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Abstract: A number of studies have recently been made
on discrete distribution estimation in the local model, in
which users obfuscate their personal data (e.g., location,
response in a survey) by themselves and a data collec-
tor estimates a distribution of the original personal data
from the obfuscated data. Unlike the centralized model,
in which a trusted database administrator can access
all users’ personal data, the local model does not suffer
from the risk of data leakage. A representative privacy
metric in this model is LDP (Local Differential Privacy),
which controls the amount of information leakage by a
parameter ε called privacy budget. When ε is small, a
large amount of noise is added to the personal data, and
therefore users’ privacy is strongly protected. However,
when the number of users N is small (e.g., a small-scale
enterprise may not be able to collect large samples) or
when most users adopt a small value of ε, the estimation
of the distribution becomes a very challenging task.
The goal of this paper is to accurately estimate the dis-
tribution in the cases explained above. To achieve this
goal, we focus on the EM (Expectation-Maximization)
reconstruction method, which is a state-of-the-art sta-
tistical inference method, and propose a method to cor-
rect its estimation error (i.e., difference between the es-
timate and the true value) using the theory of Rilstone
et al. We prove that the proposed method reduces the
MSE (Mean Square Error) under some assumptions. We
also evaluate the proposed method using three large-
scale datasets, two of which contain location data while
the other contains census data. The results show that
the proposed method significantly outperforms the EM
reconstruction method in all of the datasets when N or
ε is small.
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1 Introduction
With the widespread use of personal computers, GPS-
equipped devices (e.g., mobile phones, in-car navigation
systems), and IoT devices (e.g., smart meters, home
monitoring devices), personal data are increasingly col-
lected and analyzed for various purposes. For example,
a great amount of location data (a.k.a. Spatial Big Data
[46]) can be analyzed to find commonly frequented pub-
lic areas [51], or can be made public to provide traffic
information to users [26]. Power-consumption data from
smart meters can be analyzed to extract typical daily
consumption patterns in households [23], or to identify
the right customers to target for demand response pro-
grams [8]. Personal data (e.g., age, gender, income, mar-
ital satisfaction) collected via survey sampling can be
used to infer the statistics (e.g., histogram, heavy hit-
ters) of a target population.

While these data are useful for discovering knowl-
edge or improving the quality of service, the collection
of personal data can lead to a breach of users’ pri-
vacy. For example, users’ home/workplace pairs [18],
long-term properties (e.g., age, job position, smoking
habit) [36], and social relationship [14] can be inferred
from their disclosed locations. In-home activities (e.g.,
presence/absence, appliance use, sleep/wake cycle) can
also be inferred from power-consumption data [35]. Fur-
thermore, various kinds of personal data from different
sources can be linked and aggregated into a user profile
[21, 42], and can be provided to malicious parties.

PPDM (Privacy Preserving Data Mining) algo-
rithms [1] have been widely studied to protect users’
privacy while keeping data utility. According to their
architecture, they can be divided into the following two
categories: centralized model and local model (or local
privacy model) [13]. In the centralized model, there is
a trusted database administrator, who can access to all
users’ personal data. When the administrator provides
the data to a data analyst (who is possibly malicious),
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he/she replaces user IDs with pseudonyms and obfus-
cates the data (e.g., by adding noise, generalization,
adding dummy data). The obfuscation algorithm is de-
signed so that the original data are not recovered from
the obfuscated data (while enabling data analysis). In
this model, however, the original data of all users may
be leaked from the database to a malicious adversary
by illegal access or internal fraud. This issue is crucial
in recent years, in which the number of data leakage in-
cidents is increasing. For example, the number of U.S.
data breaches was increased by 40% in 2016 [10].

The local model is designed to be more secure
against such a data leakage. In this model, users do not
assume a trusted party that can access to their personal
data. The users obfuscate their personal data (e.g., add
noise to the data, generalize the data) by themselves,
and send them to a data collector (or data analyst). The
data collector does not observe the original data, but
observes only the obfuscated data. Based on the obfus-
cated data, he/she infers the statistics (e.g., histogram,
heavy hitters [39]) of the original data or provides a ser-
vice (e.g., provides POI (point of interest) information
nearby the noisy location [4]) to the users.

In this paper, we focus on the problem of discrete
distribution estimation in the local model, in which data
are represented as discrete values and a data collector
estimates a distribution (i.e., multinomial distribution)
of the original personal data from the obfuscated data.
Examples of the personal data include locations, power-
consumption data, responses in a survey, and radiation
levels [43] (continuous data such as locations and power-
consumption data are discretized into bins). We refer
to this problem as LPDE (Locally Private Distribution
Estimation) for short. LPDE is composed of the follow-
ing two phases: (1) obfuscating the personal data (i.e.,
obfuscation phase) and (2) estimating the discrete dis-
tribution (i.e., distribution estimation phase).

More formally, suppose that N users u1, · · · , uN
send their obfuscated data to the data collector. Let
X = {x1, · · · , xK} (alphabet of size K) be a space of
personal data, Y = {y1, · · · , yL} (alphabet of size L)
be a space of obfuscated data, and Xn (resp. Yn) be a
random variable representing personal data (resp. ob-
fuscated data) of un. Each user un (1 ≤ n ≤ N) obfus-
cates his/her personal dataXn via an obfuscation mech-
anism G, and sends the obfuscated data Yn to a data
collector (in this paper, we assume that each user sends
only one sample; we discuss the case where each user
sends multiple samples in Section 5.4). The obfuscation
mechanism G can be represented as a K × L transition
matrix, whose (i, j)-th element Gij is a transition prob-
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Fig. 1. Overview of LPDE. p̂ = (p̂1, · · · , p̂K)T is an estimate of
p = (p1, · · · , pK)T .

ability from xi to yj : Gij = Pr(Y = yj |X = xi) (1 ≤
i ≤ K, 1 ≤ j ≤ L). We assume that the original data
X1, · · · , XN are independent and identically distributed
(i.i.d.) with distribution p = (p1, · · · , pK)T (we regard
p as a K-dimensional vector), where pi = Pr(X = xi)
(1 ≤ i ≤ K). The data collector estimates p from the
obfuscated data Y1, · · · , YN with the help of the knowl-
edge of G. Fig. 1 shows the overview of LPDE.

A number of studies have recently been made on
LPDE (e.g., [3, 17, 25, 30, 31, 37, 40, 44]), mainly from
the perspective of privacy metrics, obfuscation mech-
anisms, and statistical inference methods. A represen-
tative privacy metric in the local model is LDP (Local
Differential Privacy) [11]. LDP is a variant of differ-
ential privacy [12] in the local model, and provides pri-
vacy guarantees against adversaries with arbitrary back-
ground knowledge. Roughly speaking, LDP guarantees
that the adversary cannot infer the value of the original
data from the obfuscated data with a certain degree of
confidence. The amount of information leakage can be
bounded by a parameter ε called privacy budget, and a
large amount of noise is added to the personal data when
ε is small (i.e., high privacy regime). The K-RR (K-
ary Randomized Response) [30, 31] and the RAPPOR
(Randomized Aggregatable Privacy-Preserving Ordinal
Response) [17] are examples of obfuscation mechanisms
satisfying LDP.

As for statistical inference methods, the matrix in-
version method [3, 25, 30] and the EM (Expectation-
Maximization) reconstruction method [2, 3] (which is
also called the iterative Bayesian technique [3]) are well-
known approaches. The matrix inversion method is used
when the output alphabet size L is equal to the input al-
phabet size K. It infers a discrete distribution p by mul-
tiplying an empirical distribution of the obfuscated data
Y1, · · · , YN by an inverse matrixG−1. A major drawback
of this method is that some elements in an estimate p̂ of
p can be negative, especially when the number of users
N is small. The EM reconstruction method is a more
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sophisticated way to infer p. This method is based on
the EM algorithm [22], and iteratively estimates p until
convergence. The feature of this method is that the final
estimate (converged value) p̂ is equal to the ML (Max-
imum Likelihood) estimate in the probability simplex
(i.e., p̂1, · · · , p̂K ≥ 0,

∑K
i=1 p̂i = 1), irrespective of the

number of users N (see Section 3.2 for more details). It
is reported in [3] that the EM reconstruction method
significantly outperforms the matrix inversion method.

One of the main challenges in LPDE is how to ac-
curately estimate the true discrete distribution p when
the number of users N is small, or when users add a
large amount of noise to their personal data (i.e., high
privacy regime in which the privacy budget ε is small).
It is well known that the ML estimate (i.e., the estimate
by the EM reconstruction method) converges to the true
value as the sample size goes to infinity. However, the
number of users N can be small in practice due to var-
ious reasons. For example, N can be small when a data
collector is a small-scale enterprise. Although Google
implemented the RAPPOR in the Chrome browser and
collected a dozen million samples [17], small-scale enter-
prises may not be able to collect such large samples. For
another example, N can be small when a data collector
estimates a distribution for people at a certain place or
at a certain time. Furthermore, even if N is large, the
effective sample size can be small in the high privacy
regime. Duchi et al. [11] showed that for ε ∈ [0, 22

35 ],
the effective sample size required to achieve a certain
level of estimation errors (minimax rate) is 4ε2N (i.e.,
it decreases quadratically with decrease in ε). Thus, it
is very challenging to accurately estimate p when ε is
small (e.g., ε = 0.01 or 0.1).

