantify similar substructure
co-occurence, offering more robust feature representa-
tions. DKs are based on computing the following inner
product:

K(G,G′) = φ
(
G
)T
Mφ

(
G′),

where φ is the feature mapping of a classical R-
convolution graph kernel.

In the above,M : |V|×|V| is a positive-definitive ma-
trix encoding the relationships between the atomic sub-
structures and V is the vocabulary of the observed sub-
structures in the dataset. Here, M can be defined using
the edit distance of the substructures, i.e. the number
of elementary operations to transform one substructure
to another; or M can be learnt from the data, applying
relevant neural language modeling methods [19].

3.4 Deanonymization of User Mobility
Networks and Privacy Leakage
Evaluation

3.4.1 Hypothesis

The basic premise of our deanonymization approach can
be postulated as follows:

The mobility of a person across different time pe-
riods is stochastic, but largely recurrent and stationary,
and its expression at the level of the individual mobility
network is discriminative enough to reduce a person’s
privacy within a population.

For example, the daily commute to work corre-
sponds to a relatively stable sequence of cell tow-
ers. This can be expressed in the mobility network of
the user as a persistent subgraph and forms a char-
acteristic behavioural pattern that can be exploited
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(a) user 1: first half of the ob-
servation period

(b) user 1: second half of the
observation period

(c) user 2: first half of the ob-
servation period

(d) user 2: second half of the
observation period

Fig. 2. Top−20 networks for two random users from the Device
Analyzer dataset. Depicted edges correspond to the 10% most
frequent transitions in the respective observation window. The
networks show a high degree of similarity between the mobility
profiles of the same user over the two observation periods. More-
over, the presence of single directed edges in the profile of user 2
forms a discriminative pattern that allows us to distinguish user 2
from user 1.

for deanonymization of mobility traces. Empirical ev-
idence for our hypothesis is shown in Figure 2. For ease
of presentation, in the figure, nodes between the dis-
parate observation periods of the users can be cross-
referenced. We assume that cross-referencing is not pos-
sible in our attack scenario, as locations are indepen-
dently pseudonymized.

3.4.2 Threat Model

We assume an adversary has access to a set of mobility
networks G ∈ Gtraining with disclosed identities (or la-
bels) lG ∈ L and a set of mobility networks G′ ∈ Gtest
with undisclosed identities lG′ ∈ L.3

We define a normalised similarity metric among the
networks K : Gtraining × Gtest → R+. We hypothesize

3 Generally we can think of lG′ ∈ J ⊃ L and assign some
fixed probability mass to the labels lG′ ∈ J \ L. However, here
we make the closed world assumption that the training and test
networks come from the same population. We make this assump-
tion for two reasons: first, it is a common assumption in works
on deanonymization and, second, we cannot directly update our
beliefs on lG′ ∈ J \ L by observing samples from L.

that a training and test mobility network belonging to
the same person have common or similar connectivity
patterns, thus a high degree of similarity.

The intention of an adversary is to deanonymize a
given test network G′ ∈ Gtest, by appropriately defining
a vector of probabilities over the possible identities in
L.

An uninformed adversary has no information
about the networks of the population and in the ab-
sence of any other side knowledge, the prior belief of
the adversary about the identity of G′ is a uniform dis-
tribution over all possible identities:

P
(
lG′ = lGi

)
= 1/|L|, for every Gi ∈ Gtraining. (4)

An informed adversary has access to the popula-
tion of training networks and can compute the pairwise
similarities of G′ with each Gi ∈ Gtraining using a ker-
nel function K. Hence the adversary can update her
belief for the possible identities in L according to the
values of K. Therefore, when the adversary attempts to
deanonymize identities in the data, she assigns probabil-
ities that follow a non-decreasing function of the com-
puted pairwise similarity of each label. Denoting this
function by f , we can write the updated adversarial
probability estimate for each identity as follows:

P
(
lG′ = lGi

|Gtraining,K
)

=
f
(
K(Gi, G

′)
)∑

j∈L

f
(
K(Gj , G

′)
) ,

for every Gi ∈ Gtraining.

(5)

3.4.3 Privacy Loss

In the case of the uninformed adversary, the true label
for any user is expected to have rank |L|/2. Under this
policy, the amount of privacy for each user is propor-
tional to the size of the population.

In the case of the informed adversary, knowledge
of Gtraining and the use of K will induce some positive
privacy loss which will result in the expected rank of
user to be smaller than |L|/2. The privacy loss can be
quantified as follows:

PL
(
G′;Gtraining,K

)
=
P
(
lG′ = lG′

true
|Gtraining,K

)
P
(
lG′ = lG′

true

) − 1

(6)

A privacy loss equal to zero reflects no information
gain compared to an uninformed adversary with no ac-
cess to graphs with disclosed identities.
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Let us assume that the users of our population gen-
erate distinct mobility networks. As will be supported
with empirical evidence in the next section, this is of-
ten the case in real-world cid datasets of few thousand
users even for small networks sizes (e.g. for top−20 net-
works in our dataset). Under the above premise, the
maximal privacy loss occurs when the presented test
network is an identical copy of a training network of
the same user which exists in the data of the adversary,
i.e. G′ ∈ Gtraining. This corresponds to a user determin-
istically repeating her mobility patterns over the ob-
servation period recorded in the test network. In such
a scenario, we could think that isomorphism tests are
the most natural way to compute similarity; however,
isomorphism tests will be useless in real-world scenar-
ios, since the stochastic nature and noise inherent in
the mobility networks of a user would make them non-
isomorphic. Maximal privacy loss reflects the discrim-
inative ability of the kernel and cannot be exceeded
in real-world datasets, where the test networks are ex-
pected to be noisy copies of the training networks exist-
ing in our system. The step of comparing with the set
of training networks adds computational complexity of
O(|Gtraining|) to the similarity metric cost.

