
Flexible Anonymous Network

Florentin Rochet
UCLouvain Crypto Group

Olivier Bonaventure
UCLouvain IP Networking Lab

Olivier Pereira
UCLouvain Crypto Group

firstname.lastname@uclouvain.be

1. REVISITING PROTOCOL FLEXIBILITY
Internet technologies have been designed from guidelines

like the robustness principle also known as Postel’s law [1].
Jon Postel’s law is described as: “Be conservative in what
you do, be liberal in what you accept from others.” Fun-
damentally, it advises protocol designs to be tolerant with
what they accept from the other peers. In practice, this
law enables protocols to be forward compatible, meaning
that they will be tolerant with a future version of the same
protocol, making it possible to avoid unrecoverable errors
when peers do not use the same protocol version. The Tor
routing protocol naturally implements the robustness prin-
ciple when processing data and control information, and it
shows to be of crucial importance within a distributed and
volunteer-based network that can be composed of nodes run-
ning many different versions of the protocol.

The robustness principle is elegant and straightforward
to turn into a practical implementation. However, its secu-
rity implications are often ignored. Rochet and Pereira [4]
showed that the robustness principle could be exploited to
convey information between malicious relays, find the guard
relay used by a particular onion service or apply other var-
ious attacks. Furthermore, real attacks were observed in
the history of the Tor network with techniques exploiting
protocol robustness [2], raising awareness over the role this
principle can have into efficiently implementing well-known
theoretical attacks, like end-to-end traffic confirmation.

We propose to take a step back and wonder how the ro-
bustness principle could be revisited to support security re-
quirements. Our goal would be to define a software architec-
ture that offers the benefits of the robustness principle (i.e.,
efficient network services despite the presence of various soft-
ware versions), while also guaranteeing that this robustness
cannot be exploited by making sure that it is only used to
support authentic evolutions of the protocol specification.
We start to give an overview of the software architecture
and then, we describe two families of usage scenarios: 1)
lightweight updates for distributed systems: flexi-
bility without Postel’s law; 2) Custom Internet Pri-
vacy.

2. FLEXIBLE ANONYMOUS NETWOK
We call FAN, for Flexible Anonymous Network, an anony-

mous network architecture able to transparently change its
behavior for one or many users without having to restart
relays or perturbing other user connections while proceed-
ing to add, remove or modify protocol features. A FAN is
achieved using what we call “Protocol Plugins”, a novel tech-

nology which will be further described in Section 3. We now
describe two scenarios of our ongoing research that are made
possible with a FAN architecture.

Lightweight updates. The first research question we
consider is how to use Protocol Plugins to build a flexible
Tor network which does not blindly comply with the ro-
bustness principle. Answering this research question would
put Postel’s law behind us and may solve Tor’s security is-
sues related to it, as well as offering new perspectives for
feature deployment. A first perspective would be to offer
Tor developers a method to propagate lightweight updates
in a snap of fingers to all Tor users (relays, onion services,
and Tor clients). Lightweight updates would offer flexibility
without blindly following Postel’s law, since any new feature
can be added to the protocol through Protocol Plugins and
later be part of the codebase once the relay operator bumps
Tor’s version through regular packaging management but,
still, any deviation from the baseline protocol specification
would need to be properly authenticated. The plugins are
written in the same high-level language as Tor; they can
easily be merged inside the main codebase for people run-
ning the up-to-date Tor version, leaving developers only to
workout merge flows to manage plugins with the main code-
base during development. To manage, download, delete and
verify plugins authenticity, lightweight updates could fol-
low TUF [5]’s proposal, (the update framework), an already
widely used framework for secure updates aimed to survive
keys compromise.

Custom Internet privacy. An exciting direction for a
FAN architecture applied to Tor would be to let Tor users
and onion services to plug code in their own Tor circuits.
This could offer the opportunity for each user to benefit
from the right anonymity/performance trade-off during their
transient usage of the Tor network. For example, a Tor user
could decide to plug a specific padding scheme over its mid-
dle relay while visiting an onion service. On the relay, the
protocol extension would be ephemeral and only valid for
this specific connection. This research direction envisions a
new type of architecture for a distributed anonymous com-
munication network, where setting the communication pro-
tocol to use at a given time would be itself private, meaning
that the attacker would have the additional difficulty to ap-
prehend which type of privacy-preserving technique is used
to deanonymize the protected data flow.

However, such remote code injection capability is also
potentially dangerous for the network performance, secu-
rity, stability and for users’ privacy. We designed [3] a
plugin management system that bears similarity to Certifi-



cate Transparency which allows a way to distribute ade-
quate proofs that the plug-in enforces some claimed security
properties. According to this design, relays, and end-users
would only accept plugins with valid proofs that the code
is consistent with some properties that they require to be
guaranteed.

3. PROTOCOL PLUGINS
We suggest redesigning anonymous communication imple-

mentations such as Tor to make them flexible through Pro-
tocol Plugins, which are pieces of code that are executed
inside a userland VM (yet with comparable performance to
native execution) in response to a particular event.