1.1 Our Contributions

The goal of this paper is to accurately estimate a dis-
crete distribution p when the number of users N or the
privacy budget ε is small. To achieve this goal, we fo-
cus on a distribution estimation phase in LPDE. Specif-
ically, we focus on the EM reconstruction method [2, 3],
which is a state-of-the-art statistical inference method,
and propose a method to correct its estimation error
(i.e., difference between the estimate and the true value)
to significantly improve the estimation accuracy.

Our contributions are summarized as follows:
– We propose a method to correct an estimation error

of the EM reconstruction method based on the the-
ory of Rilstone et al. [41]. A major problem here is
that the estimated error value may not be accurate

when N or ε is small. To address this issue, the pro-
posed method multiplies the estimated error value
by a weight parameter α, and automatically deter-
mines an optimal value of α. We also prove that the
proposed method reduces the MSE (Mean Square
Error) under some assumptions (Section 4).

– We evaluate the proposed method using three large-
scale real datasets: the People-flow dataset [45], the
Foursquare dataset [50], and the US Census (1990)
dataset [33]. The first and second datasets con-
tain location data, while the third dataset contains
census data. The results show that the proposed
method significantly outperforms the existing in-
ference methods (i.e., the matrix inversion method
[3, 25, 30] and the EM reconstruction method [2, 3])
in all of the datasets when N or ε is small (Sec-
tion 5).

More specifically about the second contribution, we con-
sider the fact that the required privacy level can vary
from user to user in practice [29]. Conservative users
would require high level of privacy, whereas liberal users
would not mind low level of privacy. Some liberal users
might not mind it even if some of their personal data
(e.g., visited sightseeing places, innocuous responses in
a survey) are made public, and consequently they might
not use an obfuscation method.

Taking this into account, we evaluated the proposed
method (denoted by Proposal) in a scenario where the
privacy budget ε is different from user to user (those
who do not use an obfuscation method can be modeled
by setting ε to ∞). We also generalize the matrix inver-
sion method (denoted by MatInv) and the EM recon-
struction method (denoted by EM) to such a scenario
(see Section 3.2), and evaluate these methods for com-
parison. The results show that Proposal outperforms
MatInv and EM when the total number of users N
is small (e.g., N ≈ 1000) or when N is large but most
users adopt a small value of ε (e.g., ε = 0.1).

In addition to the above-mentioned methods, we
also evaluate two methods that estimate p without the
knowledge of the obfuscation mechanism. The first one
estimates p as an empirical distribution of the obfus-
cated data Y1, · · · , YN (denoted by ObfDat). The sec-
ond one always estimates p as a uniform distribution:
p̂ = ( 1

K , · · · ,
1
K )T (denoted by Uniform). In our exper-

iments, we show that all of Proposal, MatInv, and
EM performed worse than these two methods when
both N and ε (adopted by most users) are extremely
small. This is because the variance of the estimate p̂
is very small in ObfDat and Uniform (in particular,
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the variance of p̂ is always 0 in Uniform). On the other
hand, the variance of p̂ is very large in Proposal,Mat-
Inv, and EM when both N and ε are extremely small.
We show this limitation, and provide a guideline for
when to use the proposed method by thoroughly evalu-
ating the effects of N and ε on the estimation accuracy.

2 Preliminaries

2.1 Notations

Table 1 shows the basic notations used in the rest of this
paper. It should be noted that we denote an obfuscation
mechanism of user un by G(n) ∈ [0, 1]K×L (instead of
G). This is because the privacy budget ε can be different
from user to user, as described in Section 1.1.

Each user un (1 ≤ n ≤ N) obfuscates his/her per-
sonal data Xn via the obfuscation mechanism G(n), and
sends the obfuscated data Yn to a data collector (we dis-
cuss the case where each user sends multiple samples in
Section 5.4). The (i, j)-th element of G(n) is a transition
probability from xi to yj : G(n)

i,j = Pr(Yn = yj |Xn = xi)
(1 ≤ i ≤ K, 1 ≤ j ≤ L). The original data X1, · · · , XN
are independent and identically distributed (i.i.d.) with
distribution p = (p1, · · · , pK)T ∈ [0, 1]K . We denote a
set of all original data {X1, · · · , XN} and a set of all ob-
fuscated data {Y1, · · · , YN} by X and Y, respectively.
The data collector estimates p from Y with the help
of the knowledge of G(1), · · · , G(N). We denote the esti-
mate of p by p̂ = (p̂1, · · · , p̂K)T ∈ RK .

We also denote the probability simplex by C; i.e.,
C := {p|p1, · · · , pK ≥ 0,

∑K
i=1 pi = 1}. Moreover, we

define the following K-dimensional vector:

gn := (G(n)
1,π(Yn), · · · , G

(n)
K,π(Yn))

T ∈ [0, 1]K , (1)

where π(Yn) is an index of the alphabet in Y that is
equal to Yn (i.e., if Yn = yj , then π(Yn) = j). gn will be
used in Sections 3.2 and 4.

2.2 Utility Metrics

In this paper, we use the MSE (Mean Square Error)
and the JS (Jensen-Shannon) divergence [34] as utility
metrics to measure the difference between the true dis-
tribution p and its estimate p̂.

MSE (Mean Square Error). The MSE is one of
the most popular metrics to measure the quality of an

Table 1. Basic notations used in this paper (1 ≤ n ≤ N).

Symbol Description
R Set of real numbers.
N Number of users.
un n-th user.
X = {x1, · · · , xK} Space of original data.
Y = {y1, · · · , yL} Space of obfuscated data.
Xn n-th user’s original data.
Yn n-th user’s obfuscated data.
G(n) ∈ [0, 1]K×L n-th user’s obfuscation mechanism.
X = {X1, · · · , XN} Set of all original data.
Y = {Y1, · · · , YN} Set of all obfuscated data.
p = (p1, · · · , pK)T Distribution of the original data.
p̂ = (p̂1, · · · , p̂K)T Estimate of p.
C := {p|p1, · · · , pK ≥ 0,

∑K

i=1 pi = 1}
(i.e., probability simplex).

π(Yn) index of the alphabet in Y equal to Yn
(i.e., if Yn = yj , then π(Yn) = j).

gn := (G(n)
1,π(Yn), · · · , G

(n)
K,π(Yn))T .

estimator. Given p and p̂, the squared error (i.e., l2
loss) is computed as follows:

||p̂− p||22 =
K∑
i=1

(pi − p̂i)2. (2)

It should be noted that the original data X are ran-
domly generated from p, and the obfuscated data Y
are randomly generated from X using the obfuscation
mechanisms G(1), · · · , G(N). Since p̂ is computed from
Y, the squared error can be changed depending on Y.

The MSE is an expectation of the squared error:

MSE := E[||p̂− p||22] (3)

(or the sample mean of the squared errors over multiple
realizations of Y). Based on the bias-variance decompo-
sition [22], it can be decomposed as follows:

MSE = ||Bias(p, p̂)||22 + Var(p̂), (4)

where

Bias(p, p̂) := E[p̂]− p (5)
Var(p̂) := E[||p̂− E[p̂]||22]. (6)

Fig. 2 shows the relationship between the MSE,
bias, and variance. Note that the bias and variance are
highly dependent on inference methods. For example,
when we always estimate p as p = ( 1

K , · · · ,
1
K )T (i.e.,

Uniform), the variance is always 0 (i.e., Var(p̂) = 0).
When we use the EM reconstruction method, the bias
is much smaller (as shown in our experiments) and the
variance is larger than 0.
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Fig. 2. Relationship between the MSE, bias, and variance. The
closed circle (•) is the expectation of p̂ (i.e., E[p̂]). The MSE can
be decomposed into Bias(p, p̂) and Var(p̂).

JS (Jensen-Shannon) divergence. Since the JS di-
vergence [34] is related to the KL (Kullback-Leibler)
divergence [9], we first explain the KL divergence. The
KL divergence between p and p̂ is given by

D(p ‖ p̂) :=
K∑
i=1

pi log pi
p̂i
. (7)

Although the KL divergence can also measure the differ-
ence between p and p̂, it becomes infinite when pi > 0
and p̂i = 0 for some i ∈ {1, · · · ,K}.

To avoid this problem, we use the JS divergence.
The JS divergence between p and p̂ is given by

JSD(p ‖ p̂) := 1
2D(p ‖m) + 1

2D(p̂ ‖m), (8)

where m = (p+ p̂)/2. In contrast to the KL divergence,
the JS divergence is always finite.

It can be seen from (2) and (3) that the errors in
small values of p has a small impact on the MSE. On the
other hand, the errors in small values of p can make a
large impact on the JS divergence (due to the logarithm
in (7)). Thus, the MSE is suitable for evaluating the
errors in large values of p, whereas the JS divergence is
suitable for evaluating the errors in small values of p.