Moreover, our framework can naturally facilitate in-
corporating new data to our beliefs when multiple ex-
amples per individual exist in the training dataset. For
example, when multiple instances of mobility networks
per user are available, we can use k−nearest neighbors
techniques in the comparison of distances with the test
graph.

4 Data for Analysis
In this section we present an exploratory analysis of the
dataset used in our experiments, highlighting statistical
properties of the data and empirical results regarding
the structural anonymity of the generated state connec-
tivity networks.

4.1 Data Description

We evaluate our methodology on the Device Analyzer
dataset [35]. Device Analyzer contains records of smart-
phone usage collected from over 30 000 study partici-
pants around the globe. Collected data include infor-
mation about system status and parameters, running
background processes, cellular connectivity and wireless

connectivity. For privacy purposes, released cid infor-
mation is given a unqiue pseudonym separately for each
user and contains no geographic, or semantic, informa-
tion concerning the location of users. Thus we cannot
determine geographic proximity between the nodes and
the location data of two users cannot be directly aligned.

For our experiments, we analysed cid information
collected from 1 500 handsets with the largest recorded
location datapoints in the dataset. Figure 4a shows the
observation period for these handsets; note that the
mean is greater than one year but there is lot of variance
across the population. We selected these 1 500 handsets
in order to examine the re-identifiability of devices with
rich longitudinal mobility profiles. This allowed us to
study the various attributes of individual mobility af-
fecting privacy in detail. As mentioned in the previous
section, the cost of computing the adversarial posterior
probability for the deanonymization of a given unlabeled
network scales linearly with the population size.

4.2 Mobility Networks Construction

We began by selecting the optimal order of the network
representations derived from the mobility trajectories
of the 1 500 handsets selected from the Device Analyzer
dataset. We first parsed the cid sequences from the mo-
bility trajectories into mobility networks. In order to
remove cids associated with movement, we only defined
nodes for cids which were visited by the handset for at
least 15 minutes. Movements from one cid to another
were then recorded as edges in the mobility network.

As outlined in Section 3.1, we analysed the path-
ways of the Device Analyzer dataset during the en-
tire observation period, applying the model selection
method [28] of Scholtes.4 This method tests graphical
models of varying orders and selects the optimal order
by balancing the model complexity and the explanatory
power of observations.

We tested higher-order models up to order three. In
the case of top−20 mobility networks, we found routine
patterns in the mobility trajectories were best explained
with models of order two for more than 20% of the users.
However, when considering top−100, top-200, top-500
and full mobility networks, we found that the optimal
model for our dataset has order one for more than 99% of
the users; see Figure 3. In other words, when considering
mobility trajectories which visit less frequent locations
in the graph, the overall increase in likelihood of the

4 https://github.com/IngoScholtes/pathpy

https://github.com/IngoScholtes/pathpy
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Fig. 3. Optimal order for increasing number of locations.

data for higher-order models cannot compensate for the
complexity penalty induced by the larger state space. So
while there might still be regions in the graph which are
best represented by a higher-order model, the optimal
order describing the entire graph is one. Therefore we
use a model of order one in the rest of this paper.

4.3 Data Properties and Statistics

In Table 1 we provide a statistical summary of the orig-
inal and the pruned versions of the mobility networks.
We observe that allowing more locations in the network
implies an increase in the variance of their statistics and
leads to smaller density, larger diameter and larger av-
erage shortest-path values.

A recurrent edge traversal in a mobility network oc-
curs when a previously traversed edge is traversed for
a second or subsequent time. We then define recurrence
rate as the percentage of edge traversals which are re-
current. We find that mobility networks display a high
recurrence rate, varying from 68.8% on average for full
networks to 84.7% for the top−50 networks, indicating
that the mobility of the users is mostly comprised of

repetitive transitions between a small set of nodes in a
mobility network.

Figure 4b displays the normalized histogram and
probability density estimate of network size for full mo-
bility networks. We observe that sizes of few hundred
nodes are most likely in our dataset, however mobility
networks of more than 1 000 nodes also exist. Reducing
the variance in network size will be proved helpful in
cross-network similarity metrics, hence we also consider
truncated versions of the networks.

As shown in Figure 4c, the parsed mobility network
of a typical user is characterized by a heavy-tailed de-
gree distribution. We observe that a small number of
locations have high degree and correspond to dominant
states for a person’s mobility routine, while a large num-
ber of locations are only visited a few times throughout
the entire observation period and have a small degree.

Figure 4d shows that the estimated probability dis-
tribution of average edge weight. This peaks in the range
from two to four, indicating that many transitions cap-
tured in the full mobility network are rarely repeated.
However, most of the total weight of the network is at-
tributed to the tail of this distribution, which corre-
sponds to the edges that the user frequently repeats.

4.4 Anonymity Clusters on Top−N
Networks

We examine to what extent the heterogeneity of users
mobility behaviour can be expressed in the topology
of the state connectivity networks. For this purpose,
we generate the isomorphism classes of the top−N net-
works of our dataset for increasing network size N . We
then compute the graph k−anonymity of the popula-
tion and the corresponding identifiability set. This anal-
ysis demonstrates empirically the privacy implications
of releasing anonymized users pathway information at
increasing levels of granularity.

