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Abstract
Yodel is the first system for real-time voice calls that hides
metadata (e.g., who is communicating with whom) from
a powerful adversary that controls the network and com-
promises servers. Voice calls require sub-second message
latency, but low latency has been difficult to achieve in prior
work where processing each message requires an expen-
sive public key operation at each hop in the network. Yodel
avoids this expense with the idea of self-healing circuits,
reusable paths through a mix network that use only fast
symmetric cryptography. Once created, these circuits are
resilient to passive and active attacks from global adver-
saries. Creating and connecting to these circuits without
leaking metadata is another challenge that Yodel addresses
with the idea of guarded circuit exchange, where each user
creates a backup circuit for the case an attacker tampers
with their traffic. We evaluate Yodel across the Internet and
it achieves acceptable voice quality with 970ms of latency
for 4.8 million active users.

1 Introduction
Telecom providers retain call records which include the par-
ticipants and duration of every call. This metadata is used
for mass surveillance [9]; for example, the NSA collected 434
million call records of Americans in 2018 [10]. Call metadata
is especially problematic for journalists who need to keep
their sources confidential [4]. Even if telecoms stop retain-
ing call records, an attacker can monitor or compromise the
network to learn about voice calls happening in real-time.

Metadata-hiding systems have made significant progress
in scaling up to a large number of users [1, 5, 7, 8, 11, 12, 14],
but none of them can support real-time voice communica-
tion at that scale. Voice communication requires relatively
low latency (a second or two at most) and relatively high
bandwidth (a few kilobits per second), which are both at
least an order of magnitude beyond what state-of-the-art
systems can support. For example, the recent Karaoke [8]
design achieves 8 seconds of latency for 4M users with 0.24
kbits/sec of bandwidth for each user. The fastest state-of-
the-art systems also leak a small amount of metadata with
every message, which is reasonable for text messaging but
not well suited to the high message rate of real-time voice
calls.

This talk presents Yodel, the first metadata-hiding system
for real-time voice communication that defends against a
strong adversary that compromises the entire network and
might compromise any server. The closest prior metadata-

Alice
. . .

Bob

1

2

. . .

N

1

2

. . .

N

. . .

. . .

. . .

. . .

1

2

. . .

N

Alice

Bob

Senders Servers (mixnet)
Circuit

endpoints Receivers

Figure 1: Overview of Yodel’s components. Alice and Bob have
created two circuits each. The faded arrows are backup circuits,
created as part of Yodel’s guarded circuit exchange. Alice and Bob
are in a voice call, so they are listening on each other’s circuits.

private voice communication system, Herd [3], assumes an
adversary that monitors the network but does not focus on
compromised servers; other systems based on Tor are vul-
nerable to traffic analysis attacks by a network adversary [2].
Yodel hides metadata by operating a set of servers that form
a mixnet to shuffle user messages. Yodel allows users to
set up voice calls with one another, but relies on another
(metadata-private) service for the dialing handshake (i.e.,
notifying a user that someone wants to talk and responding
to the call).
Figure 1 shows how users communicate through Yodel

at a high level. Users send messages directly to a Yodel
server which participates in a mix network with the other
servers. The users choose a random sequence of servers
to process each of their messages and onion encrypt their
messages to ensure that messages follow their chosen paths.
An established path through the network is called a circuit,
and messages (e.g., voice packets) flow from users through
circuits to their endpoints. Users receive messages by listen-
ing on a circuit endpoint, which is a pseudorandom ID that
reveals nothing about the sender.
Yodel’s servers, labeled 1 through 𝑁 in Figure 1, shuffle

messages to hide which user is sending to which circuit end-
point. The servers shuffle messages in layers, indicated by
the vertical groups, similar to a parallel mixnet [6, 8]. All
paths in Yodel have the same number of layers, which is a
system security parameter. At each layer, a server receives
messages from all of the servers in the previous layer, de-
crypts the messages (which are onion-encrypted), shuffles
them, and sends themessages to the servers on the next layer.
To simplify Figure 1, the server-to-server communication is
only shown for the next-to-last layer.
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In Figure 1, Alice and Bob are in a voice call and have
established two circuits through Yodel, but each of them
only listens on one circuit. Alice is sending messages to the
circuit endpoint that Bob is listening on, and vice-versa. The
adversary sees that Alice and Bob connect to the system,
and knows to which circuit endpoints they are listening.
However, the mixnet hides which users are sending to which
circuit endpoint, so the adversary cannot tell whether Bob
is listening on Alice’s circuit.

Yodel achieves high performance by addressing the costly
public-key cryptographic operations that are typically re-
quired in a mixnet. For example, previous systems [1, 6–
8, 12, 14, 15] require public-key operations for every mes-
sage, which becomes a performance bottleneck. Yodel uses
a symmetric key circuit through the mixnet to relay mes-
sages between two users. Users set up the circuit using
public-key cryptography, but individual messages sent over
the circuit benefit from low-cost symmetric-key cryptogra-
phy. Although circuits offer high performance, using them
securely required Yodel to address two technical challenges.

The first challenge lies in the fact that circuits are used for
multiple messages. Since servers maintain shared keys with
each user for the duration of a circuit, a server may be able
to learn information about a user over time. For example, if a
user is briefly disconnected from the network, a server might
observe that no message arrived on a particular circuit, and
infer that the circuit belongs to that user. Yodel’s key insight
is the idea of self-healing circuits, which use honest servers
to ensure that circuit traffic is maintained despite network
interruptions, such as a user’s network going offline, or an
active attack on any part of the network.

The second challenge lies in connecting to circuits without
revealing metadata. In Yodel, if Alice wants to call Bob, Alice
sets up a circuit and tells Bob to connect to that circuit to
receive Alice’s messages. If Alice is not talking to anyone,
she connects to her own circuit as a form of cover traffic.
However, suppose that Alice calls Bob and doesn’t hear back.
Alice will connect to her own circuit for cover traffic. Bob
might also connect to Alice’s circuit because he got the call
but the adversary dropped his reply. Now the adversary will
observe both Alice and Bob connecting to the same circuit,
leaking that they wanted to communicate.

Yodel addresses this challenge using guarded circuit ex-
change, a simple protocol that ensures two honest users
never connect to the same circuit. The insight is to have
each user establish two circuits: one as a circuit for talking
with a buddy and another as a fallback for cover traffic. In
Figure 1 the bright red arrow is Alice’s circuit she created
to chat with Bob, and the faded red arrow is her fallback
circuit. In case of any message loss during dialing, each
user can safely connect to either their cover traffic circuit
or the buddy’s circuit, without leaking any metadata to the
adversary.
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Figure 2: One-way latency for voice packets with a varying number of
users and 100 Yodel servers.

2 Implementation
We implemented a prototype of Yodel in Go and ran it on 100
servers across different countries in Europe and North Amer-
ica to evaluate its performance. We evaluated Yodel with two
voice codecs: the standard Opus codec and LPCNet [13], a
low-bitrate vocoder. Figure 2 shows the preliminary results.
The results show that Yodel with LPCNet provides real-time
voice communication with a latency of 970ms from the time
a user sends a message to the time their buddy receives it,
while supporting 4.8 million users. We find that Yodel pro-
vides acceptable voice quality, and we have communicated
over Yodel several times to discuss the design of the system.
The full paper describing Yodel and its source code will

be available soon at https://vuvuzela.io.
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