2.3 Privacy Metrics

In this paper, we use LDP (Local Differential Privacy)
[11] as a privacy metric in the local model:

Definition 1 (ε-LDP [11]). An obfuscation mechanism
G(n) provides ε-LDP (ε-local differential privacy) if for
all i, j ∈ {1, · · · ,K} and all S ⊂ Y, we have

G(n)(S|Xn = xi) ≤ eεG(n)(S|Xn = xj), (9)

where G(n)(S|Xn = xi) = Pr(Yn ∈ S|Xn = xi) and
ε ≥ 0.

LDP guarantees that an adversary who obtains obfus-
cated data Yn cannot infer, for any pair of xi and xj ,

whether Xn = xi or Xn = xj with a certain degree of
confidence. When ε is close to 0, it seems for the ad-
versary that all of x1, · · · , xK ∈ X are almost equally
likely. Therefore, LDP with a small value of ε guaran-
tees strong privacy protection.

3 Related Work
We now review the previous work related to ours. We
describe obfuscation mechanisms and statistical infer-
ence methods in Sections 3.1 and 3.2, respectively.

3.1 Obfuscation Mechanisms

Obfuscation mechanisms that satisfy LDP have been
widely studied in recent years. The K-RR (K-ary Ran-
domized Response) [30, 31] is one of the simplest mech-
anisms satisfying LDP. This mechanism is a general-
ization of Warner’s binary randomized response [49] to
K-ary alphabets.

In the K-RR, the output range is identical to the
input domain; i.e., X = Y. Let GKRR ∈ [0, 1]K×K be
the K-RR. The (i, j)-th element of GKRR is given by

GKRRi,j =

{
eε

K−1+eε (if j = i)
1

K−1+eε (if j 6= i)
(10)

(1 ≤ i, j ≤ K). The K-RR satisfies ε-LDP.
Another example is the RAPPOR (Randomized Ag-

gregatable Privacy-Preserving Ordinal Response) [17],
which is used in the Chrome browser. The simplest con-
figuration of the RAPPOR is called the basic one-time
RAPPOR. The basic one-time RAPPOR is a mecha-
nism with the output alphabet Y = {0, 1}K of size 2K .
Specifically, it deterministically maps xi (1 ≤ i ≤ K)
onto ei ∈ {0, 1}K , where ei is the i-th standard ba-
sis vector. Then it flips each bit of ei with probability
1/(1 + eε/2). This mechanism also satisfies ε-LDP.

Kairouz et al. [30, 31] theoretically analyzed the
K-RR and the basic one-time RAPPOR. In [30], they
proved that under l1 and l2 losses, the K-RR and the
basic one-time RAPPOR are order optimal in the low
privacy regime (e.g., ε = ln(K)) and high privacy regime
(e.g., ε = 0.01, 0.1), respectively. In [31], they also proved
that the K-RR is optimal in that it maximizes the mu-
tual information I(X;Y ) between the original data X
and the obfuscated data Y in the low privacy regime.

Other promising obfuscation mechanisms have also
been studied in the literature. Kairouz et al. [30] pro-
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posed the O-RR, which is an extension of the K-RR us-
ing hash functions and cohorts. They showed that the
performance of the O-RR meets or exceeds that of K-
RR and the basic one-time RAPPOR in both low and
high privacy regimes. Sei et al. [44] proposed an exten-
sion of the K-RR that not only randomizes the data but
also adds multiple dummy samples. They showed that
it outperforms the K-RR for ε ∈ [0.1, 1] using several
artificial datasets.

In this paper, we use the K-RR as an obfuscation
mechanism satisfying LDP due to the following reasons:
(1) it is simple and widely used; (2) the output alphabet
size L is small (not 2K but K); (3) it can provide the
optimal data utility in the low privacy regime [30, 31].

3.2 Statistical Inference Methods

The data collector computes an estimate p̂ =
(p̂1, · · · , p̂K)T of the distribution p based on obfus-
cated data Y = {Y1, · · · , YN}. The matrix inver-
sion method [3, 25, 30] and the EM reconstruction
method [2, 3] are existing methods to compute p̂
from Y. Although both of them assume that all users
u1, · · · , uN use the same obfuscation mechanism G

(= G(1) = · · · = G(N)), we generalize these methods to
the case where G(1), · · · , G(N) can be different, as we
describe in detail below.

Matrix Inversion Method. Assume that the out-
put alphabet size L is equal to the input alpha-
bet size K, and that all users use the same obfus-
cation mechanism G (= G(1) = · · · = G(N)). Let
q = (q1, · · · , qK)T ∈ [0, 1]K be a distribution of ob-
fuscated data, which is given by

qT = pTG. (11)

Let further q̂ = (q̂1, · · · , q̂K)T ∈ [0, 1]K be an empirical
distribution of Y. The matrix inversion method com-
putes p̂ by multiplying q̂ by an inverse matrix G−1

p̂T = q̂TG−1. (12)

As the number of users N goes to infinity, the empiri-
cal distribution q̂ converges to the true distribution q.
Therefore, p̂ also converges to the true distribution p.

We generalize the matrix inversion method to the
case where there are multiple obfuscation mechanisms
G1, · · · , GM (M � N) and each user chooses one of the
mechanisms to obfuscate his/her data (e.g., each user
chooses one mechanism out of G1, G2, and G3, each

of which is corresponding to the high, middle, and low
privacy regime, respectively). Let Nm (1 ≤ m ≤ M)
be the number of users who use Gm (N =

∑M
m=1 Nm),

and q̂m ∈ [0, 1]K be an empirical distribution of the
obfuscated data generated using Gm. Then, p̂ can be
computed as follows:

p̂T = 1
M

M∑
n=1

q̂TmG−1
m . (13)

As N1, · · · , NM go to infinity, p̂ converges to p (in the
same way as the original matrix inversion method).

However, when the number of users N (=∑M
m=1 Nm) is small, many elements in p̂ can be neg-

ative. Kairouz et al. [30] considered two methods to
constrain p̂ to the probability simplex C. The first
method is a normalized decoder, which truncates the
negative elements of p̂ to 0 and renormalizes p̂ so that
the sum is 1. The second method is a projected decoder,
which projects p̂ onto the probability simplex C so that
the Euclidean distance between the two points is min-
imized (using the algorithm in [48]). We evaluate both
methods in Section 5.

EM reconstruction Method. The EM reconstruc-
tion method is a more sophisticated method to infer
p. It regards X as a latent variable (or hidden vari-
able), and infers p from Y using the EM (Expectation-
Maximization) algorithm [22], which guarantees that
the log-likelihood function LY(p) := log Pr(Y|p) is in-
creased at each iteration (EM cycle). Although this
method assumes that mechanisms G(1), · · · , G(N) are
the same [2, 3], we describe this method in a general
case where G(1), · · · , G(N) can be different.

Specifically, the following algorithm is equivalent
to the EM algorithm (we can show this equivalence in
the same way as [2]; we omit the proof for lack of space):

Algorithm 1 (EM reconstruction Method):
1. Initialize p̂ = (p̂1, · · · , p̂K)T ∈ C (e.g., the empirical

distribution of Y can be used: p̂← q̂ [3]).
2. Compute p̂(new) = (p̂(new)

1 , · · · , p̂(new)
K )T as follows:

p̂
(new)
k = 1

N

N∑
n=1

p̂kG
(n)
k,π(Yn)∑K

l=1 p̂lG
(n)
l,π(Yn)

. (14)

Repeat the update by (14) until convergence.

The feature of the EM reconstruction method is that
the final estimate (converged value) p̂ is equal to the
ML (Maximum Likelihood) estimate in the probabil-
ity simplex C, irrespective of the number of users N .
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This can be explained as follows. The ML estimate in
the probability simplex C maximizes the log-likelihood
function LY(p) (= log Pr(Y|p)) over C. Since all of the
obfuscated data Y1, · · · , YN are independent, LY(p) can
be written, using Ln(p) := log Pr(Yn|p), as follows:

LY(p) =
N∑
n=1

Ln(p) =
N∑
n=1

log pTgn (15)

(note that Ln(p) = log Pr(Yn|p) = log
∑K
k=1 pkG

(n)
k,π(Yn)

= log pTgn). log pTgn is strictly concave in p, and the
sum of strictly concave functions is strictly concave.
Thus, LY(p) in (15) is strictly concave, and has a unique
global maximum over C. It follows from (14) that the es-
timate of the EM reconstruction method is always in C.
In addition, each EM cycle in the EM algorithm is guar-
anteed to increase LY(p) [22]. Therefore, the estimate
of the EM reconstruction method converges to the ML
estimate in C, whose log-likelihood is the global maxi-
mum over C.

Note that this property holds irrespective of the
number of users N . When N is small, many elements
of p̂ can be negative in the matrix inversion method.
On the other hand, the elements of p̂ are always non-
negative in the EM reconstruction method, since it is
equal to the ML estimate in C. Thus, the EM recon-
struction method can significantly outperform the ma-
trix inversion method [3]. We also show this in Section 5.