Before presenting our findings on the Device Ana-
lyzer dataset, we will perform a theoretical upper bound
analysis on the identifiability of a population, by find-
ing the maximum number of people that can be distin-

Networks # of networks Num. of nodes, avg. Edges, avg. Density, avg. Avg. clust. coef. Diameter, avg. Avg. short. path Recurrence rate (%)
top−50 locations 1500 49.92 ± 1.26 236.55 ± 78.14 0.19 ± 0.06 0.70 ± 0.07 3.42 ± 0.86 1.93 ± 0.20 84.7 ± 5.6
top−100 locations 1500 98.33 ± 7.93 387.05 ± 144.73 0.08 ± 0.03 0.60 ± 0.10 4.67 ± 1.48 2.33 ± 0.40 78.3 ± 7.8
top−200 locations 1500 179.23 ± 37.82 548.21 ± 246.11 0.04 ± 0.02 0.47 ± 0.12 7.52 ± 4.21 3.07 ± 1.18 73.0 ± 9.9

full 1500 334.60 ± 235.81 741.64 ± 527.28 0.02 ± 0.02 0.33 ± 0.09 15.98 ± 10.18 4.84 ± 2.93 68.8 ± 12.3

Table 1. Summary statistics of mobility networks in the Device Analyzer dataset.
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(a) Observation period duration distribution. (b) Normalized histogram and probability density estimate of
network size for the full mobility networks over the population.

(c) Complementary cumulative distribution function (CCDF )
for the node degree in the mobility network of a typical user
from the population, displayed on log-log scale.

(d) Normalized histogram and probabilty density of average
edge weight over the networks.

Fig. 4. Empirical statistical findings of the Device Analyzer dataset.

guished by networks of size N . This corresponds to the
number of non-isomorphic graphs with N nodes.

Currently the most of efficient way of enumerat-
ing non-isomorphic graphs is by using McKay’s algo-
rithm [18], implemented in the package nauty.5 Table

N 4 5 6 7 8 9
# undirected 11 34 156 1044 12346 274668

N 4 5 6 7
# directed 2128 9608 1540944 882033440

Table 2. Sequences of non-isomorphic graphs for undirected and
directed graphs of increasing size.

5 http://pallini.di.uniroma1.it/

2 presents the enumeration for undirected and directed
non-isomorphic graphs of increasing size. We observe
that there exist 12 346 undirected graphs with 8 nodes
and 9 608 directed graphs with 5 nodes. In other words,
finding the top−8 places for each person is the small-
est number which could produce unique graphs for each
person in our sample of 1 500 individuals; this reduces to
5 when directionality is taken into account. Moreover,
we find that top−12 undirected and top−8 directed net-
works are sufficient to enable each human on the planet
to be represented by a different graph, assuming world
population of 7.6B.

Next we present the results of our analysis on the
Device Analyzer data. As observed in Figure 5, spar-
sity arises in a mobility network even for very small N .
In particular, in the space of undirected top−4 location

http://pallini.di.uniroma1.it/
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(a) Undirected top−N networks. (b) Directed top−N networks.

Fig. 5. Identifiability set and k−anonymity for undirected and directed top−N mobility networks for increasing number of nodes. Dis-
played is also the theoretical upper bound of identifiability for networks with N nodes.

(a) Median anonymity size. (b) Cumulative distribution of the anonymity size.

Fig. 6. Anonymity size statistics over the population of top−N mobility networks for increasing network size.

networks, there is already a cluster with only 3 mem-
bers, while for all N > 4 there always exist isolated iso-
morphic clusters. k−anonymity decreases to 1 even for
N = 3 when considering directionality. Moreover, the
identifiability set dramatically increases with the size of
network: approximately 60% of the users are uniquely
identifiable from their top−10 location network. This
percentage increases to 93% in directed networks. For
the entire population of the 1 500 users, we find that
15 and 19 locations suffice to form uniquely identifiable
directed and undirected networks respectively.

The difference between our empirical findings and
our theoretical analysis suggests that large parts of the
top−N networks are common to many people. This can
be attributed to patterns that are widely shared (e.g.
the trip from work to home, and from home to work).

Figure 6 shows some additional statistics of the
anonymous isomorphic clusters formed for varying net-

work sizes. Median anonymity becomes one for network
sizes of five and eight in directed and undirected net-
works respectively; see Figure 6a. In Figure 6b we ob-
serve that the population arranges into clusters with
small anonymity even for very small network sizes:
around 5% of the users have at most 10-anonymity
when considering only five locations in their network,
while this percentage increases to 80% and 100% for
networks with 10 and 15 locations. This result confirms
that anonymity is even harder when the directionality
of edges are provided, since the space of directed net-
works is much larger than the space of the undirected
networks with the same number of nodes.

The above empirical results indicate that the diver-
sity of individuals mobility is reflected in the network
representations we use, thus we can meaningfully pro-
ceed to discriminative tasks on the population of mobil-
ity networks.
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5 Evaluation of Privacy Loss in
Longitudinal Mobility Traces

In this section we empirically quantify the privacy leak-
age implied by the information of longitudinal mobil-
ity networks for the population of users in the Device
Analyzer dataset. For this purpose we undertake exper-
iments in graph matching using different kernel func-
tions, and assume an adversary has access to a variety
of mobility network information.

5.1 Experimental Setup

For our experiments we split the cid sequences of each
user into two sets: the training sequences where user
identities are disclosed to the adversary, and the test
sequences where user identities are undisclosed to the
adversary but are used to quantify the success of the
adversarial attack. Therefore each user has two mobil-
ity networks: one derived from the training sequences,
and one derived from the test sequences. The objective
of the adversary is to successfully match every test mo-
bility network with the training mobility network repre-
senting the same underlying user. To do so, the adver-
sary computes the pairwise distances between training
mobility networks and test mobility networks. We par-
titioned cid sequences of each user by time, placing all
cids before the partition point in the training set, and
all cids after into the test set. We choose the partition
point separately for each user as a random number from
the uniform distribution with range 0.3 to 0.7.