We design Protocol Plugins from high-level languages such
as C or Rust and we target a bytecode representation of a
conceptual machine using the LLVM compiler Clang. In our
experiments, we looked into eBPF’s virtual machine and We-
bAssembly’s virtual machine. eBPF’s virtual machine has
been designed to run BPF bytecode inside the Linux ker-
nel, like mini-programs which can be started in response to
a particular event inside the kernel. This BPF bytecode
is JITted to machine code and offers comparable to native
performance while executing dynamically plugged programs.
On the other hand, webAssembly has been designed to of-
fer an alternative to JavaScript regarding performance on
critical tasks and to offer a higher diversity of languages
for the web Platform since .wasm bytecode can be obtained
from the compilation of diverse high-level languages. Fig-
ure 1 offers a representative view of the process to build
Protocol Plugins. Both BPF and wasm’s execution can be
emulated during development, which makes debugging a lot
more comfortable but still translates to machine code in pro-
duction. WebAssembly in its bytecode format has nothing
dependent to the Web, nor eBPF has dependencies to the
Linux kernel. Both are only instructions in a low-level for-
mat that follows a given conceptual machine architecture.

Figure 1: Protocol plugin lifecycle

Protocol Plugins are, in our design, embedded in Tor’s
critical path when handling data cells and would be called
for any protocol operation that would not follow the na-
tive implementation. We distinguish between the operations
handled by the native code which each relay runs, depending
on their Tor version, and the operations handled by proto-
col plug-ins as default operations and non-default operations
(what is default or non-default then depends on the specific
Tor version installed on a node).

Non-default operations call Protocol Plugins deployed on
relays in order to follow the up-to-date version of the Tor
Routing Protocol. If no Protocol Plugin can handle the
data, nor the default operation, it means that the informa-
tion received does not match the protocol’s specifications. In
consequences, the relays could apply the most efficient error-

handling mechanism to protect users’ privacy, such as killing
the Tor circuit and reporting the error if needed. Protocol
Plugins are a few KBs files containing the bytecode produced
by the LLVM compiler. Portable by design, Protocol Plugins
can be distributed to relays independently from their system
architecture and run inside optimized sandboxes with com-
parable to native performance once JITed to machine code.

We made a prototype implementation that is already work-
ing on the receiving side of plugins and allows plugging and
executing JITed BPF bytecode in response to Tor’s protocol
events inside a sandboxed userland VM. New protocol oper-
ations are plugged to Tor’s main code in less than 1ms on a
regular laptop (8th Gen Intel, 2666Mhz DDR4 and NVMe
SSD), which accounts for the load of the plugin from the
disk and the bootstrap of the user space virtual machine
used to sandbox the plugin. The current implementation of
the virtual machine allows exporting functions from the host
application (Tor in this case) at compile time (e.g., helper
functions). For more dynamical needs, like accessing some
internal Tor data from a plugin, we defined an interface be-
tween the host application and the plugins in order to allow
the plugin to get/set Tor’s internal state since, by design, we
cannot dereference pointers outside of the space allocated for
the virtual machine. Data access capabilities can be given
to the virtual machine running the plugin, including Tor’s
internal data or even external access, like authorizing a sys-
tem call to open a particular file (e.g., writing logs) but
nothing else. Tor’s code calls the plugin in response to some
particular event, like the reception of a cell that includes an
unhandled protocol feature within its header. In that case,
the cell would be transmitted to the plugin handling that
particular protocol feature. Any other application-defined
event can also call plugins.

4. A NEW PARADIGM?
Anonymous communications is one of many fieds that

could benefit from protocol plugins. Protocol plugins may
serve other goals, such as advancing the arm race in censor-
ship resistance (e.g., exploring how an authorized protocol
or application could hide another protocol from the cen-
sor through plugins), advancing deployment’s speed of new
transport protocols or extensions [3], advancing the Inter-
net’s control plane interoperability, etc.

5. REFERENCES
[1] Transmission control protocol.

https://tools.ietf.org/html/rfc793, September 1981.

[2] Relay early confirmation attack.
https://blog.torproject.org/blog/
tor-security-advisory-relay-early-traffic-confirmation-attack,
2014. Accessed: 2018-05-02.

[3] Q. De Coninck, F. Michel, M. Piraux, F. Rochet,
T. Given-Wilson, A. Legay, O. Pereira, and O. Bonaventure.
Pluginizing QUIC. In K. Winstein and X. Jin, editors,
Proceedings of the 2019 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-24, 2019. ACM, 2019.

[4] F. Rochet and O. Pereira. Dropping on the edge: Flexibility
and traffic confirmation in onion routing protocols.
Proceedings on Privacy Enhancing Technologies,
2018(2):27–46, 2018.

[5] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine.
Survivable key compromise in software update systems. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 61–72. ACM, 2010.

https://tools.ietf.org/html/rfc793
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack

	Revisiting protocol flexibility
	Flexible Anonymous Netwok
	Protocol Plugins
	A new paradigm?
	References