4 Estimation Error Correction of
the EM Reconstruction Method

The EM reconstruction method is a state-of-the-art sta-
tistical inference method, whose estimate is equal to the
ML estimate in C, irrespective of the number of users
N . However, even this method may not accurately esti-
mate the distribution p when N or ε is small, since the
estimation error increases with decrease in N and ε.

To address this issue, we propose a method to re-
duce an estimation error (i.e., difference between the
estimate p̂ and the true value p) of the EM reconstruc-
tion method. Here we briefly describe its outline. We
first formalize the expectation of the estimation error
E[p̂]−p (i.e., bias) in the EM reconstruction method up
to order O(N−1), which is denoted by a−1 ∈ RK , based
on the theory of Rilstone et al. [41]. We then replace the
expectation E in a−1 with the empirical mean over N
samples Y1, · · · , YN . We denote the result value by â−1.
It is important to note here that the estimate p̂ is also

computed based on the N samples Y1, · · · , YN . Since
both â−1 and p̂ are computed based on the N samples
Y1, · · · , YN , we can regard â−1 as a rough approximation
of p̂−p (i.e., estimation error vector), whereas a−1 ap-
proximates E[p̂]−p. We also prove that, under some as-
sumptions, the MSE of the EM reconstruction method
is reduced by subtracting â−1 from p̂ (Proposition 1
in Section 4.4). Note that this correction method was
used to reduce the bias of the estimate [5, 41]. How-
ever, we prove a more general result that applying this
correction can lead to a reduction in the MSE.

The proposed method computes â−1 as an estimate
of p̂−p, and subtracts it from p̂. However, â−1 may not
be accurately computed when N or ε is small. Thus, the
proposed method multiplies â−1 by a weight parameter
α and automatically determines an optimal value of α.

We first describe the theory of Rilstone et al. in
Section 4.1. We then describe the proposed algorithm in
Section 4.2, and describe how to determine an optimal
value of α in Section 4.3. We finally provide a theoretical
analysis of the MSE in Section 4.4.

4.1 Theory of Rilstone et al.

Given a set of N samples Y = {Y1, · · · , YN}, Rilstone et
al. [41] considered an estimate p̂ ∈ RK that is written
as a solution to the following estimation equation:

N∑
n=1

sn(p̂) = 0, (16)

where sn : RK → RK is a function that takes p̂ as input
and outputs a K-dimensional vector based on the n-th
sample Yn. The expectation of sn is 0 only at the true
value p: E[sn(p)] = 0. The class of estimators charac-
terized by (16) include the ML estimator, generalized
method of moments (GMM), and least squares (LS).

Rilstone et al. [41] showed that E[p̂]−p (i.e., bias) of
the estimate that satisfies (16) can be written as follows:

E[p̂]− p = a−1 +O(N−3/2). (17)

a−1 ∈ RK is a dominant bias term of order O(N−1),
which is called the second-order bias1, and is given by

a−1 = 1
N

Q
{
E[VnQsn]− 1

2E[∇2sn]E[Qsn ⊗Qsn]
}
,

(18)

1 Note that the first-order bias, which is a bias term of order
O(N−1/2), is given by E[−Qsn(p)] [41]. However, it is zero since
E[sn(p)] = 0 (i.e., E[−Qsn(p)] = −QE[sn(p)] = 0).
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where sn is a shorthand for sn(p), ∇ is a vector differ-
ential operator (i.e., ∇ = ∂

∂p = ( ∂
∂p1

, · · · , ∂
∂pK

)), ⊗ is a
tensor product, and

Q = E[∇sn(p)]−1 ∈ RK×K (19)
Vn = ∇sn(p)− E[∇sn(p)] ∈ RK×K . (20)

4.2 Proposed Algorithm

We now describe the proposed method. We first exploit
the fact that the estimate of the EM reconstruction
method is equal to the ML estimate (as described in
Section 3.2), and apply the theory of Rilstone et al. to
the EM reconstruction method.

Specifically, we exploit the fact that maximizing the
log-likelihood function LY(p) (=

∑N
n=1 Ln(p̂)) in (15)

is equivalent to solving the following equation:

N∑
n=1
∇Ln(p̂) = 0 (21)

(i.e., the gradient of the log-likelihood function ∇Ln is
0). By regarding ∇Ln in (21) as sn in (16), we can apply
the theory of Rilstone et al. to the EM reconstruction
method.

Since Ln(p) = log pTgn (see (15)), sn (= ∇Ln),
∇sn, and ∇2sn are written as follows:

sn(p) = 1
pTgn

gn ∈ RK (22)

∇sn(p) = − 1
(pTgn)2 gngTn ∈ RK×K (23)

∇2sn(p) = 1
(pTgn)3 gn ⊗ gn ⊗ gn ∈ RK×K×K (24)

By using (23), Q in (19) and Vn in (20) are written as
follows:

Q = E[∇sn(p)]−1 = −E
[

1
(pTgn)2 gngTn

]−1
(25)

Vn = ∇sn(p)− E[∇sn(p)] (26)

= E
[

1
(pTgn)2 gngTn

]
− 1

(pTgn)2 gngTn . (27)

Note that −E[∇sn(p)] (= −E[∇2Ln(p)]) is the Fisher
information matrix [9]. Since −Q is the inverse of this
matrix, it provides the lower bound of covariance matrix
(i.e., Crámer-Rao inequality [9]).

The second-order bias a−1 in the EM reconstruction
method is given by substituting (22), (24), (25), and
(27) into (18). We replace the expectation E in a−1 with
the empirical mean over N samples Y1, · · · , YN . Since we

do not know the true value p, we also replace p with the
estimate p̂ (i.e., plug-in estimate), as done in [5, 41]. The
result value, denoted by â−1, can be written as follows:

â−1 = 1
N

Q̂

{
1
N

N∑
n=1

(V̂nQ̂sn(p̂))

− 1
2N2

N∑
n=1

(∇2sn(p̂))
N∑
n=1

(Q̂sn(p̂)⊗ Q̂sn(p̂))

}
,

(28)

where

Q̂ = −Ŝ−1 ∈ RK×K (29)

V̂n = Ŝ− 1
(p̂Tgn)2 gngTn ∈ RK×K (30)

Ŝ = 1
N

N∑
n=1

1
(p̂Tgn)2 gngTn ∈ RK×K (31)

(E in a−1, Q, and Vn is now replaced by the empirical
mean in â−1, Q̂, and V̂n, respectively). We emphasize
again that both â−1 and p̂ are computed based on the
N samples Y1, · · · , YN . Therefore, we use â−1 as an es-
timate of p̂− p (whereas a−1 approximates E[p̂]− p).

However, there is a major problem in computing Q̂
in (29). When N or ε is small, the rank of Ŝ in (31)
becomes much smaller than K (note that as ε goes to
0, gngTn in (29) approaches to (1/K2)JK , where JK is
the K × K all-ones matrix whose rank is 1). When Ŝ
is highly rank deficient, we cannot compute Q̂ in (29),
which is the inverse of −Ŝ.

To avoid this problem, we add a small positive value
λ (> 0) to the diagonal elements of Ŝ to make Ŝ a
full rank matrix. Such a regularization is known as the
Tikhonov regularization [20]. That is, we compute Q̂ as
follows:

Q̂ = −(Ŝ + λIK)−1 ∈ RK×K , (32)

where IK is the K ×K identity matrix.
We compute â−1 from p̂ and gn (1 ≤ n ≤ N) by

substituting (30), (31), and (32) into (28) (we can com-
pute â−1 with time complexity O(NK2); for details, see
Appendix B). It should be noted, however, that Q̂ in
(32) may not be accurately computed, since the ma-
trix λIK is added to Ŝ in (32). As a consequence, â−1
may also not be accurately computed. To address this
issue, we multiply â−1 by a weight parameter α (> 0).
In other words, we do not trust â−1 itself, but trust the
direction of â−1. We denote the corrected estimate in
the proposed method by p̃ = (p̃1, · · · , p̃K)T ∈ RK ; i.e.,
p̃ = p̂−αâ−1. We describe how to determine an optimal
value of α in Section 4.3.
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Fig. 3. Corrected estimate p̃ in the proposed method. We mul-
tiply â−1 by α, and subtract it from an estimate p̂ of the EM
reconstruction method.

In summary, the proposed algorithm is as follows:

Algorithm 2 (Proposed Algorithm):
1. Compute an estimate p̂ in the EM reconstruction

Method (using Algorithm 1).
2. Compute â−1 in (28) from p̂ and gn (1 ≤ n ≤ N)

by (30)-(32) (see Appendix B for details).
3. Correct the estimation error of p̂ as follows:

p̃ = p̂− αâ−1 (33)

(see Section 4.3 for optimization of α).

Fig. 3 shows the corrected estimate p̃ in the proposed
method. Note that the corrected estimate p̃ in (33) can
deviate from the probability simplex C slightly (this de-
viation is very small if αâ−1 are appropriate). Thus,
after the step 3 in Algorithm 2, we use the normalized
decoder, which is described in Section 3.2, to constrain
p̃ to the probability simplex C.