5.2 Mobility Networks & Kernels

We computed the pairwise distances between training
and test mobility networks using kernels from the cate-
gories described in Section 3. Node attributes are sup-
ported in the computation of Weisfeiler-Lehman and
Shortest-Path kernel. Thus we augmented the individ-
ual mobility networks with categorical features to add
some information about the different roles of nodes in
users mobility routine. Such attributes are computed in-
dependently for each user on the basis of the topological
information of each network. After experimenting with
several schemes, we obtained the best performance on
the kernels when dividing locations into three categories
with respect to the frequency in which each node is vis-
ited by the user. Concretely, we computed the distribu-

tion of users’ visits to locations and added the following
values to the nodes:

ac=3
(
vu

i

)
=


3, if vu

i ∈ top−20% locations of u
2, if vu

i /∈ top−20% locations of u

and vu
i ∈ top−80% locations

1 otherwise.

This scheme allowed a coarse, yet informative, char-
acterisation of locations in users networks, which was ro-
bust to the variance in the frequency of visits between
the two observation periods. In addition, we removed
40% of edges with the smallest edge weights and re-
tained only the largest connected component for each
user.

Due to its linear complexity, computation of the
Weisfeiler-Lehman kernel could scale over entire mobil-
ity networks. However, we had to reduce the network
size in order to apply the Shortest-Path kernel. This
was done using top−N networks for varying size N .

5.3 Evaluation & Discussion

We evaluated graph kernels functions from the following
categories:
– DSPN : Deep Shortest-Path kernel on top−N net-

work
– DWLN : Deep Weisfeiler-Lehman kernel on top−N

network
– DD: Degree Distribution kernel through Gaussian

RBF
– WD: Weighted Degree distribution through Gaus-

sian RBF

The Cumulative Density Functions (CDFs) of the true
label rank for the best performing kernel of each cate-
gory are presented in Figure 7.

If mobility networks are unique, an ideal retrieval
mechanism would correspond to a curve that reaches
1 at rank one, indicating a system able to correctly
deanonymize all traces by matching the closest train-
ing graph. This would be the case when users training
and test networks are identical, thus the knowledge of
the latter implies maximum privacy loss.

Our baseline, random, is a strategy which reflects
the policy of an adversary with zero knowledge about
the mobility networks of the users, who simply returns
uniformly random orderings of the labels. The CDF of
true labels rank for random lies on the diagonal line. We
observe that atomic structure based kernels significantly
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Fig. 7. CDF of true rank over the population according to differ-
ent kernels.

outperform the random baseline performance by defin-
ing a meaningful similarity ranking across the mobility
networks.

The best overall performance is achieved by the
DSP kernel on graphs pruned to 200 nodes. In particu-
lar, this kernel places the true identity among the clos-
est 10 networks for 10% of the individuals, and among
the closest 200 networks for 80% of the population. The
Shortest-Path kernel has an intuitive interpretation in
the case of mobility networks, since its atomic substruc-
tures take into account the hop distances among the
locations in a user’s mobility network and the popular-
ity categories of the departing and arrival location. The
deep variant can also account for variation in the level of
such substructures, which are more realistic when con-
sidering the stochasticity in the mobility patterns inher-
ent to our dataset.

The best performance of the Weisfeiler-Lehman ker-
nel is achieved by its deep variant for h = 2 iterations
of the WL test for a mobility network pruned to 200
nodes. This phenomenon is explainable via the statis-
tical properties of the mobility networks. As we saw in
Section 4.3, the networks display power law degree dis-
tribution and small diameters. Taking into account the
steps of the WL test, it is clear that these topological
properties will lead the node relabeling scheme to cover
the entire network after a very small number of itera-
tions. Thus local structural patterns will be described
by few features produced in the first iterations of the
test. Furthermore, the feature space of the kernel in-
creases very quickly as a function of h, which leads to
sparsity and low levels of similarity over the population
of networks.

Histograms of length 1 000 were also computed for
the unweighted and weighted degree distributions and
passed through a Gaussian RBF kernel. We can see that
the degree distribution gives almost a random ranking,
as it is heavily dependent on the network size. When
including the normalized edge weights, the WD kernel
only barely outperforms a random ranking. Repetitions
on pruned versions did not improve the performance
and are not presented for brevity.

Based on the insights obtained from our experiment,
we can make the following observations with respect to
attributes of individual mobility and their impact on
the identifiability of networks:
– Location pruning: Reducing the number of nodes

(locations) in a mobility network does not necessar-
ily make it more privacy-preserving. On the con-
trary, if location pruning is done by keeping the
most frequently visited locations, it can enhance rei-
dentification. In our experiments we obtain similar,
or even enhanced, performance for graph kernels
when applying them on increasingly pruned net-
works with size down to 100 locations.

– Transition pruning: Including very rare transi-
tions in longitudinal mobility does not add discrim-
inative information. We consistently obtained better
results when truncating the long tail of edge weight
distribution, which led us to analyze versions of the
networks where 40% of the weakest edges were re-
moved.

– Frequency information of locations: The fre-
quency of visits to nodes in the mobility net-
work allows better ranking by kernels which sup-
port node attributes, e.g. Weisfeiler-Lehman and
Shortest-Path kernel. This information should fol-
low a coarse scheme, in order to compensate for the
temporal variation of location popularity in mobil-
ity networks.

– Directionality of transitions: Directionality gen-
erally enhances the identifiability of networks and
guides the similarity computation when using
Shortest-Path kernels.