4.3 Optimization of the Weight Parameter

We now describe how to determine an optimal value of
the weight parameter α (> 0) in the proposed method.
The proposed method determines α by running a simu-
lation that simulates a real distribution estimation task
using some distribution p′ = (p′1, · · · , p′K)T (we use a
symbol with “′” to represent a variable in the simula-
tion; we describe what to use as p′ later in detail).

Fig. 4 shows the overview of determining α based
on the simulation. We first generate personal data X′ =
{X ′1, · · · , X ′N} from the distribution p′ (X ′1, · · · , X ′N are
i.i.d. with p′). Then we obfuscate the n-th personal data
X ′n using the n-th obfuscation mechanism G(n) (1 ≤
n ≤ N). Let Y′ = {Y ′1 , · · · , Y ′N} be the obfuscated data
generated from X′. We compute a corrected estimate
p̃′ = (p̃′1, · · · , p̃′K)T in the proposed method from Y′

by running Algorithm 2 for various values of α (e.g.,
α ∈ {10−10, 10−9, · · · , 1}). We evaluate the estimation
error of p̃′ (e.g., squared error ||p̃′−p′||22) for each value
of α, and select α that achieves the smallest error.
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Fig. 4. Overview of determining the weight parameter α. We run
a simulation using a distribution p′, and compute a corrected
estimate p̃′ in the proposed method for various values of α (e.g.,
α ∈ {10−10, 10−9, · · · , 1}). Then we select α that achieves the
smallest estimation error.

Note that after running the steps 1 and 2 in Al-
gorithm 2, we can compute p̃′ for each value of α by
just running the step 3 in Algorithm 2 (i.e., we run
the steps 1 and 2 in Algorithm 2 just for once, and
then run the step 3 for many times). Therefore, the time
complexity of determining α is O(NK2) (i.e., the same
as Algorithm 2) in total.

We now describe what to use as p′ in the simu-
lation. When no prior information is available about
the true distribution p, we should use a uniform dis-
tribution as p′. It should be noted, however, that the
obfuscated data Y are available as prior information
about p. Taking this into account, we use the empirical
distribution of Y as p′. In our experiments, we also
confirmed that the proposed method that determines
α using the empirical distribution of Y provided the
better performance than the proposed method that de-
termines α using the uniform distribution.

Remark. It should be noted that although we start
with the formalization of the second-order bias a−1 in
the EM reconstruction method, the proposed method
does not guarantee that the bias of the EM reconstruc-
tion method is reduced. In fact, the bias of the proposed
method was larger than that of the EM reconstruction
method in our experiments (as shown in Appendix C).
We consider this is because we applied the Tikhonov
regularization to compute Q̂ in (32). A regularization
method is generally used to significantly reduce the



Toward Distribution Estimation under Local Differential Privacy with Small Samples 93

variance by introducing a bias in the estimate. The
Tikhonov regularization can also introduce a bias [28].

However, we emphasize that the goal of this paper
is to accurately estimate p when N or ε is small, and
that we utilize â−1 as a means to reduce the estimation
error. In our experiments, we show that it significantly
reduces the variance (at the cost of increasing the bias),
and therefore reduces the MSE and the JS divergence.
We also prove that the proposed method reduces the
MSE under some assumptions in Section 4.4.

It should also be noted that the weight parameter
α can influence the estimation accuracy. In this paper,
we generate artificial data from the empirical distribu-
tion of Y in an analogous way to the parametric boot-
strap method [15], and chooses a hyper-parameter α
(i.e., performs a kind of model selection) using the arti-
ficial data. It is also known that the bootstrap method
is used for model selection [27]. However, we may be
able to choose a better α by improving our method in
several directions. For example, although we choose α
that minimizes the squared error ||p̃′ − p′||22 based on
one simulation in our experiments, we may be able to
choose a better α by running multiple simulations and
using the MSE as a metric (at the cost of computa-
tional time necessary to optimize α). We may also be
able to choose a better α by extending our method to
the Bayesian framework in the same way as [19]. We
leave such improvements as future work.

4.4 Theoretical Analysis

We provide a theoretical analysis of the MSE in the pro-
posed method. Specifically, we show that the proposed
method can reduce the second-order MSE, which is an
MSE term of order O(N−3/2), to zero under some as-
sumptions.

According to the theory of Rilstone et al. [41], the
MSE of the EM reconstruction method (denoted by
MSEEM) can be written as follows2:

MSEEM = b−1 + b−3/2 +O(N−2), (34)

where

b−1 = E
[
dTd

]
∈ R (35)

b−3/2 = −E
[
dT
{

2QVnd−QE[∇2sn][d⊗ d]
}]
∈ R
(36)

2 Note that in [41], the MSE is represented in the form of a
matrix (i.e., error covariance matrix). MSEEM can be written
as (34) by computing the trace of the MSE matrix in [41].

d = 1
N

N∑
n=1

dn ∈ RK (37)

dn = Qsn ∈ RK . (38)

b−1 is a term of order O(N−1), and is called the first-
order MSE. b−3/2 is a term of order O(N−3/2), and is
called the second-order MSE.

We now consider the proposed method with the
weight parameter α = 1, which corrects the estimate
p̂ of the EM reconstruction method by subtracting â−1
in (28) from p̂:

p̃ = p̂− â−1 (39)

Let MSEProposal be the MSE of this method. To
simplify our theoretical analysis, we assume the follow-
ing two assumptions: (i) â−1 is evaluated at p, (ii)
Q, Vn, and E[∇2sn] are perfectly estimated: Q = Q̂,
Vn = V̂n, and E[∇2sn] = 1

N

∑N
n=1(∇2sn). In this case,

â−1 in (28) can be written as follows:

â−1 = 1
N

Q

{
1
N

N∑
n=1

(VnQsn)

− 1
2N E[∇2sn]

N∑
n=1

(Qsn ⊗Qsn)

}
. (40)

It should be noted that although we make some ideal
assumptions, we still replace the two expectation terms
E in a−1 (see (18)) with the empirical mean over N sam-
ples Y1, · · · , YN . We prove that the second-order MSE is
reduced to zero by these replacements.

Namely, we prove the following result:

Proposition 1.

MSEProposal = b−1 +O(N−2). (41)

The proof is given in Appendix A. Proposition 1 indi-
cates that the estimation error can be reduced by sub-
tracting â−1 from p̂ (since â−1 may not be accurately
computed, we multiply â−1 by α in practice). It should
be noted, however, that the first-order MSE b−1 is not
reduced in this case. This can be explained by the fact
that Proposal provides almost the same performance
as EM when N is large in our experiments. However,
we emphasize that it is still beneficial to reduce b−3/2
when N is small, since the term of order O(N−3/2) is
large in this case. In fact, Proposal significantly out-
performs EM when N or ε is small, as shown in our
experiments.
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5 Experimental Evaluation

5.1 Experimental Set-up

We evaluated the proposed method by conducting ex-
periments using three real datasets: the People-flow
dataset [45], the Foursquare dataset [50], and the US
Census (1990) dataset [33]. The first two datasets con-
tain location data, while the third dataset contains cen-
sus data. We used these datasets because they are large-
scale datasets (we used the data of 303916, 251689, and
2458285 people in the People-flow, Foursquare, and US
Census datasets, respectively). In the following, we de-
scribe these datasets in detail:
– People-flow dataset: The People-flow dataset

(1998 Tokyo metropolitan area) [45] contains mo-
bility traces (time-series location trails) of 722000
people in the Tokyo metropolitan area in 1998. In
this paper, we used this dataset for estimating a
geographic population distribution in the period of
one day. To this end, we extracted mobility traces
of 303916 people on the first of October, and used
the first location sample for each user (we excluded
the remaining 418084 people since they had no lo-
cation samples on the first of October). We divided
the Tokyo metropolitan area into 20×20 regions, ex-
cluded 119 regions in the sea, and used the remain-
ing 281 land regions as input alphabets (K = 281).

– Foursquare dataset: The Foursquare dataset
(global-scale check-in dataset) [50] was collected
from April 2012 to September 2013. It contains
location check-ins by 266909 people all over the
world. Since many of these check-ins were located in
415 cities, we focused on these cities. We extracted
251689 people who had at least one check-in in these
cities, and used the first location check-in for each
user (we excluded the remaining 15220 people who
had no check-ins in these cities). We used the 415
cities as input alphabets (K = 415).

– US Census (1990) dataset: The US Census
(1990) dataset [33] was collected as part of US cen-
sus in 1990. It contains responses from 2458285 peo-
ple (each user provided one response), where each
response has 68 attributes. We used the responses
from all people, and used age, sex, income, and mar-
ital status as attributes. Each attribute has 8, 2,
5, and 5 category IDs depending on their value, as
shown in Table 2. We regarded a sequence of these
category IDs as a single category ID. Thus, the to-
tal number of category IDs is 400 (= 8× 2× 5× 5).

Table 2. Attributes (age, sex, income, and marital status) and
category IDs in the US Census (1990) dataset.