5.4 Quantification of Privay Loss

The Deep Shortest-Path kernel on top−200 networks of-
fers the best ranking of identities for the test networks.
As observed in Figure 8, the mean of the true rank has
been shifted from 750 to 140 for our population. In ad-
dition, the variance is much smaller: approximately 218,
instead of 423 for the random ordering.
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The obtained ordering implies a significant decrease
in user privacy, since the ranking can be leveraged by an
adversary to determine the most likely matches between
a training mobility network and a test mobility network.
The adversary can estimate the true identity of a given
test network G′, as suggested in Section 3.4.2, apply-
ing some simple probabilistic policy that uses pairwise
similarity information. For example, let us examine the
privacy loss implied by update rule in (5) for function f :

f
(
KDSP(Gi, G

′)
)

= 1
rank

(
KDSP (Gi, G′)

) . (7)

This means that the adversary updates her proba-
bility estimate for the identity corresponding to a test
network, by assigning to each possible identity a prob-
ability that is inversely proportional to the rank of the
similarity between the test network and the training net-
work corresponding to the identity.

From equation (6), we can compute the induced pri-
vacy loss for each test network, and the statistics of
privacy loss over the networks of the Device Analyzer
population. Figure 9 demonstrates considerable privacy
loss with a median of 2.52. This means that the in-
formed adversary can achieve a median deanonymiza-
tion probability 3.52 times higher than an uninformed
adversary. Moreover, the positive mean of privacy loss
(≈ 27) means that the probabilities of the true identi-
ties of the test networks have, on average, much higher
values in the adversarial estimate compared to the un-
informed random strategy. Hence, revealing the kernel
values makes an adversarial attack easier.

5.5 Defense Mechanisms

The demonstrated privacy leakage motivates the quest
for defense mechanisms against this category of attacks.
There are a variety of techniques which we could ap-
ply in order to reduce the recurring patterns of an in-
dividual’s mobility network over time and decrease the
diversity of mobility networks across a population, and
therefore enhance the privacy inherent in these graphs.
Examples include noise injection on network structure
via several strategies: randomization of node attributes,
perturbations of network edges or node removal. It is
currently unclear how effective such techniques will be,
and what trade-off can be achieved between utility in
mobility networks and the privacy guarantees offered
to individuals whose data the graphs represent. More-
over, it seems appropriate to devise kernel-agnostic tech-
niques, suitable for generic defense mechanisms. For ex-
ample, it is of interest to assess the resistance of our best
similarity metric to noise, as the main purpose of deep
graph kernels is to be robust to small dissimilarities at
the substructure level.

We think this study is important for one further rea-
son: kernel-based methods allow us to apply a rich tool-
box of learning algorithms without accessing the origi-
nal datapoints, or their feature vectors, but instead by
using their kernel matrix. Thus studying the anonymity
associated with kernels is valuable for ensuring that such
learning systems do not leak privacy of the original data.
We leave this direction to future work.

Fig. 8. Boxplot of rank for the true labels of the population
according to a Deep Shortest-Path kernel and to a random
ordering.

Fig. 9. Privacy loss over the test data of our population for an
adversary adopting the informed policy of (7). Median privacy
loss is 2.52.
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6 Conclusions & Future Work
In this paper we have shown that the mobility networks
of individuals exhibit significant diversity and the topol-
ogy of the mobility network itself, without labels, may
be unique and therefore uniquely identifying.

An individual’s mobility network is dynamic over
time. Therefore, an adversary with access to mobility
data of a person from one time period cannot simply
test for graph isomorphism to find the same user in a
dataset recorded at a later point in time. Hence we pro-
posed graph kernel methods to detect structural simi-
larities between two mobility networks, and thus pro-
vide the adversary with information on the likelihood
that two mobility networks represent the same individ-
ual. While graph kernel methods are imperfect predic-
tors, they perform significantly better than a random
strategy and therefore our approach induces significant
privacy loss. Our approach does not make use of geo-
graphic information or fine-grained temporal informa-
tion and therefore it is immune to commonly adopted
privacy-preserving techniques of geographic information
removal and temporal cloaking, and thus our method
may lead to new mobility deanonymization attacks.

Moreover, we find that reducing the number of
nodes (locations) or edges (transistions between loca-
tions) in a mobility network does not necessarily make
the network more privacy-preserving. Conversely, the
frequency of node visits and the direction of transition
in a mobility network does enhance the identifiablility
of a mobility network for some graph kernel methods.
We provide empirical evidence that neighborhood rela-
tions in the high-dimensional spaces generated by deep
graph kernels remain meaningful for our networks [3].
Further work is needed to shed more light on the geom-
etry of those spaces in order to derive the optimal sub-
structures and dimensionality required to support best
graph matching. More work is also required to under-
stand the sensitivity of our approach to the time period
over which mobility networks are constructed. There is
also an opportunity to explore better ways of exploiting
pairwise distance information.

Apart from emphasizing the vulnerability of pop-
ular anonymization techniques based on user-specific
location pseudonymization, our work provides insights
into network features that can facilitate the identifia-
bility of location traces. Our framework also opens the
door to new anonymization techniques that can apply
structural similarity methods to individual traces in or-
der to cluster people with similar mobility behaviour.

This approach may then support statistically faithful
population mobility studies on mobility networks with
k−anonymity guarantees to participants.

Apart from graph kernel similarity metrics, tools
for network deanonymization can also be sought in
the direction of graph mining: applying heavy sub-
graph mining techniques [4] or searching for persistent
cashcades [20]. Frequent substructure pattern mining
(gSpan [40]) and discriminative frequent subgraph min-
ing (CORK [33]) techniques can also be considered.

Our methodology is, in principle, applicable to all
types of data where individuals transition between a
set of discrete states. Therefore, one of our immediate
goals is to evaluate the performance of such retrieval
strategies on different categories of datasets, such as web
browsing histories or smartphone application usage se-
quences.

A drawback of our current approach is that it can-
not be directly used to mimic individual or group mobil-
ity by synthesizing traces. Fitting a generative model on
mobility traces and then defining a kernel on this model
may provide better anonymity, and therefore privacy,
and it would also support the generation of artificial
traces which mimic the mobility of users.