Attribute Category ID (Value)
Age 0 (0), 1 (1-12), 2 (13-19), 3 (20-29),

4 (30-39), 5 (40-49), 6 (50-64), or 7 (65-)
Sex 0 (male) or 1 (female)
Income 0 ($0), 1 ($1-$14999), 2 ($15000-$29999),

3 ($30000-$60000), or 4 ($60000-)
Marital status 0 (now married, except separated),

1 (widowed), 2 (divorced),
3 (separated), or 4 (never married)

We used these category IDs as input alphabets
(K = 400).

For each dataset, we used a frequency distribution of
all people (303916, 251689, and 2458285 people in the
People-flow, Foursquare, and US Census datasets, re-
spectively) as p (i.e., distribution of the original data).
We randomly selected N users from these people. Here
we attempted 100 cases to randomly select N users, and
ran, for each case, the following experiments.

We conducted experiments, in which each user un
(1 ≤ n ≤ N) obfuscates his/her personal data Xn (i.e.,
region ID, city ID, or category ID) via the obfuscation
mechanism G(n), and a data collector computes an es-
timate p̂ of the distribution p based on the obfuscated
data Y = {Y1, · · · , YN}. As an obfuscation mechanism
G(n), we used the K-RR (i.e., GKRR in (10)). As for
the privacy budget ε, we considered four values: ε = 0.1,
2, ln(K), and ∞, each of which is corresponding to the
high, middle, low, and “no” privacy regime, respectively.
We denote the number of users who set ε = 0.1, 2,
ln(K), and ∞ by N1, N2, N3, and N4, respectively (i.e.,
N =

∑4
i=1 Ni).

We set ε = 0.1 and 2 in the high and middle pri-
vacy regime, respectively, since many studies used these
values [24] and ε = 0.1 offers reasonably strong privacy
protection [32]. We set ε = ln(K) in the low privacy
regime, since a user sends different data (i.e., Xn 6= Yn)
with probability 50% even in this case. In other words,
ε = ln(K) can still provide plausible deniability. This
value of ε was also used in [30]. When ε =∞, GKRR in
(10) is equivalent to the identity matrix IK . This means
that those who do not use an obfuscation method can be
modeled by setting ε to ∞, as described in Section 1.1.

However, many users might care about their pri-
vacy and prefer the high or middle privacy regime (i.e.,
ε = 0.1 or 2). Taking this into account, we set N3 and
N4 much smaller than N1 and N2. Specifically, we first
set N1, N2, N3, and N4 so that N1 : N2 : N3 = 10 : 10 : 1
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and changed N4 from 0 to N3 (e.g., (N1, N2, N3) =
(500, 500, 50) and N4 ∈ [0, 50]). We then evaluated the
performance in the case where we significantly increased
only N1 (i.e., most users select the high privacy regime
in which ε = 0.1). To more thoroughly evaluate the
effects of N and ε on the performance, we also set
N1 = N4 = 0 and evaluated the performance for var-
ious values of N2 and N3.

As a statistical inference method, we evaluated the
following methods for comparison:
– Uniform: A method that always estimates p as a

uniform distribution: p̂ = ( 1
K , · · · ,

1
K )T .

– ObfDat: A method that estimates p as an empiri-
cal distribution of the obfuscated data Y1, · · · , YN .

– MatInvnorm: The matrix inversion method using
the normalized decoder (described in Section 3.2).

– MatInvproj: The matrix inversion method using
the projected decoder (described in Section 3.2).

– EM: The EM reconstruction method (described in
Section 3.2).

– Proposal: The proposed method.

In EM, we used the empirical distribution of Y as an
initial value of p̂ (i.e., p̂ ← q̂) in the same way as [3].
In Proposal, we set λ = 10−3, and attempted vari-
ous values for α: α ∈ {c1 × 10c2 |c1 ∈ {1, · · · , 9}, c2 ∈
{−1, · · · ,−10}}. Then we selected α that achieved the
smallest squared error (i.e., ||p̃′ − p′||22).

After computing the estimate p̂ (or the corrected
estimate p̃ in Proposal), we evaluated the MSE and
the JS divergence. Specifically, we computed the aver-
age of the squared error ||p̂−p||22 (or ||p̃−p||22) over 100
runs (i.e., 100 cases to randomly select N users), and
used it as the MSE. In other words, we computed the
sample mean of 100 squared errors as the MSE. Simi-
larly, we averaged the JS divergence over 100 runs. We
also evaluated, for both the squared error and the JS
divergence, the standard deviation over 100 runs.

5.2 Experimental Results

We first evaluated the MSE and the JS divergence in
the case where (N1, N2, N3) = (500, 500, 50) and N4 ∈
[0, 50]. Fig. 5 shows the results.

It can be seen that the MSE and the JS divergence
of MatInvnorm and MatInvproj are very large. This
is because many elements in the estimate p̂ were nega-
tive, as described in Section 3.2. In particular, the per-
formance of MatInvproj is much worse than that of the
other inference methods. This is because the estimate p̂

(i) People-flow dataset ((N1, N2, N3) = (500, 500, 50))
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(ii) Foursquare dataset ((N1, N2, N3) = (500, 500, 50))
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(iii) US Census dataset ((N1, N2, N3) = (500, 500, 50))
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Fig. 5. The MSE and the JS divergence in the case where
(N1, N2, N3) = (500, 500, 50) and N4 ∈ [0, 50]. The error bars
show standard deviations (we do not show error bars in Uniform
and ObfDat, since the standard deviations are very small in these
methods; in particular, the standard deviation is 0 in Uniform).

that contained many negative elements was projected
to a vertex of the probability simplex (i.e., each element
in p̂ was either 0 or 1). On the other hand, EM outper-
forms MatInvnorm and MatInvproj in most cases (in
the same way as [3]), since the elements in p̂ are always
nonnegative, as described in Section 3.2.

It can also be seen that Proposal outperforms EM,
which shows that the estimation accuracy is improved
by correcting the estimation error (although the error
bars overlap in many cases, we show later that there is
a very high correlation between 100 squared errors of
Proposal and those of EM). In particular, Proposal
significantly outperforms EM when N4 is small. This is
because the estimation error of EM is large in this case
and is corrected by Proposal.

However, when N4 is small, Uniform or ObfDat
provides the best performance in some cases (e.g., the
MSE in the People-flow dataset, the JS divergence in
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(iii) US Census dataset
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Fig. 6. The MSE and the JS divergence in the case where N is
changed while fixing N1 : N2 : N3 : N4 = 10 : 10 : 1 : 1. The
error bars show standard deviations.

the Foursquare dataset). This is because the variance of
the estimate p̂ was very small in Uniform and Obf-
Dat (in Appendix C, we also show the results of the
bias and variance for each method; see Appendix C for
details). More specifically, the variance of p̂ was always
0 in Uniform, as described in Section 2.2. The vari-
ance of p̂ was also close to 0 in ObfDat, since only a
small number of people sent the original data Xn (i.e.,
Xn = Yn). In other words, the empirical distribution
of the obfuscated data Y1, · · · , YN was close to the uni-
form distribution. If the variance is larger than the bias
of these methods, the MSE is also larger.

To investigate the relationship between the total
number of users N (=

∑4
i=1 Ni) and the performance,

we changed N while fixing the ratio of N1 : N2 : N3 : N4.
Specifically, we changed N while fixing N1 : N2 : N3 :
N4 = 10 : 10 : 1 : 1. Fig. 6 shows the results. It can
be seen that when N is very small, the MSE of Uni-

(i) People-flow dataset ((N1, N2, N3) = (20000, 500, 50))
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(ii) Foursquare dataset ((N1, N2, N3) = (20000, 500, 50))
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(iii) US Census dataset ((N1, N2, N3) = (20000, 500, 50))

6.0E-03

1.2E-02

1.8E-02

2.4E-02

3.0E-02

3.6E-02

7.0E-01

1.2E+00

0 10 20 30 40 50

M
SE

N4

0 20 40 60 80 100
N4

JS
 D

iv
er

ge
nc

e

0.18

0.27

0.36

0.45

0.54

0.63

0.72

Uniform ObfDat MatInvnorm EM ProposalMatInvproj

Fig. 7. The MSE and the JS divergence in the case where N1 =
20000. The error bars show standard deviations.

form or ObfDat is the smallest in all of the datasets.
It can also be seen that the MSE and the JS diver-
gence of Proposal rapidly decrease as N increases.
Proposal provides the best performance with respect
to both the MSE and the JS divergence when N is more
than or equal to 660, 1320, and 440 in the People-flow,
Foursquare, and US Census datasets, respectively.

We also evaluated the performance in the case where
we significantly increased only N1 (i.e., the number of
users with ε = 0.1). Specifically, we set (N1, N2, N3) =
(20000, 500, 50) and N4 ∈ [0, 50]. Fig. 7 shows the re-
sults. Fig. 7 is very similar to Fig. 5, and the MSE and
the JS divergence are only slightly decreased (or not de-
creased) by increasing N1. This is because when ε = 0.1,
the probability of sending the original data Xn (i.e.,
Xn = Yn) was very small (0.39%, 0.27%, and 0.28%, in
the People-flow, Foursquare, and US Census datasets,
respectively). Since these users sent different data (i.e.,
Xn 6= Yn) in most cases, they did not contribute much
to the estimation accuracy. This is consistent with the
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Fig. 8. Box plots of 100 squared errors for EM and Proposal in the case where N2 and N3 are changed and N1 = N4 = 0 (EM: EM,
PR: Proposal). The ends of the whiskers represent the minimum and maximum values. The bottom and top of the box represent the
first and third quartiles, respectively. The red band inside the box represents the median.

fact that the effective sample size decreases quadrati-
cally with decrease in ε [11].

To more thoroughly evaluate the effects of N and
ε on the performance, we finally set N1 = N4 = 0 and
evaluated 100 squared errors and the MSE for various
values of N2 and N3 (we do not show the JS divergence
for lack of space). Fig. 8 shows the box plots of 100
squared errors for EM and Proposal. We also com-
puted the correlation coefficient r between 100 squared
errors of Proposal and those of EM, and the p-value p
of the t-test for paired samples. Fig. 9 shows the results.
In addition, Fig. 10 shows the best inference method,
which achieves the smallest MSE among the six meth-
ods, for each case.

It can be seen from Fig. 8 that Proposal signifi-
cantly outperforms EM when N3 is small. This is be-
cause the estimation error of EM is large in this case
and is corrected by Proposal. It can also be seen from
Fig. 9 that the correlation coefficient r is very close
to one in most cases. This means that when the MSE
of Proposal is smaller than that of EM, Proposal
outperforms EM in almost all of the 100 runs. Con-

sequently, the difference between 100 squared errors of
Proposal and those of EM is statistically significant
(p < 0.05).

However, it can be seen from Fig. 10 that Uniform
or ObfDat provides the best performance when N2 and
N3 are very small (e.g., N3 = 0). This is because the
variance of the estimate p̂ was very small in Uniform
andObfDat, as previously explained. In addition, Pro-
posal provides almost the same performance as EM
when N2 and N3 are large. From Fig. 8 and 10, we con-
clude that Proposal is effective especially when N3 is
about 100 to 200 in the People-flow dataset, about 100
to 200 in the Foursquare dataset, and about 30 to 60 in
the US Census dataset.

5.3 Visualization of Distributions

In Section 5.2, Proposal significantly outperformed
EM in the case where the number of users N was small
or when most users adopted a small value of ε. To ex-
plain how the proposed method corrected the estimation
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Fig. 9. Correlation coefficients and p-values in the case where
N2 and N3 are changed and N1 = N4 = 0. “r” represents the
correlation coefficient between 100 squared errors of Proposal
and those of EM. “p” represents the p-value of the t-test for
paired samples.

error in the EM reconstruction method, we visualize the
true distribution p, the estimate p̂ in EM, and the cor-
rected estimate p̃ in Proposal using the People-flow
dataset.

Fig. 11 shows the true distribution p. Fig. 12 shows
p̂ and p̃ in the special wards of Tokyo in the case where
(N1, N2, N3, N4) = (500, 500, 50, 20). In Fig. 12, we show
100 values of the estimates in each of the fifteen regions
(from upper left to lower right) as a box plot.

It can be seen that a variance of is smaller in Pro-
posal in all of the regions. The maximum value of p̂i in
EM is much larger than the true value. EM also esti-
mates p̂i to be very close to zero in many cases (e.g., Re-
gions #1, #3, #4, and #15). Proposal corrects these
over/underestimated values. We consider this is the rea-
son Proposal significantly outperformed EM.

5.4 Discussions on the Case of Multiple
Samples Per User

In our experiments, we assumed that each user sends
only one sample, and the data collector estimates the
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Fig. 10. Best inference method, which achieves the smallest
MSE, in the case where N2 and N3 are changed and N1 = N4 =
0. The value inside of the parenthesis represents the MSE. A cell
in which Proposal is not the best method is shaded in gray.

distribution p. We finally discuss the extension of our
results to case where each user sends multiple samples.

For example, suppose that user un obfuscates t sam-
ples X

(1)
n , · · · , X(t)

n using the obfuscation mechanism
G(n), which satisfies ε-LDP, and sends the obfuscated
samples Y (1)

n , · · · , Y (t)
n to the data collector. Then, it

follows from by the composition theorem [13] that the t
samples are protected by (εt)-LDP. Therefore, if user un
wants to protect t samples by ε-LDP, he/she can satisfy
this privacy requirement by using, for each sample, the
obfuscation mechanism satisfying (ε/t)-LDP.

When the number of samples t is large, each pri-
vacy budget ε/t can be very small and therefore a large
amount of noise is added to each sample. A recent study
[38] also showed that the data utility can be completely
destroyed in the case of time-series location data. It
should be noted, however, that the number of samples t
can be different from user to user, and ε/t can be large
for users whose t is small. For example, users who send
only a small number of their locations (e.g., t = 2 or 3)
may not have to add a large amount of noise to each lo-
cation. If many users adopt a small value of ε/t and some
users adopt a large value of ε/t, the proposed method
would work well in the same way as in Fig. 7.
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Fig. 11. Visualization of the true distribution p in the People-flow dataset. the true probability pi is shown in the corresponding land
region (sea regions are marked in blue). The special wards of Tokyo are marked by a solid black frame. The regions whose probabilities
are lower than 0.1% (resp. higher than 1%) are marked in gray (resp. yellow).
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Fig. 12. Visualization of the estimate p̂ in EM and the corrected estimate p̃ in Proposal in the special wards of Tokyo ((N1, N2, N3,

N4) = (500, 500, 50, 20)). 100 values of the estimates in each region (from upper left to lower right) are shown as a box plot. The
ends of the whiskers represent the minimum and maximum values. The bottom and top of the box represent the first and third quar-
tiles, respectively. The red band inside the box represents the median. A green chain line represents the true probability pi.

6 Conclusion
In this paper, we proposed a method to correct an esti-
mation error of the EM reconstruction method. The ex-
perimental results using three large-scale real datasets
showed that the proposed method significantly outper-
forms the existing inference methods when N is small
or when most users adopt a small value of ε.

In this paper, we used LDP as a privacy metric,
and showed the effectiveness of the proposed method
using two location datasets (and one census dataset).
In the field of location privacy, a privacy metric called
geo-indistiguishability [4, 6, 7, 16] is also widely studied.
Geo-indistiguishability can be regarded as a variant of
LDP that multiplies ε in (9) by the distance (e.g., Eu-

clidean distance) between xi and xj . It allows the adver-
sary to infer approximate information about the origi-
nal location (e.g., the fact that the user is in Paris),
but does not allow him/her to infer the exact location
(e.g., exact home address). By relaxing the privacy re-
quirements in this way, the amount of noise added to
the location data can be significantly reduced, and con-
sequently the distribution estimation error (e.g., MSE,
JS divergence) can be significantly reduced. As future
work, we would like to evaluate the proposed method
using geo-indistiguishability as a privacy metric.
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A Proof of Proposition 1
In this appendix, we prove Proposition 1 in Sec-
tion 4.4. The difference between the estimate p̂ of the
EM reconstruction method and the true value p can be
written as follows (see Lemma 3.1 in [41]):

p̂− p =− d + Q

(
1
N

N∑
n=1

Vn

)
d− 1

2QE[∇2sn][d⊗ d]

+O(N−3/2). (42)

By using (37), (38), (40), and (42), the difference be-
tween the estimate of the proposed method (i.e., p̂ −
â−1) and the true value p can be written as follows:

p̂− â−1 − p = −d + c1 − c2 +O(N−3/2), (43)

where

c1 = 1
N2 Q


N∑
n=1

N∑
n′=1

n 6=n′

(Vndn′)

 (44)

c2 = 1
2N2 Q

E[∇2sn]
N∑
n=1

N∑
n′=1

n6=n′

(dn ⊗ dn′)

 . (45)

We note here that d, c1, and c2 are terms of order
O(N−1/2), O(N−1), and O(N−1), respectively. This can
be explained as follows. Since E[sn] = 0 (as described
in Section 4.1), the expectation of dn in (38) is also 0:
E[dn] = QE[sn] = 0. Therefore, d in (37) is a term of
order O(N−1/2) (due to the central limit theorem [47]).
In addition, it follows from (20) that E[Vn] = 0. Then,
since both ( 1

N

∑N
n=1 Vn) and d in (42) are terms of or-

der O(N−1/2), both the second term and the third term
in (42) are terms of order O(N−1). Since â−1 in (40) con-
verges to a−1 in (18) as N increases, â−1 is also a term
of order O(N−1) (in the same way as a−1). Therefore,
both c1 and c2 are terms of order O(N−1) (note that
the right-hand side of (43) is obtained by subtracting
â−1 from the right-hand side of (42)).

http://arxiv.org/abs/1309.1541
http://arxiv.org/abs/1309.1541
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Thus, MSEProposal can be written, using (35) and
(43), as follows:

MSEProposal = E[||p̂− â−1 − p||22] (46)

= E[|| − d + c1 − c2 +O(N−3/2)||22] (47)
= b−1 − 2E[dT c1] + 2E[dT c2] +O(N−2). (48)

In the following, we show that both E[dT c1] and
E[dT c2] are 0. We begin with E[dT c1], which can be
written, using (37) and (44), as follows:

E[dT c1] = 1
N3

N∑
m=1

N∑
n=1

N∑
n′=1

n6=n′

E[dTmQVndn′ ]. (49)

As previously described, E[dn] = E[Vn] = 0. In addi-
tion, d1, · · · ,dN are independent, and V1, · · · ,VN are
also independent. Using these facts, we have

E[dTmQVndn′ ]

=


E[dTnQVn]E[dn′ ] = 0 (if m = n)
E[dTn′QE[Vn]dn′ ] = 0 (if m = n′)
E[dTmQ]E[Vn]E[dn′ ] = 0 (if m 6= n,m 6= n′).