Ethics Statement
Device Analyzer was reviewed and approved by the
Ethics Committee at the Department of Computer Sci-
ence and Technology, University of Cambridge.

Acknowledgments
The authors gratefully acknowledge the support of Alan
Turing Institute grant TU/B/000069, Nokia Bell Labs
and Cambridge Biomedical Research Centre.

References
[1] Charu C. Aggarwal and Philip S. Yu. 2008. A Gen-

eral Survey of Privacy-Preserving Data Mining Models
and Algorithms. In Privacy-Preserving Data Mining,
Charu C. Aggarwal, Philip S. Yu, and Ahmed K. Elma-
garmid (Eds.). The Kluwer International Series on Advances
in Database Systems, Vol. 34. Springer US, 11–52. DOI:
http://dx.doi.org/10.1007/978-0-387-70992-5_2

http://dx.doi.org/10.1007/978-0-387-70992-5_2


Quantifying Privacy Loss of Human Mobility Graph Topology 20

[2] Berker Agir, Kévin Huguenin, Urs Hengartner, and Jean-
Pierre Hubaux. 2016. On the Privacy Implications of Loca-
tion Semantics. PoPETs 2016, 4 (2016), 165–183. DOI:
http://dx.doi.org/10.1515/popets-2016-0034

[3] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan,
and Uri Shaft. 1999. When Is ”Nearest Neighbor” Meaning-
ful?. In Proceedings of the 7th International Conference on
Database Theory (ICDT ’99). Springer-Verlag, London, UK,
UK, 217–235. http://dl.acm.org/citation.cfm?id=645503.
656271

[4] Petko Bogdanov, Misael Mongiovì, and Ambuj K. Singh.
2011. Mining Heavy Subgraphs in Time-Evolving Net-
works. In Proceedings of the 2011 IEEE 11th Interna-
tional Conference on Data Mining (ICDM ’11). IEEE
Computer Society, Washington, DC, USA, 81–90. DOI:
http://dx.doi.org/10.1109/ICDM.2011.101

[5] Karsten M. Borgwardt and Hans-Peter Kriegel. 2005.
Shortest-Path Kernels on Graphs. In Proceedings of the
Fifth IEEE International Conference on Data Mining (ICDM
2005). IEEE Computer Society, Washington, DC, USA, 74–
81. http://dx.doi.org/10.1109/ICDM.2005.132

[6] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Ver-
leysen, and Vincent D. Blondel. 2013. Unique in the Crowd:
The privacy bounds of human mobility. Scientific reports
3, 1 (dec 2013), 1376. DOI:http://dx.doi.org/10.1038/
srep01376

[7] Yoni De Mulder, George Danezis, Lejla Batina, and Bart
Preneel. 2008. Identification via location-profiling in GSM
networks. In Proceedings of the 2008 ACM Workshop on
Privacy in the Electronic Society, WPES 2008, Alexandria,
VA, USA, October 27, 2008. 23–32. DOI:http://dx.doi.org/
10.1145/1456403.1456409

[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. 2006. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography Conference. Springer,
265–284.

[9] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez
Del Prado Cortez. 2014. De-anonymization Attack on Ge-
olocated Data. J. Comput. Syst. Sci. 80, 8 (Dec. 2014),
1597–1614. DOI:http://dx.doi.org/10.1016/j.jcss.2014.04.
024

[10] Philippe Golle and Kurt Partridge. 2009. On the Anonymity
of Home/Work Location Pairs. Springer Berlin Heidelberg,
Berlin, Heidelberg, 390–397. DOI:http://dx.doi.org/10.
1007/978-3-642-01516-8_26

[11] Marco Gruteser and Dirk Grunwald. 2003. Anonymous
Usage of Location-Based Services Through Spatial and
Temporal Cloaking. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services
(MobiSys ’03). ACM, New York, NY, USA, 31–42. DOI:
http://dx.doi.org/10.1145/1066116.1189037

[12] David Haussler. 1999. Convolution kernels on discrete struc-
tures. Technical Report. Technical report, Department of
Computer Science, University of California at Santa Cruz.

[13] Jong Hee Kang, William Welbourne, Benjamin Stewart,
and Gaetano Borriello. 2005. Extracting places from traces
of locations. ACM SIGMOBILE Mobile Computing and
Communications Review 9, 3 (2005), 58. DOI:http://dx.
doi.org/10.1145/1094549.1094558

[14] Juha K. Laurila, Jan Blom, Olivier Dousse, Daniel Gatica-
Perez, Olivier Bornet, Julien Eberle, Imad Aad, and Markus
Miettinen. The mobile data challenge: Big data for mobile
computing research,” in Proc. MDC Workshop, 2012.

[15] Ninghui Li, Tiancheng Li, and Suresh Venkatasubrama-
nian. 2007. t-closeness: Privacy beyond k-anonymity and
l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on. IEEE, 106–115.

[16] Miao Lin, Hong Cao, Vincent W. Zheng, Kevin Chen-Chuan
Chang, and Shonali Krishnaswamy. 2015. Mobile user
verification/identification using statistical mobility profile.
In 2015 International Conference on Big Data and Smart
Computing, BIGCOMP 2015, Jeju, South Korea, Febru-
ary 9-11, 2015. 15–18. DOI:http://dx.doi.org/10.1109/
35021BIGCOMP.2015.7072841

[17] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke,
and Muthuramakrishnan Venkitasubramaniam. 2007. L-
diversity: Privacy Beyond K-anonymity. ACM Trans. Knowl.
Discov. Data 1, 1, Article 3 (March 2007). DOI:http://dx.
doi.org/10.1145/1217299.1217302

[18] Brendan D. McKay and Adolfo Piperno. 2014. Practical
graph isomorphism, II. Journal of Symbolic Computation 60,
0 (2014), 94 – 112. DOI:http://dx.doi.org/10.1016/j.jsc.
2013.09.003

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781 (2013).

[20] Steven Morse, Marta C. Gonzalez, and Natasha Marku-
zon. 2016. Persistent cascades: Measuring fundamental
communication structure in social networks. In 2016 IEEE
International Conference on Big Data, BigData 2016, Wash-
ington DC, USA, December 5-8, 2016. 969–975. DOI:
http://dx.doi.org/10.1109/BigData.2016.7840695

[21] Farid M Naini, Jayakrishnan Unnikrishnan, Patrick Thiran,
and Martin Vetterli. 2016. Where You Are Is Who You Are:
User Identification by Matching Statistics. IEEE Trans-
actions on Information Forensics and Security 11, 2 (feb
2016), 358–372. DOI:http://dx.doi.org/10.1109/TIFS.2015.
2498131

[22] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust De-
anonymization of Large Sparse Datasets. In Proceedings
of the 2008 IEEE Symposium on Security and Privacy (SP
’08). IEEE Computer Society, Washington, DC, USA, 111–
125. DOI:http://dx.doi.org/10.1109/SP.2008.33

[23] Arvind Narayanan and Vitaly Shmatikov. 2009. De-
anonymizing social networks. In Security and Privacy, 2009
30th IEEE Symposium on. IEEE, 173–187.

[24] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. 2014.
On the uniqueness of Web browsing history patterns. An-
nales des Télécommunications 69, 1-2 (2014), 63–74. DOI:
http://dx.doi.org/10.1007/s12243-013-0392-5

[25] Andreas Pfitzmann and Marit Hansen. 2010. A termi-
nology for talking about privacy by data minimization:
Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management. http://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf. (Aug.
2010). http://dud.inf.tu-dresden.de/literatur/Anon_
Terminology_v0.34.pdf v0.34.

[26] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano
De Cristofaro. 2017. What Does The Crowd Say About

http://dx.doi.org/10.1515/popets-2016-0034
http://dl.acm.org/citation.cfm?id=645503.656271
http://dl.acm.org/citation.cfm?id=645503.656271
http://dx.doi.org/10.1109/ICDM.2011.101
http://dx.doi.org/10.1109/ICDM.2005.132
http://dx.doi.org/10.1038/srep01376
http://dx.doi.org/10.1038/srep01376
http://dx.doi.org/10.1145/1456403.1456409
http://dx.doi.org/10.1145/1456403.1456409
http://dx.doi.org/10.1016/j.jcss.2014.04.024
http://dx.doi.org/10.1016/j.jcss.2014.04.024
http://dx.doi.org/10.1007/978-3-642-01516-8_26
http://dx.doi.org/10.1007/978-3-642-01516-8_26
http://dx.doi.org/10.1145/1066116.1189037
http://dx.doi.org/10.1145/1094549.1094558
http://dx.doi.org/10.1145/1094549.1094558
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072841
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072841
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1145/1217299.1217302
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1109/BigData.2016.7840695
http://dx.doi.org/10.1109/TIFS.2015.2498131
http://dx.doi.org/10.1109/TIFS.2015.2498131
http://dx.doi.org/10.1109/SP.2008.33
http://dx.doi.org/10.1007/s12243-013-0392-5
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf


Quantifying Privacy Loss of Human Mobility Graph Topology 21

You? Evaluating Aggregation-based Location Privacy. arXiv
preprint arXiv:1703.00366 (2017).

[27] Luca Rossi, Matthew J. Williams, Christoph Stich, and
Mirco Musolesi. 2015. Privacy and the City: User Identi-
fication and Location Semantics in Location-Based Social
Networks. In Proceedings of the Ninth International Con-
ference on Web and Social Media, ICWSM 2015, Univer-
sity of Oxford, Oxford, UK, May 26-29, 2015. 387–396.
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/
paper/view/10498

[28] Ingo Scholtes. 2017. When is a Network a Network?: Multi-
Order Graphical Model Selection in Pathways and Temporal
Networks. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD ’17). ACM, New York, NY, USA, 1037–1046.
DOI:http://dx.doi.org/10.1145/3097983.3098145

[29] Kumar Sharad and George Danezis. 2014. An Automated
Social Graph De-anonymization Technique. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society
(WPES ’14). ACM, New York, NY, USA, 47–58. DOI:http:
//dx.doi.org/10.1145/2665943.2665960

[30] Nino Shervashidze, Pascal Schweitzer, Van Leeuwen,
Erik Jan, Kurt Mehlhorn, and Karsten Borgwardt. 2011.
Weisfeiler-Lehman graph kernels. Journal of Machine
Learning Research 12 (2011), 2539–2561. DOI:http:
//dx.doi.org/10.1.1.232.1510

[31] Reza Shokri, Carmela Troncoso, Claudia Diaz, Julien Freudi-
ger, and Jean-Pierre Hubaux. 2010. Unraveling an old cloak:
k-anonymity for location privacy. In Proceedings of the 9th
annual ACM workshop on Privacy in the electronic society.
ACM, 115–118.

[32] Latanya Sweeney. 2002. k-anonymity: A model for protect-
ing privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 10, 05 (2002), 557–570.