(50)

By (49) and (50), we have

E[dT c1] = 0. (51)

We can show that E[dT c2] is 0 in the same way. E[dT c2]
can be written, using (37) and (45), as follows:

E[dT c2]

= 1
2N3

N∑
m=1

N∑
n=1

N∑
n′=1

n6=n′

E[∇2sn] · E[QTdm ⊗ dn ⊗ dn′ ],

(52)

where A · B (A,B ∈ RK×K×K) represents the tensor
contraction of A and B as follows:

A ·B =
K∑
i=1

K∑
j=1

K∑
k=1

[A]i,j,k[B]i,j,k (53)

([A]i,j,k and [B]i,j,k are the (i, j, k)-th element of A and
B, respectively). Since E[dn] = 0 and d1, · · · ,dN are
independent, we have

E[QTdm ⊗ dn ⊗ dn′ ]

=


E[QTdn ⊗ dn]⊗ E[dn′ ] = 0 (if m = n)
E[QTdn′ ⊗ E[dn]⊗ dn′ ] = 0 (if m = n′)
E[QTdm]⊗ E[dn]⊗ E[dn′ ] = 0 (if m 6= n,m 6= n′).

(54)

By (52) and (54), we have

E[dT c2] = 0. (55)

By (48), (51), and (55), the equation (41) holds.

It should be noted that we can immediately de-
rive from (43) that both b−1 and b−3/2 will be re-
duced to zero by subtracting (â−1 − d) from p̂ (since
the MSE will be E[||p̂ − (â−1 − d) − p||22] = E[||c1 −
c2 +O(N−3/2)||22] = O(N−2) in this case). However, the
estimation of d in (37) is very challenging, since it be-
comes zero after replacing p with p̂: 1

N

∑N
n=1 dn(p̂) =

Q( 1
N

∑N
n=1 sn(p̂)) = 0 (by (16)). In other words, we

cannot use a plug-in estimate of d. Thus, we leave find-
ing a practical method to reduce both b−1 and b−3/2 for
future work.

B Computation of â−1 in the
Proposed Method

Here we describe how to compute â−1 in (28) from p̂
and gn (1 ≤ n ≤ N) by using (30), (31), and (32) with
time complexity O(NK2).

We begin by explaining the first term of (28):

1
N

N∑
n=1

(V̂nQ̂sn) ∈ RK . (56)

V̂n ∈ RK×K , Q̂ ∈ RK×K , and sn ∈ RK are com-
puted from p̂ and gn (see (22), (30), (31), and (32)). A
straightforward computation of (56) requires time com-
plexity of O(NK3), since the multiplication of V̂n ∈
RK×K and Q̂ ∈ RK×K requires time complexity of
O(K3). However, we can compute (56) with time com-
plexity O(NK2) by transforming V̂nQ̂sn as follows:

V̂nQ̂sn = (sTn (V̂nQ̂)T )T = (sTn Q̂T V̂T
n )T . (57)

We can compute the multiplication of sTn ∈ RK by
Q̂T ∈ RK×K with time complexity O(K2). Similarly,
we can compute the multiplication of sTn Q̂T ∈ RK by
V̂T
n ∈ RK×K with time complexity O(K2). Thus, we

can compute (57) with time complexity O(K2), and (56)
with time complexity O(NK2).

We then explain the second term of (28), which is
more complicated:

1
2N2

N∑
n=1

(∇2sn)
N∑
n=1

(Q̂sn ⊗ Q̂sn) ∈ RK . (58)
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Let A ∈ RK×K×K be
∑N
n=1(∇2sn) in (58). Let further

B ∈ RK×K be
∑N
n=1(Q̂sn ⊗ Q̂sn) in (58). Then, (58)

can be written as follows:
1

2N2 AB ∈ RK . (59)

Note that AB is a K-dimensional vector, whose i-th
element [AB]i is written as follows:

[AB]i =
K∑
j=1

K∑
k=1

[A]i,j,k[B]j,k (60)

([A]i,j,k is the (i, j, k)-th element of A, and [B]j,k is the
(j, k)-th element of B). In the following, we describe how
to compute AB in detail.

[A]i,j,k can be expressed, using (24), as follows:

[A]i,j,k =
N∑
n=1

1
(p̂Tgn)3 [gn]i[gn]j [gn]k (61)

([gn]i is the i-th element of gn ∈ [0, 1]K). [B]j,k can be
expressed as follows:

[B]j,k =
N∑
n=1

[Q̂sn]j [Q̂sn]k (62)

([Q̂sn]j is the j-th element of Q̂sn ∈ RK).
[AB]i in (60) can be written, using (61), as follows:

[AB]i =
N∑
n=1

1
(p̂Tgn)3 [gn]iun, (63)

where

un =
K∑
j=1

K∑
k=1

[gn]j [gn]k[B]j,k ∈ R. (64)

Therefore, we can compute AB ∈ RK as follows:
1. Compute B ∈ RK×K from Q̂sn ∈ RK by using (62).
2. Compute u = (u1, · · · , uN )T ∈ RN from gn (1 ≤

n ≤ N) and B by using (64).
3. Compute AB ∈ RK from p̂, gn (1 ≤ n ≤ N), and u

by using (63).

Both the steps 1 and 2 require time complexity of
O(NK2), and the step 3 requires time complexity of
O(NK). Thus, we can compute AB with time complex-
ity of O(NK2). By using (59), we can compute the sec-
ond term of (28) with time complexity of O(NK2).

Therefore, we can compute â−1 in (28) with time
complexity of O(NK2).

C Analysis of the Bias and the
Variance in Our Experiments

In this appendix, we decompose the MSE in Fig. 5, 6,
and 7 into the bias and variance, and show the results
of the bias and variance.

Fig. 13, 14, and 15 show the empirical bias and
sample variance corresponding to Fig. 5, 6, and 7, re-
spectively. The empirical bias and sample variance were
computed by replacing the expectation E in (5) and (6)
with the empirical mean over N samples Y1, · · · , YN . It
can be seen that the variance of the estimate p̂ is 0 in
Uniform, and is close to 0 in ObfDat, as described
in Section 5.2. This is the reason Uniform or ObfDat
provided the best performance when N is very small.

It can also be seen that the bias of Proposal is
larger than that of EM. We consider this is because we
applied the Tikhonov regularization to compute Q̂ in
(32), as described in Section 4.2. However, Proposal
significantly reduces the variance, and therefore reduces
the MSE and the JS divergence in Fig. 13, 14, and 15.
We consider this is because â can be used as a rough
approximation of p̂ − p, as described in Section 4.2.
This result is also consistent withProposition 1, which
states that the MSE is reduced (especially when N is
small) by subtracting â from p̂.
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(i) People-flow dataset ((N1, N2, N3) = (500, 500, 50))
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(ii) Foursquare dataset ((N1, N2, N3) = (500, 500, 50))
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(iii) US Census dataset ((N1, N2, N3) = (500, 500, 50))
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Fig. 13. The bias and the variance in the case where
(N1, N2, N3) = (500, 500, 50) and N4 ∈ [0, 50].

(i) People-flow dataset
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(ii) Foursquare dataset
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(iii) US Census dataset
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Fig. 14. The bias and the variance in the case where N is
changed while fixing N1 : N2 : N3 : N4 = 10 : 10 : 1 : 1.

(i) People-flow dataset ((N1, N2, N3) = (20000, 500, 50))
Uniform ObfDat MatInvnorm EM ProposalMatInvproj

0 10 20 30 40 50
N4

B
ia

s

0.0E+00
5.0E-03
1.0E-02
1.5E-02
2.0E-02
2.5E-02
3.0E-02

0 10 20 30 40 50
N4

0.0E+00
5.0E-03
1.0E-02
1.5E-02
2.0E-02
9.0E-01
1.0E+00

Va
ria

nc
e

(ii) Foursquare dataset ((N1, N2, N3) = (20000, 500, 50))
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(iii) US Census dataset ((N1, N2, N3) = (20000, 500, 50))
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Fig. 15. The bias and the variance in the case where N1 =
20000.
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