[33] Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han,
Hans Peter Kriegel, Alex Smola, Le Song, Philip S. Yu,
Xifeng Yan, and Karsten M. Borgwardt. 2010. Discrimi-
native frequent subgraph mining with optimality guarantees.
Statistical Analysis and Data Mining 3, 5 (2010), 302–318.
DOI:http://dx.doi.org/10.1002/sam.10084

[34] S.V.N. Vishwanathan, Nicol Schraudolph, Risi Kondor, and
K.M. Borgwardt. 2010. Graph Kenrels. Journal of Machine
Learning Research 11 (2010), 1201–1242. DOI:http://dx.
doi.org/10.1142/9789812772435_0002

[35] Daniel T. Wagner, Andrew Rice, and Alastair R. Beresford.
2014. Device Analyzer: Understanding Smartphone Usage.
Springer International Publishing, Cham, 195–208. DOI:
http://dx.doi.org/10.1007/978-3-319-11569-6_16

[36] Boris Weisfeiler and AA Lehman. 1968. A reduction of a
graph to a canonical form and an algebra arising during this
reduction. Nauchno-Technicheskaya Informatsia 2, 9 (1968),
12–16.

[37] Pascal Welke, Ionut Andone, Konrad Blaszkiewicz, and
Alexander Markowetz. 2016. Differentiating Smartphone
Users by App Usage. In Proceedings of the 2016 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp ’16). ACM, New York, NY, USA,
519–523. DOI:http://dx.doi.org/10.1145/2971648.2971707

[38] Fengli Xu, Zhen Tu, Yong Li, Pengyu Zhang, Xiaoming Fu,
and Depeng Jin. 2017. Trajectory Recovery From Ash: User

Privacy Is NOT Preserved in Aggregated Mobility Data.
In Proceedings of the 26th International Conference on
World Wide Web. International World Wide Web Confer-
ences Steering Committee, 1241–1250.

[39] Jian Xu, Thanuka L. Wickramarathne, and Nitesh V.
Chawla. 2016. Representing higher-order dependencies
in networks. Science Advances 2, 5 (2016), e1600028–
e1600028. DOI:http://dx.doi.org/10.1126/sciadv.1600028

[40] Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based
Substructure Pattern Mining. In Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM ’02).
IEEE Computer Society, Washington, DC, USA, 721–. http:
//dl.acm.org/citation.cfm?id=844380.844811

[41] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep
Graph Kernels. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD ’15). ACM, New York, NY, USA, 1365–1374.
DOI:http://dx.doi.org/10.1145/2783258.2783417

[42] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger (Peng) Yu,
and Martin Abadi. 2012. Host Fingerprinting and Track-
ing on the Web:Privacy and Security Implications, In
The 19th Annual Network and Distributed System Secu-
rity Symposium (NDSS) 2012. (February 2012). https:
//www.microsoft.com/en-us/research/publication/host-
fingerprinting-and-tracking-on-the-webprivacy-and-security-
implications/

[43] Hui Zang and Jean Bolot. 2011. Anonymization of Location
Data Does Not Work: A Large-scale Measurement Study. In
Proceedings of the 17th Annual International Conference on
Mobile Computing and Networking (MobiCom ’11). ACM,
New York, NY, USA, 145–156. DOI:http://dx.doi.org/10.
1145/2030613.2030630

[44] Elena Zheleva and Lise Getoor. 2009. To join or not to
join: the illusion of privacy in social networks with mixed
public and private user profiles. In Proceedings of the 18th
International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20-24, 2009. 531–540.

http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10498
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10498
http://dx.doi.org/10.1145/3097983.3098145
http://dx.doi.org/10.1145/2665943.2665960
http://dx.doi.org/10.1145/2665943.2665960
http://dx.doi.org/10.1.1.232.1510
http://dx.doi.org/10.1.1.232.1510
http://dx.doi.org/10.1002/sam.10084
http://dx.doi.org/10.1142/9789812772435_0002
http://dx.doi.org/10.1142/9789812772435_0002
http://dx.doi.org/10.1007/978-3-319-11569-6_16
http://dx.doi.org/10.1145/2971648.2971707
http://dx.doi.org/10.1126/sciadv.1600028
http://dl.acm.org/citation.cfm?id=844380.844811
http://dl.acm.org/citation.cfm?id=844380.844811
http://dx.doi.org/10.1145/2783258.2783417
https://www.microsoft.com/en-us/research/publication/host-fingerprinting-and-tracking-on-the-webprivacy-and-security-implications/
https://www.microsoft.com/en-us/research/publication/host-fingerprinting-and-tracking-on-the-webprivacy-and-security-implications/
https://www.microsoft.com/en-us/research/publication/host-fingerprinting-and-tracking-on-the-webprivacy-and-security-implications/
https://www.microsoft.com/en-us/research/publication/host-fingerprinting-and-tracking-on-the-webprivacy-and-security-implications/
http://dx.doi.org/10.1145/2030613.2030630
http://dx.doi.org/10.1145/2030613.2030630

	Quantifying Privacy Loss of  Human Mobility Graph Topology
	1 Introduction
	2 Related Work
	2.1 Mobility Deanonymization
	2.2 Anonymity of Graph Data 

	3 Proposed Methodology
	3.1 k-anonymity on Graphs
	3.2 Mobility Information Networks
	3.3 Graph Similarity Metrics
	3.3.1 Kernels on degree distribution 
	3.3.2 Kernel on graph atomic substructures

	3.4 Deanonymization of User Mobility Networks and Privacy Leakage Evaluation
	3.4.1 Hypothesis
	3.4.2 Threat Model 
	3.4.3 Privacy Loss


	4 Data for Analysis
	4.1 Data Description
	4.2 Mobility Networks Construction
	4.3 Data Properties and Statistics 
	4.4 Anonymity Clusters on Top-N Networks

	5 Evaluation of Privacy Loss in Longitudinal Mobility Traces
	5.1 Experimental Setup
	5.2 Mobility Networks & Kernels
	5.3 Evaluation & Discussion
	5.4 Quantification of Privay Loss
	5.5 Defense Mechanisms 

	6 Conclusions & Future Work
	Ethics Statement
	Acknowledgments


